Statistics
| Branch: | Revision:

root / alpha-dis.c @ 668a38fc

History | View | Annotate | Download (79.9 kB)

1
/* alpha-dis.c -- Disassemble Alpha AXP instructions
2
   Copyright 1996, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3
   Contributed by Richard Henderson <rth@tamu.edu>,
4
   patterned after the PPC opcode handling written by Ian Lance Taylor.
5

6
This file is part of GDB, GAS, and the GNU binutils.
7

8
GDB, GAS, and the GNU binutils are free software; you can redistribute
9
them and/or modify them under the terms of the GNU General Public
10
License as published by the Free Software Foundation; either version
11
2, or (at your option) any later version.
12

13
GDB, GAS, and the GNU binutils are distributed in the hope that they
14
will be useful, but WITHOUT ANY WARRANTY; without even the implied
15
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
16
the GNU General Public License for more details.
17

18
You should have received a copy of the GNU General Public License
19
along with this file; see the file COPYING.  If not, see
20
<http://www.gnu.org/licenses/>. */
21

    
22
#include <stdio.h>
23
#include "dis-asm.h"
24

    
25
/* The opcode table is an array of struct alpha_opcode.  */
26

    
27
struct alpha_opcode
28
{
29
  /* The opcode name.  */
30
  const char *name;
31

    
32
  /* The opcode itself.  Those bits which will be filled in with
33
     operands are zeroes.  */
34
  unsigned opcode;
35

    
36
  /* The opcode mask.  This is used by the disassembler.  This is a
37
     mask containing ones indicating those bits which must match the
38
     opcode field, and zeroes indicating those bits which need not
39
     match (and are presumably filled in by operands).  */
40
  unsigned mask;
41

    
42
  /* One bit flags for the opcode.  These are primarily used to
43
     indicate specific processors and environments support the
44
     instructions.  The defined values are listed below. */
45
  unsigned flags;
46

    
47
  /* An array of operand codes.  Each code is an index into the
48
     operand table.  They appear in the order which the operands must
49
     appear in assembly code, and are terminated by a zero.  */
50
  unsigned char operands[4];
51
};
52

    
53
/* The table itself is sorted by major opcode number, and is otherwise
54
   in the order in which the disassembler should consider
55
   instructions.  */
56
extern const struct alpha_opcode alpha_opcodes[];
57
extern const unsigned alpha_num_opcodes;
58

    
59
/* Values defined for the flags field of a struct alpha_opcode.  */
60

    
61
/* CPU Availability */
62
#define AXP_OPCODE_BASE  0x0001  /* Base architecture -- all cpus.  */
63
#define AXP_OPCODE_EV4   0x0002  /* EV4 specific PALcode insns.  */
64
#define AXP_OPCODE_EV5   0x0004  /* EV5 specific PALcode insns.  */
65
#define AXP_OPCODE_EV6   0x0008  /* EV6 specific PALcode insns.  */
66
#define AXP_OPCODE_BWX   0x0100  /* Byte/word extension (amask bit 0).  */
67
#define AXP_OPCODE_CIX   0x0200  /* "Count" extension (amask bit 1).  */
68
#define AXP_OPCODE_MAX   0x0400  /* Multimedia extension (amask bit 8).  */
69

    
70
#define AXP_OPCODE_NOPAL (~(AXP_OPCODE_EV4|AXP_OPCODE_EV5|AXP_OPCODE_EV6))
71

    
72
/* A macro to extract the major opcode from an instruction.  */
73
#define AXP_OP(i)        (((i) >> 26) & 0x3F)
74

    
75
/* The total number of major opcodes. */
76
#define AXP_NOPS        0x40
77

    
78
 
79
/* The operands table is an array of struct alpha_operand.  */
80

    
81
struct alpha_operand
82
{
83
  /* The number of bits in the operand.  */
84
  unsigned int bits : 5;
85

    
86
  /* How far the operand is left shifted in the instruction.  */
87
  unsigned int shift : 5;
88

    
89
  /* The default relocation type for this operand.  */
90
  signed int default_reloc : 16;
91

    
92
  /* One bit syntax flags.  */
93
  unsigned int flags : 16;
94

    
95
  /* Insertion function.  This is used by the assembler.  To insert an
96
     operand value into an instruction, check this field.
97

98
     If it is NULL, execute
99
         i |= (op & ((1 << o->bits) - 1)) << o->shift;
100
     (i is the instruction which we are filling in, o is a pointer to
101
     this structure, and op is the opcode value; this assumes twos
102
     complement arithmetic).
103

104
     If this field is not NULL, then simply call it with the
105
     instruction and the operand value.  It will return the new value
106
     of the instruction.  If the ERRMSG argument is not NULL, then if
107
     the operand value is illegal, *ERRMSG will be set to a warning
108
     string (the operand will be inserted in any case).  If the
109
     operand value is legal, *ERRMSG will be unchanged (most operands
110
     can accept any value).  */
111
  unsigned (*insert) PARAMS ((unsigned instruction, int op,
112
                              const char **errmsg));
113

    
114
  /* Extraction function.  This is used by the disassembler.  To
115
     extract this operand type from an instruction, check this field.
116

117
     If it is NULL, compute
118
         op = ((i) >> o->shift) & ((1 << o->bits) - 1);
119
         if ((o->flags & AXP_OPERAND_SIGNED) != 0
120
             && (op & (1 << (o->bits - 1))) != 0)
121
           op -= 1 << o->bits;
122
     (i is the instruction, o is a pointer to this structure, and op
123
     is the result; this assumes twos complement arithmetic).
124

125
     If this field is not NULL, then simply call it with the
126
     instruction value.  It will return the value of the operand.  If
127
     the INVALID argument is not NULL, *INVALID will be set to
128
     non-zero if this operand type can not actually be extracted from
129
     this operand (i.e., the instruction does not match).  If the
130
     operand is valid, *INVALID will not be changed.  */
131
  int (*extract) PARAMS ((unsigned instruction, int *invalid));
132
};
133

    
134
/* Elements in the table are retrieved by indexing with values from
135
   the operands field of the alpha_opcodes table.  */
136

    
137
extern const struct alpha_operand alpha_operands[];
138
extern const unsigned alpha_num_operands;
139

    
140
/* Values defined for the flags field of a struct alpha_operand.  */
141

    
142
/* Mask for selecting the type for typecheck purposes */
143
#define AXP_OPERAND_TYPECHECK_MASK                                        \
144
  (AXP_OPERAND_PARENS | AXP_OPERAND_COMMA | AXP_OPERAND_IR |                \
145
   AXP_OPERAND_FPR | AXP_OPERAND_RELATIVE | AXP_OPERAND_SIGNED |         \
146
   AXP_OPERAND_UNSIGNED)
147

    
148
/* This operand does not actually exist in the assembler input.  This
149
   is used to support extended mnemonics, for which two operands fields
150
   are identical.  The assembler should call the insert function with
151
   any op value.  The disassembler should call the extract function,
152
   ignore the return value, and check the value placed in the invalid
153
   argument.  */
154
#define AXP_OPERAND_FAKE        01
155

    
156
/* The operand should be wrapped in parentheses rather than separated
157
   from the previous by a comma.  This is used for the load and store
158
   instructions which want their operands to look like "Ra,disp(Rb)".  */
159
#define AXP_OPERAND_PARENS        02
160

    
161
/* Used in combination with PARENS, this suppresses the suppression of
162
   the comma.  This is used for "jmp Ra,(Rb),hint".  */
163
#define AXP_OPERAND_COMMA        04
164

    
165
/* This operand names an integer register.  */
166
#define AXP_OPERAND_IR                010
167

    
168
/* This operand names a floating point register.  */
169
#define AXP_OPERAND_FPR                020
170

    
171
/* This operand is a relative branch displacement.  The disassembler
172
   prints these symbolically if possible.  */
173
#define AXP_OPERAND_RELATIVE        040
174

    
175
/* This operand takes signed values.  */
176
#define AXP_OPERAND_SIGNED        0100
177

    
178
/* This operand takes unsigned values.  This exists primarily so that
179
   a flags value of 0 can be treated as end-of-arguments.  */
180
#define AXP_OPERAND_UNSIGNED        0200
181

    
182
/* Suppress overflow detection on this field.  This is used for hints. */
183
#define AXP_OPERAND_NOOVERFLOW        0400
184

    
185
/* Mask for optional argument default value.  */
186
#define AXP_OPERAND_OPTIONAL_MASK 07000
187

    
188
/* This operand defaults to zero.  This is used for jump hints.  */
189
#define AXP_OPERAND_DEFAULT_ZERO 01000
190

    
191
/* This operand should default to the first (real) operand and is used
192
   in conjunction with AXP_OPERAND_OPTIONAL.  This allows
193
   "and $0,3,$0" to be written as "and $0,3", etc.  I don't like
194
   it, but it's what DEC does.  */
195
#define AXP_OPERAND_DEFAULT_FIRST 02000
196

    
197
/* Similarly, this operand should default to the second (real) operand.
198
   This allows "negl $0" instead of "negl $0,$0".  */
199
#define AXP_OPERAND_DEFAULT_SECOND 04000
200

    
201
 
202
/* Register common names */
203

    
204
#define AXP_REG_V0        0
205
#define AXP_REG_T0        1
206
#define AXP_REG_T1        2
207
#define AXP_REG_T2        3
208
#define AXP_REG_T3        4
209
#define AXP_REG_T4        5
210
#define AXP_REG_T5        6
211
#define AXP_REG_T6        7
212
#define AXP_REG_T7        8
213
#define AXP_REG_S0        9
214
#define AXP_REG_S1        10
215
#define AXP_REG_S2        11
216
#define AXP_REG_S3        12
217
#define AXP_REG_S4        13
218
#define AXP_REG_S5        14
219
#define AXP_REG_FP        15
220
#define AXP_REG_A0        16
221
#define AXP_REG_A1        17
222
#define AXP_REG_A2        18
223
#define AXP_REG_A3        19
224
#define AXP_REG_A4        20
225
#define AXP_REG_A5        21
226
#define AXP_REG_T8        22
227
#define AXP_REG_T9        23
228
#define AXP_REG_T10        24
229
#define AXP_REG_T11        25
230
#define AXP_REG_RA        26
231
#define AXP_REG_PV        27
232
#define AXP_REG_T12        27
233
#define AXP_REG_AT        28
234
#define AXP_REG_GP        29
235
#define AXP_REG_SP        30
236
#define AXP_REG_ZERO        31
237

    
238
#define bfd_mach_alpha_ev4  0x10
239
#define bfd_mach_alpha_ev5  0x20
240
#define bfd_mach_alpha_ev6  0x30
241

    
242
enum bfd_reloc_code_real {
243
    BFD_RELOC_23_PCREL_S2,
244
    BFD_RELOC_ALPHA_HINT
245
};
246

    
247
/* This file holds the Alpha AXP opcode table.  The opcode table includes
248
   almost all of the extended instruction mnemonics.  This permits the
249
   disassembler to use them, and simplifies the assembler logic, at the
250
   cost of increasing the table size.  The table is strictly constant
251
   data, so the compiler should be able to put it in the text segment.
252

253
   This file also holds the operand table.  All knowledge about inserting
254
   and extracting operands from instructions is kept in this file.
255

256
   The information for the base instruction set was compiled from the
257
   _Alpha Architecture Handbook_, Digital Order Number EC-QD2KB-TE,
258
   version 2.
259

260
   The information for the post-ev5 architecture extensions BWX, CIX and
261
   MAX came from version 3 of this same document, which is also available
262
   on-line at http://ftp.digital.com/pub/Digital/info/semiconductor
263
   /literature/alphahb2.pdf
264

265
   The information for the EV4 PALcode instructions was compiled from
266
   _DECchip 21064 and DECchip 21064A Alpha AXP Microprocessors Hardware
267
   Reference Manual_, Digital Order Number EC-Q9ZUA-TE, preliminary
268
   revision dated June 1994.
269

270
   The information for the EV5 PALcode instructions was compiled from
271
   _Alpha 21164 Microprocessor Hardware Reference Manual_, Digital
272
   Order Number EC-QAEQB-TE, preliminary revision dated April 1995.  */
273
 
274
/* Local insertion and extraction functions */
275

    
276
static unsigned insert_rba PARAMS((unsigned, int, const char **));
277
static unsigned insert_rca PARAMS((unsigned, int, const char **));
278
static unsigned insert_za PARAMS((unsigned, int, const char **));
279
static unsigned insert_zb PARAMS((unsigned, int, const char **));
280
static unsigned insert_zc PARAMS((unsigned, int, const char **));
281
static unsigned insert_bdisp PARAMS((unsigned, int, const char **));
282
static unsigned insert_jhint PARAMS((unsigned, int, const char **));
283
static unsigned insert_ev6hwjhint PARAMS((unsigned, int, const char **));
284

    
285
static int extract_rba PARAMS((unsigned, int *));
286
static int extract_rca PARAMS((unsigned, int *));
287
static int extract_za PARAMS((unsigned, int *));
288
static int extract_zb PARAMS((unsigned, int *));
289
static int extract_zc PARAMS((unsigned, int *));
290
static int extract_bdisp PARAMS((unsigned, int *));
291
static int extract_jhint PARAMS((unsigned, int *));
292
static int extract_ev6hwjhint PARAMS((unsigned, int *));
293

    
294
 
295
/* The operands table  */
296

    
297
const struct alpha_operand alpha_operands[] =
298
{
299
  /* The fields are bits, shift, insert, extract, flags */
300
  /* The zero index is used to indicate end-of-list */
301
#define UNUSED                0
302
  { 0, 0, 0, 0, 0, 0 },
303

    
304
  /* The plain integer register fields */
305
#define RA                (UNUSED + 1)
306
  { 5, 21, 0, AXP_OPERAND_IR, 0, 0 },
307
#define RB                (RA + 1)
308
  { 5, 16, 0, AXP_OPERAND_IR, 0, 0 },
309
#define RC                (RB + 1)
310
  { 5, 0, 0, AXP_OPERAND_IR, 0, 0 },
311

    
312
  /* The plain fp register fields */
313
#define FA                (RC + 1)
314
  { 5, 21, 0, AXP_OPERAND_FPR, 0, 0 },
315
#define FB                (FA + 1)
316
  { 5, 16, 0, AXP_OPERAND_FPR, 0, 0 },
317
#define FC                (FB + 1)
318
  { 5, 0, 0, AXP_OPERAND_FPR, 0, 0 },
319

    
320
  /* The integer registers when they are ZERO */
321
#define ZA                (FC + 1)
322
  { 5, 21, 0, AXP_OPERAND_FAKE, insert_za, extract_za },
323
#define ZB                (ZA + 1)
324
  { 5, 16, 0, AXP_OPERAND_FAKE, insert_zb, extract_zb },
325
#define ZC                (ZB + 1)
326
  { 5, 0, 0, AXP_OPERAND_FAKE, insert_zc, extract_zc },
327

    
328
  /* The RB field when it needs parentheses */
329
#define PRB                (ZC + 1)
330
  { 5, 16, 0, AXP_OPERAND_IR|AXP_OPERAND_PARENS, 0, 0 },
331

    
332
  /* The RB field when it needs parentheses _and_ a preceding comma */
333
#define CPRB                (PRB + 1)
334
  { 5, 16, 0,
335
    AXP_OPERAND_IR|AXP_OPERAND_PARENS|AXP_OPERAND_COMMA, 0, 0 },
336

    
337
  /* The RB field when it must be the same as the RA field */
338
#define RBA                (CPRB + 1)
339
  { 5, 16, 0, AXP_OPERAND_FAKE, insert_rba, extract_rba },
340

    
341
  /* The RC field when it must be the same as the RB field */
342
#define RCA                (RBA + 1)
343
  { 5, 0, 0, AXP_OPERAND_FAKE, insert_rca, extract_rca },
344

    
345
  /* The RC field when it can *default* to RA */
346
#define DRC1                (RCA + 1)
347
  { 5, 0, 0,
348
    AXP_OPERAND_IR|AXP_OPERAND_DEFAULT_FIRST, 0, 0 },
349

    
350
  /* The RC field when it can *default* to RB */
351
#define DRC2                (DRC1 + 1)
352
  { 5, 0, 0,
353
    AXP_OPERAND_IR|AXP_OPERAND_DEFAULT_SECOND, 0, 0 },
354

    
355
  /* The FC field when it can *default* to RA */
356
#define DFC1                (DRC2 + 1)
357
  { 5, 0, 0,
358
    AXP_OPERAND_FPR|AXP_OPERAND_DEFAULT_FIRST, 0, 0 },
359

    
360
  /* The FC field when it can *default* to RB */
361
#define DFC2                (DFC1 + 1)
362
  { 5, 0, 0,
363
    AXP_OPERAND_FPR|AXP_OPERAND_DEFAULT_SECOND, 0, 0 },
364

