Revision 6643d27e

b/mips-dis.c
1
/* Print mips instructions for GDB, the GNU debugger, or for objdump.
2
   Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3
   2000, 2001, 2002, 2003
4
   Free Software Foundation, Inc.
5
   Contributed by Nobuyuki Hikichi(hikichi@sra.co.jp).
6

  
7
This file is part of GDB, GAS, and the GNU binutils.
8

  
9
This program is free software; you can redistribute it and/or modify
10
it under the terms of the GNU General Public License as published by
11
the Free Software Foundation; either version 2 of the License, or
12
(at your option) any later version.
13

  
14
This program is distributed in the hope that it will be useful,
15
but WITHOUT ANY WARRANTY; without even the implied warranty of
16
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17
GNU General Public License for more details.
18

  
19
You should have received a copy of the GNU General Public License
20
along with this program; if not, write to the Free Software
21
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
22

  
23
#include "dis-asm.h"
24

  
25
/* mips.h.  Mips opcode list for GDB, the GNU debugger.
26
   Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
27
   Free Software Foundation, Inc.
28
   Contributed by Ralph Campbell and OSF
29
   Commented and modified by Ian Lance Taylor, Cygnus Support
30

  
31
This file is part of GDB, GAS, and the GNU binutils.
32

  
33
GDB, GAS, and the GNU binutils are free software; you can redistribute
34
them and/or modify them under the terms of the GNU General Public
35
License as published by the Free Software Foundation; either version
36
1, or (at your option) any later version.
37

  
38
GDB, GAS, and the GNU binutils are distributed in the hope that they
39
will be useful, but WITHOUT ANY WARRANTY; without even the implied
40
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
41
the GNU General Public License for more details.
42

  
43
You should have received a copy of the GNU General Public License
44
along with this file; see the file COPYING.  If not, write to the Free
45
Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
46

  
47
/* mips.h.  Mips opcode list for GDB, the GNU debugger.
48
   Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
49
   Free Software Foundation, Inc.
50
   Contributed by Ralph Campbell and OSF
51
   Commented and modified by Ian Lance Taylor, Cygnus Support
52

  
53
This file is part of GDB, GAS, and the GNU binutils.
54

  
55
GDB, GAS, and the GNU binutils are free software; you can redistribute
56
them and/or modify them under the terms of the GNU General Public
57
License as published by the Free Software Foundation; either version
58
1, or (at your option) any later version.
59

  
60
GDB, GAS, and the GNU binutils are distributed in the hope that they
61
will be useful, but WITHOUT ANY WARRANTY; without even the implied
62
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
63
the GNU General Public License for more details.
64

  
65
You should have received a copy of the GNU General Public License
66
along with this file; see the file COPYING.  If not, write to the Free
67
Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
68

  
69
/* These are bit masks and shift counts to use to access the various
70
   fields of an instruction.  To retrieve the X field of an
71
   instruction, use the expression
72
	(i >> OP_SH_X) & OP_MASK_X
73
   To set the same field (to j), use
74
	i = (i &~ (OP_MASK_X << OP_SH_X)) | (j << OP_SH_X)
75

  
76
   Make sure you use fields that are appropriate for the instruction,
77
   of course.
78

  
79
   The 'i' format uses OP, RS, RT and IMMEDIATE.
80

  
81
   The 'j' format uses OP and TARGET.
82

  
83
   The 'r' format uses OP, RS, RT, RD, SHAMT and FUNCT.
84

  
85
   The 'b' format uses OP, RS, RT and DELTA.
86

  
87
   The floating point 'i' format uses OP, RS, RT and IMMEDIATE.
88

  
89
   The floating point 'r' format uses OP, FMT, FT, FS, FD and FUNCT.
90

  
91
   A breakpoint instruction uses OP, CODE and SPEC (10 bits of the
92
   breakpoint instruction are not defined; Kane says the breakpoint
93
   code field in BREAK is 20 bits; yet MIPS assemblers and debuggers
94
   only use ten bits).  An optional two-operand form of break/sdbbp
95
   allows the lower ten bits to be set too, and MIPS32 and later
96
   architectures allow 20 bits to be set with a signal operand
97
   (using CODE20).
98

  
99
   The syscall instruction uses CODE20.
100

  
101
   The general coprocessor instructions use COPZ.  */
102

  
103
#define OP_MASK_OP		0x3f
104
#define OP_SH_OP		26
105
#define OP_MASK_RS		0x1f
106
#define OP_SH_RS		21
107
#define OP_MASK_FR		0x1f
108
#define OP_SH_FR		21
109
#define OP_MASK_FMT		0x1f
110
#define OP_SH_FMT		21
111
#define OP_MASK_BCC		0x7
112
#define OP_SH_BCC		18
113
#define OP_MASK_CODE		0x3ff
114
#define OP_SH_CODE		16
115
#define OP_MASK_CODE2		0x3ff
116
#define OP_SH_CODE2		6
117
#define OP_MASK_RT		0x1f
118
#define OP_SH_RT		16
119
#define OP_MASK_FT		0x1f
120
#define OP_SH_FT		16
121
#define OP_MASK_CACHE		0x1f
122
#define OP_SH_CACHE		16
123
#define OP_MASK_RD		0x1f
124
#define OP_SH_RD		11
125
#define OP_MASK_FS		0x1f
126
#define OP_SH_FS		11
127
#define OP_MASK_PREFX		0x1f
128
#define OP_SH_PREFX		11
129
#define OP_MASK_CCC		0x7
130
#define OP_SH_CCC		8
131
#define OP_MASK_CODE20		0xfffff /* 20 bit syscall/breakpoint code.  */
132
#define OP_SH_CODE20		6
133
#define OP_MASK_SHAMT		0x1f
134
#define OP_SH_SHAMT		6
135
#define OP_MASK_FD		0x1f
136
#define OP_SH_FD		6
137
#define OP_MASK_TARGET		0x3ffffff
138
#define OP_SH_TARGET		0
139
#define OP_MASK_COPZ		0x1ffffff
140
#define OP_SH_COPZ		0
141
#define OP_MASK_IMMEDIATE	0xffff
142
#define OP_SH_IMMEDIATE		0
143
#define OP_MASK_DELTA		0xffff
144
#define OP_SH_DELTA		0
145
#define OP_MASK_FUNCT		0x3f
146
#define OP_SH_FUNCT		0
147
#define OP_MASK_SPEC		0x3f
148
#define OP_SH_SPEC		0
149
#define OP_SH_LOCC              8       /* FP condition code.  */
150
#define OP_SH_HICC              18      /* FP condition code.  */
151
#define OP_MASK_CC              0x7
152
#define OP_SH_COP1NORM          25      /* Normal COP1 encoding.  */
153
#define OP_MASK_COP1NORM        0x1     /* a single bit.  */
154
#define OP_SH_COP1SPEC          21      /* COP1 encodings.  */
155
#define OP_MASK_COP1SPEC        0xf
156
#define OP_MASK_COP1SCLR        0x4
157
#define OP_MASK_COP1CMP         0x3
158
#define OP_SH_COP1CMP           4
159
#define OP_SH_FORMAT            21      /* FP short format field.  */
160
#define OP_MASK_FORMAT          0x7
161
#define OP_SH_TRUE              16
162
#define OP_MASK_TRUE            0x1
163
#define OP_SH_GE                17
164
#define OP_MASK_GE              0x01
165
#define OP_SH_UNSIGNED          16
166
#define OP_MASK_UNSIGNED        0x1
167
#define OP_SH_HINT              16
168
#define OP_MASK_HINT            0x1f
169
#define OP_SH_MMI               0       /* Multimedia (parallel) op.  */
170
#define OP_MASK_MMI             0x3f
171
#define OP_SH_MMISUB            6
172
#define OP_MASK_MMISUB          0x1f
173
#define OP_MASK_PERFREG		0x1f	/* Performance monitoring.  */
174
#define OP_SH_PERFREG		1
175
#define OP_SH_SEL		0	/* Coprocessor select field.  */
176
#define OP_MASK_SEL		0x7	/* The sel field of mfcZ and mtcZ.  */
177
#define OP_SH_CODE19		6       /* 19 bit wait code.  */
178
#define OP_MASK_CODE19		0x7ffff
179
#define OP_SH_ALN		21
180
#define OP_MASK_ALN		0x7
181
#define OP_SH_VSEL		21
182
#define OP_MASK_VSEL		0x1f
183
#define OP_MASK_VECBYTE		0x7	/* Selector field is really 4 bits,
184
					   but 0x8-0xf don't select bytes.  */
185
#define OP_SH_VECBYTE		22
186
#define OP_MASK_VECALIGN	0x7	/* Vector byte-align (alni.ob) op.  */
187
#define OP_SH_VECALIGN		21
188
#define OP_MASK_INSMSB		0x1f	/* "ins" MSB.  */
189
#define OP_SH_INSMSB		11
190
#define OP_MASK_EXTMSBD		0x1f	/* "ext" MSBD.  */
191
#define OP_SH_EXTMSBD		11
192

  
193
#define	OP_OP_COP0		0x10
194
#define	OP_OP_COP1		0x11
195
#define	OP_OP_COP2		0x12
196
#define	OP_OP_COP3		0x13
197
#define	OP_OP_LWC1		0x31
198
#define	OP_OP_LWC2		0x32
199
#define	OP_OP_LWC3		0x33	/* a.k.a. pref */
200
#define	OP_OP_LDC1		0x35
201
#define	OP_OP_LDC2		0x36
202
#define	OP_OP_LDC3		0x37	/* a.k.a. ld */
203
#define	OP_OP_SWC1		0x39
204
#define	OP_OP_SWC2		0x3a
205
#define	OP_OP_SWC3		0x3b
206
#define	OP_OP_SDC1		0x3d
207
#define	OP_OP_SDC2		0x3e
208
#define	OP_OP_SDC3		0x3f	/* a.k.a. sd */
209

  
210
/* Values in the 'VSEL' field.  */
211
#define MDMX_FMTSEL_IMM_QH	0x1d
212
#define MDMX_FMTSEL_IMM_OB	0x1e
213
#define MDMX_FMTSEL_VEC_QH	0x15
214
#define MDMX_FMTSEL_VEC_OB	0x16
215

  
216
/* This structure holds information for a particular instruction.  */
217

  
218
struct mips_opcode
219
{
220
  /* The name of the instruction.  */
221
  const char *name;
222
  /* A string describing the arguments for this instruction.  */
223
  const char *args;
224
  /* The basic opcode for the instruction.  When assembling, this
225
     opcode is modified by the arguments to produce the actual opcode
226
     that is used.  If pinfo is INSN_MACRO, then this is 0.  */
227
  unsigned long match;
228
  /* If pinfo is not INSN_MACRO, then this is a bit mask for the
229
     relevant portions of the opcode when disassembling.  If the
230
     actual opcode anded with the match field equals the opcode field,
231
     then we have found the correct instruction.  If pinfo is
232
     INSN_MACRO, then this field is the macro identifier.  */
233
  unsigned long mask;
234
  /* For a macro, this is INSN_MACRO.  Otherwise, it is a collection
235
     of bits describing the instruction, notably any relevant hazard
236
     information.  */
237
  unsigned long pinfo;
238
  /* A collection of bits describing the instruction sets of which this
239
     instruction or macro is a member. */
240
  unsigned long membership;
241
};
242

  
243
/* These are the characters which may appear in the args field of an
244
   instruction.  They appear in the order in which the fields appear
245
   when the instruction is used.  Commas and parentheses in the args
246
   string are ignored when assembling, and written into the output
247
   when disassembling.
248

