Statistics
| Branch: | Revision:

root / target-i386 / exec.h @ 664e0f19

History | View | Annotate | Download (14.4 kB)

1
/*
2
 *  i386 execution defines 
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#include "dyngen-exec.h"
22

    
23
/* XXX: factorize this mess */
24
#if defined(__alpha__) || defined (__ia64__) || defined(__x86_64__)
25
#define HOST_LONG_BITS 64
26
#else
27
#define HOST_LONG_BITS 32
28
#endif
29

    
30
#ifdef TARGET_X86_64
31
#define TARGET_LONG_BITS 64
32
#else
33
#define TARGET_LONG_BITS 32
34
#endif
35

    
36
/* at least 4 register variables are defined */
37
register struct CPUX86State *env asm(AREG0);
38

    
39
/* XXX: use 64 bit regs if HOST_LONG_BITS == 64 */
40
#if TARGET_LONG_BITS == 32
41

    
42
register uint32_t T0 asm(AREG1);
43
register uint32_t T1 asm(AREG2);
44
register uint32_t T2 asm(AREG3);
45

    
46
/* if more registers are available, we define some registers too */
47
#ifdef AREG4
48
register uint32_t EAX asm(AREG4);
49
#define reg_EAX
50
#endif
51

    
52
#ifdef AREG5
53
register uint32_t ESP asm(AREG5);
54
#define reg_ESP
55
#endif
56

    
57
#ifdef AREG6
58
register uint32_t EBP asm(AREG6);
59
#define reg_EBP
60
#endif
61

    
62
#ifdef AREG7
63
register uint32_t ECX asm(AREG7);
64
#define reg_ECX
65
#endif
66

    
67
#ifdef AREG8
68
register uint32_t EDX asm(AREG8);
69
#define reg_EDX
70
#endif
71

    
72
#ifdef AREG9
73
register uint32_t EBX asm(AREG9);
74
#define reg_EBX
75
#endif
76

    
77
#ifdef AREG10
78
register uint32_t ESI asm(AREG10);
79
#define reg_ESI
80
#endif
81

    
82
#ifdef AREG11
83
register uint32_t EDI asm(AREG11);
84
#define reg_EDI
85
#endif
86

    
87
#else
88

    
89
/* no registers can be used */
90
#define T0 (env->t0)
91
#define T1 (env->t1)
92
#define T2 (env->t2)
93

    
94
#endif
95

    
96
#define A0 T2
97

    
98
extern FILE *logfile;
99
extern int loglevel;
100

    
101
#ifndef reg_EAX
102
#define EAX (env->regs[R_EAX])
103
#endif
104
#ifndef reg_ECX
105
#define ECX (env->regs[R_ECX])
106
#endif
107
#ifndef reg_EDX
108
#define EDX (env->regs[R_EDX])
109
#endif
110
#ifndef reg_EBX
111
#define EBX (env->regs[R_EBX])
112
#endif
113
#ifndef reg_ESP
114
#define ESP (env->regs[R_ESP])
115
#endif
116
#ifndef reg_EBP
117
#define EBP (env->regs[R_EBP])
118
#endif
119
#ifndef reg_ESI
120
#define ESI (env->regs[R_ESI])
121
#endif
122
#ifndef reg_EDI
123
#define EDI (env->regs[R_EDI])
124
#endif
125
#define EIP  (env->eip)
126
#define DF  (env->df)
127

    
128
#define CC_SRC (env->cc_src)
129
#define CC_DST (env->cc_dst)
130
#define CC_OP  (env->cc_op)
131

    
132
/* float macros */
133
#define FT0    (env->ft0)
134
#define ST0    (env->fpregs[env->fpstt].d)
135
#define ST(n)  (env->fpregs[(env->fpstt + (n)) & 7].d)
136
#define ST1    ST(1)
137

    
138
#ifdef USE_FP_CONVERT
139
#define FP_CONVERT  (env->fp_convert)
140
#endif
141

    
142
#include "cpu.h"
143
#include "exec-all.h"
144

    
145
typedef struct CCTable {
146
    int (*compute_all)(void); /* return all the flags */
147
    int (*compute_c)(void);  /* return the C flag */
148
} CCTable;
149