    
365
  /* The unsigned 8-bit literal of Operate format insns */
366
#define LIT                (DFC2 + 1)
367
  { 8, 13, -LIT, AXP_OPERAND_UNSIGNED, 0, 0 },
368

    
369
  /* The signed 16-bit displacement of Memory format insns.  From here
370
     we can't tell what relocation should be used, so don't use a default. */
371
#define MDISP                (LIT + 1)
372
  { 16, 0, -MDISP, AXP_OPERAND_SIGNED, 0, 0 },
373

    
374
  /* The signed "23-bit" aligned displacement of Branch format insns */
375
#define BDISP                (MDISP + 1)
376
  { 21, 0, BFD_RELOC_23_PCREL_S2,
377
    AXP_OPERAND_RELATIVE, insert_bdisp, extract_bdisp },
378

    
379
  /* The 26-bit PALcode function */
380
#define PALFN                (BDISP + 1)
381
  { 26, 0, -PALFN, AXP_OPERAND_UNSIGNED, 0, 0 },
382

    
383
  /* The optional signed "16-bit" aligned displacement of the JMP/JSR hint */
384
#define JMPHINT                (PALFN + 1)
385
  { 14, 0, BFD_RELOC_ALPHA_HINT,
386
    AXP_OPERAND_RELATIVE|AXP_OPERAND_DEFAULT_ZERO|AXP_OPERAND_NOOVERFLOW,
387
    insert_jhint, extract_jhint },
388

    
389
  /* The optional hint to RET/JSR_COROUTINE */
390
#define RETHINT                (JMPHINT + 1)
391
  { 14, 0, -RETHINT,
392
    AXP_OPERAND_UNSIGNED|AXP_OPERAND_DEFAULT_ZERO, 0, 0 },
393

    
394
  /* The 12-bit displacement for the ev[46] hw_{ld,st} (pal1b/pal1f) insns */
395
#define EV4HWDISP        (RETHINT + 1)
396
#define EV6HWDISP        (EV4HWDISP)
397
  { 12, 0, -EV4HWDISP, AXP_OPERAND_SIGNED, 0, 0 },
398

    
399
  /* The 5-bit index for the ev4 hw_m[ft]pr (pal19/pal1d) insns */
400
#define EV4HWINDEX        (EV4HWDISP + 1)
401
  { 5, 0, -EV4HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
402

    
403
  /* The 8-bit index for the oddly unqualified hw_m[tf]pr insns
404
     that occur in DEC PALcode.  */
405
#define EV4EXTHWINDEX        (EV4HWINDEX + 1)
406
  { 8, 0, -EV4EXTHWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
407

    
408
  /* The 10-bit displacement for the ev5 hw_{ld,st} (pal1b/pal1f) insns */
409
#define EV5HWDISP        (EV4EXTHWINDEX + 1)
410
  { 10, 0, -EV5HWDISP, AXP_OPERAND_SIGNED, 0, 0 },
411

    
412
  /* The 16-bit index for the ev5 hw_m[ft]pr (pal19/pal1d) insns */
413
#define EV5HWINDEX        (EV5HWDISP + 1)
414
  { 16, 0, -EV5HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
415

    
416
  /* The 16-bit combined index/scoreboard mask for the ev6
417
     hw_m[ft]pr (pal19/pal1d) insns */
418
#define EV6HWINDEX        (EV5HWINDEX + 1)
419
  { 16, 0, -EV6HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
420

    
421
  /* The 13-bit branch hint for the ev6 hw_jmp/jsr (pal1e) insn */
422
#define EV6HWJMPHINT        (EV6HWINDEX+ 1)
423
  { 8, 0, -EV6HWJMPHINT,
424
    AXP_OPERAND_RELATIVE|AXP_OPERAND_DEFAULT_ZERO|AXP_OPERAND_NOOVERFLOW,
425
    insert_ev6hwjhint, extract_ev6hwjhint }
426
};
427

    
428
const unsigned alpha_num_operands = sizeof(alpha_operands)/sizeof(*alpha_operands);
429

    
430
/* The RB field when it is the same as the RA field in the same insn.
431
   This operand is marked fake.  The insertion function just copies
432
   the RA field into the RB field, and the extraction function just
433
   checks that the fields are the same. */
434

    
435
/*ARGSUSED*/
436
static unsigned
437
insert_rba(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
438
{
439
  return insn | (((insn >> 21) & 0x1f) << 16);
440
}
441

    
442
static int
443
extract_rba(unsigned insn, int *invalid)
444
{
445
  if (invalid != (int *) NULL
446
      && ((insn >> 21) & 0x1f) != ((insn >> 16) & 0x1f))
447
    *invalid = 1;
448
  return 0;
449
}
450

    
451

    
452
/* The same for the RC field */
453

    
454
/*ARGSUSED*/
455
static unsigned
456
insert_rca(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
457
{
458
  return insn | ((insn >> 21) & 0x1f);
459
}
460

    
461
static int
462
extract_rca(unsigned insn, int *invalid)
463
{
464
  if (invalid != (int *) NULL
465
      && ((insn >> 21) & 0x1f) != (insn & 0x1f))
466
    *invalid = 1;
467
  return 0;
468
}
469

    
470

    
471
/* Fake arguments in which the registers must be set to ZERO */
472

    
473
/*ARGSUSED*/
474
static unsigned
475
insert_za(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
476
{
477
  return insn | (31 << 21);
478
}
479

    
480
static int
481
extract_za(unsigned insn, int *invalid)
482
{
483
  if (invalid != (int *) NULL && ((insn >> 21) & 0x1f) != 31)
484
    *invalid = 1;
485
  return 0;
486
}
487

    
488
/*ARGSUSED*/
489
static unsigned
490
insert_zb(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
491
{
492
  return insn | (31 << 16);
493
}
494

    
495
static int
496
extract_zb(unsigned insn, int *invalid)
497
{
498
  if (invalid != (int *) NULL && ((insn >> 16) & 0x1f) != 31)
499
    *invalid = 1;
500
  return 0;
501
}
502

    
503
/*ARGSUSED*/
504
static unsigned
505
insert_zc(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
506
{
507
  return insn | 31;
508
}
509

    
510
static int
511
extract_zc(unsigned insn, int *invalid)
512
{
513
  if (invalid != (int *) NULL && (insn & 0x1f) != 31)
514
    *invalid = 1;
515
  return 0;
516
}
517

    
518

    
519
/* The displacement field of a Branch format insn.  */
520

    
521
static unsigned
522
insert_bdisp(unsigned insn, int value, const char **errmsg)
523
{
524
  if (errmsg != (const char **)NULL && (value & 3))
525
    *errmsg = _("branch operand unaligned");
526
  return insn | ((value / 4) & 0x1FFFFF);
527
}
528

    
529
/*ARGSUSED*/
530
static int
531
extract_bdisp(unsigned insn, int *invalid ATTRIBUTE_UNUSED)
532
{
533
  return 4 * (((insn & 0x1FFFFF) ^ 0x100000) - 0x100000);
534
}
535

    
536

    
537
/* The hint field of a JMP/JSR insn.  */
538

    
539
static unsigned
540
insert_jhint(unsigned insn, int value, const char **errmsg)
541
{
542
  if (errmsg != (const char **)NULL && (value & 3))
543
    *errmsg = _("jump hint unaligned");
544
  return insn | ((value / 4) & 0x3FFF);
545
}
546

    
547
/*ARGSUSED*/
548
static int
549
extract_jhint(unsigned insn, int *invalid ATTRIBUTE_UNUSED)
550
{
551
  return 4 * (((insn & 0x3FFF) ^ 0x2000) - 0x2000);
552
}
553

    
554
/* The hint field of an EV6 HW_JMP/JSR insn.  */
555

    
556
static unsigned
557
insert_ev6hwjhint(unsigned insn, int value, const char **errmsg)
558
{
559
  if (errmsg != (const char **)NULL && (value & 3))
560
    *errmsg = _("jump hint unaligned");
561
  return insn | ((value / 4) & 0x1FFF);
562
}
563

    
564
/*ARGSUSED*/
565
static int
566
extract_ev6hwjhint(unsigned insn, int *invalid ATTRIBUTE_UNUSED)
567
{
568
  return 4 * (((insn & 0x1FFF) ^ 0x1000) - 0x1000);
569
}
570

    
571
 
572
/* Macros used to form opcodes */
573

    
574
/* The main opcode */
575
#define OP(x)                (((x) & 0x3F) << 26)
576
#define OP_MASK                0xFC000000
577

    
578
/* Branch format instructions */
579
#define BRA_(oo)        OP(oo)
580
#define BRA_MASK        OP_MASK
581
#define BRA(oo)                BRA_(oo), BRA_MASK
582

    
583
/* Floating point format instructions */
584
#define FP_(oo,fff)        (OP(oo) | (((fff) & 0x7FF) << 5))
585
#define FP_MASK                (OP_MASK | 0xFFE0)
586
#define FP(oo,fff)        FP_(oo,fff), FP_MASK
587

    
588
/* Memory format instructions */
589
#define MEM_(oo)        OP(oo)
590
#define MEM_MASK        OP_MASK
591
#define MEM(oo)                MEM_(oo), MEM_MASK
592

    
593
/* Memory/Func Code format instructions */
594
#define MFC_(oo,ffff)        (OP(oo) | ((ffff) & 0xFFFF))
595
#define MFC_MASK        (OP_MASK | 0xFFFF)
596
#define MFC(oo,ffff)        MFC_(oo,ffff), MFC_MASK
597

    
598
/* Memory/Branch format instructions */
599
#define MBR_(oo,h)        (OP(oo) | (((h) & 3) << 14))
600
#define MBR_MASK        (OP_MASK | 0xC000)
601
#define MBR(oo,h)        MBR_(oo,h), MBR_MASK
602

    
603
/* Operate format instructions.  The OPRL variant specifies a
604
   literal second argument. */
605
#define OPR_(oo,ff)        (OP(oo) | (((ff) & 0x7F) << 5))
606
#define OPRL_(oo,ff)        (OPR_((oo),(ff)) | 0x1000)
607
#define OPR_MASK        (OP_MASK | 0x1FE0)
608
#define OPR(oo,ff)        OPR_(oo,ff), OPR_MASK
609
#define OPRL(oo,ff)        OPRL_(oo,ff), OPR_MASK
610

    
611
/* Generic PALcode format instructions */
612
#define PCD_(oo)        OP(oo)
613
#define PCD_MASK        OP_MASK
614
#define PCD(oo)                PCD_(oo), PCD_MASK
615

    
616
/* Specific PALcode instructions */
617
#define SPCD_(oo,ffff)        (OP(oo) | ((ffff) & 0x3FFFFFF))
618
#define SPCD_MASK        0xFFFFFFFF
619
#define SPCD(oo,ffff)        SPCD_(oo,ffff), SPCD_MASK
620

    
621
/* Hardware memory (hw_{ld,st}) instructions */
622
#define EV4HWMEM_(oo,f)        (OP(oo) | (((f) & 0xF) << 12))
623
#define EV4HWMEM_MASK        (OP_MASK | 0xF000)
624
#define EV4HWMEM(oo,f)        EV4HWMEM_(oo,f), EV4HWMEM_MASK
625

    
626
#define EV5HWMEM_(oo,f)        (OP(oo) | (((f) & 0x3F) << 10))
627
#define EV5HWMEM_MASK        (OP_MASK | 0xF800)
628
#define EV5HWMEM(oo,f)        EV5HWMEM_(oo,f), EV5HWMEM_MASK
629

    
630
#define EV6HWMEM_(oo,f)        (OP(oo) | (((f) & 0xF) << 12))
631
#define EV6HWMEM_MASK        (OP_MASK | 0xF000)
632
#define EV6HWMEM(oo,f)        EV6HWMEM_(oo,f), EV6HWMEM_MASK
633

    
634
#define EV6HWMBR_(oo,h)        (OP(oo) | (((h) & 7) << 13))
635
#define EV6HWMBR_MASK        (OP_MASK | 0xE000)
636
#define EV6HWMBR(oo,h)        EV6HWMBR_(oo,h), EV6HWMBR_MASK
637

    
638
/* Abbreviations for instruction subsets.  */
639
#define BASE                        AXP_OPCODE_BASE
640
#define EV4                        AXP_OPCODE_EV4
641
#define EV5                        AXP_OPCODE_EV5
642
#define EV6                        AXP_OPCODE_EV6
643
#define BWX                        AXP_OPCODE_BWX
644
#define CIX                        AXP_OPCODE_CIX
645
#define MAX                        AXP_OPCODE_MAX
646

    
647
/* Common combinations of arguments */
648
#define ARG_NONE                { 0 }
649
#define ARG_BRA                        { RA, BDISP }
650
#define ARG_FBRA                { FA, BDISP }
651
#define ARG_FP                        { FA, FB, DFC1 }
652
#define ARG_FPZ1                { ZA, FB, DFC1 }
653
#define ARG_MEM                        { RA, MDISP, PRB }
654
#define ARG_FMEM                { FA, MDISP, PRB }
655
#define ARG_OPR                        { RA, RB, DRC1 }
656
#define ARG_OPRL                { RA, LIT, DRC1 }
657
#define ARG_OPRZ1                { ZA, RB, DRC1 }
658
#define ARG_OPRLZ1                { ZA, LIT, RC }
659
#define ARG_PCD                        { PALFN }
660
#define ARG_EV4HWMEM                { RA, EV4HWDISP, PRB }
661
#define ARG_EV4HWMPR                { RA, RBA, EV4HWINDEX }
662
#define ARG_EV5HWMEM                { RA, EV5HWDISP, PRB }
663
#define ARG_EV6HWMEM                { RA, EV6HWDISP, PRB }
664
 
665
/* The opcode table.
666

667
   The format of the opcode table is:
668

669
   NAME OPCODE MASK { OPERANDS }
670

671
   NAME                is the name of the instruction.
672

673
   OPCODE        is the instruction opcode.
674

675
   MASK                is the opcode mask; this is used to tell the disassembler
676
                    which bits in the actual opcode must match OPCODE.
677

678
   OPERANDS        is the list of operands.
679

680
   The preceding macros merge the text of the OPCODE and MASK fields.
681

682
   The disassembler reads the table in order and prints the first
683
   instruction which matches, so this table is sorted to put more
684
   specific instructions before more general instructions.
685

686
   Otherwise, it is sorted by major opcode and minor function code.
687

688
   There are three classes of not-really-instructions in this table:
689

690
   ALIAS        is another name for another instruction.  Some of
691
                these come from the Architecture Handbook, some
692
                come from the original gas opcode tables.  In all
693
                cases, the functionality of the opcode is unchanged.
694

695
   PSEUDO        a stylized code form endorsed by Chapter A.4 of the
696
                Architecture Handbook.
697

698
   EXTRA        a stylized code form found in the original gas tables.
699

700
   And two annotations:
701

702
   EV56 BUT        opcodes that are officially introduced as of the ev56,
703
                   but with defined results on previous implementations.
704

705
   EV56 UNA        opcodes that were introduced as of the ev56 with
706
                   presumably undefined results on previous implementations
707
                that were not assigned to a particular extension.
708
*/
709

    
710
const struct alpha_opcode alpha_opcodes[] = {
711
  { "halt",                SPCD(0x00,0x0000), BASE, ARG_NONE },
712
  { "draina",                SPCD(0x00,0x0002), BASE, ARG_NONE },
713
  { "bpt",                SPCD(0x00,0x0080), BASE, ARG_NONE },
714
  { "bugchk",                SPCD(0x00,0x0081), BASE, ARG_NONE },
715
  { "callsys",                SPCD(0x00,0x0083), BASE, ARG_NONE },
716
  { "chmk",                 SPCD(0x00,0x0083), BASE, ARG_NONE },
717
  { "imb",                SPCD(0x00,0x0086), BASE, ARG_NONE },
718
  { "rduniq",                SPCD(0x00,0x009e), BASE, ARG_NONE },
719
  { "wruniq",                SPCD(0x00,0x009f), BASE, ARG_NONE },
720
  { "gentrap",                SPCD(0x00,0x00aa), BASE, ARG_NONE },
721
  { "call_pal",                PCD(0x00), BASE, ARG_PCD },
722
  { "pal",                PCD(0x00), BASE, ARG_PCD },                /* alias */
723