  
249
   Each of these characters corresponds to a mask field defined above.
250

  
251
   "<" 5 bit shift amount (OP_*_SHAMT)
252
   ">" shift amount between 32 and 63, stored after subtracting 32 (OP_*_SHAMT)
253
   "a" 26 bit target address (OP_*_TARGET)
254
   "b" 5 bit base register (OP_*_RS)
255
   "c" 10 bit breakpoint code (OP_*_CODE)
256
   "d" 5 bit destination register specifier (OP_*_RD)
257
   "h" 5 bit prefx hint (OP_*_PREFX)
258
   "i" 16 bit unsigned immediate (OP_*_IMMEDIATE)
259
   "j" 16 bit signed immediate (OP_*_DELTA)
260
   "k" 5 bit cache opcode in target register position (OP_*_CACHE)
261
       Also used for immediate operands in vr5400 vector insns.
262
   "o" 16 bit signed offset (OP_*_DELTA)
263
   "p" 16 bit PC relative branch target address (OP_*_DELTA)
264
   "q" 10 bit extra breakpoint code (OP_*_CODE2)
265
   "r" 5 bit same register used as both source and target (OP_*_RS)
266
   "s" 5 bit source register specifier (OP_*_RS)
267
   "t" 5 bit target register (OP_*_RT)
268
   "u" 16 bit upper 16 bits of address (OP_*_IMMEDIATE)
269
   "v" 5 bit same register used as both source and destination (OP_*_RS)
270
   "w" 5 bit same register used as both target and destination (OP_*_RT)
271
   "U" 5 bit same destination register in both OP_*_RD and OP_*_RT
272
       (used by clo and clz)
273
   "C" 25 bit coprocessor function code (OP_*_COPZ)
274
   "B" 20 bit syscall/breakpoint function code (OP_*_CODE20)
275
   "J" 19 bit wait function code (OP_*_CODE19)
276
   "x" accept and ignore register name
277
   "z" must be zero register
278
   "K" 5 bit Hardware Register (rdhwr instruction) (OP_*_RD)
279
   "+A" 5 bit ins/ext position, which becomes LSB (OP_*_SHAMT).
280
	Enforces: 0 <= pos < 32.
281
   "+B" 5 bit ins size, which becomes MSB (OP_*_INSMSB).
282
	Requires that "+A" or "+E" occur first to set position.
283
	Enforces: 0 < (pos+size) <= 32.
284
   "+C" 5 bit ext size, which becomes MSBD (OP_*_EXTMSBD).
285
	Requires that "+A" or "+E" occur first to set position.
286
	Enforces: 0 < (pos+size) <= 32.
287
	(Also used by "dext" w/ different limits, but limits for
288
	that are checked by the M_DEXT macro.)
289
   "+E" 5 bit dins/dext position, which becomes LSB-32 (OP_*_SHAMT).
290
	Enforces: 32 <= pos < 64.
291
   "+F" 5 bit "dinsm" size, which becomes MSB-32 (OP_*_INSMSB).
292
	Requires that "+A" or "+E" occur first to set position.
293
	Enforces: 32 < (pos+size) <= 64.
294
   "+G" 5 bit "dextm" size, which becomes MSBD-32 (OP_*_EXTMSBD).
295
	Requires that "+A" or "+E" occur first to set position.
296
	Enforces: 32 < (pos+size) <= 64.
297
   "+H" 5 bit "dextu" size, which becomes MSBD (OP_*_EXTMSBD).
298
	Requires that "+A" or "+E" occur first to set position.
299
	Enforces: 32 < (pos+size) <= 64.
300

  
301
   Floating point instructions:
302
   "D" 5 bit destination register (OP_*_FD)
303
   "M" 3 bit compare condition code (OP_*_CCC) (only used for mips4 and up)
304
   "N" 3 bit branch condition code (OP_*_BCC) (only used for mips4 and up)
305
   "S" 5 bit fs source 1 register (OP_*_FS)
306
   "T" 5 bit ft source 2 register (OP_*_FT)
307
   "R" 5 bit fr source 3 register (OP_*_FR)
308
   "V" 5 bit same register used as floating source and destination (OP_*_FS)
309
   "W" 5 bit same register used as floating target and destination (OP_*_FT)
310

  
311
   Coprocessor instructions:
312
   "E" 5 bit target register (OP_*_RT)
313
   "G" 5 bit destination register (OP_*_RD)
314
   "H" 3 bit sel field for (d)mtc* and (d)mfc* (OP_*_SEL)
315
   "P" 5 bit performance-monitor register (OP_*_PERFREG)
316
   "e" 5 bit vector register byte specifier (OP_*_VECBYTE)
317
   "%" 3 bit immediate vr5400 vector alignment operand (OP_*_VECALIGN)
318
   see also "k" above
319
   "+D" Combined destination register ("G") and sel ("H") for CP0 ops,
320
	for pretty-printing in disassembly only.
321

  
322
   Macro instructions:
323
   "A" General 32 bit expression
324
   "I" 32 bit immediate (value placed in imm_expr).
325
   "+I" 32 bit immediate (value placed in imm2_expr).
326
   "F" 64 bit floating point constant in .rdata
327
   "L" 64 bit floating point constant in .lit8
328
   "f" 32 bit floating point constant
329
   "l" 32 bit floating point constant in .lit4
330

  
331
   MDMX instruction operands (note that while these use the FP register
332
   fields, they accept both $fN and $vN names for the registers):  
333
   "O"	MDMX alignment offset (OP_*_ALN)
334
   "Q"	MDMX vector/scalar/immediate source (OP_*_VSEL and OP_*_FT)
335
   "X"	MDMX destination register (OP_*_FD) 
336
   "Y"	MDMX source register (OP_*_FS)
337
   "Z"	MDMX source register (OP_*_FT)
338

  
339
   Other:
340
   "()" parens surrounding optional value
341
   ","  separates operands
342
   "[]" brackets around index for vector-op scalar operand specifier (vr5400)
343
   "+"  Start of extension sequence.
344

  
345
   Characters used so far, for quick reference when adding more:
346
   "%[]<>(),+"
347
   "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
348
   "abcdefhijklopqrstuvwxz"
349

  
350
   Extension character sequences used so far ("+" followed by the
351
   following), for quick reference when adding more:
352
   "ABCDEFGHI"
353
*/
354

  
355
/* These are the bits which may be set in the pinfo field of an
356
   instructions, if it is not equal to INSN_MACRO.  */
357

  
358
/* Modifies the general purpose register in OP_*_RD.  */
359
#define INSN_WRITE_GPR_D            0x00000001
360
/* Modifies the general purpose register in OP_*_RT.  */
361
#define INSN_WRITE_GPR_T            0x00000002
362
/* Modifies general purpose register 31.  */
363
#define INSN_WRITE_GPR_31           0x00000004
364
/* Modifies the floating point register in OP_*_FD.  */
365
#define INSN_WRITE_FPR_D            0x00000008
366
/* Modifies the floating point register in OP_*_FS.  */
367
#define INSN_WRITE_FPR_S            0x00000010
368
/* Modifies the floating point register in OP_*_FT.  */
369
#define INSN_WRITE_FPR_T            0x00000020
370
/* Reads the general purpose register in OP_*_RS.  */
371
#define INSN_READ_GPR_S             0x00000040
372
/* Reads the general purpose register in OP_*_RT.  */
373
#define INSN_READ_GPR_T             0x00000080
374
/* Reads the floating point register in OP_*_FS.  */
375
#define INSN_READ_FPR_S             0x00000100
376
/* Reads the floating point register in OP_*_FT.  */
377
#define INSN_READ_FPR_T             0x00000200
378
/* Reads the floating point register in OP_*_FR.  */
379
#define INSN_READ_FPR_R		    0x00000400
380
/* Modifies coprocessor condition code.  */
381
#define INSN_WRITE_COND_CODE        0x00000800
382
/* Reads coprocessor condition code.  */
383
#define INSN_READ_COND_CODE         0x00001000
384
/* TLB operation.  */
385
#define INSN_TLB                    0x00002000
386
/* Reads coprocessor register other than floating point register.  */
387
#define INSN_COP                    0x00004000
388
/* Instruction loads value from memory, requiring delay.  */
389
#define INSN_LOAD_MEMORY_DELAY      0x00008000
390
/* Instruction loads value from coprocessor, requiring delay.  */
391
#define INSN_LOAD_COPROC_DELAY	    0x00010000
392
/* Instruction has unconditional branch delay slot.  */
393
#define INSN_UNCOND_BRANCH_DELAY    0x00020000
394
/* Instruction has conditional branch delay slot.  */
395
#define INSN_COND_BRANCH_DELAY      0x00040000
396
/* Conditional branch likely: if branch not taken, insn nullified.  */
397
#define INSN_COND_BRANCH_LIKELY	    0x00080000
398
/* Moves to coprocessor register, requiring delay.  */
399
#define INSN_COPROC_MOVE_DELAY      0x00100000
400
/* Loads coprocessor register from memory, requiring delay.  */
401
#define INSN_COPROC_MEMORY_DELAY    0x00200000
402
/* Reads the HI register.  */
403
#define INSN_READ_HI		    0x00400000
404
/* Reads the LO register.  */
405
#define INSN_READ_LO		    0x00800000
406
/* Modifies the HI register.  */
407
#define INSN_WRITE_HI		    0x01000000
408
/* Modifies the LO register.  */
409
#define INSN_WRITE_LO		    0x02000000
410
/* Takes a trap (easier to keep out of delay slot).  */
411
#define INSN_TRAP                   0x04000000
412
/* Instruction stores value into memory.  */
413
#define INSN_STORE_MEMORY	    0x08000000
414
/* Instruction uses single precision floating point.  */
415
#define FP_S			    0x10000000
416
/* Instruction uses double precision floating point.  */
417
#define FP_D			    0x20000000
418
/* Instruction is part of the tx39's integer multiply family.    */
419
#define INSN_MULT                   0x40000000
420
/* Instruction synchronize shared memory.  */
421
#define INSN_SYNC		    0x80000000
422
/* Instruction reads MDMX accumulator.  XXX FIXME: No bits left!  */
423
#define INSN_READ_MDMX_ACC	    0
424
/* Instruction writes MDMX accumulator.  XXX FIXME: No bits left!  */
425
#define INSN_WRITE_MDMX_ACC	    0
426

  
427
/* Instruction is actually a macro.  It should be ignored by the
428
   disassembler, and requires special treatment by the assembler.  */
429
#define INSN_MACRO                  0xffffffff
430

  
431
/* Masks used to mark instructions to indicate which MIPS ISA level
432
   they were introduced in.  ISAs, as defined below, are logical
433
   ORs of these bits, indicating that they support the instructions
434
   defined at the given level.  */
435

  
436
#define INSN_ISA_MASK		  0x00000fff
437
#define INSN_ISA1                 0x00000001
438
#define INSN_ISA2                 0x00000002
439
#define INSN_ISA3                 0x00000004
440
#define INSN_ISA4                 0x00000008
441
#define INSN_ISA5                 0x00000010
442
#define INSN_ISA32                0x00000020
443
#define INSN_ISA64                0x00000040
444
#define INSN_ISA32R2              0x00000080
445
#define INSN_ISA64R2              0x00000100
446

  
447
/* Masks used for MIPS-defined ASEs.  */
448
#define INSN_ASE_MASK		  0x0000f000
449

  
450
/* MIPS 16 ASE */
451
#define INSN_MIPS16               0x00002000
452
/* MIPS-3D ASE */
453
#define INSN_MIPS3D               0x00004000
454
/* MDMX ASE */ 
455
#define INSN_MDMX                 0x00008000
456

  
457
/* Chip specific instructions.  These are bitmasks.  */
458

  
459
/* MIPS R4650 instruction.  */
460
#define INSN_4650                 0x00010000
461
/* LSI R4010 instruction.  */
462
#define INSN_4010                 0x00020000
463
/* NEC VR4100 instruction.  */
464
#define INSN_4100                 0x00040000
465
/* Toshiba R3900 instruction.  */
466
#define INSN_3900                 0x00080000
467
/* MIPS R10000 instruction.  */
468
#define INSN_10000                0x00100000
469
/* Broadcom SB-1 instruction.  */
470
#define INSN_SB1                  0x00200000
471
/* NEC VR4111/VR4181 instruction.  */
472
#define INSN_4111                 0x00400000
473
/* NEC VR4120 instruction.  */
474
#define INSN_4120                 0x00800000
475
/* NEC VR5400 instruction.  */
476
#define INSN_5400		  0x01000000
477
/* NEC VR5500 instruction.  */
478
#define INSN_5500		  0x02000000
479

  
480
/* MIPS ISA defines, use instead of hardcoding ISA level.  */
481

  
482
#define       ISA_UNKNOWN     0               /* Gas internal use.  */
483
#define       ISA_MIPS1       (INSN_ISA1)
484
#define       ISA_MIPS2       (ISA_MIPS1 | INSN_ISA2)
485
#define       ISA_MIPS3       (ISA_MIPS2 | INSN_ISA3)
486
#define       ISA_MIPS4       (ISA_MIPS3 | INSN_ISA4)
487
#define       ISA_MIPS5       (ISA_MIPS4 | INSN_ISA5)
488

  
489
#define       ISA_MIPS32      (ISA_MIPS2 | INSN_ISA32)
490
#define       ISA_MIPS64      (ISA_MIPS5 | INSN_ISA32 | INSN_ISA64)
491

  
492
#define       ISA_MIPS32R2    (ISA_MIPS32 | INSN_ISA32R2)
493
#define       ISA_MIPS64R2    (ISA_MIPS64 | INSN_ISA32R2 | INSN_ISA64R2)
494