    
150
extern CCTable cc_table[];
151

    
152
void load_seg(int seg_reg, int selector);
153
void helper_ljmp_protected_T0_T1(int next_eip);
154
void helper_lcall_real_T0_T1(int shift, int next_eip);
155
void helper_lcall_protected_T0_T1(int shift, int next_eip);
156
void helper_iret_real(int shift);
157
void helper_iret_protected(int shift, int next_eip);
158
void helper_lret_protected(int shift, int addend);
159
void helper_lldt_T0(void);
160
void helper_ltr_T0(void);
161
void helper_movl_crN_T0(int reg);
162
void helper_movl_drN_T0(int reg);
163
void helper_invlpg(unsigned int addr);
164
void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
165
void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
166
void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
167
void cpu_x86_flush_tlb(CPUX86State *env, uint32_t addr);
168
int cpu_x86_handle_mmu_fault(CPUX86State *env, target_ulong addr, 
169
                             int is_write, int is_user, int is_softmmu);
170
void tlb_fill(target_ulong addr, int is_write, int is_user, 
171
              void *retaddr);
172
void __hidden cpu_lock(void);
173
void __hidden cpu_unlock(void);
174
void do_interrupt(int intno, int is_int, int error_code, 
175
                  target_ulong next_eip, int is_hw);
176
void do_interrupt_user(int intno, int is_int, int error_code, 
177
                       target_ulong next_eip);
178
void raise_interrupt(int intno, int is_int, int error_code, 
179
                     int next_eip_addend);
180
void raise_exception_err(int exception_index, int error_code);
181
void raise_exception(int exception_index);
182
void __hidden cpu_loop_exit(void);
183

    
184
void OPPROTO op_movl_eflags_T0(void);
185
void OPPROTO op_movl_T0_eflags(void);
186
void helper_divl_EAX_T0(void);
187
void helper_idivl_EAX_T0(void);
188
void helper_mulq_EAX_T0(void);
189
void helper_imulq_EAX_T0(void);
190
void helper_imulq_T0_T1(void);
191
void helper_divq_EAX_T0(void);
192
void helper_idivq_EAX_T0(void);
193
void helper_cmpxchg8b(void);
194
void helper_cpuid(void);
195
void helper_enter_level(int level, int data32);
196
void helper_sysenter(void);
197
void helper_sysexit(void);
198
void helper_syscall(int next_eip_addend);
199
void helper_sysret(int dflag);
200
void helper_rdtsc(void);
201
void helper_rdmsr(void);
202
void helper_wrmsr(void);
203
void helper_lsl(void);
204
void helper_lar(void);
205
void helper_verr(void);
206
void helper_verw(void);
207

    
208
void check_iob_T0(void);
209
void check_iow_T0(void);
210
void check_iol_T0(void);
211
void check_iob_DX(void);
212
void check_iow_DX(void);
213
void check_iol_DX(void);
214

    
215
/* XXX: move that to a generic header */
216
#if !defined(CONFIG_USER_ONLY)
217

    
218
#define ldul_user ldl_user
219
#define ldul_kernel ldl_kernel
220

    
221
#define ACCESS_TYPE 0
222
#define MEMSUFFIX _kernel
223
#define DATA_SIZE 1
224
#include "softmmu_header.h"
225

    
226
#define DATA_SIZE 2
227
#include "softmmu_header.h"
228

    
229
#define DATA_SIZE 4
230
#include "softmmu_header.h"
231

    
232
#define DATA_SIZE 8
233
#include "softmmu_header.h"
234
#undef ACCESS_TYPE
235
#undef MEMSUFFIX
236

    
237
#define ACCESS_TYPE 1
238
#define MEMSUFFIX _user
239
#define DATA_SIZE 1
240
#include "softmmu_header.h"
241

    
242
#define DATA_SIZE 2
243
#include "softmmu_header.h"
244

    
245
#define DATA_SIZE 4
246
#include "softmmu_header.h"
247

    
248
#define DATA_SIZE 8
249
#include "softmmu_header.h"
250
#undef ACCESS_TYPE
251
#undef MEMSUFFIX
252