    
724
  { "lda",                MEM(0x08), BASE, { RA, MDISP, ZB } },        /* pseudo */
725
  { "lda",                MEM(0x08), BASE, ARG_MEM },
726
  { "ldah",                MEM(0x09), BASE, { RA, MDISP, ZB } },        /* pseudo */
727
  { "ldah",                MEM(0x09), BASE, ARG_MEM },
728
  { "ldbu",                MEM(0x0A), BWX, ARG_MEM },
729
  { "unop",                MEM_(0x0B) | (30 << 16),
730
                        MEM_MASK, BASE, { ZA } },                /* pseudo */
731
  { "ldq_u",                MEM(0x0B), BASE, ARG_MEM },
732
  { "ldwu",                MEM(0x0C), BWX, ARG_MEM },
733
  { "stw",                MEM(0x0D), BWX, ARG_MEM },
734
  { "stb",                MEM(0x0E), BWX, ARG_MEM },
735
  { "stq_u",                MEM(0x0F), BASE, ARG_MEM },
736

    
737
  { "sextl",                OPR(0x10,0x00), BASE, ARG_OPRZ1 },        /* pseudo */
738
  { "sextl",                OPRL(0x10,0x00), BASE, ARG_OPRLZ1 },        /* pseudo */
739
  { "addl",                OPR(0x10,0x00), BASE, ARG_OPR },
740
  { "addl",                OPRL(0x10,0x00), BASE, ARG_OPRL },
741
  { "s4addl",                OPR(0x10,0x02), BASE, ARG_OPR },
742
  { "s4addl",                OPRL(0x10,0x02), BASE, ARG_OPRL },
743
  { "negl",                OPR(0x10,0x09), BASE, ARG_OPRZ1 },        /* pseudo */
744
  { "negl",                OPRL(0x10,0x09), BASE, ARG_OPRLZ1 },        /* pseudo */
745
  { "subl",                OPR(0x10,0x09), BASE, ARG_OPR },
746
  { "subl",                OPRL(0x10,0x09), BASE, ARG_OPRL },
747
  { "s4subl",                OPR(0x10,0x0B), BASE, ARG_OPR },
748
  { "s4subl",                OPRL(0x10,0x0B), BASE, ARG_OPRL },
749
  { "cmpbge",                OPR(0x10,0x0F), BASE, ARG_OPR },
750
  { "cmpbge",                OPRL(0x10,0x0F), BASE, ARG_OPRL },
751
  { "s8addl",                OPR(0x10,0x12), BASE, ARG_OPR },
752
  { "s8addl",                OPRL(0x10,0x12), BASE, ARG_OPRL },
753
  { "s8subl",                OPR(0x10,0x1B), BASE, ARG_OPR },
754
  { "s8subl",                OPRL(0x10,0x1B), BASE, ARG_OPRL },
755
  { "cmpult",                OPR(0x10,0x1D), BASE, ARG_OPR },
756
  { "cmpult",                OPRL(0x10,0x1D), BASE, ARG_OPRL },
757
  { "addq",                OPR(0x10,0x20), BASE, ARG_OPR },
758
  { "addq",                OPRL(0x10,0x20), BASE, ARG_OPRL },
759
  { "s4addq",                OPR(0x10,0x22), BASE, ARG_OPR },
760
  { "s4addq",                OPRL(0x10,0x22), BASE, ARG_OPRL },
761
  { "negq",                 OPR(0x10,0x29), BASE, ARG_OPRZ1 },        /* pseudo */
762
  { "negq",                 OPRL(0x10,0x29), BASE, ARG_OPRLZ1 },        /* pseudo */
763
  { "subq",                OPR(0x10,0x29), BASE, ARG_OPR },
764
  { "subq",                OPRL(0x10,0x29), BASE, ARG_OPRL },
765
  { "s4subq",                OPR(0x10,0x2B), BASE, ARG_OPR },
766
  { "s4subq",                OPRL(0x10,0x2B), BASE, ARG_OPRL },
767
  { "cmpeq",                OPR(0x10,0x2D), BASE, ARG_OPR },
768
  { "cmpeq",                OPRL(0x10,0x2D), BASE, ARG_OPRL },
769
  { "s8addq",                OPR(0x10,0x32), BASE, ARG_OPR },
770
  { "s8addq",                OPRL(0x10,0x32), BASE, ARG_OPRL },
771
  { "s8subq",                OPR(0x10,0x3B), BASE, ARG_OPR },
772
  { "s8subq",                OPRL(0x10,0x3B), BASE, ARG_OPRL },
773
  { "cmpule",                OPR(0x10,0x3D), BASE, ARG_OPR },
774
  { "cmpule",                OPRL(0x10,0x3D), BASE, ARG_OPRL },
775
  { "addl/v",                OPR(0x10,0x40), BASE, ARG_OPR },
776
  { "addl/v",                OPRL(0x10,0x40), BASE, ARG_OPRL },
777
  { "negl/v",                OPR(0x10,0x49), BASE, ARG_OPRZ1 },        /* pseudo */
778
  { "negl/v",                OPRL(0x10,0x49), BASE, ARG_OPRLZ1 },        /* pseudo */
779
  { "subl/v",                OPR(0x10,0x49), BASE, ARG_OPR },
780
  { "subl/v",                OPRL(0x10,0x49), BASE, ARG_OPRL },
781
  { "cmplt",                OPR(0x10,0x4D), BASE, ARG_OPR },
782
  { "cmplt",                OPRL(0x10,0x4D), BASE, ARG_OPRL },
783
  { "addq/v",                OPR(0x10,0x60), BASE, ARG_OPR },
784
  { "addq/v",                OPRL(0x10,0x60), BASE, ARG_OPRL },
785
  { "negq/v",                OPR(0x10,0x69), BASE, ARG_OPRZ1 },        /* pseudo */
786
  { "negq/v",                OPRL(0x10,0x69), BASE, ARG_OPRLZ1 },        /* pseudo */
787
  { "subq/v",                OPR(0x10,0x69), BASE, ARG_OPR },
788
  { "subq/v",                OPRL(0x10,0x69), BASE, ARG_OPRL },
789
  { "cmple",                OPR(0x10,0x6D), BASE, ARG_OPR },
790
  { "cmple",                OPRL(0x10,0x6D), BASE, ARG_OPRL },
791

    
792
  { "and",                OPR(0x11,0x00), BASE, ARG_OPR },
793
  { "and",                OPRL(0x11,0x00), BASE, ARG_OPRL },
794
  { "andnot",                OPR(0x11,0x08), BASE, ARG_OPR },        /* alias */
795
  { "andnot",                OPRL(0x11,0x08), BASE, ARG_OPRL },        /* alias */
796
  { "bic",                OPR(0x11,0x08), BASE, ARG_OPR },
797
  { "bic",                OPRL(0x11,0x08), BASE, ARG_OPRL },
798
  { "cmovlbs",                OPR(0x11,0x14), BASE, ARG_OPR },
799
  { "cmovlbs",                OPRL(0x11,0x14), BASE, ARG_OPRL },
800
  { "cmovlbc",                OPR(0x11,0x16), BASE, ARG_OPR },
801
  { "cmovlbc",                OPRL(0x11,0x16), BASE, ARG_OPRL },
802
  { "nop",                OPR(0x11,0x20), BASE, { ZA, ZB, ZC } }, /* pseudo */
803
  { "clr",                OPR(0x11,0x20), BASE, { ZA, ZB, RC } }, /* pseudo */
804
  { "mov",                OPR(0x11,0x20), BASE, { ZA, RB, RC } }, /* pseudo */
805
  { "mov",                OPR(0x11,0x20), BASE, { RA, RBA, RC } }, /* pseudo */
806
  { "mov",                OPRL(0x11,0x20), BASE, { ZA, LIT, RC } }, /* pseudo */
807
  { "or",                OPR(0x11,0x20), BASE, ARG_OPR },        /* alias */
808
  { "or",                OPRL(0x11,0x20), BASE, ARG_OPRL },        /* alias */
809
  { "bis",                OPR(0x11,0x20), BASE, ARG_OPR },
810
  { "bis",                OPRL(0x11,0x20), BASE, ARG_OPRL },
811
  { "cmoveq",                OPR(0x11,0x24), BASE, ARG_OPR },
812
  { "cmoveq",                OPRL(0x11,0x24), BASE, ARG_OPRL },
813
  { "cmovne",                OPR(0x11,0x26), BASE, ARG_OPR },
814
  { "cmovne",                OPRL(0x11,0x26), BASE, ARG_OPRL },
815
  { "not",                OPR(0x11,0x28), BASE, ARG_OPRZ1 },        /* pseudo */
816
  { "not",                OPRL(0x11,0x28), BASE, ARG_OPRLZ1 },        /* pseudo */
817
  { "ornot",                OPR(0x11,0x28), BASE, ARG_OPR },
818
  { "ornot",                OPRL(0x11,0x28), BASE, ARG_OPRL },
819
  { "xor",                OPR(0x11,0x40), BASE, ARG_OPR },
820
  { "xor",                OPRL(0x11,0x40), BASE, ARG_OPRL },
821
  { "cmovlt",                OPR(0x11,0x44), BASE, ARG_OPR },
822
  { "cmovlt",                OPRL(0x11,0x44), BASE, ARG_OPRL },
823
  { "cmovge",                OPR(0x11,0x46), BASE, ARG_OPR },
824
  { "cmovge",                OPRL(0x11,0x46), BASE, ARG_OPRL },
825
  { "eqv",                OPR(0x11,0x48), BASE, ARG_OPR },
826
  { "eqv",                OPRL(0x11,0x48), BASE, ARG_OPRL },
827
  { "xornot",                OPR(0x11,0x48), BASE, ARG_OPR },        /* alias */
828
  { "xornot",                OPRL(0x11,0x48), BASE, ARG_OPRL },        /* alias */
829
  { "amask",                OPR(0x11,0x61), BASE, ARG_OPRZ1 },        /* ev56 but */
830
  { "amask",                OPRL(0x11,0x61), BASE, ARG_OPRLZ1 },        /* ev56 but */
831
  { "cmovle",                OPR(0x11,0x64), BASE, ARG_OPR },
832
  { "cmovle",                OPRL(0x11,0x64), BASE, ARG_OPRL },
833
  { "cmovgt",                OPR(0x11,0x66), BASE, ARG_OPR },
834
  { "cmovgt",                OPRL(0x11,0x66), BASE, ARG_OPRL },
835
  { "implver",                OPRL_(0x11,0x6C)|(31<<21)|(1<<13),
836
                            0xFFFFFFE0, BASE, { RC } },                /* ev56 but */
837

    
838
  { "mskbl",                OPR(0x12,0x02), BASE, ARG_OPR },
839
  { "mskbl",                OPRL(0x12,0x02), BASE, ARG_OPRL },
840
  { "extbl",                OPR(0x12,0x06), BASE, ARG_OPR },
841
  { "extbl",                OPRL(0x12,0x06), BASE, ARG_OPRL },
842
  { "insbl",                OPR(0x12,0x0B), BASE, ARG_OPR },
843
  { "insbl",                OPRL(0x12,0x0B), BASE, ARG_OPRL },
844
  { "mskwl",                OPR(0x12,0x12), BASE, ARG_OPR },
845
  { "mskwl",                OPRL(0x12,0x12), BASE, ARG_OPRL },
846
  { "extwl",                OPR(0x12,0x16), BASE, ARG_OPR },
847
  { "extwl",                OPRL(0x12,0x16), BASE, ARG_OPRL },
848
  { "inswl",                OPR(0x12,0x1B), BASE, ARG_OPR },
849
  { "inswl",                OPRL(0x12,0x1B), BASE, ARG_OPRL },
850
  { "mskll",                OPR(0x12,0x22), BASE, ARG_OPR },
851
  { "mskll",                OPRL(0x12,0x22), BASE, ARG_OPRL },
852
  { "extll",                OPR(0x12,0x26), BASE, ARG_OPR },
853
  { "extll",                OPRL(0x12,0x26), BASE, ARG_OPRL },
854
  { "insll",                OPR(0x12,0x2B), BASE, ARG_OPR },
855
  { "insll",                OPRL(0x12,0x2B), BASE, ARG_OPRL },
856
  { "zap",                OPR(0x12,0x30), BASE, ARG_OPR },
857
  { "zap",                OPRL(0x12,0x30), BASE, ARG_OPRL },
858
  { "zapnot",                OPR(0x12,0x31), BASE, ARG_OPR },
859
  { "zapnot",                OPRL(0x12,0x31), BASE, ARG_OPRL },
860
  { "mskql",                OPR(0x12,0x32), BASE, ARG_OPR },
861
  { "mskql",                OPRL(0x12,0x32), BASE, ARG_OPRL },
862
  { "srl",                OPR(0x12,0x34), BASE, ARG_OPR },
863
  { "srl",                OPRL(0x12,0x34), BASE, ARG_OPRL },
864
  { "extql",                OPR(0x12,0x36), BASE, ARG_OPR },
865
  { "extql",                OPRL(0x12,0x36), BASE, ARG_OPRL },
866
  { "sll",                OPR(0x12,0x39), BASE, ARG_OPR },
867
  { "sll",                OPRL(0x12,0x39), BASE, ARG_OPRL },
868
  { "insql",                OPR(0x12,0x3B), BASE, ARG_OPR },
869
  { "insql",                OPRL(0x12,0x3B), BASE, ARG_OPRL },
870
  { "sra",                OPR(0x12,0x3C), BASE, ARG_OPR },
871
  { "sra",                OPRL(0x12,0x3C), BASE, ARG_OPRL },
872
  { "mskwh",                OPR(0x12,0x52), BASE, ARG_OPR },
873
  { "mskwh",                OPRL(0x12,0x52), BASE, ARG_OPRL },
874
  { "inswh",                OPR(0x12,0x57), BASE, ARG_OPR },
875
  { "inswh",                OPRL(0x12,0x57), BASE, ARG_OPRL },
876
  { "extwh",                OPR(0x12,0x5A), BASE, ARG_OPR },
877
  { "extwh",                OPRL(0x12,0x5A), BASE, ARG_OPRL },
878
  { "msklh",                OPR(0x12,0x62), BASE, ARG_OPR },
879
  { "msklh",                OPRL(0x12,0x62), BASE, ARG_OPRL },
880
  { "inslh",                OPR(0x12,0x67), BASE, ARG_OPR },
881
  { "inslh",                OPRL(0x12,0x67), BASE, ARG_OPRL },
882
  { "extlh",                OPR(0x12,0x6A), BASE, ARG_OPR },
883
  { "extlh",                OPRL(0x12,0x6A), BASE, ARG_OPRL },
884
  { "mskqh",                OPR(0x12,0x72), BASE, ARG_OPR },
885
  { "mskqh",                OPRL(0x12,0x72), BASE, ARG_OPRL },
886
  { "insqh",                OPR(0x12,0x77), BASE, ARG_OPR },
887
  { "insqh",                OPRL(0x12,0x77), BASE, ARG_OPRL },
888
  { "extqh",                OPR(0x12,0x7A), BASE, ARG_OPR },
889
  { "extqh",                OPRL(0x12,0x7A), BASE, ARG_OPRL },
890

    
891
  { "mull",                OPR(0x13,0x00), BASE, ARG_OPR },
892
  { "mull",                OPRL(0x13,0x00), BASE, ARG_OPRL },
893
  { "mulq",                OPR(0x13,0x20), BASE, ARG_OPR },
894
  { "mulq",                OPRL(0x13,0x20), BASE, ARG_OPRL },
895
  { "umulh",                OPR(0x13,0x30), BASE, ARG_OPR },
896
  { "umulh",                OPRL(0x13,0x30), BASE, ARG_OPRL },
897
  { "mull/v",                OPR(0x13,0x40), BASE, ARG_OPR },
898
  { "mull/v",                OPRL(0x13,0x40), BASE, ARG_OPRL },
899
  { "mulq/v",                OPR(0x13,0x60), BASE, ARG_OPR },
900
  { "mulq/v",                OPRL(0x13,0x60), BASE, ARG_OPRL },
901