  
495

  
496
/* CPU defines, use instead of hardcoding processor number. Keep this
497
   in sync with bfd/archures.c in order for machine selection to work.  */
498
#define CPU_UNKNOWN	0               /* Gas internal use.  */
499
#define CPU_R3000	3000
500
#define CPU_R3900	3900
501
#define CPU_R4000	4000
502
#define CPU_R4010	4010
503
#define CPU_VR4100	4100
504
#define CPU_R4111	4111
505
#define CPU_VR4120	4120
506
#define CPU_R4300	4300
507
#define CPU_R4400	4400
508
#define CPU_R4600	4600
509
#define CPU_R4650	4650
510
#define CPU_R5000	5000
511
#define CPU_VR5400	5400
512
#define CPU_VR5500	5500
513
#define CPU_R6000	6000
514
#define CPU_RM7000	7000
515
#define CPU_R8000	8000
516
#define CPU_R10000	10000
517
#define CPU_R12000	12000
518
#define CPU_MIPS16	16
519
#define CPU_MIPS32	32
520
#define CPU_MIPS32R2	33
521
#define CPU_MIPS5       5
522
#define CPU_MIPS64      64
523
#define CPU_MIPS64R2	65
524
#define CPU_SB1         12310201        /* octal 'SB', 01.  */
525

  
526
/* Test for membership in an ISA including chip specific ISAs.  INSN
527
   is pointer to an element of the opcode table; ISA is the specified
528
   ISA/ASE bitmask to test against; and CPU is the CPU specific ISA to
529
   test, or zero if no CPU specific ISA test is desired.  */
530

  
531
#define OPCODE_IS_MEMBER(insn, isa, cpu)				\
532
    (((insn)->membership & isa) != 0					\
533
     || (cpu == CPU_R4650 && ((insn)->membership & INSN_4650) != 0)	\
534
     || (cpu == CPU_RM7000 && ((insn)->membership & INSN_4650) != 0)	\
535
     || (cpu == CPU_R4010 && ((insn)->membership & INSN_4010) != 0)	\
536
     || (cpu == CPU_VR4100 && ((insn)->membership & INSN_4100) != 0)	\
537
     || (cpu == CPU_R3900 && ((insn)->membership & INSN_3900) != 0)	\
538
     || ((cpu == CPU_R10000 || cpu == CPU_R12000)			\
539
	 && ((insn)->membership & INSN_10000) != 0)			\
540
     || (cpu == CPU_SB1 && ((insn)->membership & INSN_SB1) != 0)	\
541
     || (cpu == CPU_R4111 && ((insn)->membership & INSN_4111) != 0)	\
542
     || (cpu == CPU_VR4120 && ((insn)->membership & INSN_4120) != 0)	\
543
     || (cpu == CPU_VR5400 && ((insn)->membership & INSN_5400) != 0)	\
544
     || (cpu == CPU_VR5500 && ((insn)->membership & INSN_5500) != 0)	\
545
     || 0)	/* Please keep this term for easier source merging.  */
546

  
547
/* This is a list of macro expanded instructions.
548

  
549
   _I appended means immediate
550
   _A appended means address
551
   _AB appended means address with base register
552
   _D appended means 64 bit floating point constant
553
   _S appended means 32 bit floating point constant.  */
554

  
555
enum
556
{
557
  M_ABS,
558
  M_ADD_I,
559
  M_ADDU_I,
560
  M_AND_I,
561
  M_BEQ,
562
  M_BEQ_I,
563
  M_BEQL_I,
564
  M_BGE,
565
  M_BGEL,
566
  M_BGE_I,
567
  M_BGEL_I,
568
  M_BGEU,
569
  M_BGEUL,
570
  M_BGEU_I,
571
  M_BGEUL_I,
572
  M_BGT,
573
  M_BGTL,
574
  M_BGT_I,
575
  M_BGTL_I,
576
  M_BGTU,
577
  M_BGTUL,
578
  M_BGTU_I,
579
  M_BGTUL_I,
580
  M_BLE,
581
  M_BLEL,
582
  M_BLE_I,
583
  M_BLEL_I,
584
  M_BLEU,
585
  M_BLEUL,
586
  M_BLEU_I,
587
  M_BLEUL_I,
588
  M_BLT,
589
  M_BLTL,
590
  M_BLT_I,
591
  M_BLTL_I,
592
  M_BLTU,
593
  M_BLTUL,
594
  M_BLTU_I,
595
  M_BLTUL_I,
596
  M_BNE,
597
  M_BNE_I,
598
  M_BNEL_I,
599
  M_DABS,
600
  M_DADD_I,
601
  M_DADDU_I,
602
  M_DDIV_3,
603
  M_DDIV_3I,
604
  M_DDIVU_3,
605
  M_DDIVU_3I,
606
  M_DEXT,
607
  M_DINS,
608
  M_DIV_3,
609
  M_DIV_3I,
610
  M_DIVU_3,
611
  M_DIVU_3I,
612
  M_DLA_AB,
613
  M_DLCA_AB,
614
  M_DLI,
615
  M_DMUL,
616
  M_DMUL_I,
617
  M_DMULO,
618
  M_DMULO_I,
619
  M_DMULOU,
620
  M_DMULOU_I,
621
  M_DREM_3,
622
  M_DREM_3I,
623
  M_DREMU_3,
624
  M_DREMU_3I,
625
  M_DSUB_I,
626
  M_DSUBU_I,
627
  M_DSUBU_I_2,
628
  M_J_A,
629
  M_JAL_1,
630
  M_JAL_2,
631
  M_JAL_A,
632
  M_L_DOB,
633
  M_L_DAB,
634
  M_LA_AB,
635
  M_LB_A,
636
  M_LB_AB,
637
  M_LBU_A,
638
  M_LBU_AB,
639
  M_LCA_AB,
640
  M_LD_A,
641
  M_LD_OB,
642
  M_LD_AB,
643
  M_LDC1_AB,
644
  M_LDC2_AB,
645
  M_LDC3_AB,
646
  M_LDL_AB,
647
  M_LDR_AB,
648
  M_LH_A,
649
  M_LH_AB,
650
  M_LHU_A,
651
  M_LHU_AB,
652
  M_LI,
653
  M_LI_D,
654
  M_LI_DD,
655
  M_LI_S,
656
  M_LI_SS,
657
  M_LL_AB,
658
  M_LLD_AB,
659
  M_LS_A,
660
  M_LW_A,
661
  M_LW_AB,
662
  M_LWC0_A,
663
  M_LWC0_AB,
664
  M_LWC1_A,
665
  M_LWC1_AB,
666
  M_LWC2_A,
667
  M_LWC2_AB,
668
  M_LWC3_A,
669
  M_LWC3_AB,
670
  M_LWL_A,
671
  M_LWL_AB,
672
  M_LWR_A,
673
  M_LWR_AB,
674
  M_LWU_AB,
675
  M_MOVE,
676
  M_MUL,
677
  M_MUL_I,
678
  M_MULO,
679
  M_MULO_I,
680
  M_MULOU,
681
  M_MULOU_I,
682
  M_NOR_I,
683
  M_OR_I,
684
  M_REM_3,
685
  M_REM_3I,
686
  M_REMU_3,
687
  M_REMU_3I,
688
  M_DROL,
689
  M_ROL,
690
  M_DROL_I,
691
  M_ROL_I,
692
  M_DROR,
693
  M_ROR,
694
  M_DROR_I,
695
  M_ROR_I,
696
  M_S_DA,
697
  M_S_DOB,
698
  M_S_DAB,
699
  M_S_S,
700
  M_SC_AB,
701
  M_SCD_AB,
702
  M_SD_A,
703
  M_SD_OB,
704
  M_SD_AB,
705
  M_SDC1_AB,
706
  M_SDC2_AB,
707
  M_SDC3_AB,
708
  M_SDL_AB,
709
  M_SDR_AB,
710
  M_SEQ,
711
  M_SEQ_I,
712
  M_SGE,
713
  M_SGE_I,
714
  M_SGEU,
715
  M_SGEU_I,
716
  M_SGT,
717
  M_SGT_I,
718
  M_SGTU,
719
  M_SGTU_I,
720
  M_SLE,
721
  M_SLE_I,
722
  M_SLEU,
723
  M_SLEU_I,
724
  M_SLT_I,
725
  M_SLTU_I,
726
  M_SNE,
727
  M_SNE_I,
728
  M_SB_A,
729
  M_SB_AB,
730
  M_SH_A,
731
  M_SH_AB,
732
  M_SW_A,
733
  M_SW_AB,
734
  M_SWC0_A,
735
  M_SWC0_AB,
736
  M_SWC1_A,
737
  M_SWC1_AB,
738
  M_SWC2_A,
739
  M_SWC2_AB,
740
  M_SWC3_A,
741
  M_SWC3_AB,
742
  M_SWL_A,
743
  M_SWL_AB,
744
  M_SWR_A,
745
  M_SWR_AB,
746
  M_SUB_I,
747
  M_SUBU_I,
748
  M_SUBU_I_2,
749
  M_TEQ_I,
750
  M_TGE_I,
751
  M_TGEU_I,
752
  M_TLT_I,
753
  M_TLTU_I,
754
  M_TNE_I,
755
  M_TRUNCWD,
756
  M_TRUNCWS,
757
  M_ULD,
758
  M_ULD_A,
759
  M_ULH,
760
  M_ULH_A,
761
  M_ULHU,
762
  M_ULHU_A,
763
  M_ULW,
764
  M_ULW_A,
765
  M_USH,
766
  M_USH_A,
767
  M_USW,
768
  M_USW_A,
769
  M_USD,
770
  M_USD_A,
771
  M_XOR_I,
772
  M_COP0,
773
  M_COP1,
774
  M_COP2,
775
  M_COP3,
776
  M_NUM_MACROS
777
};
778

  
779

  
780
/* The order of overloaded instructions matters.  Label arguments and
781
   register arguments look the same. Instructions that can have either
782
   for arguments must apear in the correct order in this table for the
783
   assembler to pick the right one. In other words, entries with
784
   immediate operands must apear after the same instruction with
785
   registers.
786

  
787
   Many instructions are short hand for other instructions (i.e., The
788
   jal <register> instruction is short for jalr <register>).  */
789

  
790
extern const struct mips_opcode mips_builtin_opcodes[];
791
extern const int bfd_mips_num_builtin_opcodes;
792
extern struct mips_opcode *mips_opcodes;
793
extern int bfd_mips_num_opcodes;
794
#define NUMOPCODES bfd_mips_num_opcodes
795

  
796

797
/* The rest of this file adds definitions for the mips16 TinyRISC
798
   processor.  */
799

  
800
/* These are the bitmasks and shift counts used for the different
801
   fields in the instruction formats.  Other than OP, no masks are
802
   provided for the fixed portions of an instruction, since they are
803
   not needed.
804

  
805
   The I format uses IMM11.
806

  
807
   The RI format uses RX and IMM8.
808

  
809
   The RR format uses RX, and RY.
810

  
811
   The RRI format uses RX, RY, and IMM5.
812

  
813
   The RRR format uses RX, RY, and RZ.
814

  
815
   The RRI_A format uses RX, RY, and IMM4.
816

  
817
   The SHIFT format uses RX, RY, and SHAMT.
818

  
819
   The I8 format uses IMM8.
820

  
821
   The I8_MOVR32 format uses RY and REGR32.
822

  
823
   The IR_MOV32R format uses REG32R and MOV32Z.
824

  
825
   The I64 format uses IMM8.
826

  
827
   The RI64 format uses RY and IMM5.
828
   */
829

  
830
#define MIPS16OP_MASK_OP	0x1f
831
#define MIPS16OP_SH_OP		11
832
#define MIPS16OP_MASK_IMM11	0x7ff
833
#define MIPS16OP_SH_IMM11	0
834
#define MIPS16OP_MASK_RX	0x7
835
#define MIPS16OP_SH_RX		8
836
#define MIPS16OP_MASK_IMM8	0xff
837
#define MIPS16OP_SH_IMM8	0
838
#define MIPS16OP_MASK_RY	0x7
839
#define MIPS16OP_SH_RY		5
840
#define MIPS16OP_MASK_IMM5	0x1f
841
#define MIPS16OP_SH_IMM5	0
842
#define MIPS16OP_MASK_RZ	0x7
843
#define MIPS16OP_SH_RZ		2
844
#define MIPS16OP_MASK_IMM4	0xf
845
#define MIPS16OP_SH_IMM4	0
846
#define MIPS16OP_MASK_REGR32	0x1f
847
#define MIPS16OP_SH_REGR32	0
848
#define MIPS16OP_MASK_REG32R	0x1f
849
#define MIPS16OP_SH_REG32R	3
850
#define MIPS16OP_EXTRACT_REG32R(i) ((((i) >> 5) & 7) | ((i) & 0x18))
851
#define MIPS16OP_MASK_MOVE32Z	0x7
852
#define MIPS16OP_SH_MOVE32Z	0
853
#define MIPS16OP_MASK_IMM6	0x3f
854
#define MIPS16OP_SH_IMM6	5
855

  
856
/* These are the characters which may appears in the args field of an
857
   instruction.  They appear in the order in which the fields appear
858
   when the instruction is used.  Commas and parentheses in the args
859
   string are ignored when assembling, and written into the output
860
   when disassembling.
861