    
253
/* these access are slower, they must be as rare as possible */
254
#define ACCESS_TYPE 2
255
#define MEMSUFFIX _data
256
#define DATA_SIZE 1
257
#include "softmmu_header.h"
258

    
259
#define DATA_SIZE 2
260
#include "softmmu_header.h"
261

    
262
#define DATA_SIZE 4
263
#include "softmmu_header.h"
264

    
265
#define DATA_SIZE 8
266
#include "softmmu_header.h"
267
#undef ACCESS_TYPE
268
#undef MEMSUFFIX
269

    
270
#define ldub(p) ldub_data(p)
271
#define ldsb(p) ldsb_data(p)
272
#define lduw(p) lduw_data(p)
273
#define ldsw(p) ldsw_data(p)
274
#define ldl(p) ldl_data(p)
275
#define ldq(p) ldq_data(p)
276

    
277
#define stb(p, v) stb_data(p, v)
278
#define stw(p, v) stw_data(p, v)
279
#define stl(p, v) stl_data(p, v)
280
#define stq(p, v) stq_data(p, v)
281

    
282
static inline double ldfq(target_ulong ptr)
283
{
284
    union {
285
        double d;
286
        uint64_t i;
287
    } u;
288
    u.i = ldq(ptr);
289
    return u.d;
290
}
291

    
292
static inline void stfq(target_ulong ptr, double v)
293
{
294
    union {
295
        double d;
296
        uint64_t i;
297
    } u;
298
    u.d = v;
299
    stq(ptr, u.i);
300
}
301

    
302
static inline float ldfl(target_ulong ptr)
303
{
304
    union {
305
        float f;
306
        uint32_t i;
307
    } u;
308
    u.i = ldl(ptr);
309
    return u.f;
310
}
311

    
312
static inline void stfl(target_ulong ptr, float v)
313
{
314
    union {
315
        float f;
316
        uint32_t i;
317
    } u;
318
    u.f = v;
319
    stl(ptr, u.i);
320
}
321

    
322
#endif /* !defined(CONFIG_USER_ONLY) */
323

    
324
#ifdef USE_X86LDOUBLE
325
/* use long double functions */
326
#define lrint lrintl
327
#define llrint llrintl
328
#define fabs fabsl
329
#define sin sinl
330
#define cos cosl
331
#define sqrt sqrtl
332
#define pow powl
333
#define log logl
334
#define tan tanl
335
#define atan2 atan2l
336
#define floor floorl
337
#define ceil ceill
338
#define rint rintl
339
#endif
340

    
341
#if !defined(_BSD)
342
extern int lrint(CPU86_LDouble x);
343
extern int64_t llrint(CPU86_LDouble x);
344
#else
345
#define lrint(d)                ((int)rint(d))
346
#define llrint(d)                ((int)rint(d))
347
#endif
348
extern CPU86_LDouble fabs(CPU86_LDouble x);
349
extern CPU86_LDouble sin(CPU86_LDouble x);
350
extern CPU86_LDouble cos(CPU86_LDouble x);
351
extern CPU86_LDouble sqrt(CPU86_LDouble x);
352
extern CPU86_LDouble pow(CPU86_LDouble, CPU86_LDouble);
353
extern CPU86_LDouble log(CPU86_LDouble x);
354
extern CPU86_LDouble tan(CPU86_LDouble x);
355
extern CPU86_LDouble atan2(CPU86_LDouble, CPU86_LDouble);
356
extern CPU86_LDouble floor(CPU86_LDouble x);
357
extern CPU86_LDouble ceil(CPU86_LDouble x);
358
extern CPU86_LDouble rint(CPU86_LDouble x);
359

    
360
#define RC_MASK         0xc00
361
#define RC_NEAR                0x000
362
#define RC_DOWN                0x400
363
#define RC_UP                0x800
364
#define RC_CHOP                0xc00
365

    
366
#define MAXTAN 9223372036854775808.0
367

    
368
#ifdef __arm__
369
/* we have no way to do correct rounding - a FPU emulator is needed */
370
#define FE_DOWNWARD   FE_TONEAREST
371
#define FE_UPWARD     FE_TONEAREST
372
#define FE_TOWARDZERO FE_TONEAREST
373
#endif
374