    
902
  { "itofs",                FP(0x14,0x004), CIX, { RA, ZB, FC } },
903
  { "sqrtf/c",                FP(0x14,0x00A), CIX, ARG_FPZ1 },
904
  { "sqrts/c",                FP(0x14,0x00B), CIX, ARG_FPZ1 },
905
  { "itoff",                FP(0x14,0x014), CIX, { RA, ZB, FC } },
906
  { "itoft",                FP(0x14,0x024), CIX, { RA, ZB, FC } },
907
  { "sqrtg/c",                FP(0x14,0x02A), CIX, ARG_FPZ1 },
908
  { "sqrtt/c",                FP(0x14,0x02B), CIX, ARG_FPZ1 },
909
  { "sqrts/m",                FP(0x14,0x04B), CIX, ARG_FPZ1 },
910
  { "sqrtt/m",                FP(0x14,0x06B), CIX, ARG_FPZ1 },
911
  { "sqrtf",                FP(0x14,0x08A), CIX, ARG_FPZ1 },
912
  { "sqrts",                FP(0x14,0x08B), CIX, ARG_FPZ1 },
913
  { "sqrtg",                FP(0x14,0x0AA), CIX, ARG_FPZ1 },
914
  { "sqrtt",                FP(0x14,0x0AB), CIX, ARG_FPZ1 },
915
  { "sqrts/d",                FP(0x14,0x0CB), CIX, ARG_FPZ1 },
916
  { "sqrtt/d",                FP(0x14,0x0EB), CIX, ARG_FPZ1 },
917
  { "sqrtf/uc",                FP(0x14,0x10A), CIX, ARG_FPZ1 },
918
  { "sqrts/uc",                FP(0x14,0x10B), CIX, ARG_FPZ1 },
919
  { "sqrtg/uc",                FP(0x14,0x12A), CIX, ARG_FPZ1 },
920
  { "sqrtt/uc",                FP(0x14,0x12B), CIX, ARG_FPZ1 },
921
  { "sqrts/um",                FP(0x14,0x14B), CIX, ARG_FPZ1 },
922
  { "sqrtt/um",                FP(0x14,0x16B), CIX, ARG_FPZ1 },
923
  { "sqrtf/u",                FP(0x14,0x18A), CIX, ARG_FPZ1 },
924
  { "sqrts/u",                FP(0x14,0x18B), CIX, ARG_FPZ1 },
925
  { "sqrtg/u",                FP(0x14,0x1AA), CIX, ARG_FPZ1 },
926
  { "sqrtt/u",                FP(0x14,0x1AB), CIX, ARG_FPZ1 },
927
  { "sqrts/ud",                FP(0x14,0x1CB), CIX, ARG_FPZ1 },
928
  { "sqrtt/ud",                FP(0x14,0x1EB), CIX, ARG_FPZ1 },
929
  { "sqrtf/sc",                FP(0x14,0x40A), CIX, ARG_FPZ1 },
930
  { "sqrtg/sc",                FP(0x14,0x42A), CIX, ARG_FPZ1 },
931
  { "sqrtf/s",                FP(0x14,0x48A), CIX, ARG_FPZ1 },
932
  { "sqrtg/s",                FP(0x14,0x4AA), CIX, ARG_FPZ1 },
933
  { "sqrtf/suc",        FP(0x14,0x50A), CIX, ARG_FPZ1 },
934
  { "sqrts/suc",        FP(0x14,0x50B), CIX, ARG_FPZ1 },
935
  { "sqrtg/suc",        FP(0x14,0x52A), CIX, ARG_FPZ1 },
936
  { "sqrtt/suc",        FP(0x14,0x52B), CIX, ARG_FPZ1 },
937
  { "sqrts/sum",        FP(0x14,0x54B), CIX, ARG_FPZ1 },
938
  { "sqrtt/sum",        FP(0x14,0x56B), CIX, ARG_FPZ1 },
939
  { "sqrtf/su",                FP(0x14,0x58A), CIX, ARG_FPZ1 },
940
  { "sqrts/su",                FP(0x14,0x58B), CIX, ARG_FPZ1 },
941
  { "sqrtg/su",                FP(0x14,0x5AA), CIX, ARG_FPZ1 },
942
  { "sqrtt/su",                FP(0x14,0x5AB), CIX, ARG_FPZ1 },
943
  { "sqrts/sud",        FP(0x14,0x5CB), CIX, ARG_FPZ1 },
944
  { "sqrtt/sud",        FP(0x14,0x5EB), CIX, ARG_FPZ1 },
945
  { "sqrts/suic",        FP(0x14,0x70B), CIX, ARG_FPZ1 },
946
  { "sqrtt/suic",        FP(0x14,0x72B), CIX, ARG_FPZ1 },
947
  { "sqrts/suim",        FP(0x14,0x74B), CIX, ARG_FPZ1 },
948
  { "sqrtt/suim",        FP(0x14,0x76B), CIX, ARG_FPZ1 },
949
  { "sqrts/sui",        FP(0x14,0x78B), CIX, ARG_FPZ1 },
950
  { "sqrtt/sui",        FP(0x14,0x7AB), CIX, ARG_FPZ1 },
951
  { "sqrts/suid",        FP(0x14,0x7CB), CIX, ARG_FPZ1 },
952
  { "sqrtt/suid",        FP(0x14,0x7EB), CIX, ARG_FPZ1 },
953

    
954
  { "addf/c",                FP(0x15,0x000), BASE, ARG_FP },
955
  { "subf/c",                FP(0x15,0x001), BASE, ARG_FP },
956
  { "mulf/c",                FP(0x15,0x002), BASE, ARG_FP },
957
  { "divf/c",                FP(0x15,0x003), BASE, ARG_FP },
958
  { "cvtdg/c",                FP(0x15,0x01E), BASE, ARG_FPZ1 },
959
  { "addg/c",                FP(0x15,0x020), BASE, ARG_FP },
960
  { "subg/c",                FP(0x15,0x021), BASE, ARG_FP },
961
  { "mulg/c",                FP(0x15,0x022), BASE, ARG_FP },
962
  { "divg/c",                FP(0x15,0x023), BASE, ARG_FP },
963
  { "cvtgf/c",                FP(0x15,0x02C), BASE, ARG_FPZ1 },
964
  { "cvtgd/c",                FP(0x15,0x02D), BASE, ARG_FPZ1 },
965
  { "cvtgq/c",                FP(0x15,0x02F), BASE, ARG_FPZ1 },
966
  { "cvtqf/c",                FP(0x15,0x03C), BASE, ARG_FPZ1 },
967
  { "cvtqg/c",                FP(0x15,0x03E), BASE, ARG_FPZ1 },
968
  { "addf",                FP(0x15,0x080), BASE, ARG_FP },
969
  { "negf",                FP(0x15,0x081), BASE, ARG_FPZ1 },        /* pseudo */
970
  { "subf",                FP(0x15,0x081), BASE, ARG_FP },
971
  { "mulf",                FP(0x15,0x082), BASE, ARG_FP },
972
  { "divf",                FP(0x15,0x083), BASE, ARG_FP },
973
  { "cvtdg",                FP(0x15,0x09E), BASE, ARG_FPZ1 },
974
  { "addg",                FP(0x15,0x0A0), BASE, ARG_FP },
975
  { "negg",                FP(0x15,0x0A1), BASE, ARG_FPZ1 },        /* pseudo */
976
  { "subg",                FP(0x15,0x0A1), BASE, ARG_FP },
977
  { "mulg",                FP(0x15,0x0A2), BASE, ARG_FP },
978
  { "divg",                FP(0x15,0x0A3), BASE, ARG_FP },
979
  { "cmpgeq",                FP(0x15,0x0A5), BASE, ARG_FP },
980
  { "cmpglt",                FP(0x15,0x0A6), BASE, ARG_FP },
981
  { "cmpgle",                FP(0x15,0x0A7), BASE, ARG_FP },
982
  { "cvtgf",                FP(0x15,0x0AC), BASE, ARG_FPZ1 },
983
  { "cvtgd",                FP(0x15,0x0AD), BASE, ARG_FPZ1 },
984
  { "cvtgq",                FP(0x15,0x0AF), BASE, ARG_FPZ1 },
985
  { "cvtqf",                FP(0x15,0x0BC), BASE, ARG_FPZ1 },
986
  { "cvtqg",                FP(0x15,0x0BE), BASE, ARG_FPZ1 },
987
  { "addf/uc",                FP(0x15,0x100), BASE, ARG_FP },
988
  { "subf/uc",                FP(0x15,0x101), BASE, ARG_FP },
989
  { "mulf/uc",                FP(0x15,0x102), BASE, ARG_FP },
990
  { "divf/uc",                FP(0x15,0x103), BASE, ARG_FP },
991
  { "cvtdg/uc",                FP(0x15,0x11E), BASE, ARG_FPZ1 },
992
  { "addg/uc",                FP(0x15,0x120), BASE, ARG_FP },
993
  { "subg/uc",                FP(0x15,0x121), BASE, ARG_FP },
994
  { "mulg/uc",                FP(0x15,0x122), BASE, ARG_FP },
995
  { "divg/uc",                FP(0x15,0x123), BASE, ARG_FP },
996
  { "cvtgf/uc",                FP(0x15,0x12C), BASE, ARG_FPZ1 },
997
  { "cvtgd/uc",                FP(0x15,0x12D), BASE, ARG_FPZ1 },
998
  { "cvtgq/vc",                FP(0x15,0x12F), BASE, ARG_FPZ1 },
999
  { "addf/u",                FP(0x15,0x180), BASE, ARG_FP },
1000
  { "subf/u",                FP(0x15,0x181), BASE, ARG_FP },
1001
  { "mulf/u",                FP(0x15,0x182), BASE, ARG_FP },
1002
  { "divf/u",                FP(0x15,0x183), BASE, ARG_FP },
1003
  { "cvtdg/u",                FP(0x15,0x19E), BASE, ARG_FPZ1 },
1004
  { "addg/u",                FP(0x15,0x1A0), BASE, ARG_FP },
1005
  { "subg/u",                FP(0x15,0x1A1), BASE, ARG_FP },
1006
  { "mulg/u",                FP(0x15,0x1A2), BASE, ARG_FP },
1007
  { "divg/u",                FP(0x15,0x1A3), BASE, ARG_FP },
1008
  { "cvtgf/u",                FP(0x15,0x1AC), BASE, ARG_FPZ1 },
1009
  { "cvtgd/u",                FP(0x15,0x1AD), BASE, ARG_FPZ1 },
1010
  { "cvtgq/v",                FP(0x15,0x1AF), BASE, ARG_FPZ1 },
1011
  { "addf/sc",                FP(0x15,0x400), BASE, ARG_FP },
1012
  { "subf/sc",                FP(0x15,0x401), BASE, ARG_FP },
1013
  { "mulf/sc",                FP(0x15,0x402), BASE, ARG_FP },
1014
  { "divf/sc",                FP(0x15,0x403), BASE, ARG_FP },
1015
  { "cvtdg/sc",                FP(0x15,0x41E), BASE, ARG_FPZ1 },
1016
  { "addg/sc",                FP(0x15,0x420), BASE, ARG_FP },
1017
  { "subg/sc",                FP(0x15,0x421), BASE, ARG_FP },
1018
  { "mulg/sc",                FP(0x15,0x422), BASE, ARG_FP },
1019
  { "divg/sc",                FP(0x15,0x423), BASE, ARG_FP },
1020
  { "cvtgf/sc",                FP(0x15,0x42C), BASE, ARG_FPZ1 },
1021
  { "cvtgd/sc",                FP(0x15,0x42D), BASE, ARG_FPZ1 },
1022
  { "cvtgq/sc",                FP(0x15,0x42F), BASE, ARG_FPZ1 },
1023
  { "addf/s",                FP(0x15,0x480), BASE, ARG_FP },
1024
  { "negf/s",                FP(0x15,0x481), BASE, ARG_FPZ1 },        /* pseudo */
1025
  { "subf/s",                FP(0x15,0x481), BASE, ARG_FP },
1026
  { "mulf/s",                FP(0x15,0x482), BASE, ARG_FP },
1027
  { "divf/s",                FP(0x15,0x483), BASE, ARG_FP },
1028
  { "cvtdg/s",                FP(0x15,0x49E), BASE, ARG_FPZ1 },
1029
  { "addg/s",                FP(0x15,0x4A0), BASE, ARG_FP },
1030
  { "negg/s",                FP(0x15,0x4A1), BASE, ARG_FPZ1 },        /* pseudo */
1031
  { "subg/s",                FP(0x15,0x4A1), BASE, ARG_FP },
1032
  { "mulg/s",                FP(0x15,0x4A2), BASE, ARG_FP },
1033
  { "divg/s",                FP(0x15,0x4A3), BASE, ARG_FP },
1034
  { "cmpgeq/s",                FP(0x15,0x4A5), BASE, ARG_FP },
1035
  { "cmpglt/s",                FP(0x15,0x4A6), BASE, ARG_FP },
1036
  { "cmpgle/s",                FP(0x15,0x4A7), BASE, ARG_FP },
1037
  { "cvtgf/s",                FP(0x15,0x4AC), BASE, ARG_FPZ1 },
1038
  { "cvtgd/s",                FP(0x15,0x4AD), BASE, ARG_FPZ1 },
1039
  { "cvtgq/s",                FP(0x15,0x4AF), BASE, ARG_FPZ1 },
1040
  { "addf/suc",                FP(0x15,0x500), BASE, ARG_FP },
1041
  { "subf/suc",                FP(0x15,0x501), BASE, ARG_FP },
1042
  { "mulf/suc",                FP(0x15,0x502), BASE, ARG_FP },
1043
  { "divf/suc",                FP(0x15,0x503), BASE, ARG_FP },
1044
  { "cvtdg/suc",        FP(0x15,0x51E), BASE, ARG_FPZ1 },
1045
  { "addg/suc",                FP(0x15,0x520), BASE, ARG_FP },
1046
  { "subg/suc",                FP(0x15,0x521), BASE, ARG_FP },
1047
  { "mulg/suc",                FP(0x15,0x522), BASE, ARG_FP },
1048
  { "divg/suc",                FP(0x15,0x523), BASE, ARG_FP },
1049
  { "cvtgf/suc",        FP(0x15,0x52C), BASE, ARG_FPZ1 },
1050
  { "cvtgd/suc",        FP(0x15,0x52D), BASE, ARG_FPZ1 },
1051
  { "cvtgq/svc",        FP(0x15,0x52F), BASE, ARG_FPZ1 },
1052
  { "addf/su",                FP(0x15,0x580), BASE, ARG_FP },
1053
  { "subf/su",                FP(0x15,0x581), BASE, ARG_FP },
1054
  { "mulf/su",                FP(0x15,0x582), BASE, ARG_FP },
1055
  { "divf/su",                FP(0x15,0x583), BASE, ARG_FP },
1056
  { "cvtdg/su",                FP(0x15,0x59E), BASE, ARG_FPZ1 },
1057
  { "addg/su",                FP(0x15,0x5A0), BASE, ARG_FP },
1058
  { "subg/su",                FP(0x15,0x5A1), BASE, ARG_FP },
1059
  { "mulg/su",                FP(0x15,0x5A2), BASE, ARG_FP },
1060
  { "divg/su",                FP(0x15,0x5A3), BASE, ARG_FP },
1061
  { "cvtgf/su",                FP(0x15,0x5AC), BASE, ARG_FPZ1 },
1062
  { "cvtgd/su",                FP(0x15,0x5AD), BASE, ARG_FPZ1 },
1063
  { "cvtgq/sv",                FP(0x15,0x5AF), BASE, ARG_FPZ1 },
1064