  
862
   "y" 3 bit register (MIPS16OP_*_RY)
863
   "x" 3 bit register (MIPS16OP_*_RX)
864
   "z" 3 bit register (MIPS16OP_*_RZ)
865
   "Z" 3 bit register (MIPS16OP_*_MOVE32Z)
866
   "v" 3 bit same register as source and destination (MIPS16OP_*_RX)
867
   "w" 3 bit same register as source and destination (MIPS16OP_*_RY)
868
   "0" zero register ($0)
869
   "S" stack pointer ($sp or $29)
870
   "P" program counter
871
   "R" return address register ($ra or $31)
872
   "X" 5 bit MIPS register (MIPS16OP_*_REGR32)
873
   "Y" 5 bit MIPS register (MIPS16OP_*_REG32R)
874
   "6" 6 bit unsigned break code (MIPS16OP_*_IMM6)
875
   "a" 26 bit jump address
876
   "e" 11 bit extension value
877
   "l" register list for entry instruction
878
   "L" register list for exit instruction
879

  
880
   The remaining codes may be extended.  Except as otherwise noted,
881
   the full extended operand is a 16 bit signed value.
882
   "<" 3 bit unsigned shift count * 0 (MIPS16OP_*_RZ) (full 5 bit unsigned)
883
   ">" 3 bit unsigned shift count * 0 (MIPS16OP_*_RX) (full 5 bit unsigned)
884
   "[" 3 bit unsigned shift count * 0 (MIPS16OP_*_RZ) (full 6 bit unsigned)
885
   "]" 3 bit unsigned shift count * 0 (MIPS16OP_*_RX) (full 6 bit unsigned)
886
   "4" 4 bit signed immediate * 0 (MIPS16OP_*_IMM4) (full 15 bit signed)
887
   "5" 5 bit unsigned immediate * 0 (MIPS16OP_*_IMM5)
888
   "H" 5 bit unsigned immediate * 2 (MIPS16OP_*_IMM5)
889
   "W" 5 bit unsigned immediate * 4 (MIPS16OP_*_IMM5)
890
   "D" 5 bit unsigned immediate * 8 (MIPS16OP_*_IMM5)
891
   "j" 5 bit signed immediate * 0 (MIPS16OP_*_IMM5)
892
   "8" 8 bit unsigned immediate * 0 (MIPS16OP_*_IMM8)
893
   "V" 8 bit unsigned immediate * 4 (MIPS16OP_*_IMM8)
894
   "C" 8 bit unsigned immediate * 8 (MIPS16OP_*_IMM8)
895
   "U" 8 bit unsigned immediate * 0 (MIPS16OP_*_IMM8) (full 16 bit unsigned)
896
   "k" 8 bit signed immediate * 0 (MIPS16OP_*_IMM8)
897
   "K" 8 bit signed immediate * 8 (MIPS16OP_*_IMM8)
898
   "p" 8 bit conditional branch address (MIPS16OP_*_IMM8)
899
   "q" 11 bit branch address (MIPS16OP_*_IMM11)
900
   "A" 8 bit PC relative address * 4 (MIPS16OP_*_IMM8)
901
   "B" 5 bit PC relative address * 8 (MIPS16OP_*_IMM5)
902
   "E" 5 bit PC relative address * 4 (MIPS16OP_*_IMM5)
903
   */
904

  
905
/* For the mips16, we use the same opcode table format and a few of
906
   the same flags.  However, most of the flags are different.  */
907

  
908
/* Modifies the register in MIPS16OP_*_RX.  */
909
#define MIPS16_INSN_WRITE_X		    0x00000001
910
/* Modifies the register in MIPS16OP_*_RY.  */
911
#define MIPS16_INSN_WRITE_Y		    0x00000002
912
/* Modifies the register in MIPS16OP_*_RZ.  */
913
#define MIPS16_INSN_WRITE_Z		    0x00000004
914
/* Modifies the T ($24) register.  */
915
#define MIPS16_INSN_WRITE_T		    0x00000008
916
/* Modifies the SP ($29) register.  */
917
#define MIPS16_INSN_WRITE_SP		    0x00000010
918
/* Modifies the RA ($31) register.  */
919
#define MIPS16_INSN_WRITE_31		    0x00000020
920
/* Modifies the general purpose register in MIPS16OP_*_REG32R.  */
921
#define MIPS16_INSN_WRITE_GPR_Y		    0x00000040
922
/* Reads the register in MIPS16OP_*_RX.  */
923
#define MIPS16_INSN_READ_X		    0x00000080
924
/* Reads the register in MIPS16OP_*_RY.  */
925
#define MIPS16_INSN_READ_Y		    0x00000100
926
/* Reads the register in MIPS16OP_*_MOVE32Z.  */
927
#define MIPS16_INSN_READ_Z		    0x00000200
928
/* Reads the T ($24) register.  */
929
#define MIPS16_INSN_READ_T		    0x00000400
930
/* Reads the SP ($29) register.  */
931
#define MIPS16_INSN_READ_SP		    0x00000800
932
/* Reads the RA ($31) register.  */
933
#define MIPS16_INSN_READ_31		    0x00001000
934
/* Reads the program counter.  */
935
#define MIPS16_INSN_READ_PC		    0x00002000
936
/* Reads the general purpose register in MIPS16OP_*_REGR32.  */
937
#define MIPS16_INSN_READ_GPR_X		    0x00004000
938
/* Is a branch insn. */
939
#define MIPS16_INSN_BRANCH                  0x00010000
940

  
941
/* The following flags have the same value for the mips16 opcode
942
   table:
943
   INSN_UNCOND_BRANCH_DELAY
944
   INSN_COND_BRANCH_DELAY
945
   INSN_COND_BRANCH_LIKELY (never used)
946
   INSN_READ_HI
947
   INSN_READ_LO
948
   INSN_WRITE_HI
949
   INSN_WRITE_LO
950
   INSN_TRAP
951
   INSN_ISA3
952
   */
953

  
954
extern const struct mips_opcode mips16_opcodes[];
955
extern const int bfd_mips16_num_opcodes;
956

  
957
/* Short hand so the lines aren't too long.  */
958

  
959
#define LDD     INSN_LOAD_MEMORY_DELAY
960
#define LCD	INSN_LOAD_COPROC_DELAY
961
#define UBD     INSN_UNCOND_BRANCH_DELAY
962
#define CBD	INSN_COND_BRANCH_DELAY
963
#define COD     INSN_COPROC_MOVE_DELAY
964
#define CLD	INSN_COPROC_MEMORY_DELAY
965
#define CBL	INSN_COND_BRANCH_LIKELY
966
#define TRAP	INSN_TRAP
967
#define SM	INSN_STORE_MEMORY
968

  
969
#define WR_d    INSN_WRITE_GPR_D
970
#define WR_t    INSN_WRITE_GPR_T
971
#define WR_31   INSN_WRITE_GPR_31
972
#define WR_D    INSN_WRITE_FPR_D
973
#define WR_T	INSN_WRITE_FPR_T
974
#define WR_S	INSN_WRITE_FPR_S
975
#define RD_s    INSN_READ_GPR_S
976
#define RD_b    INSN_READ_GPR_S
977
#define RD_t    INSN_READ_GPR_T
978
#define RD_S    INSN_READ_FPR_S
979
#define RD_T    INSN_READ_FPR_T
980
#define RD_R	INSN_READ_FPR_R
981
#define WR_CC	INSN_WRITE_COND_CODE
982
#define RD_CC	INSN_READ_COND_CODE
983
#define RD_C0   INSN_COP
984
#define RD_C1	INSN_COP
985
#define RD_C2   INSN_COP
986
#define RD_C3   INSN_COP
987
#define WR_C0   INSN_COP
988
#define WR_C1	INSN_COP
989
#define WR_C2   INSN_COP
990
#define WR_C3   INSN_COP
991

  
992
#define WR_HI	INSN_WRITE_HI
993
#define RD_HI	INSN_READ_HI
994
#define MOD_HI  WR_HI|RD_HI
995

  
996
#define WR_LO	INSN_WRITE_LO
997
#define RD_LO	INSN_READ_LO
998
#define MOD_LO  WR_LO|RD_LO
999

  
1000
#define WR_HILO WR_HI|WR_LO
1001
#define RD_HILO RD_HI|RD_LO
1002
#define MOD_HILO WR_HILO|RD_HILO
1003

  
1004
#define IS_M    INSN_MULT
1005

  
1006
#define WR_MACC INSN_WRITE_MDMX_ACC
1007
#define RD_MACC INSN_READ_MDMX_ACC
1008

  
1009
#define I1	INSN_ISA1
1010
#define I2	INSN_ISA2
1011
#define I3	INSN_ISA3
1012
#define I4	INSN_ISA4
1013
#define I5	INSN_ISA5
1014
#define I32	INSN_ISA32
1015
#define I64     INSN_ISA64
1016
#define I33	INSN_ISA32R2
1017
#define I65	INSN_ISA64R2
1018

  
1019
/* MIPS64 MIPS-3D ASE support.  */
1020
#define I16     INSN_MIPS16
1021

  
1022
/* MIPS64 MIPS-3D ASE support.  */
1023
#define M3D     INSN_MIPS3D
1024

  
1025
/* MIPS64 MDMX ASE support.  */
1026
#define MX      INSN_MDMX
1027

  
1028
#define P3	INSN_4650
1029
#define L1	INSN_4010
1030
#define V1	(INSN_4100 | INSN_4111 | INSN_4120)
1031
#define T3      INSN_3900
1032
#define M1	INSN_10000
1033
#define SB1     INSN_SB1
1034
#define N411	INSN_4111
1035
#define N412	INSN_4120
1036
#define N5	(INSN_5400 | INSN_5500)
1037
#define N54	INSN_5400
1038
#define N55	INSN_5500
1039

  
1040
#define G1      (T3             \
1041
                 )
1042

  
1043
#define G2      (T3             \
1044
                 )
1045

  
1046
#define G3      (I4             \
1047
                 )
1048

  
1049
/* The order of overloaded instructions matters.  Label arguments and
1050
   register arguments look the same. Instructions that can have either
1051
   for arguments must apear in the correct order in this table for the
1052
   assembler to pick the right one. In other words, entries with
1053
   immediate operands must apear after the same instruction with
1054
   registers.
1055

  
1056
   Because of the lookup algorithm used, entries with the same opcode
1057
   name must be contiguous.
1058
 
1059
   Many instructions are short hand for other instructions (i.e., The
1060
   jal <register> instruction is short for jalr <register>).  */
1061

  
1062
const struct mips_opcode mips_builtin_opcodes[] =
1063
{
1064
/* These instructions appear first so that the disassembler will find
1065
   them first.  The assemblers uses a hash table based on the
1066
   instruction name anyhow.  */
1067
/* name,    args,	match,	    mask,	pinfo,          	membership */
1068
{"pref",    "k,o(b)",   0xcc000000, 0xfc000000, RD_b,           	I4|I32|G3	},
1069
{"prefx",   "h,t(b)",	0x4c00000f, 0xfc0007ff, RD_b|RD_t,		I4	},
1070
{"nop",     "",         0x00000000, 0xffffffff, 0,              	I1      }, /* sll */
1071
{"ssnop",   "",         0x00000040, 0xffffffff, 0,              	I32|N55	}, /* sll */
1072
{"ehb",     "",         0x000000c0, 0xffffffff, 0,              	I33	}, /* sll */
1073
{"li",      "t,j",      0x24000000, 0xffe00000, WR_t,			I1	}, /* addiu */
1074
{"li",	    "t,i",	0x34000000, 0xffe00000, WR_t,			I1	}, /* ori */
1075
{"li",      "t,I",	0,    (int) M_LI,	INSN_MACRO,		I1	},
1076
{"move",    "d,s",	0,    (int) M_MOVE,	INSN_MACRO,		I1	},
1077
{"move",    "d,s",	0x0000002d, 0xfc1f07ff, WR_d|RD_s,		I3	},/* daddu */
1078
{"move",    "d,s",	0x00000021, 0xfc1f07ff, WR_d|RD_s,		I1	},/* addu */
1079
{"move",    "d,s",	0x00000025, 0xfc1f07ff,	WR_d|RD_s,		I1	},/* or */
1080
{"b",       "p",	0x10000000, 0xffff0000,	UBD,			I1	},/* beq 0,0 */
1081
{"b",       "p",	0x04010000, 0xffff0000,	UBD,			I1	},/* bgez 0 */
1082
{"bal",     "p",	0x04110000, 0xffff0000,	UBD|WR_31,		I1	},/* bgezal 0*/
1083