    
375
#ifdef USE_X86LDOUBLE
376

    
377
/* only for x86 */
378
typedef union {
379
    long double d;
380
    struct {
381
        unsigned long long lower;
382
        unsigned short upper;
383
    } l;
384
} CPU86_LDoubleU;
385

    
386
/* the following deal with x86 long double-precision numbers */
387
#define MAXEXPD 0x7fff
388
#define EXPBIAS 16383
389
#define EXPD(fp)        (fp.l.upper & 0x7fff)
390
#define SIGND(fp)        ((fp.l.upper) & 0x8000)
391
#define MANTD(fp)       (fp.l.lower)
392
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
393

    
394
#else
395

    
396
/* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
397
typedef union {
398
    double d;
399
#if !defined(WORDS_BIGENDIAN) && !defined(__arm__)
400
    struct {
401
        uint32_t lower;
402
        int32_t upper;
403
    } l;
404
#else
405
    struct {
406
        int32_t upper;
407
        uint32_t lower;
408
    } l;
409
#endif
410
#ifndef __arm__
411
    int64_t ll;
412
#endif
413
} CPU86_LDoubleU;
414

    
415
/* the following deal with IEEE double-precision numbers */
416
#define MAXEXPD 0x7ff
417
#define EXPBIAS 1023
418
#define EXPD(fp)        (((fp.l.upper) >> 20) & 0x7FF)
419
#define SIGND(fp)        ((fp.l.upper) & 0x80000000)
420
#ifdef __arm__
421
#define MANTD(fp)        (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
422
#else
423
#define MANTD(fp)        (fp.ll & ((1LL << 52) - 1))
424
#endif
425
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
426
#endif
427

    
428
static inline void fpush(void)
429
{
430
    env->fpstt = (env->fpstt - 1) & 7;
431
    env->fptags[env->fpstt] = 0; /* validate stack entry */
432
}
433

    
434
static inline void fpop(void)
435
{
436
    env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
437
    env->fpstt = (env->fpstt + 1) & 7;
438
}
439

    
440
#ifndef USE_X86LDOUBLE
441
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
442
{
443
    CPU86_LDoubleU temp;
444
    int upper, e;
445
    uint64_t ll;
446

    
447
    /* mantissa */
448
    upper = lduw(ptr + 8);
449
    /* XXX: handle overflow ? */
450
    e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
451
    e |= (upper >> 4) & 0x800; /* sign */
452
    ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1);
453
#ifdef __arm__
454
    temp.l.upper = (e << 20) | (ll >> 32);
455
    temp.l.lower = ll;
456
#else
457
    temp.ll = ll | ((uint64_t)e << 52);
458
#endif
459
    return temp.d;
460
}
461

    
462
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
463
{
464
    CPU86_LDoubleU temp;
465
    int e;
466

    
467
    temp.d = f;
468
    /* mantissa */
469
    stq(ptr, (MANTD(temp) << 11) | (1LL << 63));
470
    /* exponent + sign */
471
    e = EXPD(temp) - EXPBIAS + 16383;
472
    e |= SIGND(temp) >> 16;
473
    stw(ptr + 8, e);
474
}
475
#else
476

    
477
/* XXX: same endianness assumed */
478

    
479
#ifdef CONFIG_USER_ONLY
480

    
481
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
482
{
483
    return *(CPU86_LDouble *)ptr;
484
}
485

    
486
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
487
{
488
    *(CPU86_LDouble *)ptr = f;
489
}
490

    
491
#else
492

    
493
/* we use memory access macros */
494

    
495
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
496
{
497
    CPU86_LDoubleU temp;
498

    
499
    temp.l.lower = ldq(ptr);
500
    temp.l.upper = lduw(ptr + 8);
501
    return temp.d;
502
}
503

    
504
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
505
{
506
    CPU86_LDoubleU temp;
507
    
508
    temp.d = f;
509
    stq(ptr, temp.l.lower);
510
    stw(ptr + 8, temp.l.upper);
511
}
512