    
1065
  { "adds/c",                FP(0x16,0x000), BASE, ARG_FP },
1066
  { "subs/c",                FP(0x16,0x001), BASE, ARG_FP },
1067
  { "muls/c",                FP(0x16,0x002), BASE, ARG_FP },
1068
  { "divs/c",                FP(0x16,0x003), BASE, ARG_FP },
1069
  { "addt/c",                FP(0x16,0x020), BASE, ARG_FP },
1070
  { "subt/c",                FP(0x16,0x021), BASE, ARG_FP },
1071
  { "mult/c",                FP(0x16,0x022), BASE, ARG_FP },
1072
  { "divt/c",                FP(0x16,0x023), BASE, ARG_FP },
1073
  { "cvtts/c",                FP(0x16,0x02C), BASE, ARG_FPZ1 },
1074
  { "cvttq/c",                FP(0x16,0x02F), BASE, ARG_FPZ1 },
1075
  { "cvtqs/c",                FP(0x16,0x03C), BASE, ARG_FPZ1 },
1076
  { "cvtqt/c",                FP(0x16,0x03E), BASE, ARG_FPZ1 },
1077
  { "adds/m",                FP(0x16,0x040), BASE, ARG_FP },
1078
  { "subs/m",                FP(0x16,0x041), BASE, ARG_FP },
1079
  { "muls/m",                FP(0x16,0x042), BASE, ARG_FP },
1080
  { "divs/m",                FP(0x16,0x043), BASE, ARG_FP },
1081
  { "addt/m",                FP(0x16,0x060), BASE, ARG_FP },
1082
  { "subt/m",                FP(0x16,0x061), BASE, ARG_FP },
1083
  { "mult/m",                FP(0x16,0x062), BASE, ARG_FP },
1084
  { "divt/m",                FP(0x16,0x063), BASE, ARG_FP },
1085
  { "cvtts/m",                FP(0x16,0x06C), BASE, ARG_FPZ1 },
1086
  { "cvttq/m",                FP(0x16,0x06F), BASE, ARG_FPZ1 },
1087
  { "cvtqs/m",                FP(0x16,0x07C), BASE, ARG_FPZ1 },
1088
  { "cvtqt/m",                FP(0x16,0x07E), BASE, ARG_FPZ1 },
1089
  { "adds",                FP(0x16,0x080), BASE, ARG_FP },
1090
  { "negs",                 FP(0x16,0x081), BASE, ARG_FPZ1 },        /* pseudo */
1091
  { "subs",                FP(0x16,0x081), BASE, ARG_FP },
1092
  { "muls",                FP(0x16,0x082), BASE, ARG_FP },
1093
  { "divs",                FP(0x16,0x083), BASE, ARG_FP },
1094
  { "addt",                FP(0x16,0x0A0), BASE, ARG_FP },
1095
  { "negt",                 FP(0x16,0x0A1), BASE, ARG_FPZ1 },        /* pseudo */
1096
  { "subt",                FP(0x16,0x0A1), BASE, ARG_FP },
1097
  { "mult",                FP(0x16,0x0A2), BASE, ARG_FP },
1098
  { "divt",                FP(0x16,0x0A3), BASE, ARG_FP },
1099
  { "cmptun",                FP(0x16,0x0A4), BASE, ARG_FP },
1100
  { "cmpteq",                FP(0x16,0x0A5), BASE, ARG_FP },
1101
  { "cmptlt",                FP(0x16,0x0A6), BASE, ARG_FP },
1102
  { "cmptle",                FP(0x16,0x0A7), BASE, ARG_FP },
1103
  { "cvtts",                FP(0x16,0x0AC), BASE, ARG_FPZ1 },
1104
  { "cvttq",                FP(0x16,0x0AF), BASE, ARG_FPZ1 },
1105
  { "cvtqs",                FP(0x16,0x0BC), BASE, ARG_FPZ1 },
1106
  { "cvtqt",                FP(0x16,0x0BE), BASE, ARG_FPZ1 },
1107
  { "adds/d",                FP(0x16,0x0C0), BASE, ARG_FP },
1108
  { "subs/d",                FP(0x16,0x0C1), BASE, ARG_FP },
1109
  { "muls/d",                FP(0x16,0x0C2), BASE, ARG_FP },
1110
  { "divs/d",                FP(0x16,0x0C3), BASE, ARG_FP },
1111
  { "addt/d",                FP(0x16,0x0E0), BASE, ARG_FP },
1112
  { "subt/d",                FP(0x16,0x0E1), BASE, ARG_FP },
1113
  { "mult/d",                FP(0x16,0x0E2), BASE, ARG_FP },
1114
  { "divt/d",                FP(0x16,0x0E3), BASE, ARG_FP },
1115
  { "cvtts/d",                FP(0x16,0x0EC), BASE, ARG_FPZ1 },
1116
  { "cvttq/d",                FP(0x16,0x0EF), BASE, ARG_FPZ1 },
1117
  { "cvtqs/d",                FP(0x16,0x0FC), BASE, ARG_FPZ1 },
1118
  { "cvtqt/d",                FP(0x16,0x0FE), BASE, ARG_FPZ1 },
1119
  { "adds/uc",                FP(0x16,0x100), BASE, ARG_FP },
1120
  { "subs/uc",                FP(0x16,0x101), BASE, ARG_FP },
1121
  { "muls/uc",                FP(0x16,0x102), BASE, ARG_FP },
1122
  { "divs/uc",                FP(0x16,0x103), BASE, ARG_FP },
1123
  { "addt/uc",                FP(0x16,0x120), BASE, ARG_FP },
1124
  { "subt/uc",                FP(0x16,0x121), BASE, ARG_FP },
1125
  { "mult/uc",                FP(0x16,0x122), BASE, ARG_FP },
1126
  { "divt/uc",                FP(0x16,0x123), BASE, ARG_FP },
1127
  { "cvtts/uc",                FP(0x16,0x12C), BASE, ARG_FPZ1 },
1128
  { "cvttq/vc",                FP(0x16,0x12F), BASE, ARG_FPZ1 },
1129
  { "adds/um",                FP(0x16,0x140), BASE, ARG_FP },
1130
  { "subs/um",                FP(0x16,0x141), BASE, ARG_FP },
1131
  { "muls/um",                FP(0x16,0x142), BASE, ARG_FP },
1132
  { "divs/um",                FP(0x16,0x143), BASE, ARG_FP },
1133
  { "addt/um",                FP(0x16,0x160), BASE, ARG_FP },
1134
  { "subt/um",                FP(0x16,0x161), BASE, ARG_FP },
1135
  { "mult/um",                FP(0x16,0x162), BASE, ARG_FP },
1136
  { "divt/um",                FP(0x16,0x163), BASE, ARG_FP },
1137
  { "cvtts/um",                FP(0x16,0x16C), BASE, ARG_FPZ1 },
1138
  { "cvttq/vm",                FP(0x16,0x16F), BASE, ARG_FPZ1 },
1139
  { "adds/u",                FP(0x16,0x180), BASE, ARG_FP },
1140
  { "subs/u",                FP(0x16,0x181), BASE, ARG_FP },
1141
  { "muls/u",                FP(0x16,0x182), BASE, ARG_FP },
1142
  { "divs/u",                FP(0x16,0x183), BASE, ARG_FP },
1143
  { "addt/u",                FP(0x16,0x1A0), BASE, ARG_FP },
1144
  { "subt/u",                FP(0x16,0x1A1), BASE, ARG_FP },
1145
  { "mult/u",                FP(0x16,0x1A2), BASE, ARG_FP },
1146
  { "divt/u",                FP(0x16,0x1A3), BASE, ARG_FP },
1147
  { "cvtts/u",                FP(0x16,0x1AC), BASE, ARG_FPZ1 },
1148
  { "cvttq/v",                FP(0x16,0x1AF), BASE, ARG_FPZ1 },
1149
  { "adds/ud",                FP(0x16,0x1C0), BASE, ARG_FP },
1150
  { "subs/ud",                FP(0x16,0x1C1), BASE, ARG_FP },
1151
  { "muls/ud",                FP(0x16,0x1C2), BASE, ARG_FP },
1152
  { "divs/ud",                FP(0x16,0x1C3), BASE, ARG_FP },
1153
  { "addt/ud",                FP(0x16,0x1E0), BASE, ARG_FP },
1154
  { "subt/ud",                FP(0x16,0x1E1), BASE, ARG_FP },
1155
  { "mult/ud",                FP(0x16,0x1E2), BASE, ARG_FP },
1156
  { "divt/ud",                FP(0x16,0x1E3), BASE, ARG_FP },
1157
  { "cvtts/ud",                FP(0x16,0x1EC), BASE, ARG_FPZ1 },
1158
  { "cvttq/vd",                FP(0x16,0x1EF), BASE, ARG_FPZ1 },
1159
  { "cvtst",                FP(0x16,0x2AC), BASE, ARG_FPZ1 },
1160
  { "adds/suc",                FP(0x16,0x500), BASE, ARG_FP },
1161
  { "subs/suc",                FP(0x16,0x501), BASE, ARG_FP },
1162
  { "muls/suc",                FP(0x16,0x502), BASE, ARG_FP },
1163
  { "divs/suc",                FP(0x16,0x503), BASE, ARG_FP },
1164
  { "addt/suc",                FP(0x16,0x520), BASE, ARG_FP },
1165
  { "subt/suc",                FP(0x16,0x521), BASE, ARG_FP },
1166
  { "mult/suc",                FP(0x16,0x522), BASE, ARG_FP },
1167
  { "divt/suc",                FP(0x16,0x523), BASE, ARG_FP },
1168
  { "cvtts/suc",        FP(0x16,0x52C), BASE, ARG_FPZ1 },
1169
  { "cvttq/svc",        FP(0x16,0x52F), BASE, ARG_FPZ1 },
1170
  { "adds/sum",                FP(0x16,0x540), BASE, ARG_FP },
1171
  { "subs/sum",                FP(0x16,0x541), BASE, ARG_FP },
1172
  { "muls/sum",                FP(0x16,0x542), BASE, ARG_FP },
1173
  { "divs/sum",                FP(0x16,0x543), BASE, ARG_FP },
1174
  { "addt/sum",                FP(0x16,0x560), BASE, ARG_FP },
1175
  { "subt/sum",                FP(0x16,0x561), BASE, ARG_FP },
1176
  { "mult/sum",                FP(0x16,0x562), BASE, ARG_FP },
1177
  { "divt/sum",                FP(0x16,0x563), BASE, ARG_FP },
1178
  { "cvtts/sum",        FP(0x16,0x56C), BASE, ARG_FPZ1 },
1179
  { "cvttq/svm",        FP(0x16,0x56F), BASE, ARG_FPZ1 },
1180
  { "adds/su",                FP(0x16,0x580), BASE, ARG_FP },
1181
  { "negs/su",                FP(0x16,0x581), BASE, ARG_FPZ1 },        /* pseudo */
1182
  { "subs/su",                FP(0x16,0x581), BASE, ARG_FP },
1183
  { "muls/su",                FP(0x16,0x582), BASE, ARG_FP },
1184
  { "divs/su",                FP(0x16,0x583), BASE, ARG_FP },
1185
  { "addt/su",                FP(0x16,0x5A0), BASE, ARG_FP },
1186
  { "negt/su",                FP(0x16,0x5A1), BASE, ARG_FPZ1 },        /* pseudo */
1187
  { "subt/su",                FP(0x16,0x5A1), BASE, ARG_FP },
1188
  { "mult/su",                FP(0x16,0x5A2), BASE, ARG_FP },
1189
  { "divt/su",                FP(0x16,0x5A3), BASE, ARG_FP },
1190
  { "cmptun/su",        FP(0x16,0x5A4), BASE, ARG_FP },
1191
  { "cmpteq/su",        FP(0x16,0x5A5), BASE, ARG_FP },
1192
  { "cmptlt/su",        FP(0x16,0x5A6), BASE, ARG_FP },
1193
  { "cmptle/su",        FP(0x16,0x5A7), BASE, ARG_FP },
1194
  { "cvtts/su",                FP(0x16,0x5AC), BASE, ARG_FPZ1 },
1195
  { "cvttq/sv",                FP(0x16,0x5AF), BASE, ARG_FPZ1 },
1196
  { "adds/sud",                FP(0x16,0x5C0), BASE, ARG_FP },
1197
  { "subs/sud",                FP(0x16,0x5C1), BASE, ARG_FP },
1198
  { "muls/sud",                FP(0x16,0x5C2), BASE, ARG_FP },
1199
  { "divs/sud",                FP(0x16,0x5C3), BASE, ARG_FP },
1200
  { "addt/sud",                FP(0x16,0x5E0), BASE, ARG_FP },
1201
  { "subt/sud",                FP(0x16,0x5E1), BASE, ARG_FP },
1202
  { "mult/sud",                FP(0x16,0x5E2), BASE, ARG_FP },
1203
  { "divt/sud",                FP(0x16,0x5E3), BASE, ARG_FP },
1204
  { "cvtts/sud",        FP(0x16,0x5EC), BASE, ARG_FPZ1 },
1205
  { "cvttq/svd",        FP(0x16,0x5EF), BASE, ARG_FPZ1 },
1206
  { "cvtst/s",                FP(0x16,0x6AC), BASE, ARG_FPZ1 },
1207
  { "adds/suic",        FP(0x16,0x700), BASE, ARG_FP },
1208
  { "subs/suic",        FP(0x16,0x701), BASE, ARG_FP },
1209
  { "muls/suic",        FP(0x16,0x702), BASE, ARG_FP },
1210
  { "divs/suic",        FP(0x16,0x703), BASE, ARG_FP },
1211
  { "addt/suic",        FP(0x16,0x720), BASE, ARG_FP },
1212
  { "subt/suic",        FP(0x16,0x721), BASE, ARG_FP },
1213
  { "mult/suic",        FP(0x16,0x722), BASE, ARG_FP },
1214
  { "divt/suic",        FP(0x16,0x723), BASE, ARG_FP },
1215
  { "cvtts/suic",        FP(0x16,0x72C), BASE, ARG_FPZ1 },
1216
  { "cvttq/svic",        FP(0x16,0x72F), BASE, ARG_FPZ1 },
1217
  { "cvtqs/suic",        FP(0x16,0x73C), BASE, ARG_FPZ1 },
1218
  { "cvtqt/suic",        FP(0x16,0x73E), BASE, ARG_FPZ1 },
1219
  { "adds/suim",        FP(0x16,0x740), BASE, ARG_FP },
1220
  { "subs/suim",        FP(0x16,0x741), BASE, ARG_FP },
1221
  { "muls/suim",        FP(0x16,0x742), BASE, ARG_FP },
1222
  { "divs/suim",        FP(0x16,0x743), BASE, ARG_FP },
1223
  { "addt/suim",        FP(0x16,0x760), BASE, ARG_FP },
1224
  { "subt/suim",        FP(0x16,0x761), BASE, ARG_FP },
1225
  { "mult/suim",        FP(0x16,0x762), BASE, ARG_FP },
1226
  { "divt/suim",        FP(0x16,0x763), BASE, ARG_FP },
1227
  { "cvtts/suim",        FP(0x16,0x76C), BASE, ARG_FPZ1 },
1228
  { "cvttq/svim",        FP(0x16,0x76F), BASE, ARG_FPZ1 },
1229
  { "cvtqs/suim",        FP(0x16,0x77C), BASE, ARG_FPZ1 },
1230
  { "cvtqt/suim",        FP(0x16,0x77E), BASE, ARG_FPZ1 },
1231
  { "adds/sui",                FP(0x16,0x780), BASE, ARG_FP },
1232
  { "negs/sui",         FP(0x16,0x781), BASE, ARG_FPZ1 },        /* pseudo */
1233
  { "subs/sui",                FP(0x16,0x781), BASE, ARG_FP },
1234
  { "muls/sui",                FP(0x16,0x782), BASE, ARG_FP },
1235
  { "divs/sui",                FP(0x16,0x783), BASE, ARG_FP },
1236
  { "addt/sui",                FP(0x16,0x7A0), BASE, ARG_FP },
1237
  { "negt/sui",         FP(0x16,0x7A1), BASE, ARG_FPZ1 },        /* pseudo */
1238
  { "subt/sui",                FP(0x16,0x7A1), BASE, ARG_FP },
1239
  { "mult/sui",                FP(0x16,0x7A2), BASE, ARG_FP },
1240
  { "divt/sui",                FP(0x16,0x7A3), BASE, ARG_FP },
1241
  { "cvtts/sui",        FP(0x16,0x7AC), BASE, ARG_FPZ1 },
1242
  { "cvttq/svi",        FP(0x16,0x7AF), BASE, ARG_FPZ1 },
1243
  { "cvtqs/sui",        FP(0x16,0x7BC), BASE, ARG_FPZ1 },
1244
  { "cvtqt/sui",        FP(0x16,0x7BE), BASE, ARG_FPZ1 },
1245
  { "adds/suid",        FP(0x16,0x7C0), BASE, ARG_FP },
1246
  { "subs/suid",        FP(0x16,0x7C1), BASE, ARG_FP },
1247
  { "muls/suid",        FP(0x16,0x7C2), BASE, ARG_FP },
1248
  { "divs/suid",        FP(0x16,0x7C3), BASE, ARG_FP },
1249
  { "addt/suid",        FP(0x16,0x7E0), BASE, ARG_FP },
1250
  { "subt/suid",        FP(0x16,0x7E1), BASE, ARG_FP },
1251
  { "mult/suid",        FP(0x16,0x7E2), BASE, ARG_FP },
1252
  { "divt/suid",        FP(0x16,0x7E3), BASE, ARG_FP },
1253
  { "cvtts/suid",        FP(0x16,0x7EC), BASE, ARG_FPZ1 },
1254
  { "cvttq/svid",        FP(0x16,0x7EF), BASE, ARG_FPZ1 },
1255
  { "cvtqs/suid",        FP(0x16,0x7FC), BASE, ARG_FPZ1 },
1256
  { "cvtqt/suid",        FP(0x16,0x7FE), BASE, ARG_FPZ1 },
1257

    
1258
  { "cvtlq",                FP(0x17,0x010), BASE, ARG_FPZ1 },
1259
  { "fnop",                FP(0x17,0x020), BASE, { ZA, ZB, ZC } },        /* pseudo */
1260
  { "fclr",                FP(0x17,0x020), BASE, { ZA, ZB, FC } },        /* pseudo */
1261
  { "fabs",                FP(0x17,0x020), BASE, ARG_FPZ1 },        /* pseudo */
1262
  { "fmov",                FP(0x17,0x020), BASE, { FA, RBA, FC } }, /* pseudo */
1263
  { "cpys",                FP(0x17,0x020), BASE, ARG_FP },
1264
  { "fneg",                FP(0x17,0x021), BASE, { FA, RBA, FC } }, /* pseudo */
1265
  { "cpysn",                FP(0x17,0x021), BASE, ARG_FP },
1266
  { "cpyse",                FP(0x17,0x022), BASE, ARG_FP },
1267
  { "mt_fpcr",                FP(0x17,0x024), BASE, { FA, RBA, RCA } },
1268
  { "mf_fpcr",                FP(0x17,0x025), BASE, { FA, RBA, RCA } },
1269
  { "fcmoveq",                FP(0x17,0x02A), BASE, ARG_FP },
1270
  { "fcmovne",                FP(0x17,0x02B), BASE, ARG_FP },
1271
  { "fcmovlt",                FP(0x17,0x02C), BASE, ARG_FP },
1272
  { "fcmovge",                FP(0x17,0x02D), BASE, ARG_FP },
1273
  { "fcmovle",                FP(0x17,0x02E), BASE, ARG_FP },
1274
  { "fcmovgt",                FP(0x17,0x02F), BASE, ARG_FP },
1275
  { "cvtql",                FP(0x17,0x030), BASE, ARG_FPZ1 },
1276
  { "cvtql/v",                FP(0x17,0x130), BASE, ARG_FPZ1 },
1277
  { "cvtql/sv",                FP(0x17,0x530), BASE, ARG_FPZ1 },
1278