  
1084
{"abs",     "d,v",	0,    (int) M_ABS,	INSN_MACRO,		I1	},
1085
{"abs.s",   "D,V",	0x46000005, 0xffff003f,	WR_D|RD_S|FP_S,		I1	},
1086
{"abs.d",   "D,V",	0x46200005, 0xffff003f,	WR_D|RD_S|FP_D,		I1	},
1087
{"abs.ps",  "D,V",	0x46c00005, 0xffff003f,	WR_D|RD_S|FP_D,		I5	},
1088
{"add",     "d,v,t",	0x00000020, 0xfc0007ff,	WR_d|RD_s|RD_t,		I1	},
1089
{"add",     "t,r,I",	0,    (int) M_ADD_I,	INSN_MACRO,		I1	},
1090
{"add.s",   "D,V,T",	0x46000000, 0xffe0003f,	WR_D|RD_S|RD_T|FP_S,	I1	},
1091
{"add.d",   "D,V,T",	0x46200000, 0xffe0003f,	WR_D|RD_S|RD_T|FP_D,	I1	},
1092
{"add.ob",  "X,Y,Q",	0x7800000b, 0xfc20003f,	WR_D|RD_S|RD_T|FP_D,	MX|SB1	},
1093
{"add.ob",  "D,S,T",	0x4ac0000b, 0xffe0003f,	WR_D|RD_S|RD_T,		N54	},
1094
{"add.ob",  "D,S,T[e]",	0x4800000b, 0xfe20003f,	WR_D|RD_S|RD_T,		N54	},
1095
{"add.ob",  "D,S,k",	0x4bc0000b, 0xffe0003f,	WR_D|RD_S|RD_T,		N54	},
1096
{"add.ps",  "D,V,T",	0x46c00000, 0xffe0003f,	WR_D|RD_S|RD_T|FP_D,	I5	},
1097
{"add.qh",  "X,Y,Q",	0x7820000b, 0xfc20003f,	WR_D|RD_S|RD_T|FP_D,	MX	},
1098
{"adda.ob", "Y,Q",	0x78000037, 0xfc2007ff,	WR_MACC|RD_S|RD_T|FP_D,	MX|SB1	},
1099
{"adda.qh", "Y,Q",	0x78200037, 0xfc2007ff,	WR_MACC|RD_S|RD_T|FP_D,	MX	},
1100
{"addi",    "t,r,j",	0x20000000, 0xfc000000,	WR_t|RD_s,		I1	},
1101
{"addiu",   "t,r,j",	0x24000000, 0xfc000000,	WR_t|RD_s,		I1	},
1102
{"addl.ob", "Y,Q",	0x78000437, 0xfc2007ff,	WR_MACC|RD_S|RD_T|FP_D,	MX|SB1	},
1103
{"addl.qh", "Y,Q",	0x78200437, 0xfc2007ff,	WR_MACC|RD_S|RD_T|FP_D,	MX	},
1104
{"addr.ps", "D,S,T",	0x46c00018, 0xffe0003f,	WR_D|RD_S|RD_T|FP_D,	M3D	},
1105
{"addu",    "d,v,t",	0x00000021, 0xfc0007ff,	WR_d|RD_s|RD_t,		I1	},
1106
{"addu",    "t,r,I",	0,    (int) M_ADDU_I,	INSN_MACRO,		I1	},
1107
{"alni.ob", "X,Y,Z,O",	0x78000018, 0xff00003f,	WR_D|RD_S|RD_T|FP_D,	MX|SB1	},
1108
{"alni.ob", "D,S,T,%",	0x48000018, 0xff00003f,	WR_D|RD_S|RD_T, 	N54	},
1109
{"alni.qh", "X,Y,Z,O",	0x7800001a, 0xff00003f,	WR_D|RD_S|RD_T|FP_D,	MX	},
1110
{"alnv.ps", "D,V,T,s",	0x4c00001e, 0xfc00003f,	WR_D|RD_S|RD_T|FP_D,	I5	},
1111
{"alnv.ob", "X,Y,Z,s",	0x78000019, 0xfc00003f,	WR_D|RD_S|RD_T|RD_s|FP_D, MX|SB1	},
1112
{"alnv.qh", "X,Y,Z,s",	0x7800001b, 0xfc00003f,	WR_D|RD_S|RD_T|RD_s|FP_D, MX	},
1113
{"and",     "d,v,t",	0x00000024, 0xfc0007ff,	WR_d|RD_s|RD_t,		I1	},
1114
{"and",     "t,r,I",	0,    (int) M_AND_I,	INSN_MACRO,		I1	},
1115
{"and.ob",  "X,Y,Q",	0x7800000c, 0xfc20003f,	WR_D|RD_S|RD_T|FP_D,	MX|SB1	},
1116
{"and.ob",  "D,S,T",	0x4ac0000c, 0xffe0003f,	WR_D|RD_S|RD_T,		N54	},
1117
{"and.ob",  "D,S,T[e]",	0x4800000c, 0xfe20003f,	WR_D|RD_S|RD_T,		N54	},
1118
{"and.ob",  "D,S,k",	0x4bc0000c, 0xffe0003f,	WR_D|RD_S|RD_T,		N54	},
1119
{"and.qh",  "X,Y,Q",	0x7820000c, 0xfc20003f,	WR_D|RD_S|RD_T|FP_D,	MX	},
1120
{"andi",    "t,r,i",	0x30000000, 0xfc000000,	WR_t|RD_s,		I1	},
1121
/* b is at the top of the table.  */
1122
/* bal is at the top of the table.  */
1123
{"bc0f",    "p",	0x41000000, 0xffff0000,	CBD|RD_CC,		I1	},
1124
{"bc0fl",   "p",	0x41020000, 0xffff0000,	CBL|RD_CC,		I2|T3	},
1125
{"bc0t",    "p",	0x41010000, 0xffff0000,	CBD|RD_CC,		I1	},
1126
{"bc0tl",   "p",	0x41030000, 0xffff0000,	CBL|RD_CC,		I2|T3	},
1127
{"bc1any2f", "N,p",	0x45200000, 0xffe30000,	CBD|RD_CC|FP_S,		M3D	},
1128
{"bc1any2t", "N,p",	0x45210000, 0xffe30000,	CBD|RD_CC|FP_S,		M3D	},
1129
{"bc1any4f", "N,p",	0x45400000, 0xffe30000,	CBD|RD_CC|FP_S,		M3D	},
1130
{"bc1any4t", "N,p",	0x45410000, 0xffe30000,	CBD|RD_CC|FP_S,		M3D	},
1131
{"bc1f",    "p",	0x45000000, 0xffff0000,	CBD|RD_CC|FP_S,		I1	},
1132
{"bc1f",    "N,p",      0x45000000, 0xffe30000, CBD|RD_CC|FP_S, 	I4|I32	},
1133
{"bc1fl",   "p",	0x45020000, 0xffff0000,	CBL|RD_CC|FP_S,		I2|T3	},
1134
{"bc1fl",   "N,p",      0x45020000, 0xffe30000, CBL|RD_CC|FP_S, 	I4|I32	},
1135
{"bc1t",    "p",	0x45010000, 0xffff0000,	CBD|RD_CC|FP_S,		I1	},
1136
{"bc1t",    "N,p",      0x45010000, 0xffe30000, CBD|RD_CC|FP_S, 	I4|I32	},
1137
{"bc1tl",   "p",	0x45030000, 0xffff0000,	CBL|RD_CC|FP_S,		I2|T3	},
1138
{"bc1tl",   "N,p",      0x45030000, 0xffe30000, CBL|RD_CC|FP_S, 	I4|I32	},
1139
/* bc2* are at the bottom of the table.  */
1140
{"bc3f",    "p",	0x4d000000, 0xffff0000,	CBD|RD_CC,		I1	},
1141
{"bc3fl",   "p",	0x4d020000, 0xffff0000,	CBL|RD_CC,		I2|T3	},
1142
{"bc3t",    "p",	0x4d010000, 0xffff0000,	CBD|RD_CC,		I1	},
1143
{"bc3tl",   "p",	0x4d030000, 0xffff0000,	CBL|RD_CC,		I2|T3	},
1144
{"beqz",    "s,p",	0x10000000, 0xfc1f0000,	CBD|RD_s,		I1	},
1145
{"beqzl",   "s,p",	0x50000000, 0xfc1f0000,	CBL|RD_s,		I2|T3	},
1146
{"beq",     "s,t,p",	0x10000000, 0xfc000000,	CBD|RD_s|RD_t,		I1	},
1147
{"beq",     "s,I,p",	0,    (int) M_BEQ_I,	INSN_MACRO,		I1	},
1148
{"beql",    "s,t,p",	0x50000000, 0xfc000000,	CBL|RD_s|RD_t,		I2|T3	},
1149
{"beql",    "s,I,p",	0,    (int) M_BEQL_I,	INSN_MACRO,		I2|T3	},
1150
{"bge",     "s,t,p",	0,    (int) M_BGE,	INSN_MACRO,		I1	},
1151
{"bge",     "s,I,p",	0,    (int) M_BGE_I,	INSN_MACRO,		I1	},
1152
{"bgel",    "s,t,p",	0,    (int) M_BGEL,	INSN_MACRO,		I2|T3	},
1153
{"bgel",    "s,I,p",	0,    (int) M_BGEL_I,	INSN_MACRO,		I2|T3	},
1154
{"bgeu",    "s,t,p",	0,    (int) M_BGEU,	INSN_MACRO,		I1	},
1155
{"bgeu",    "s,I,p",	0,    (int) M_BGEU_I,	INSN_MACRO,		I1	},
1156
{"bgeul",   "s,t,p",	0,    (int) M_BGEUL,	INSN_MACRO,		I2|T3	},
1157
{"bgeul",   "s,I,p",	0,    (int) M_BGEUL_I,	INSN_MACRO,		I2|T3	},
1158
{"bgez",    "s,p",	0x04010000, 0xfc1f0000,	CBD|RD_s,		I1	},
1159
{"bgezl",   "s,p",	0x04030000, 0xfc1f0000,	CBL|RD_s,		I2|T3	},
1160
{"bgezal",  "s,p",	0x04110000, 0xfc1f0000,	CBD|RD_s|WR_31,		I1	},
1161
{"bgezall", "s,p",	0x04130000, 0xfc1f0000,	CBL|RD_s|WR_31,		I2|T3	},
1162
{"bgt",     "s,t,p",	0,    (int) M_BGT,	INSN_MACRO,		I1	},
1163
{"bgt",     "s,I,p",	0,    (int) M_BGT_I,	INSN_MACRO,		I1	},
1164
{"bgtl",    "s,t,p",	0,    (int) M_BGTL,	INSN_MACRO,		I2|T3	},
1165
{"bgtl",    "s,I,p",	0,    (int) M_BGTL_I,	INSN_MACRO,		I2|T3	},
1166
{"bgtu",    "s,t,p",	0,    (int) M_BGTU,	INSN_MACRO,		I1	},
1167
{"bgtu",    "s,I,p",	0,    (int) M_BGTU_I,	INSN_MACRO,		I1	},
1168
{"bgtul",   "s,t,p",	0,    (int) M_BGTUL,	INSN_MACRO,		I2|T3	},
1169
{"bgtul",   "s,I,p",	0,    (int) M_BGTUL_I,	INSN_MACRO,		I2|T3	},
1170
{"bgtz",    "s,p",	0x1c000000, 0xfc1f0000,	CBD|RD_s,		I1	},
1171
{"bgtzl",   "s,p",	0x5c000000, 0xfc1f0000,	CBL|RD_s,		I2|T3	},
1172
{"ble",     "s,t,p",	0,    (int) M_BLE,	INSN_MACRO,		I1	},
1173
{"ble",     "s,I,p",	0,    (int) M_BLE_I,	INSN_MACRO,		I1	},
1174
{"blel",    "s,t,p",	0,    (int) M_BLEL,	INSN_MACRO,		I2|T3	},
1175
{"blel",    "s,I,p",	0,    (int) M_BLEL_I,	INSN_MACRO,		I2|T3	},
1176
{"bleu",    "s,t,p",	0,    (int) M_BLEU,	INSN_MACRO,		I1	},
1177
{"bleu",    "s,I,p",	0,    (int) M_BLEU_I,	INSN_MACRO,		I1	},
1178
{"bleul",   "s,t,p",	0,    (int) M_BLEUL,	INSN_MACRO,		I2|T3	},
1179
{"bleul",   "s,I,p",	0,    (int) M_BLEUL_I,	INSN_MACRO,		I2|T3	},
1180
{"blez",    "s,p",	0x18000000, 0xfc1f0000,	CBD|RD_s,		I1	},
1181
{"blezl",   "s,p",	0x58000000, 0xfc1f0000,	CBL|RD_s,		I2|T3	},
1182
{"blt",     "s,t,p",	0,    (int) M_BLT,	INSN_MACRO,		I1	},
1183
{"blt",     "s,I,p",	0,    (int) M_BLT_I,	INSN_MACRO,		I1	},
1184
{"bltl",    "s,t,p",	0,    (int) M_BLTL,	INSN_MACRO,		I2|T3	},
1185
{"bltl",    "s,I,p",	0,    (int) M_BLTL_I,	INSN_MACRO,		I2|T3	},
1186
{"bltu",    "s,t,p",	0,    (int) M_BLTU,	INSN_MACRO,		I1	},
1187
{"bltu",    "s,I,p",	0,    (int) M_BLTU_I,	INSN_MACRO,		I1	},
1188
{"bltul",   "s,t,p",	0,    (int) M_BLTUL,	INSN_MACRO,		I2|T3	},
1189
{"bltul",   "s,I,p",	0,    (int) M_BLTUL_I,	INSN_MACRO,		I2|T3	},
1190
{"bltz",    "s,p",	0x04000000, 0xfc1f0000,	CBD|RD_s,		I1	},
1191
{"bltzl",   "s,p",	0x04020000, 0xfc1f0000,	CBL|RD_s,		I2|T3	},
1192
{"bltzal",  "s,p",	0x04100000, 0xfc1f0000,	CBD|RD_s|WR_31,		I1	},
1193
{"bltzall", "s,p",	0x04120000, 0xfc1f0000,	CBL|RD_s|WR_31,		I2|T3	},
1194
{"bnez",    "s,p",	0x14000000, 0xfc1f0000,	CBD|RD_s,		I1	},
1195
{"bnezl",   "s,p",	0x54000000, 0xfc1f0000,	CBL|RD_s,		I2|T3	},
1196
{"bne",     "s,t,p",	0x14000000, 0xfc000000,	CBD|RD_s|RD_t,		I1	},