    
513
#endif /* !CONFIG_USER_ONLY */
514

    
515
#endif /* USE_X86LDOUBLE */
516

    
517
#define FPUS_IE (1 << 0)
518
#define FPUS_DE (1 << 1)
519
#define FPUS_ZE (1 << 2)
520
#define FPUS_OE (1 << 3)
521
#define FPUS_UE (1 << 4)
522
#define FPUS_PE (1 << 5)
523
#define FPUS_SF (1 << 6)
524
#define FPUS_SE (1 << 7)
525
#define FPUS_B  (1 << 15)
526

    
527
#define FPUC_EM 0x3f
528

    
529
extern const CPU86_LDouble f15rk[7];
530

    
531
void helper_fldt_ST0_A0(void);
532
void helper_fstt_ST0_A0(void);
533
void fpu_raise_exception(void);
534
CPU86_LDouble helper_fdiv(CPU86_LDouble a, CPU86_LDouble b);
535
void helper_fbld_ST0_A0(void);
536
void helper_fbst_ST0_A0(void);
537
void helper_f2xm1(void);
538
void helper_fyl2x(void);
539
void helper_fptan(void);
540
void helper_fpatan(void);
541
void helper_fxtract(void);
542
void helper_fprem1(void);
543
void helper_fprem(void);
544
void helper_fyl2xp1(void);
545
void helper_fsqrt(void);
546
void helper_fsincos(void);
547
void helper_frndint(void);
548
void helper_fscale(void);
549
void helper_fsin(void);
550
void helper_fcos(void);
551
void helper_fxam_ST0(void);
552
void helper_fstenv(target_ulong ptr, int data32);
553
void helper_fldenv(target_ulong ptr, int data32);
554
void helper_fsave(target_ulong ptr, int data32);
555
void helper_frstor(target_ulong ptr, int data32);
556
void helper_fxsave(target_ulong ptr, int data64);
557
void helper_fxrstor(target_ulong ptr, int data64);
558
void restore_native_fp_state(CPUState *env);
559
void save_native_fp_state(CPUState *env);
560
float approx_rsqrt(float a);
561
float approx_rcp(float a);
562
int fpu_isnan(double a);
563

    
564
extern const uint8_t parity_table[256];
565
extern const uint8_t rclw_table[32];
566
extern const uint8_t rclb_table[32];
567

    
568
static inline uint32_t compute_eflags(void)
569
{
570
    return env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
571
}
572

    
573
/* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
574
static inline void load_eflags(int eflags, int update_mask)
575
{
576
    CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
577
    DF = 1 - (2 * ((eflags >> 10) & 1));
578
    env->eflags = (env->eflags & ~update_mask) | 
579
        (eflags & update_mask);
580
}
581

    
582
static inline void env_to_regs(void)
583
{
584
#ifdef reg_EAX
585
    EAX = env->regs[R_EAX];
586
#endif
587
#ifdef reg_ECX
588
    ECX = env->regs[R_ECX];
589
#endif
590
#ifdef reg_EDX
591
    EDX = env->regs[R_EDX];
592
#endif
593
#ifdef reg_EBX
594
    EBX = env->regs[R_EBX];
595
#endif
596
#ifdef reg_ESP
597
    ESP = env->regs[R_ESP];
598
#endif
599
#ifdef reg_EBP
600
    EBP = env->regs[R_EBP];
601
#endif
602
#ifdef reg_ESI
603
    ESI = env->regs[R_ESI];
604
#endif
605
#ifdef reg_EDI
606
    EDI = env->regs[R_EDI];
607
#endif
608
}
609

    
610
static inline void regs_to_env(void)
611
{
612
#ifdef reg_EAX
613
    env->regs[R_EAX] = EAX;
614
#endif
615
#ifdef reg_ECX
616
    env->regs[R_ECX] = ECX;
617
#endif
618
#ifdef reg_EDX
619
    env->regs[R_EDX] = EDX;
620
#endif
621
#ifdef reg_EBX
622
    env->regs[R_EBX] = EBX;
623
#endif
624
#ifdef reg_ESP
625
    env->regs[R_ESP] = ESP;
626
#endif
627
#ifdef reg_EBP
628
    env->regs[R_EBP] = EBP;
629
#endif
630
#ifdef reg_ESI
631
    env->regs[R_ESI] = ESI;
632
#endif
633
#ifdef reg_EDI
634
    env->regs[R_EDI] = EDI;
635
#endif
636
}