    
1279
  { "trapb",                MFC(0x18,0x0000), BASE, ARG_NONE },
1280
  { "draint",                MFC(0x18,0x0000), BASE, ARG_NONE },        /* alias */
1281
  { "excb",                MFC(0x18,0x0400), BASE, ARG_NONE },
1282
  { "mb",                MFC(0x18,0x4000), BASE, ARG_NONE },
1283
  { "wmb",                MFC(0x18,0x4400), BASE, ARG_NONE },
1284
  { "fetch",                MFC(0x18,0x8000), BASE, { ZA, PRB } },
1285
  { "fetch_m",                MFC(0x18,0xA000), BASE, { ZA, PRB } },
1286
  { "rpcc",                MFC(0x18,0xC000), BASE, { RA } },
1287
  { "rc",                MFC(0x18,0xE000), BASE, { RA } },
1288
  { "ecb",                MFC(0x18,0xE800), BASE, { ZA, PRB } },        /* ev56 una */
1289
  { "rs",                MFC(0x18,0xF000), BASE, { RA } },
1290
  { "wh64",                MFC(0x18,0xF800), BASE, { ZA, PRB } },        /* ev56 una */
1291
  { "wh64en",                MFC(0x18,0xFC00), BASE, { ZA, PRB } },        /* ev7 una */
1292

    
1293
  { "hw_mfpr",                OPR(0x19,0x00), EV4, { RA, RBA, EV4EXTHWINDEX } },
1294
  { "hw_mfpr",                OP(0x19), OP_MASK, EV5, { RA, RBA, EV5HWINDEX } },
1295
  { "hw_mfpr",                OP(0x19), OP_MASK, EV6, { RA, ZB, EV6HWINDEX } },
1296
  { "hw_mfpr/i",        OPR(0x19,0x01), EV4, ARG_EV4HWMPR },
1297
  { "hw_mfpr/a",        OPR(0x19,0x02), EV4, ARG_EV4HWMPR },
1298
  { "hw_mfpr/ai",        OPR(0x19,0x03), EV4, ARG_EV4HWMPR },
1299
  { "hw_mfpr/p",        OPR(0x19,0x04), EV4, ARG_EV4HWMPR },
1300
  { "hw_mfpr/pi",        OPR(0x19,0x05), EV4, ARG_EV4HWMPR },
1301
  { "hw_mfpr/pa",        OPR(0x19,0x06), EV4, ARG_EV4HWMPR },
1302
  { "hw_mfpr/pai",        OPR(0x19,0x07), EV4, ARG_EV4HWMPR },
1303
  { "pal19",                PCD(0x19), BASE, ARG_PCD },
1304

    
1305
  { "jmp",                MBR_(0x1A,0), MBR_MASK | 0x3FFF,        /* pseudo */
1306
                        BASE, { ZA, CPRB } },
1307
  { "jmp",                MBR(0x1A,0), BASE, { RA, CPRB, JMPHINT } },
1308
  { "jsr",                MBR(0x1A,1), BASE, { RA, CPRB, JMPHINT } },
1309
  { "ret",                MBR_(0x1A,2) | (31 << 21) | (26 << 16) | 1,/* pseudo */
1310
                        0xFFFFFFFF, BASE, { 0 } },
1311
  { "ret",                MBR(0x1A,2), BASE, { RA, CPRB, RETHINT } },
1312
  { "jcr",                MBR(0x1A,3), BASE, { RA, CPRB, RETHINT } }, /* alias */
1313
  { "jsr_coroutine",        MBR(0x1A,3), BASE, { RA, CPRB, RETHINT } },
1314

    
1315
  { "hw_ldl",                EV4HWMEM(0x1B,0x0), EV4, ARG_EV4HWMEM },
1316
  { "hw_ldl",                EV5HWMEM(0x1B,0x00), EV5, ARG_EV5HWMEM },
1317
  { "hw_ldl",                EV6HWMEM(0x1B,0x8), EV6, ARG_EV6HWMEM },
1318
  { "hw_ldl/a",                EV4HWMEM(0x1B,0x4), EV4, ARG_EV4HWMEM },
1319
  { "hw_ldl/a",                EV5HWMEM(0x1B,0x10), EV5, ARG_EV5HWMEM },
1320
  { "hw_ldl/a",                EV6HWMEM(0x1B,0xC), EV6, ARG_EV6HWMEM },
1321
  { "hw_ldl/al",        EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1322
  { "hw_ldl/ar",        EV4HWMEM(0x1B,0x6), EV4, ARG_EV4HWMEM },
1323
  { "hw_ldl/av",        EV5HWMEM(0x1B,0x12), EV5, ARG_EV5HWMEM },
1324
  { "hw_ldl/avl",        EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1325
  { "hw_ldl/aw",        EV5HWMEM(0x1B,0x18), EV5, ARG_EV5HWMEM },
1326
  { "hw_ldl/awl",        EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1327
  { "hw_ldl/awv",        EV5HWMEM(0x1B,0x1a), EV5, ARG_EV5HWMEM },
1328
  { "hw_ldl/awvl",        EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1329
  { "hw_ldl/l",                EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1330
  { "hw_ldl/p",                EV4HWMEM(0x1B,0x8), EV4, ARG_EV4HWMEM },
1331
  { "hw_ldl/p",                EV5HWMEM(0x1B,0x20), EV5, ARG_EV5HWMEM },
1332
  { "hw_ldl/p",                EV6HWMEM(0x1B,0x0), EV6, ARG_EV6HWMEM },
1333
  { "hw_ldl/pa",        EV4HWMEM(0x1B,0xC), EV4, ARG_EV4HWMEM },
1334
  { "hw_ldl/pa",        EV5HWMEM(0x1B,0x30), EV5, ARG_EV5HWMEM },
1335
  { "hw_ldl/pal",        EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1336
  { "hw_ldl/par",        EV4HWMEM(0x1B,0xE), EV4, ARG_EV4HWMEM },
1337
  { "hw_ldl/pav",        EV5HWMEM(0x1B,0x32), EV5, ARG_EV5HWMEM },
1338
  { "hw_ldl/pavl",        EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1339
  { "hw_ldl/paw",        EV5HWMEM(0x1B,0x38), EV5, ARG_EV5HWMEM },
1340
  { "hw_ldl/pawl",        EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1341
  { "hw_ldl/pawv",        EV5HWMEM(0x1B,0x3a), EV5, ARG_EV5HWMEM },
1342
  { "hw_ldl/pawvl",        EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1343
  { "hw_ldl/pl",        EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1344
  { "hw_ldl/pr",        EV4HWMEM(0x1B,0xA), EV4, ARG_EV4HWMEM },
1345
  { "hw_ldl/pv",        EV5HWMEM(0x1B,0x22), EV5, ARG_EV5HWMEM },
1346
  { "hw_ldl/pvl",        EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1347
  { "hw_ldl/pw",        EV5HWMEM(0x1B,0x28), EV5, ARG_EV5HWMEM },
1348
  { "hw_ldl/pwl",        EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1349
  { "hw_ldl/pwv",        EV5HWMEM(0x1B,0x2a), EV5, ARG_EV5HWMEM },
1350
  { "hw_ldl/pwvl",        EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1351
  { "hw_ldl/r",                EV4HWMEM(0x1B,0x2), EV4, ARG_EV4HWMEM },
1352
  { "hw_ldl/v",                EV5HWMEM(0x1B,0x02), EV5, ARG_EV5HWMEM },
1353
  { "hw_ldl/v",                EV6HWMEM(0x1B,0x4), EV6, ARG_EV6HWMEM },
1354
  { "hw_ldl/vl",        EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1355
  { "hw_ldl/w",                EV5HWMEM(0x1B,0x08), EV5, ARG_EV5HWMEM },
1356
  { "hw_ldl/w",                EV6HWMEM(0x1B,0xA), EV6, ARG_EV6HWMEM },
1357
  { "hw_ldl/wa",        EV6HWMEM(0x1B,0xE), EV6, ARG_EV6HWMEM },
1358
  { "hw_ldl/wl",        EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1359
  { "hw_ldl/wv",        EV5HWMEM(0x1B,0x0a), EV5, ARG_EV5HWMEM },
1360
  { "hw_ldl/wvl",        EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1361
  { "hw_ldl_l",                EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1362
  { "hw_ldl_l/a",        EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1363
  { "hw_ldl_l/av",        EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1364
  { "hw_ldl_l/aw",        EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1365
  { "hw_ldl_l/awv",        EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1366
  { "hw_ldl_l/p",        EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1367
  { "hw_ldl_l/p",        EV6HWMEM(0x1B,0x2), EV6, ARG_EV6HWMEM },
1368
  { "hw_ldl_l/pa",        EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1369
  { "hw_ldl_l/pav",        EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1370
  { "hw_ldl_l/paw",        EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1371
  { "hw_ldl_l/pawv",        EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1372
  { "hw_ldl_l/pv",        EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1373
  { "hw_ldl_l/pw",        EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1374
  { "hw_ldl_l/pwv",        EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1375
  { "hw_ldl_l/v",        EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1376
  { "hw_ldl_l/w",        EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1377
  { "hw_ldl_l/wv",        EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1378
  { "hw_ldq",                EV4HWMEM(0x1B,0x1), EV4, ARG_EV4HWMEM },
1379
  { "hw_ldq",                EV5HWMEM(0x1B,0x04), EV5, ARG_EV5HWMEM },
1380
  { "hw_ldq",                EV6HWMEM(0x1B,0x9), EV6, ARG_EV6HWMEM },
1381
  { "hw_ldq/a",                EV4HWMEM(0x1B,0x5), EV4, ARG_EV4HWMEM },
1382
  { "hw_ldq/a",                EV5HWMEM(0x1B,0x14), EV5, ARG_EV5HWMEM },
1383
  { "hw_ldq/a",                EV6HWMEM(0x1B,0xD), EV6, ARG_EV6HWMEM },
1384
  { "hw_ldq/al",        EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1385
  { "hw_ldq/ar",        EV4HWMEM(0x1B,0x7), EV4, ARG_EV4HWMEM },
1386
  { "hw_ldq/av",        EV5HWMEM(0x1B,0x16), EV5, ARG_EV5HWMEM },
1387
  { "hw_ldq/avl",        EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1388
  { "hw_ldq/aw",        EV5HWMEM(0x1B,0x1c), EV5, ARG_EV5HWMEM },
1389
  { "hw_ldq/awl",        EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1390
  { "hw_ldq/awv",        EV5HWMEM(0x1B,0x1e), EV5, ARG_EV5HWMEM },
1391
  { "hw_ldq/awvl",        EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1392
  { "hw_ldq/l",                EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1393
  { "hw_ldq/p",                EV4HWMEM(0x1B,0x9), EV4, ARG_EV4HWMEM },
1394
  { "hw_ldq/p",                EV5HWMEM(0x1B,0x24), EV5, ARG_EV5HWMEM },
1395
  { "hw_ldq/p",                EV6HWMEM(0x1B,0x1), EV6, ARG_EV6HWMEM },
1396
  { "hw_ldq/pa",        EV4HWMEM(0x1B,0xD), EV4, ARG_EV4HWMEM },
1397
  { "hw_ldq/pa",        EV5HWMEM(0x1B,0x34), EV5, ARG_EV5HWMEM },
1398
  { "hw_ldq/pal",        EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1399
  { "hw_ldq/par",        EV4HWMEM(0x1B,0xF), EV4, ARG_EV4HWMEM },
1400
  { "hw_ldq/pav",        EV5HWMEM(0x1B,0x36), EV5, ARG_EV5HWMEM },
1401
  { "hw_ldq/pavl",        EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1402
  { "hw_ldq/paw",        EV5HWMEM(0x1B,0x3c), EV5, ARG_EV5HWMEM },
1403
  { "hw_ldq/pawl",        EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1404
  { "hw_ldq/pawv",        EV5HWMEM(0x1B,0x3e), EV5, ARG_EV5HWMEM },
1405
  { "hw_ldq/pawvl",        EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1406
  { "hw_ldq/pl",        EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1407
  { "hw_ldq/pr",        EV4HWMEM(0x1B,0xB), EV4, ARG_EV4HWMEM },
1408
  { "hw_ldq/pv",        EV5HWMEM(0x1B,0x26), EV5, ARG_EV5HWMEM },
1409
  { "hw_ldq/pvl",        EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1410
  { "hw_ldq/pw",        EV5HWMEM(0x1B,0x2c), EV5, ARG_EV5HWMEM },
1411
  { "hw_ldq/pwl",        EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1412
  { "hw_ldq/pwv",        EV5HWMEM(0x1B,0x2e), EV5, ARG_EV5HWMEM },
1413
  { "hw_ldq/pwvl",        EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1414
  { "hw_ldq/r",                EV4HWMEM(0x1B,0x3), EV4, ARG_EV4HWMEM },
1415
  { "hw_ldq/v",                EV5HWMEM(0x1B,0x06), EV5, ARG_EV5HWMEM },
1416
  { "hw_ldq/v",                EV6HWMEM(0x1B,0x5), EV6, ARG_EV6HWMEM },
1417
  { "hw_ldq/vl",        EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1418
  { "hw_ldq/w",                EV5HWMEM(0x1B,0x0c), EV5, ARG_EV5HWMEM },
1419
  { "hw_ldq/w",                EV6HWMEM(0x1B,0xB), EV6, ARG_EV6HWMEM },
1420
  { "hw_ldq/wa",        EV6HWMEM(0x1B,0xF), EV6, ARG_EV6HWMEM },
1421
  { "hw_ldq/wl",        EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1422
  { "hw_ldq/wv",        EV5HWMEM(0x1B,0x0e), EV5, ARG_EV5HWMEM },
1423
  { "hw_ldq/wvl",        EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1424
  { "hw_ldq_l",                EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1425
  { "hw_ldq_l/a",        EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1426
  { "hw_ldq_l/av",        EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1427
  { "hw_ldq_l/aw",        EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1428
  { "hw_ldq_l/awv",        EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1429
  { "hw_ldq_l/p",        EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1430
  { "hw_ldq_l/p",        EV6HWMEM(0x1B,0x3), EV6, ARG_EV6HWMEM },
1431
  { "hw_ldq_l/pa",        EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1432
  { "hw_ldq_l/pav",        EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1433
  { "hw_ldq_l/paw",        EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1434
  { "hw_ldq_l/pawv",        EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1435
  { "hw_ldq_l/pv",        EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1436
  { "hw_ldq_l/pw",        EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1437
  { "hw_ldq_l/pwv",        EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1438
  { "hw_ldq_l/v",        EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1439
  { "hw_ldq_l/w",        EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1440
  { "hw_ldq_l/wv",        EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1441
  { "hw_ld",                EV4HWMEM(0x1B,0x0), EV4, ARG_EV4HWMEM },
1442
  { "hw_ld",                EV5HWMEM(0x1B,0x00), EV5, ARG_EV5HWMEM },
1443
  { "hw_ld/a",                EV4HWMEM(0x1B,0x4), EV4, ARG_EV4HWMEM },
1444
  { "hw_ld/a",                EV5HWMEM(0x1B,0x10), EV5, ARG_EV5HWMEM },
1445
  { "hw_ld/al",                EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1446
  { "hw_ld/aq",                EV4HWMEM(0x1B,0x5), EV4, ARG_EV4HWMEM },
1447
  { "hw_ld/aq",                EV5HWMEM(0x1B,0x14), EV5, ARG_EV5HWMEM },
1448
  { "hw_ld/aql",        EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1449
  { "hw_ld/aqv",        EV5HWMEM(0x1B,0x16), EV5, ARG_EV5HWMEM },
1450
  { "hw_ld/aqvl",        EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1451
  { "hw_ld/ar",                EV4HWMEM(0x1B,0x6), EV4, ARG_EV4HWMEM },
1452
  { "hw_ld/arq",        EV4HWMEM(0x1B,0x7), EV4, ARG_EV4HWMEM },
1453
  { "hw_ld/av",                EV5HWMEM(0x1B,0x12), EV5, ARG_EV5HWMEM },
1454
  { "hw_ld/avl",        EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1455
  { "hw_ld/aw",                EV5HWMEM(0x1B,0x18), EV5, ARG_EV5HWMEM },
1456
  { "hw_ld/awl",        EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1457
  { "hw_ld/awq",        EV5HWMEM(0x1B,0x1c), EV5, ARG_EV5HWMEM },
1458
  { "hw_ld/awql",        EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1459
  { "hw_ld/awqv",        EV5HWMEM(0x1B,0x1e), EV5, ARG_EV5HWMEM },
1460
  { "hw_ld/awqvl",        EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1461
  { "hw_ld/awv",        EV5HWMEM(0x1B,0x1a), EV5, ARG_EV5HWMEM },
1462
  { "hw_ld/awvl",        EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1463
  { "hw_ld/l",                EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1464
  { "hw_ld/p",                EV4HWMEM(0x1B,0x8), EV4, ARG_EV4HWMEM },
1465
  { "hw_ld/p",                EV5HWMEM(0x1B,0x20), EV5, ARG_EV5HWMEM },
1466
  { "hw_ld/pa",                EV4HWMEM(0x1B,0xC), EV4, ARG_EV4HWMEM },
1467
  { "hw_ld/pa",                EV5HWMEM(0x1B,0x30), EV5, ARG_EV5HWMEM },
1468
  { "hw_ld/pal",        EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1469
  { "hw_ld/paq",        EV4HWMEM(0x1B,0xD), EV4, ARG_EV4HWMEM },
1470
  { "hw_ld/paq",        EV5HWMEM(0x1B,0x34), EV5, ARG_EV5HWMEM },
1471
  { "hw_ld/paql",        EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1472
  { "hw_ld/paqv",        EV5HWMEM(0x1B,0x36), EV5, ARG_EV5HWMEM },
1473
  { "hw_ld/paqvl",        EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1474
  { "hw_ld/par",        EV4HWMEM(0x1B,0xE), EV4, ARG_EV4HWMEM },
1475
  { "hw_ld/parq",        EV4HWMEM(0x1B,0xF), EV4, ARG_EV4HWMEM },
1476
  { "hw_ld/pav",        EV5HWMEM(0x1B,0x32), EV5, ARG_EV5HWMEM },
1477
  { "hw_ld/pavl",        EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1478
  { "hw_ld/paw",        EV5HWMEM(0x1B,0x38), EV5, ARG_EV5HWMEM },
1479
  { "hw_ld/pawl",        EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1480
  { "hw_ld/pawq",        EV5HWMEM(0x1B,0x3c), EV5, ARG_EV5HWMEM },
1481
  { "hw_ld/pawql",        EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1482
  { "hw_ld/pawqv",        EV5HWMEM(0x1B,0x3e), EV5, ARG_EV5HWMEM },
1483
  { "hw_ld/pawqvl",        EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1484
  { "hw_ld/pawv",        EV5HWMEM(0x1B,0x3a), EV5, ARG_EV5HWMEM },
1485
  { "hw_ld/pawvl",        EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1486
  { "hw_ld/pl",                EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1487
  { "hw_ld/pq",                EV4HWMEM(0x1B,0x9), EV4, ARG_EV4HWMEM },
1488
  { "hw_ld/pq",                EV5HWMEM(0x1B,0x24), EV5, ARG_EV5HWMEM },
1489
  { "hw_ld/pql",        EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1490
  { "hw_ld/pqv",        EV5HWMEM(0x1B,0x26), EV5, ARG_EV5HWMEM },
1491
  { "hw_ld/pqvl",        EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1492
  { "hw_ld/pr",                EV4HWMEM(0x1B,0xA), EV4, ARG_EV4HWMEM },
1493
  { "hw_ld/prq",        EV4HWMEM(0x1B,0xB), EV4, ARG_EV4HWMEM },
1494
  { "hw_ld/pv",                EV5HWMEM(0x1B,0x22), EV5, ARG_EV5HWMEM },
1495
  { "hw_ld/pvl",        EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1496
  { "hw_ld/pw",                EV5HWMEM(0x1B,0x28), EV5, ARG_EV5HWMEM },
1497
  { "hw_ld/pwl",        EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1498
  { "hw_ld/pwq",        EV5HWMEM(0x1B,0x2c), EV5, ARG_EV5HWMEM },
1499
  { "hw_ld/pwql",        EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1500
  { "hw_ld/pwqv",        EV5HWMEM(0x1B,0x2e), EV5, ARG_EV5HWMEM },
1501
  { "hw_ld/pwqvl",        EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1502
  { "hw_ld/pwv",        EV5HWMEM(0x1B,0x2a), EV5, ARG_EV5HWMEM },
1503
  { "hw_ld/pwvl",        EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1504
  { "hw_ld/q",                EV4HWMEM(0x1B,0x1), EV4, ARG_EV4HWMEM },
1505
  { "hw_ld/q",                EV5HWMEM(0x1B,0x04), EV5, ARG_EV5HWMEM },
1506
  { "hw_ld/ql",                EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1507
  { "hw_ld/qv",                EV5HWMEM(0x1B,0x06), EV5, ARG_EV5HWMEM },
1508
  { "hw_ld/qvl",        EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1509
  { "hw_ld/r",                EV4HWMEM(0x1B,0x2), EV4, ARG_EV4HWMEM },
1510
  { "hw_ld/rq",                EV4HWMEM(0x1B,0x3), EV4, ARG_EV4HWMEM },
1511
  { "hw_ld/v",                EV5HWMEM(0x1B,0x02), EV5, ARG_EV5HWMEM },
1512
  { "hw_ld/vl",                EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1513
  { "hw_ld/w",                EV5HWMEM(0x1B,0x08), EV5, ARG_EV5HWMEM },
1514
  { "hw_ld/wl",                EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1515
  { "hw_ld/wq",                EV5HWMEM(0x1B,0x0c), EV5, ARG_EV5HWMEM },
1516
  { "hw_ld/wql",        EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1517
  { "hw_ld/wqv",        EV5HWMEM(0x1B,0x0e), EV5, ARG_EV5HWMEM },
1518
  { "hw_ld/wqvl",        EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1519
  { "hw_ld/wv",                EV5HWMEM(0x1B,0x0a), EV5, ARG_EV5HWMEM },
1520
  { "hw_ld/wvl",        EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1521
  { "pal1b",                PCD(0x1B), BASE, ARG_PCD },
1522