1197
{"bne",     "s,I,p",	0,    (int) M_BNE_I,	INSN_MACRO,		I1	},
1198
{"bnel",    "s,t,p",	0x54000000, 0xfc000000,	CBL|RD_s|RD_t, 		I2|T3	},
1199
{"bnel",    "s,I,p",	0,    (int) M_BNEL_I,	INSN_MACRO,		I2|T3	},
1200
{"break",   "",		0x0000000d, 0xffffffff,	TRAP,			I1	},
1201
{"break",   "c",	0x0000000d, 0xfc00ffff,	TRAP,			I1	},
1202
{"break",   "c,q",	0x0000000d, 0xfc00003f,	TRAP,			I1	},
1203
{"c.f.d",   "S,T",	0x46200030, 0xffe007ff,	RD_S|RD_T|WR_CC|FP_D,	I1	},
1204
{"c.f.d",   "M,S,T",    0x46200030, 0xffe000ff, RD_S|RD_T|WR_CC|FP_D,   I4|I32	},
1205
{"c.f.s",   "S,T",      0x46000030, 0xffe007ff, RD_S|RD_T|WR_CC|FP_S,   I1      },
1206
{"c.f.s",   "M,S,T",    0x46000030, 0xffe000ff, RD_S|RD_T|WR_CC|FP_S,   I4|I32	},
1207
{"c.f.ps",  "S,T",	0x46c00030, 0xffe007ff,	RD_S|RD_T|WR_CC|FP_D,	I5	},
1208
{"c.f.ps",  "M,S,T",	0x46c00030, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	I5	},
1209
{"c.un.d",  "S,T",	0x46200031, 0xffe007ff,	RD_S|RD_T|WR_CC|FP_D,	I1	},
1210
{"c.un.d",  "M,S,T",    0x46200031, 0xffe000ff, RD_S|RD_T|WR_CC|FP_D,   I4|I32	},
1211
{"c.un.s",  "S,T",      0x46000031, 0xffe007ff, RD_S|RD_T|WR_CC|FP_S,   I1      },
1212
{"c.un.s",  "M,S,T",    0x46000031, 0xffe000ff, RD_S|RD_T|WR_CC|FP_S,   I4|I32	},
1213
{"c.un.ps", "S,T",	0x46c00031, 0xffe007ff,	RD_S|RD_T|WR_CC|FP_D,	I5	},
1214
{"c.un.ps", "M,S,T",	0x46c00031, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	I5	},
1215
{"c.eq.d",  "S,T",	0x46200032, 0xffe007ff,	RD_S|RD_T|WR_CC|FP_D,	I1	},
1216
{"c.eq.d",  "M,S,T",    0x46200032, 0xffe000ff, RD_S|RD_T|WR_CC|FP_D,   I4|I32	},
1217
{"c.eq.s",  "S,T",      0x46000032, 0xffe007ff, RD_S|RD_T|WR_CC|FP_S,   I1      },
1218
{"c.eq.s",  "M,S,T",    0x46000032, 0xffe000ff, RD_S|RD_T|WR_CC|FP_S,   I4|I32	},
1219
{"c.eq.ob", "Y,Q",	0x78000001, 0xfc2007ff,	WR_CC|RD_S|RD_T|FP_D,	MX|SB1	},
1220
{"c.eq.ob", "S,T",	0x4ac00001, 0xffe007ff,	WR_CC|RD_S|RD_T,	N54	},
1221
{"c.eq.ob", "S,T[e]",	0x48000001, 0xfe2007ff,	WR_CC|RD_S|RD_T,	N54	},
1222
{"c.eq.ob", "S,k",	0x4bc00001, 0xffe007ff,	WR_CC|RD_S|RD_T,	N54	},
1223
{"c.eq.ps", "S,T",	0x46c00032, 0xffe007ff,	RD_S|RD_T|WR_CC|FP_D,	I5	},
1224
{"c.eq.ps", "M,S,T",	0x46c00032, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	I5	},
1225
{"c.eq.qh", "Y,Q",	0x78200001, 0xfc2007ff,	WR_CC|RD_S|RD_T|FP_D,	MX	},
1226
{"c.ueq.d", "S,T",	0x46200033, 0xffe007ff,	RD_S|RD_T|WR_CC|FP_D,	I1	},
1227
{"c.ueq.d", "M,S,T",    0x46200033, 0xffe000ff, RD_S|RD_T|WR_CC|FP_D,   I4|I32	},
1228
{"c.ueq.s", "S,T",      0x46000033, 0xffe007ff, RD_S|RD_T|WR_CC|FP_S,   I1      },
1229
{"c.ueq.s", "M,S,T",    0x46000033, 0xffe000ff, RD_S|RD_T|WR_CC|FP_S,   I4|I32	},
1230
{"c.ueq.ps","S,T",	0x46c00033, 0xffe007ff,	RD_S|RD_T|WR_CC|FP_D,	I5	},
1231
{"c.ueq.ps","M,S,T",	0x46c00033, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	I5	},
1232
{"c.olt.d", "S,T",      0x46200034, 0xffe007ff, RD_S|RD_T|WR_CC|FP_D,   I1      },
1233
{"c.olt.d", "M,S,T",    0x46200034, 0xffe000ff, RD_S|RD_T|WR_CC|FP_D,   I4|I32	},
1234
{"c.olt.s", "S,T",	0x46000034, 0xffe007ff,	RD_S|RD_T|WR_CC|FP_S,	I1	},
1235
{"c.olt.s", "M,S,T",    0x46000034, 0xffe000ff, RD_S|RD_T|WR_CC|FP_S,   I4|I32	},
1236
{"c.olt.ps","S,T",	0x46c00034, 0xffe007ff,	RD_S|RD_T|WR_CC|FP_D,	I5	},
1237
{"c.olt.ps","M,S,T",	0x46c00034, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	I5	},
1238
{"c.ult.d", "S,T",	0x46200035, 0xffe007ff,	RD_S|RD_T|WR_CC|FP_D,	I1	},
1239
{"c.ult.d", "M,S,T",    0x46200035, 0xffe000ff, RD_S|RD_T|WR_CC|FP_D,   I4|I32	},
1240
{"c.ult.s", "S,T",      0x46000035, 0xffe007ff, RD_S|RD_T|WR_CC|FP_S,   I1      },
1241
{"c.ult.s", "M,S,T",    0x46000035, 0xffe000ff, RD_S|RD_T|WR_CC|FP_S,   I4|I32	},
1242
{"c.ult.ps","S,T",	0x46c00035, 0xffe007ff,	RD_S|RD_T|WR_CC|FP_D,	I5	},
1243
{"c.ult.ps","M,S,T",	0x46c00035, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	I5	},
1244
{"c.ole.d", "S,T",      0x46200036, 0xffe007ff, RD_S|RD_T|WR_CC|FP_D,   I1      },
1245
{"c.ole.d", "M,S,T",    0x46200036, 0xffe000ff, RD_S|RD_T|WR_CC|FP_D,   I4|I32	},
1246
{"c.ole.s", "S,T",      0x46000036, 0xffe007ff, RD_S|RD_T|WR_CC|FP_S,   I1      },
1247
{"c.ole.s", "M,S,T",    0x46000036, 0xffe000ff, RD_S|RD_T|WR_CC|FP_S,   I4|I32	},
1248
{"c.ole.ps","S,T",	0x46c00036, 0xffe007ff,	RD_S|RD_T|WR_CC|FP_D,	I5	},
1249
{"c.ole.ps","M,S,T",	0x46c00036, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	I5	},
1250
{"c.ule.d", "S,T",	0x46200037, 0xffe007ff,	RD_S|RD_T|WR_CC|FP_D,	I1	},
1251
{"c.ule.d", "M,S,T",    0x46200037, 0xffe000ff, RD_S|RD_T|WR_CC|FP_D,   I4|I32	},
1252
{"c.ule.s", "S,T",      0x46000037, 0xffe007ff, RD_S|RD_T|WR_CC|FP_S,   I1      },
1253
{"c.ule.s", "M,S,T",    0x46000037, 0xffe000ff, RD_S|RD_T|WR_CC|FP_S,   I4|I32	},
1254
{"c.ule.ps","S,T",	0x46c00037, 0xffe007ff,	RD_S|RD_T|WR_CC|FP_D,	I5	},
1255
{"c.ule.ps","M,S,T",	0x46c00037, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	I5	},
1256
{"c.sf.d",  "S,T",	0x46200038, 0xffe007ff,	RD_S|RD_T|WR_CC|FP_D,	I1	},
1257
{"c.sf.d",  "M,S,T",    0x46200038, 0xffe000ff, RD_S|RD_T|WR_CC|FP_D,   I4|I32	},
1258
{"c.sf.s",  "S,T",      0x46000038, 0xffe007ff, RD_S|RD_T|WR_CC|FP_S,   I1      },
1259
{"c.sf.s",  "M,S,T",    0x46000038, 0xffe000ff, RD_S|RD_T|WR_CC|FP_S,   I4|I32	},
1260
{"c.sf.ps", "S,T",	0x46c00038, 0xffe007ff,	RD_S|RD_T|WR_CC|FP_D,	I5	},
1261
{"c.sf.ps", "M,S,T",	0x46c00038, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	I5	},
1262
{"c.ngle.d","S,T",	0x46200039, 0xffe007ff,	RD_S|RD_T|WR_CC|FP_D,	I1	},
1263
{"c.ngle.d","M,S,T",    0x46200039, 0xffe000ff, RD_S|RD_T|WR_CC|FP_D,   I4|I32	},
1264
{"c.ngle.s","S,T",      0x46000039, 0xffe007ff, RD_S|RD_T|WR_CC|FP_S,   I1      },
1265
{"c.ngle.s","M,S,T",    0x46000039, 0xffe000ff, RD_S|RD_T|WR_CC|FP_S,   I4|I32	},
1266
{"c.ngle.ps","S,T",	0x46c00039, 0xffe007ff,	RD_S|RD_T|WR_CC|FP_D,	I5	},
1267
{"c.ngle.ps","M,S,T",	0x46c00039, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	I5	},
1268
{"c.seq.d", "S,T",	0x4620003a, 0xffe007ff,	RD_S|RD_T|WR_CC|FP_D,	I1	},
1269
{"c.seq.d", "M,S,T",    0x4620003a, 0xffe000ff, RD_S|RD_T|WR_CC|FP_D,   I4|I32	},
1270
{"c.seq.s", "S,T",      0x4600003a, 0xffe007ff, RD_S|RD_T|WR_CC|FP_S,   I1      },
1271
{"c.seq.s", "M,S,T",    0x4600003a, 0xffe000ff, RD_S|RD_T|WR_CC|FP_S,   I4|I32	},
1272
{"c.seq.ps","S,T",	0x46c0003a, 0xffe007ff,	RD_S|RD_T|WR_CC|FP_D,	I5	},
1273
{"c.seq.ps","M,S,T",	0x46c0003a, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	I5	},
1274
{"c.ngl.d", "S,T",	0x4620003b, 0xffe007ff,	RD_S|RD_T|WR_CC|FP_D,	I1	},
1275
{"c.ngl.d", "M,S,T",    0x4620003b, 0xffe000ff, RD_S|RD_T|WR_CC|FP_D,   I4|I32	},
1276
{"c.ngl.s", "S,T",      0x4600003b, 0xffe007ff, RD_S|RD_T|WR_CC|FP_S,   I1      },
1277
{"c.ngl.s", "M,S,T",    0x4600003b, 0xffe000ff, RD_S|RD_T|WR_CC|FP_S,   I4|I32	},
1278
{"c.ngl.ps","S,T",	0x46c0003b, 0xffe007ff,	RD_S|RD_T|WR_CC|FP_D,	I5	},
1279
{"c.ngl.ps","M,S,T",	0x46c0003b, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	I5	},
1280
{"c.lt.d",  "S,T",	0x4620003c, 0xffe007ff,	RD_S|RD_T|WR_CC|FP_D,	I1	},
1281
{"c.lt.d",  "M,S,T",    0x4620003c, 0xffe000ff, RD_S|RD_T|WR_CC|FP_D,   I4|I32	},
1282
{"c.lt.s",  "S,T",	0x4600003c, 0xffe007ff,	RD_S|RD_T|WR_CC|FP_S,	I1	},
1283
{"c.lt.s",  "M,S,T",    0x4600003c, 0xffe000ff, RD_S|RD_T|WR_CC|FP_S,   I4|I32	},
1284
{"c.lt.ob", "Y,Q",	0x78000004, 0xfc2007ff,	WR_CC|RD_S|RD_T|FP_D,	MX|SB1	},
1285
{"c.lt.ob", "S,T",	0x4ac00004, 0xffe007ff,	WR_CC|RD_S|RD_T,	N54	},
1286
{"c.lt.ob", "S,T[e]",	0x48000004, 0xfe2007ff,	WR_CC|RD_S|RD_T,	N54	},
1287
{"c.lt.ob", "S,k",	0x4bc00004, 0xffe007ff,	WR_CC|RD_S|RD_T,	N54	},
1288
{"c.lt.ps", "S,T",	0x46c0003c, 0xffe007ff,	RD_S|RD_T|WR_CC|FP_D,	I5	},
1289
{"c.lt.ps", "M,S,T",	0x46c0003c, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	I5	},
1290
{"c.lt.qh", "Y,Q",	0x78200004, 0xfc2007ff,	WR_CC|RD_S|RD_T|FP_D,	MX	},
1291
{"c.nge.d", "S,T",	0x4620003d, 0xffe007ff,	RD_S|RD_T|WR_CC|FP_D,	I1	},
1292
{"c.nge.d", "M,S,T",    0x4620003d, 0xffe000ff, RD_S|RD_T|WR_CC|FP_D,   I4|I32	},
1293
{"c.nge.s", "S,T",      0x4600003d, 0xffe007ff, RD_S|RD_T|WR_CC|FP_S,   I1      },
1294
{"c.nge.s", "M,S,T",    0x4600003d, 0xffe000ff, RD_S|RD_T|WR_CC|FP_S,   I4|I32	},
1295
{"c.nge.ps","S,T",	0x46c0003d, 0xffe007ff,	RD_S|RD_T|WR_CC|FP_D,	I5	},
1296
{"c.nge.ps","M,S,T",	0x46c0003d, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	I5	},
1297
{"c.le.d",  "S,T",	0x4620003e, 0xffe007ff,	RD_S|RD_T|WR_CC|FP_D,	I1	},
1298
{"c.le.d",  "M,S,T",    0x4620003e, 0xffe000ff, RD_S|RD_T|WR_CC|FP_D,   I4|I32	},
1299
{"c.le.s",  "S,T",	0x4600003e, 0xffe007ff,	RD_S|RD_T|WR_CC|FP_S,	I1	},
1300
{"c.le.s",  "M,S,T",    0x4600003e, 0xffe000ff, RD_S|RD_T|WR_CC|FP_S,   I4|I32	},
1301
{"c.le.ob", "Y,Q",	0x78000005, 0xfc2007ff,	WR_CC|RD_S|RD_T|FP_D,	MX|SB1	},
1302
{"c.le.ob", "S,T",	0x4ac00005, 0xffe007ff,	WR_CC|RD_S|RD_T,	N54	},
1303
{"c.le.ob", "S,T[e]",	0x48000005, 0xfe2007ff,	WR_CC|RD_S|RD_T,	N54	},
1304
{"c.le.ob", "S,k",	0x4bc00005, 0xffe007ff,	WR_CC|RD_S|RD_T,	N54	},
1305
{"c.le.ps", "S,T",	0x46c0003e, 0xffe007ff,	RD_S|RD_T|WR_CC|FP_D,	I5	},
1306
{"c.le.ps", "M,S,T",	0x46c0003e, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	I5	},
1307
{"c.le.qh", "Y,Q",	0x78200005, 0xfc2007ff,	WR_CC|RD_S|RD_T|FP_D,	MX	},
1308
{"c.ngt.d", "S,T",	0x4620003f, 0xffe007ff,	RD_S|RD_T|WR_CC|FP_D,	I1	},
1309
{"c.ngt.d", "M,S,T",    0x4620003f, 0xffe000ff, RD_S|RD_T|WR_CC|FP_D,   I4|I32	},
1310
{"c.ngt.s", "S,T",      0x4600003f, 0xffe007ff, RD_S|RD_T|WR_CC|FP_S,   I1      },
1311
{"c.ngt.s", "M,S,T",    0x4600003f, 0xffe000ff, RD_S|RD_T|WR_CC|FP_S,   I4|I32	},
1312
{"c.ngt.ps","S,T",	0x46c0003f, 0xffe007ff,	RD_S|RD_T|WR_CC|FP_D,	I5	},
1313
{"c.ngt.ps","M,S,T",	0x46c0003f, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	I5	},
1314
{"cabs.eq.d",  "M,S,T",	0x46200072, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	M3D	},
1315
{"cabs.eq.ps", "M,S,T",	0x46c00072, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	M3D	},
1316
{"cabs.eq.s",  "M,S,T",	0x46000072, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_S,	M3D	},
1317
{"cabs.f.d",   "M,S,T",	0x46200070, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	M3D	},
1318
{"cabs.f.ps",  "M,S,T",	0x46c00070, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	M3D	},
1319
{"cabs.f.s",   "M,S,T",	0x46000070, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_S,	M3D	},
1320
{"cabs.le.d",  "M,S,T",	0x4620007e, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	M3D	},
1321
{"cabs.le.ps", "M,S,T",	0x46c0007e, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	M3D	},
1322
{"cabs.le.s",  "M,S,T",	0x4600007e, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_S,	M3D	},
1323
{"cabs.lt.d",  "M,S,T",	0x4620007c, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	M3D	},
1324
{"cabs.lt.ps", "M,S,T",	0x46c0007c, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	M3D	},
1325
{"cabs.lt.s",  "M,S,T",	0x4600007c, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_S,	M3D	},
1326
{"cabs.nge.d", "M,S,T",	0x4620007d, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	M3D	},
1327
{"cabs.nge.ps","M,S,T",	0x46c0007d, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	M3D	},
1328
{"cabs.nge.s", "M,S,T",	0x4600007d, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_S,	M3D	},
1329
{"cabs.ngl.d", "M,S,T",	0x4620007b, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	M3D	},
1330
{"cabs.ngl.ps","M,S,T",	0x46c0007b, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	M3D	},
1331
{"cabs.ngl.s", "M,S,T",	0x4600007b, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_S,	M3D	},
1332
{"cabs.ngle.d","M,S,T",	0x46200079, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	M3D	},
1333
{"cabs.ngle.ps","M,S,T",0x46c00079, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	M3D	},
1334
{"cabs.ngle.s","M,S,T",	0x46000079, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_S,	M3D	},
1335
{"cabs.ngt.d", "M,S,T",	0x4620007f, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	M3D	},
1336
{"cabs.ngt.ps","M,S,T",	0x46c0007f, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	M3D	},
1337
{"cabs.ngt.s", "M,S,T",	0x4600007f, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_S,	M3D	},
1338
{"cabs.ole.d", "M,S,T",	0x46200076, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	M3D	},
1339
{"cabs.ole.ps","M,S,T",	0x46c00076, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	M3D	},
1340
{"cabs.ole.s", "M,S,T",	0x46000076, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_S,	M3D	},
1341
{"cabs.olt.d", "M,S,T",	0x46200074, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	M3D	},
1342
{"cabs.olt.ps","M,S,T",	0x46c00074, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	M3D	},
1343
{"cabs.olt.s", "M,S,T",	0x46000074, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_S,	M3D	},
1344
{"cabs.seq.d", "M,S,T",	0x4620007a, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	M3D	},
1345
{"cabs.seq.ps","M,S,T",	0x46c0007a, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	M3D	},
1346
{"cabs.seq.s", "M,S,T",	0x4600007a, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_S,	M3D	},
1347
{"cabs.sf.d",  "M,S,T",	0x46200078, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	M3D	},
1348
{"cabs.sf.ps", "M,S,T",	0x46c00078, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	M3D	},
1349
{"cabs.sf.s",  "M,S,T",	0x46000078, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_S,	M3D	},
1350
{"cabs.ueq.d", "M,S,T",	0x46200073, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	M3D	},
1351
{"cabs.ueq.ps","M,S,T",	0x46c00073, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	M3D	},
1352
{"cabs.ueq.s", "M,S,T",	0x46000073, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_S,	M3D	},
1353
{"cabs.ule.d", "M,S,T",	0x46200077, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	M3D	},
1354
{"cabs.ule.ps","M,S,T",	0x46c00077, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	M3D	},
1355
{"cabs.ule.s", "M,S,T",	0x46000077, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_S,	M3D	},
1356
{"cabs.ult.d", "M,S,T",	0x46200075, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	M3D	},
1357
{"cabs.ult.ps","M,S,T",	0x46c00075, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	M3D	},
1358
{"cabs.ult.s", "M,S,T",	0x46000075, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_S,	M3D	},
1359
{"cabs.un.d",  "M,S,T",	0x46200071, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	M3D	},
1360
{"cabs.un.ps", "M,S,T",	0x46c00071, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_D,	M3D	},
1361
{"cabs.un.s",  "M,S,T",	0x46000071, 0xffe000ff,	RD_S|RD_T|WR_CC|FP_S,	M3D	},
1362
{"cache",   "k,o(b)",   0xbc000000, 0xfc000000, RD_b,           	I3|I32|T3},
1363
{"ceil.l.d", "D,S",	0x4620000a, 0xffff003f, WR_D|RD_S|FP_D,		I3	},
1364
{"ceil.l.s", "D,S",	0x4600000a, 0xffff003f, WR_D|RD_S|FP_S,		I3	},
1365
{"ceil.w.d", "D,S",	0x4620000e, 0xffff003f, WR_D|RD_S|FP_D,		I2	},
1366
{"ceil.w.s", "D,S",	0x4600000e, 0xffff003f, WR_D|RD_S|FP_S,		I2	},
1367
{"cfc0",    "t,G",	0x40400000, 0xffe007ff,	LCD|WR_t|RD_C0,		I1	},
1368
{"cfc1",    "t,G",	0x44400000, 0xffe007ff,	LCD|WR_t|RD_C1|FP_S,	I1	},
1369
{"cfc1",    "t,S",	0x44400000, 0xffe007ff,	LCD|WR_t|RD_C1|FP_S,	I1	},
1370
/* cfc2 is at the bottom of the table.  */
1371
{"cfc3",    "t,G",	0x4c400000, 0xffe007ff,	LCD|WR_t|RD_C3,		I1	},
1372
{"clo",     "U,s",      0x70000021, 0xfc0007ff, WR_d|WR_t|RD_s, 	I32|N55 },
1373
{"clz",     "U,s",      0x70000020, 0xfc0007ff, WR_d|WR_t|RD_s, 	I32|N55 },
1374
{"ctc0",    "t,G",	0x40c00000, 0xffe007ff,	COD|RD_t|WR_CC,		I1	},
1375
{"ctc1",    "t,G",	0x44c00000, 0xffe007ff,	COD|RD_t|WR_CC|FP_S,	I1	},
1376
{"ctc1",    "t,S",	0x44c00000, 0xffe007ff,	COD|RD_t|WR_CC|FP_S,	I1	},
1377
/* ctc2 is at the bottom of the table.  */
1378
{"ctc3",    "t,G",	0x4cc00000, 0xffe007ff,	COD|RD_t|WR_CC,		I1	},
1379
{"cvt.d.l", "D,S",	0x46a00021, 0xffff003f,	WR_D|RD_S|FP_D,		I3	},
1380
{"cvt.d.s", "D,S",	0x46000021, 0xffff003f,	WR_D|RD_S|FP_D|FP_S,	I1	},