    
1523
  { "sextb",                OPR(0x1C, 0x00), BWX, ARG_OPRZ1 },
1524
  { "sextw",                OPR(0x1C, 0x01), BWX, ARG_OPRZ1 },
1525
  { "ctpop",                OPR(0x1C, 0x30), CIX, ARG_OPRZ1 },
1526
  { "perr",                OPR(0x1C, 0x31), MAX, ARG_OPR },
1527
  { "ctlz",                OPR(0x1C, 0x32), CIX, ARG_OPRZ1 },
1528
  { "cttz",                OPR(0x1C, 0x33), CIX, ARG_OPRZ1 },
1529
  { "unpkbw",                OPR(0x1C, 0x34), MAX, ARG_OPRZ1 },
1530
  { "unpkbl",                OPR(0x1C, 0x35), MAX, ARG_OPRZ1 },
1531
  { "pkwb",                OPR(0x1C, 0x36), MAX, ARG_OPRZ1 },
1532
  { "pklb",                OPR(0x1C, 0x37), MAX, ARG_OPRZ1 },
1533
  { "minsb8",                 OPR(0x1C, 0x38), MAX, ARG_OPR },
1534
  { "minsb8",                 OPRL(0x1C, 0x38), MAX, ARG_OPRL },
1535
  { "minsw4",                 OPR(0x1C, 0x39), MAX, ARG_OPR },
1536
  { "minsw4",                 OPRL(0x1C, 0x39), MAX, ARG_OPRL },
1537
  { "minub8",                 OPR(0x1C, 0x3A), MAX, ARG_OPR },
1538
  { "minub8",                 OPRL(0x1C, 0x3A), MAX, ARG_OPRL },
1539
  { "minuw4",                 OPR(0x1C, 0x3B), MAX, ARG_OPR },
1540
  { "minuw4",                 OPRL(0x1C, 0x3B), MAX, ARG_OPRL },
1541
  { "maxub8",                OPR(0x1C, 0x3C), MAX, ARG_OPR },
1542
  { "maxub8",                OPRL(0x1C, 0x3C), MAX, ARG_OPRL },
1543
  { "maxuw4",                OPR(0x1C, 0x3D), MAX, ARG_OPR },
1544
  { "maxuw4",                OPRL(0x1C, 0x3D), MAX, ARG_OPRL },
1545
  { "maxsb8",                OPR(0x1C, 0x3E), MAX, ARG_OPR },
1546
  { "maxsb8",                OPRL(0x1C, 0x3E), MAX, ARG_OPRL },
1547
  { "maxsw4",                OPR(0x1C, 0x3F), MAX, ARG_OPR },
1548
  { "maxsw4",                OPRL(0x1C, 0x3F), MAX, ARG_OPRL },
1549
  { "ftoit",                FP(0x1C, 0x70), CIX, { FA, ZB, RC } },
1550
  { "ftois",                FP(0x1C, 0x78), CIX, { FA, ZB, RC } },
1551

    
1552
  { "hw_mtpr",                OPR(0x1D,0x00), EV4, { RA, RBA, EV4EXTHWINDEX } },
1553
  { "hw_mtpr",                OP(0x1D), OP_MASK, EV5, { RA, RBA, EV5HWINDEX } },
1554
  { "hw_mtpr",                OP(0x1D), OP_MASK, EV6, { ZA, RB, EV6HWINDEX } },
1555
  { "hw_mtpr/i",         OPR(0x1D,0x01), EV4, ARG_EV4HWMPR },
1556
  { "hw_mtpr/a",         OPR(0x1D,0x02), EV4, ARG_EV4HWMPR },
1557
  { "hw_mtpr/ai",        OPR(0x1D,0x03), EV4, ARG_EV4HWMPR },
1558
  { "hw_mtpr/p",         OPR(0x1D,0x04), EV4, ARG_EV4HWMPR },
1559
  { "hw_mtpr/pi",        OPR(0x1D,0x05), EV4, ARG_EV4HWMPR },
1560
  { "hw_mtpr/pa",        OPR(0x1D,0x06), EV4, ARG_EV4HWMPR },
1561
  { "hw_mtpr/pai",        OPR(0x1D,0x07), EV4, ARG_EV4HWMPR },
1562
  { "pal1d",                PCD(0x1D), BASE, ARG_PCD },
1563

    
1564
  { "hw_rei",                SPCD(0x1E,0x3FF8000), EV4|EV5, ARG_NONE },
1565
  { "hw_rei_stall",        SPCD(0x1E,0x3FFC000), EV5, ARG_NONE },
1566
  { "hw_jmp",                 EV6HWMBR(0x1E,0x0), EV6, { ZA, PRB, EV6HWJMPHINT } },
1567
  { "hw_jsr",                 EV6HWMBR(0x1E,0x2), EV6, { ZA, PRB, EV6HWJMPHINT } },
1568
  { "hw_ret",                 EV6HWMBR(0x1E,0x4), EV6, { ZA, PRB } },
1569
  { "hw_jcr",                 EV6HWMBR(0x1E,0x6), EV6, { ZA, PRB } },
1570
  { "hw_coroutine",        EV6HWMBR(0x1E,0x6), EV6, { ZA, PRB } }, /* alias */
1571
  { "hw_jmp/stall",        EV6HWMBR(0x1E,0x1), EV6, { ZA, PRB, EV6HWJMPHINT } },
1572
  { "hw_jsr/stall",         EV6HWMBR(0x1E,0x3), EV6, { ZA, PRB, EV6HWJMPHINT } },
1573
  { "hw_ret/stall",        EV6HWMBR(0x1E,0x5), EV6, { ZA, PRB } },
1574
  { "hw_jcr/stall",         EV6HWMBR(0x1E,0x7), EV6, { ZA, PRB } },
1575
  { "hw_coroutine/stall", EV6HWMBR(0x1E,0x7), EV6, { ZA, PRB } }, /* alias */
1576
  { "pal1e",                PCD(0x1E), BASE, ARG_PCD },
1577