1381
{"cvt.d.w", "D,S",	0x46800021, 0xffff003f,	WR_D|RD_S|FP_D,		I1	},
1382
{"cvt.l.d", "D,S",	0x46200025, 0xffff003f,	WR_D|RD_S|FP_D,		I3	},
1383
{"cvt.l.s", "D,S",	0x46000025, 0xffff003f,	WR_D|RD_S|FP_S,		I3	},
1384
{"cvt.s.l", "D,S",	0x46a00020, 0xffff003f,	WR_D|RD_S|FP_S,		I3	},
1385
{"cvt.s.d", "D,S",	0x46200020, 0xffff003f,	WR_D|RD_S|FP_S|FP_D,	I1	},
1386
{"cvt.s.w", "D,S",	0x46800020, 0xffff003f,	WR_D|RD_S|FP_S,		I1	},
1387
{"cvt.s.pl","D,S",	0x46c00028, 0xffff003f,	WR_D|RD_S|FP_S|FP_D,	I5	},
1388
{"cvt.s.pu","D,S",	0x46c00020, 0xffff003f,	WR_D|RD_S|FP_S|FP_D,	I5	},
1389
{"cvt.w.d", "D,S",	0x46200024, 0xffff003f,	WR_D|RD_S|FP_D,		I1	},
1390
{"cvt.w.s", "D,S",	0x46000024, 0xffff003f,	WR_D|RD_S|FP_S,		I1	},
1391
{"cvt.ps.pw", "D,S",	0x46800026, 0xffff003f,	WR_D|RD_S|FP_S|FP_D,	M3D	},
1392
{"cvt.ps.s","D,V,T",	0x46000026, 0xffe0003f,	WR_D|RD_S|RD_T|FP_D,	I5	},
1393
{"cvt.pw.ps", "D,S",	0x46c00024, 0xffff003f,	WR_D|RD_S|FP_S|FP_D,	M3D	},
1394
{"dabs",    "d,v",	0,    (int) M_DABS,	INSN_MACRO,		I3	},
1395
{"dadd",    "d,v,t",	0x0000002c, 0xfc0007ff, WR_d|RD_s|RD_t,		I3	},
1396
{"dadd",    "t,r,I",	0,    (int) M_DADD_I,	INSN_MACRO,		I3	},
1397
{"daddi",   "t,r,j",	0x60000000, 0xfc000000, WR_t|RD_s,		I3	},
1398
{"daddiu",  "t,r,j",	0x64000000, 0xfc000000, WR_t|RD_s,		I3	},
1399
{"daddu",   "d,v,t",	0x0000002d, 0xfc0007ff, WR_d|RD_s|RD_t,		I3	},
1400
{"daddu",   "t,r,I",	0,    (int) M_DADDU_I,	INSN_MACRO,		I3	},
1401
{"dbreak",  "",		0x7000003f, 0xffffffff,	0,			N5	},
1402
{"dclo",    "U,s",      0x70000025, 0xfc0007ff, RD_s|WR_d|WR_t, 	I64|N55 },
1403
{"dclz",    "U,s",      0x70000024, 0xfc0007ff, RD_s|WR_d|WR_t, 	I64|N55 },
1404
/* dctr and dctw are used on the r5000.  */
1405
{"dctr",    "o(b)",	0xbc050000, 0xfc1f0000, RD_b,			I3	},
1406
{"dctw",    "o(b)",	0xbc090000, 0xfc1f0000, RD_b,			I3	},
1407
{"deret",   "",         0x4200001f, 0xffffffff, 0, 			I32|G2	},
1408
{"dext",    "t,r,I,+I",	0,    (int) M_DEXT,	INSN_MACRO,		I65	},
1409
{"dext",    "t,r,+A,+C", 0x7c000003, 0xfc00003f, WR_t|RD_s,    		I65	},
1410
{"dextm",   "t,r,+A,+G", 0x7c000001, 0xfc00003f, WR_t|RD_s,    		I65	},
1411
{"dextu",   "t,r,+E,+H", 0x7c000002, 0xfc00003f, WR_t|RD_s,    		I65	},
1412
/* For ddiv, see the comments about div.  */
1413
{"ddiv",    "z,s,t",    0x0000001e, 0xfc00ffff, RD_s|RD_t|WR_HILO,      I3      },
1414
{"ddiv",    "d,v,t",	0,    (int) M_DDIV_3,	INSN_MACRO,		I3	},
1415
{"ddiv",    "d,v,I",	0,    (int) M_DDIV_3I,	INSN_MACRO,		I3	},
1416
/* For ddivu, see the comments about div.  */
1417
{"ddivu",   "z,s,t",    0x0000001f, 0xfc00ffff, RD_s|RD_t|WR_HILO,      I3      },
1418
{"ddivu",   "d,v,t",	0,    (int) M_DDIVU_3,	INSN_MACRO,		I3	},
1419
{"ddivu",   "d,v,I",	0,    (int) M_DDIVU_3I,	INSN_MACRO,		I3	},
1420
{"di",      "",		0x41606000, 0xffffffff,	WR_t|WR_C0,		I33	},
1421
{"di",      "t",	0x41606000, 0xffe0ffff,	WR_t|WR_C0,		I33	},
1422
{"dins",    "t,r,I,+I",	0,    (int) M_DINS,	INSN_MACRO,		I65	},
1423
{"dins",    "t,r,+A,+B", 0x7c000007, 0xfc00003f, WR_t|RD_s,    		I65	},
1424
{"dinsm",   "t,r,+A,+F", 0x7c000005, 0xfc00003f, WR_t|RD_s,    		I65	},
1425
{"dinsu",   "t,r,+E,+F", 0x7c000006, 0xfc00003f, WR_t|RD_s,    		I65	},
1426
/* The MIPS assembler treats the div opcode with two operands as
1427
   though the first operand appeared twice (the first operand is both
1428
   a source and a destination).  To get the div machine instruction,
1429
   you must use an explicit destination of $0.  */
1430
{"div",     "z,s,t",    0x0000001a, 0xfc00ffff, RD_s|RD_t|WR_HILO,      I1      },
1431
{"div",     "z,t",      0x0000001a, 0xffe0ffff, RD_s|RD_t|WR_HILO,      I1      },
1432
{"div",     "d,v,t",	0,    (int) M_DIV_3,	INSN_MACRO,		I1	},
1433
{"div",     "d,v,I",	0,    (int) M_DIV_3I,	INSN_MACRO,		I1	},
1434
{"div.d",   "D,V,T",	0x46200003, 0xffe0003f,	WR_D|RD_S|RD_T|FP_D,	I1	},
1435
{"div.s",   "D,V,T",	0x46000003, 0xffe0003f,	WR_D|RD_S|RD_T|FP_S,	I1	},
1436
{"div.ps",  "D,V,T",	0x46c00003, 0xffe0003f,	WR_D|RD_S|RD_T|FP_D,	SB1	},
1437
/* For divu, see the comments about div.  */
1438
{"divu",    "z,s,t",    0x0000001b, 0xfc00ffff, RD_s|RD_t|WR_HILO,      I1      },
1439
{"divu",    "z,t",      0x0000001b, 0xffe0ffff, RD_s|RD_t|WR_HILO,      I1      },
1440
{"divu",    "d,v,t",	0,    (int) M_DIVU_3,	INSN_MACRO,		I1	},
1441
{"divu",    "d,v,I",	0,    (int) M_DIVU_3I,	INSN_MACRO,		I1	},
1442
{"dla",     "t,A(b)",	0,    (int) M_DLA_AB,	INSN_MACRO,		I3	},
1443
{"dlca",    "t,A(b)",	0,    (int) M_DLCA_AB,	INSN_MACRO,		I3	},
1444
{"dli",     "t,j",      0x24000000, 0xffe00000, WR_t,			I3	}, /* addiu */
1445
{"dli",	    "t,i",	0x34000000, 0xffe00000, WR_t,			I3	}, /* ori */
1446
{"dli",     "t,I",	0,    (int) M_DLI,	INSN_MACRO,		I3	},
1447
{"dmacc",   "d,s,t",	0x00000029, 0xfc0007ff,	RD_s|RD_t|WR_LO|WR_d,	N412	},
1448
{"dmacchi", "d,s,t",	0x00000229, 0xfc0007ff, RD_s|RD_t|WR_LO|WR_d,	N412	},
1449
{"dmacchis", "d,s,t",	0x00000629, 0xfc0007ff, RD_s|RD_t|WR_LO|WR_d,	N412	},
1450
{"dmacchiu", "d,s,t",	0x00000269, 0xfc0007ff, RD_s|RD_t|WR_LO|WR_d,	N412	},
1451
{"dmacchius", "d,s,t",	0x00000669, 0xfc0007ff, RD_s|RD_t|WR_LO|WR_d,	N412	},
1452
{"dmaccs",  "d,s,t",	0x00000429, 0xfc0007ff,	RD_s|RD_t|WR_LO|WR_d,	N412	},
1453
{"dmaccu",  "d,s,t",	0x00000069, 0xfc0007ff,	RD_s|RD_t|WR_LO|WR_d,	N412	},
1454
{"dmaccus", "d,s,t",	0x00000469, 0xfc0007ff,	RD_s|RD_t|WR_LO|WR_d,	N412	},
1455
{"dmadd16", "s,t",      0x00000029, 0xfc00ffff, RD_s|RD_t|MOD_LO,       N411    },
1456
{"dmfc0",   "t,G",	0x40200000, 0xffe007ff, LCD|WR_t|RD_C0,		I3	},
1457
{"dmfc0",   "t,+D",     0x40200000, 0xffe007f8, LCD|WR_t|RD_C0, 	I64     },
1458
{"dmfc0",   "t,G,H",    0x40200000, 0xffe007f8, LCD|WR_t|RD_C0, 	I64     },
1459
{"dmtc0",   "t,G",	0x40a00000, 0xffe007ff, COD|RD_t|WR_C0|WR_CC,	I3	},
1460
{"dmtc0",   "t,+D",     0x40a00000, 0xffe007f8, COD|RD_t|WR_C0|WR_CC,   I64     },
1461
{"dmtc0",   "t,G,H",    0x40a00000, 0xffe007f8, COD|RD_t|WR_C0|WR_CC,   I64     },
1462
{"dmfc1",   "t,S",	0x44200000, 0xffe007ff, LCD|WR_t|RD_S|FP_S,	I3	},
1463
{"dmfc1",   "t,G",      0x44200000, 0xffe007ff, LCD|WR_t|RD_S|FP_S,     I3      },
1464
{"dmtc1",   "t,S",	0x44a00000, 0xffe007ff, COD|RD_t|WR_S|FP_S,	I3	},
1465
{"dmtc1",   "t,G",      0x44a00000, 0xffe007ff, COD|RD_t|WR_S|FP_S,     I3      },
1466
/* dmfc2 is at the bottom of the table.  */
1467
/* dmtc2 is at the bottom of the table.  */
1468
{"dmfc3",   "t,G",      0x4c200000, 0xffe007ff, LCD|WR_t|RD_C3, 	I3      },
1469
{"dmfc3",   "t,G,H",    0x4c200000, 0xffe007f8, LCD|WR_t|RD_C3, 	I64     },
1470
{"dmtc3",   "t,G",      0x4ca00000, 0xffe007ff, COD|RD_t|WR_C3|WR_CC,   I3      },
1471
{"dmtc3",   "t,G,H",    0x4ca00000, 0xffe007f8, COD|RD_t|WR_C3|WR_CC,   I64     },
1472
{"dmul",    "d,v,t",	0,    (int) M_DMUL,	INSN_MACRO,		I3	},
1473
{"dmul",    "d,v,I",	0,    (int) M_DMUL_I,	INSN_MACRO,		I3	},
1474
{"dmulo",   "d,v,t",	0,    (int) M_DMULO,	INSN_MACRO,		I3	},
1475
{"dmulo",   "d,v,I",	0,    (int) M_DMULO_I,	INSN_MACRO,		I3	},
1476
{"dmulou",  "d,v,t",	0,    (int) M_DMULOU,	INSN_MACRO,		I3	},
1477
{"dmulou",  "d,v,I",	0,    (int) M_DMULOU_I,	INSN_MACRO,		I3	},
1478
{"dmult",   "s,t",      0x0000001c, 0xfc00ffff, RD_s|RD_t|WR_HILO,      I3	},
1479
{"dmultu",  "s,t",      0x0000001d, 0xfc00ffff, RD_s|RD_t|WR_HILO,      I3	},
1480
{"dneg",    "d,w",	0x0000002e, 0xffe007ff,	WR_d|RD_t,		I3	}, /* dsub 0 */
1481
{"dnegu",   "d,w",	0x0000002f, 0xffe007ff,	WR_d|RD_t,		I3	}, /* dsubu 0*/
1482
{"drem",    "z,s,t",    0x0000001e, 0xfc00ffff, RD_s|RD_t|WR_HILO,      I3      },
1483
{"drem",    "d,v,t",	3,    (int) M_DREM_3,	INSN_MACRO,		I3	},
1484
{"drem",    "d,v,I",	3,    (int) M_DREM_3I,	INSN_MACRO,		I3	},
1485
{"dremu",   "z,s,t",    0x0000001f, 0xfc00ffff, RD_s|RD_t|WR_HILO,      I3      },
1486
{"dremu",   "d,v,t",	3,    (int) M_DREMU_3,	INSN_MACRO,		I3	},
... This diff was truncated because it exceeds the maximum size that can be displayed.

Also available in: Unified diff