    
1578
  { "hw_stl",                EV4HWMEM(0x1F,0x0), EV4, ARG_EV4HWMEM },
1579
  { "hw_stl",                EV5HWMEM(0x1F,0x00), EV5, ARG_EV5HWMEM },
1580
  { "hw_stl",                EV6HWMEM(0x1F,0x4), EV6, ARG_EV6HWMEM }, /* ??? 8 */
1581
  { "hw_stl/a",                EV4HWMEM(0x1F,0x4), EV4, ARG_EV4HWMEM },
1582
  { "hw_stl/a",                EV5HWMEM(0x1F,0x10), EV5, ARG_EV5HWMEM },
1583
  { "hw_stl/a",                EV6HWMEM(0x1F,0xC), EV6, ARG_EV6HWMEM },
1584
  { "hw_stl/ac",        EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1585
  { "hw_stl/ar",        EV4HWMEM(0x1F,0x6), EV4, ARG_EV4HWMEM },
1586
  { "hw_stl/av",        EV5HWMEM(0x1F,0x12), EV5, ARG_EV5HWMEM },
1587
  { "hw_stl/avc",        EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1588
  { "hw_stl/c",                EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1589
  { "hw_stl/p",                EV4HWMEM(0x1F,0x8), EV4, ARG_EV4HWMEM },
1590
  { "hw_stl/p",                EV5HWMEM(0x1F,0x20), EV5, ARG_EV5HWMEM },
1591
  { "hw_stl/p",                EV6HWMEM(0x1F,0x0), EV6, ARG_EV6HWMEM },
1592
  { "hw_stl/pa",        EV4HWMEM(0x1F,0xC), EV4, ARG_EV4HWMEM },
1593
  { "hw_stl/pa",        EV5HWMEM(0x1F,0x30), EV5, ARG_EV5HWMEM },
1594
  { "hw_stl/pac",        EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1595
  { "hw_stl/pav",        EV5HWMEM(0x1F,0x32), EV5, ARG_EV5HWMEM },
1596
  { "hw_stl/pavc",        EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1597
  { "hw_stl/pc",        EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1598
  { "hw_stl/pr",        EV4HWMEM(0x1F,0xA), EV4, ARG_EV4HWMEM },
1599
  { "hw_stl/pv",        EV5HWMEM(0x1F,0x22), EV5, ARG_EV5HWMEM },
1600
  { "hw_stl/pvc",        EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1601
  { "hw_stl/r",                EV4HWMEM(0x1F,0x2), EV4, ARG_EV4HWMEM },
1602
  { "hw_stl/v",                EV5HWMEM(0x1F,0x02), EV5, ARG_EV5HWMEM },
1603
  { "hw_stl/vc",        EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1604
  { "hw_stl_c",                EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1605
  { "hw_stl_c/a",        EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1606
  { "hw_stl_c/av",        EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1607
  { "hw_stl_c/p",        EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1608
  { "hw_stl_c/p",        EV6HWMEM(0x1F,0x2), EV6, ARG_EV6HWMEM },
1609
  { "hw_stl_c/pa",        EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1610
  { "hw_stl_c/pav",        EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1611
  { "hw_stl_c/pv",        EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1612
  { "hw_stl_c/v",        EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1613
  { "hw_stq",                EV4HWMEM(0x1F,0x1), EV4, ARG_EV4HWMEM },
1614
  { "hw_stq",                EV5HWMEM(0x1F,0x04), EV5, ARG_EV5HWMEM },
1615
  { "hw_stq",                EV6HWMEM(0x1F,0x5), EV6, ARG_EV6HWMEM }, /* ??? 9 */
1616
  { "hw_stq/a",                EV4HWMEM(0x1F,0x5), EV4, ARG_EV4HWMEM },
1617
  { "hw_stq/a",                EV5HWMEM(0x1F,0x14), EV5, ARG_EV5HWMEM },
1618
  { "hw_stq/a",                EV6HWMEM(0x1F,0xD), EV6, ARG_EV6HWMEM },
1619
  { "hw_stq/ac",        EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1620
  { "hw_stq/ar",        EV4HWMEM(0x1F,0x7), EV4, ARG_EV4HWMEM },
1621
  { "hw_stq/av",        EV5HWMEM(0x1F,0x16), EV5, ARG_EV5HWMEM },
1622
  { "hw_stq/avc",        EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1623
  { "hw_stq/c",                EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1624
  { "hw_stq/p",                EV4HWMEM(0x1F,0x9), EV4, ARG_EV4HWMEM },
1625
  { "hw_stq/p",                EV5HWMEM(0x1F,0x24), EV5, ARG_EV5HWMEM },
1626
  { "hw_stq/p",                EV6HWMEM(0x1F,0x1), EV6, ARG_EV6HWMEM },
1627
  { "hw_stq/pa",        EV4HWMEM(0x1F,0xD), EV4, ARG_EV4HWMEM },
1628
  { "hw_stq/pa",        EV5HWMEM(0x1F,0x34), EV5, ARG_EV5HWMEM },
1629
  { "hw_stq/pac",        EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1630
  { "hw_stq/par",        EV4HWMEM(0x1F,0xE), EV4, ARG_EV4HWMEM },
1631
  { "hw_stq/par",        EV4HWMEM(0x1F,0xF), EV4, ARG_EV4HWMEM },
1632
  { "hw_stq/pav",        EV5HWMEM(0x1F,0x36), EV5, ARG_EV5HWMEM },
1633
  { "hw_stq/pavc",        EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1634
  { "hw_stq/pc",        EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1635
  { "hw_stq/pr",        EV4HWMEM(0x1F,0xB), EV4, ARG_EV4HWMEM },
1636
  { "hw_stq/pv",        EV5HWMEM(0x1F,0x26), EV5, ARG_EV5HWMEM },
1637
  { "hw_stq/pvc",        EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1638
  { "hw_stq/r",                EV4HWMEM(0x1F,0x3), EV4, ARG_EV4HWMEM },
1639
  { "hw_stq/v",                EV5HWMEM(0x1F,0x06), EV5, ARG_EV5HWMEM },
1640
  { "hw_stq/vc",        EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1641
  { "hw_stq_c",                EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1642
  { "hw_stq_c/a",        EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1643
  { "hw_stq_c/av",        EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1644
  { "hw_stq_c/p",        EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1645
  { "hw_stq_c/p",        EV6HWMEM(0x1F,0x3), EV6, ARG_EV6HWMEM },
1646
  { "hw_stq_c/pa",        EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1647
  { "hw_stq_c/pav",        EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1648
  { "hw_stq_c/pv",        EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1649
  { "hw_stq_c/v",        EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1650
  { "hw_st",                EV4HWMEM(0x1F,0x0), EV4, ARG_EV4HWMEM },
1651
  { "hw_st",                EV5HWMEM(0x1F,0x00), EV5, ARG_EV5HWMEM },
1652
  { "hw_st/a",                EV4HWMEM(0x1F,0x4), EV4, ARG_EV4HWMEM },
1653
  { "hw_st/a",                EV5HWMEM(0x1F,0x10), EV5, ARG_EV5HWMEM },
1654
  { "hw_st/ac",                EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1655
  { "hw_st/aq",                EV4HWMEM(0x1F,0x5), EV4, ARG_EV4HWMEM },
1656
  { "hw_st/aq",                EV5HWMEM(0x1F,0x14), EV5, ARG_EV5HWMEM },
1657
  { "hw_st/aqc",        EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1658
  { "hw_st/aqv",        EV5HWMEM(0x1F,0x16), EV5, ARG_EV5HWMEM },
1659
  { "hw_st/aqvc",        EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1660
  { "hw_st/ar",                EV4HWMEM(0x1F,0x6), EV4, ARG_EV4HWMEM },
1661
  { "hw_st/arq",        EV4HWMEM(0x1F,0x7), EV4, ARG_EV4HWMEM },
1662
  { "hw_st/av",                EV5HWMEM(0x1F,0x12), EV5, ARG_EV5HWMEM },
1663
  { "hw_st/avc",        EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1664
  { "hw_st/c",                EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1665
  { "hw_st/p",                EV4HWMEM(0x1F,0x8), EV4, ARG_EV4HWMEM },
1666
  { "hw_st/p",                EV5HWMEM(0x1F,0x20), EV5, ARG_EV5HWMEM },
1667
  { "hw_st/pa",                EV4HWMEM(0x1F,0xC), EV4, ARG_EV4HWMEM },
1668
  { "hw_st/pa",                EV5HWMEM(0x1F,0x30), EV5, ARG_EV5HWMEM },
1669
  { "hw_st/pac",        EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1670
  { "hw_st/paq",        EV4HWMEM(0x1F,0xD), EV4, ARG_EV4HWMEM },
1671
  { "hw_st/paq",        EV5HWMEM(0x1F,0x34), EV5, ARG_EV5HWMEM },
1672
  { "hw_st/paqc",        EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1673
  { "hw_st/paqv",        EV5HWMEM(0x1F,0x36), EV5, ARG_EV5HWMEM },
1674
  { "hw_st/paqvc",        EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1675
  { "hw_st/par",        EV4HWMEM(0x1F,0xE), EV4, ARG_EV4HWMEM },
1676
  { "hw_st/parq",        EV4HWMEM(0x1F,0xF), EV4, ARG_EV4HWMEM },
1677
  { "hw_st/pav",        EV5HWMEM(0x1F,0x32), EV5, ARG_EV5HWMEM },
1678
  { "hw_st/pavc",        EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1679
  { "hw_st/pc",                EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1680
  { "hw_st/pq",                EV4HWMEM(0x1F,0x9), EV4, ARG_EV4HWMEM },
1681
  { "hw_st/pq",                EV5HWMEM(0x1F,0x24), EV5, ARG_EV5HWMEM },
1682
  { "hw_st/pqc",        EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1683
  { "hw_st/pqv",        EV5HWMEM(0x1F,0x26), EV5, ARG_EV5HWMEM },
1684
  { "hw_st/pqvc",        EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1685
  { "hw_st/pr",                EV4HWMEM(0x1F,0xA), EV4, ARG_EV4HWMEM },
1686
  { "hw_st/prq",        EV4HWMEM(0x1F,0xB), EV4, ARG_EV4HWMEM },
1687
  { "hw_st/pv",                EV5HWMEM(0x1F,0x22), EV5, ARG_EV5HWMEM },
1688
  { "hw_st/pvc",        EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1689
  { "hw_st/q",                EV4HWMEM(0x1F,0x1), EV4, ARG_EV4HWMEM },
1690
  { "hw_st/q",                EV5HWMEM(0x1F,0x04), EV5, ARG_EV5HWMEM },
1691
  { "hw_st/qc",                EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1692
  { "hw_st/qv",                EV5HWMEM(0x1F,0x06), EV5, ARG_EV5HWMEM },
1693
  { "hw_st/qvc",        EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1694
  { "hw_st/r",                EV4HWMEM(0x1F,0x2), EV4, ARG_EV4HWMEM },
1695
  { "hw_st/v",                EV5HWMEM(0x1F,0x02), EV5, ARG_EV5HWMEM },
1696
  { "hw_st/vc",                EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1697
  { "pal1f",                PCD(0x1F), BASE, ARG_PCD },
1698

    
1699
  { "ldf",                MEM(0x20), BASE, ARG_FMEM },
1700
  { "ldg",                MEM(0x21), BASE, ARG_FMEM },
1701
  { "lds",                MEM(0x22), BASE, ARG_FMEM },
1702
  { "ldt",                MEM(0x23), BASE, ARG_FMEM },
1703
  { "stf",                MEM(0x24), BASE, ARG_FMEM },
1704
  { "stg",                MEM(0x25), BASE, ARG_FMEM },
1705
  { "sts",                MEM(0x26), BASE, ARG_FMEM },
1706
  { "stt",                MEM(0x27), BASE, ARG_FMEM },
1707

    
1708
  { "ldl",                MEM(0x28), BASE, ARG_MEM },
1709
  { "ldq",                MEM(0x29), BASE, ARG_MEM },
1710
  { "ldl_l",                MEM(0x2A), BASE, ARG_MEM },
1711
  { "ldq_l",                MEM(0x2B), BASE, ARG_MEM },
1712
  { "stl",                MEM(0x2C), BASE, ARG_MEM },
1713
  { "stq",                MEM(0x2D), BASE, ARG_MEM },
1714
  { "stl_c",                MEM(0x2E), BASE, ARG_MEM },
1715
  { "stq_c",                MEM(0x2F), BASE, ARG_MEM },
1716

    
1717
  { "br",                BRA(0x30), BASE, { ZA, BDISP } },        /* pseudo */
1718
  { "br",                BRA(0x30), BASE, ARG_BRA },
1719
  { "fbeq",                BRA(0x31), BASE, ARG_FBRA },
1720
  { "fblt",                BRA(0x32), BASE, ARG_FBRA },
1721
  { "fble",                BRA(0x33), BASE, ARG_FBRA },
1722
  { "bsr",                BRA(0x34), BASE, ARG_BRA },
1723
  { "fbne",                BRA(0x35), BASE, ARG_FBRA },
1724
  { "fbge",                BRA(0x36), BASE, ARG_FBRA },
1725
  { "fbgt",                BRA(0x37), BASE, ARG_FBRA },
1726
  { "blbc",                BRA(0x38), BASE, ARG_BRA },
1727
  { "beq",                BRA(0x39), BASE, ARG_BRA },
1728
  { "blt",                BRA(0x3A), BASE, ARG_BRA },
1729
  { "ble",                BRA(0x3B), BASE, ARG_BRA },
1730
  { "blbs",                BRA(0x3C), BASE, ARG_BRA },
1731
  { "bne",                BRA(0x3D), BASE, ARG_BRA },
1732
  { "bge",                BRA(0x3E), BASE, ARG_BRA },
1733
  { "bgt",                BRA(0x3F), BASE, ARG_BRA },
1734
};
1735

    
1736
const unsigned alpha_num_opcodes = sizeof(alpha_opcodes)/sizeof(*alpha_opcodes);
1737

    
1738
/* OSF register names.  */
1739

    
1740
static const char * const osf_regnames[64] = {
1741
  "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
1742
  "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
1743
  "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
1744
  "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
1745
  "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7",
1746
  "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",
1747
  "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",
1748
  "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31"
1749
};
1750

    
1751
/* VMS register names.  */
1752

    
1753
static const char * const vms_regnames[64] = {
1754
  "R0", "R1", "R2", "R3", "R4", "R5", "R6", "R7",
1755
  "R8", "R9", "R10", "R11", "R12", "R13", "R14", "R15",
1756
  "R16", "R17", "R18", "R19", "R20", "R21", "R22", "R23",
1757
  "R24", "AI", "RA", "PV", "AT", "FP", "SP", "RZ",
1758
  "F0", "F1", "F2", "F3", "F4", "F5", "F6", "F7",
1759
  "F8", "F9", "F10", "F11", "F12", "F13", "F14", "F15",
1760
  "F16", "F17", "F18", "F19", "F20", "F21", "F22", "F23",
1761
  "F24", "F25", "F26", "F27", "F28", "F29", "F30", "FZ"
1762
};
1763

    
1764
/* Disassemble Alpha instructions.  */
1765

    
1766
int
1767
print_insn_alpha (bfd_vma memaddr, struct disassemble_info *info)
1768
{
1769
  static const struct alpha_opcode *opcode_index[AXP_NOPS+1];
1770
  const char * const * regnames;
1771
  const struct alpha_opcode *opcode, *opcode_end;
1772
  const unsigned char *opindex;
1773
  unsigned insn, op, isa_mask;
1774
  int need_comma;
1775

    
1776
  /* Initialize the majorop table the first time through */
1777
  if (!opcode_index[0])
1778
    {
1779
      opcode = alpha_opcodes;
1780
      opcode_end = opcode + alpha_num_opcodes;
1781

    
1782
      for (op = 0; op < AXP_NOPS; ++op)
1783
        {
1784
          opcode_index[op] = opcode;
1785
          while (opcode < opcode_end && op == AXP_OP (opcode->opcode))
1786
            ++opcode;
1787
        }
1788
      opcode_index[op] = opcode;
1789
    }
1790

    
1791
  if (info->flavour == bfd_target_evax_flavour)
1792
    regnames = vms_regnames;
1793
  else
1794
    regnames = osf_regnames;
1795

    
1796
  isa_mask = AXP_OPCODE_NOPAL;
1797
  switch (info->mach)
1798
    {
1799
    case bfd_mach_alpha_ev4:
1800
      isa_mask |= AXP_OPCODE_EV4;
1801
      break;
1802
    case bfd_mach_alpha_ev5:
1803
      isa_mask |= AXP_OPCODE_EV5;
1804
      break;
1805
    case bfd_mach_alpha_ev6:
1806
      isa_mask |= AXP_OPCODE_EV6;
1807
      break;
1808
    }
1809

    
1810
  /* Read the insn into a host word */
1811
  {
1812
    bfd_byte buffer[4];
1813
    int status = (*info->read_memory_func) (memaddr, buffer, 4, info);
1814
    if (status != 0)
1815
      {
1816
        (*info->memory_error_func) (status, memaddr, info);
1817
        return -1;
1818
      }
1819
    insn = bfd_getl32 (buffer);
1820
  }
1821

    
1822
  /* Get the major opcode of the instruction.  */
1823
  op = AXP_OP (insn);
1824

    
1825
  /* Find the first match in the opcode table.  */
1826
  opcode_end = opcode_index[op + 1];
1827
  for (opcode = opcode_index[op]; opcode < opcode_end; ++opcode)
1828
    {
1829
      if ((insn ^ opcode->opcode) & opcode->mask)
1830
        continue;
1831

    
1832
      if (!(opcode->flags & isa_mask))
1833
        continue;
1834

    
1835
      /* Make two passes over the operands.  First see if any of them
1836
         have extraction functions, and, if they do, make sure the
1837
         instruction is valid.  */
1838
      {
1839
        int invalid = 0;
1840
        for (opindex = opcode->operands; *opindex != 0; opindex++)
1841
          {
1842
            const struct alpha_operand *operand = alpha_operands + *opindex;
1843
            if (operand->extract)
1844
              (*operand->extract) (insn, &invalid);
1845
          }
1846
        if (invalid)
1847
          continue;
1848
      }
1849

    
1850
      /* The instruction is valid.  */
1851
      goto found;
1852
    }
1853

    
1854
  /* No instruction found */
1855
  (*info->fprintf_func) (info->stream, ".long %#08x", insn);
1856

    
1857
  return 4;
1858

    
1859
found:
1860
  (*info->fprintf_func) (info->stream, "%s", opcode->name);
1861
  if (opcode->operands[0] != 0)
1862
    (*info->fprintf_func) (info->stream, "\t");
1863

    
1864
  /* Now extract and print the operands.  */
1865
  need_comma = 0;
1866
  for (opindex = opcode->operands; *opindex != 0; opindex++)
1867
    {
1868
      const struct alpha_operand *operand = alpha_operands + *opindex;
1869
      int value;
1870

    
1871
      /* Operands that are marked FAKE are simply ignored.  We
1872
         already made sure that the extract function considered
1873
         the instruction to be valid.  */
1874
      if ((operand->flags & AXP_OPERAND_FAKE) != 0)
1875
        continue;
1876

    
1877
      /* Extract the value from the instruction.  */
1878
      if (operand->extract)
1879
        value = (*operand->extract) (insn, (int *) NULL);
1880
      else
1881
        {
1882
          value = (insn >> operand->shift) & ((1 << operand->bits) - 1);
1883
          if (operand->flags & AXP_OPERAND_SIGNED)
1884
            {
1885
              int signbit = 1 << (operand->bits - 1);
1886
              value = (value ^ signbit) - signbit;
1887
            }
1888
        }
1889

    
1890
      if (need_comma &&
1891
          ((operand->flags & (AXP_OPERAND_PARENS | AXP_OPERAND_COMMA))
1892
           != AXP_OPERAND_PARENS))
1893
        {
1894
          (*info->fprintf_func) (info->stream, ",");
1895
        }
1896
      if (operand->flags & AXP_OPERAND_PARENS)
1897
        (*info->fprintf_func) (info->stream, "(");
1898

    
1899
      /* Print the operand as directed by the flags.  */
1900
      if (operand->flags & AXP_OPERAND_IR)
1901
        (*info->fprintf_func) (info->stream, "%s", regnames[value]);
1902
      else if (operand->flags & AXP_OPERAND_FPR)
1903
        (*info->fprintf_func) (info->stream, "%s", regnames[value + 32]);
1904
      else if (operand->flags & AXP_OPERAND_RELATIVE)
1905
        (*info->print_address_func) (memaddr + 4 + value, info);
1906
      else if (operand->flags & AXP_OPERAND_SIGNED)
1907
        (*info->fprintf_func) (info->stream, "%d", value);
1908
      else
1909
        (*info->fprintf_func) (info->stream, "%#x", value);
1910

    
1911
      if (operand->flags & AXP_OPERAND_PARENS)
1912
        (*info->fprintf_func) (info->stream, ")");
1913
      need_comma = 1;
1914
    }
1915

    
1916
  return 4;
1917
}