Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ 66fcf8ff

History | View | Annotate | Download (51.8 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18
#include <sys/utsname.h>
19

    
20
#include <linux/kvm.h>
21

    
22
#include "qemu-common.h"
23
#include "sysemu.h"
24
#include "kvm.h"
25
#include "cpu.h"
26
#include "gdbstub.h"
27
#include "host-utils.h"
28
#include "hw/pc.h"
29
#include "hw/apic.h"
30
#include "ioport.h"
31

    
32
#ifdef CONFIG_KVM_PARA
33
#include <linux/kvm_para.h>
34
#endif
35
//
36
//#define DEBUG_KVM
37

    
38
#ifdef DEBUG_KVM
39
#define DPRINTF(fmt, ...) \
40
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
41
#else
42
#define DPRINTF(fmt, ...) \
43
    do { } while (0)
44
#endif
45

    
46
#define MSR_KVM_WALL_CLOCK  0x11
47
#define MSR_KVM_SYSTEM_TIME 0x12
48

    
49
#ifndef BUS_MCEERR_AR
50
#define BUS_MCEERR_AR 4
51
#endif
52
#ifndef BUS_MCEERR_AO
53
#define BUS_MCEERR_AO 5
54
#endif
55

    
56
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
57
    KVM_CAP_INFO(SET_TSS_ADDR),
58
    KVM_CAP_INFO(EXT_CPUID),
59
    KVM_CAP_INFO(MP_STATE),
60
    KVM_CAP_LAST_INFO
61
};
62

    
63
static bool has_msr_star;
64
static bool has_msr_hsave_pa;
65
#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
66
static bool has_msr_async_pf_en;
67
#endif
68
static int lm_capable_kernel;
69

    
70
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
71
{
72
    struct kvm_cpuid2 *cpuid;
73
    int r, size;
74

    
75
    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
76
    cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
77
    cpuid->nent = max;
78
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
79
    if (r == 0 && cpuid->nent >= max) {
80
        r = -E2BIG;
81
    }
82
    if (r < 0) {
83
        if (r == -E2BIG) {
84
            qemu_free(cpuid);
85
            return NULL;
86
        } else {
87
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
88
                    strerror(-r));
89
            exit(1);
90
        }
91
    }
92
    return cpuid;
93
}
94

    
95
#ifdef CONFIG_KVM_PARA
96
struct kvm_para_features {
97
    int cap;
98
    int feature;
99
} para_features[] = {
100
    { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
101
    { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
102
    { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
103
#ifdef KVM_CAP_ASYNC_PF
104
    { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
105
#endif
106
    { -1, -1 }
107
};
108

    
109
static int get_para_features(CPUState *env)
110
{
111
    int i, features = 0;
112

    
113
    for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
114
        if (kvm_check_extension(env->kvm_state, para_features[i].cap)) {
115
            features |= (1 << para_features[i].feature);
116
        }
117
    }
118

    
119
    return features;
120
}
121
#endif
122

    
123

    
124
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
125
                                      uint32_t index, int reg)
126
{
127
    struct kvm_cpuid2 *cpuid;
128
    int i, max;
129
    uint32_t ret = 0;
130
    uint32_t cpuid_1_edx;
131
#ifdef CONFIG_KVM_PARA
132
    int has_kvm_features = 0;
133
#endif
134

    
135
    max = 1;
136
    while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
137
        max *= 2;
138
    }
139

    
140
    for (i = 0; i < cpuid->nent; ++i) {
141
        if (cpuid->entries[i].function == function &&
142
            cpuid->entries[i].index == index) {
143
#ifdef CONFIG_KVM_PARA
144
            if (cpuid->entries[i].function == KVM_CPUID_FEATURES) {
145
                has_kvm_features = 1;
146
            }
147
#endif
148
            switch (reg) {
149
            case R_EAX:
150
                ret = cpuid->entries[i].eax;
151
                break;
152
            case R_EBX:
153
                ret = cpuid->entries[i].ebx;
154
                break;
155
            case R_ECX:
156
                ret = cpuid->entries[i].ecx;
157
                break;
158
            case R_EDX:
159
                ret = cpuid->entries[i].edx;
160
                switch (function) {
161
                case 1:
162
                    /* KVM before 2.6.30 misreports the following features */
163
                    ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
164
                    break;
165
                case 0x80000001:
166
                    /* On Intel, kvm returns cpuid according to the Intel spec,
167
                     * so add missing bits according to the AMD spec:
168
                     */
169
                    cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
170
                    ret |= cpuid_1_edx & 0x183f7ff;
171
                    break;
172
                }
173
                break;
174
            }
175
        }
176
    }
177

    
178
    qemu_free(cpuid);
179

    
180
#ifdef CONFIG_KVM_PARA
181
    /* fallback for older kernels */
182
    if (!has_kvm_features && (function == KVM_CPUID_FEATURES)) {
183
        ret = get_para_features(env);
184
    }
185
#endif
186

    
187
    return ret;
188
}
189

    
190
typedef struct HWPoisonPage {
191
    ram_addr_t ram_addr;
192
    QLIST_ENTRY(HWPoisonPage) list;
193
} HWPoisonPage;
194

    
195
static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
196
    QLIST_HEAD_INITIALIZER(hwpoison_page_list);
197

    
198
static void kvm_unpoison_all(void *param)
199
{
200
    HWPoisonPage *page, *next_page;
201

    
202
    QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
203
        QLIST_REMOVE(page, list);
204
        qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
205
        qemu_free(page);
206
    }
207
}
208

    
209
#ifdef KVM_CAP_MCE
210
static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
211
{
212
    HWPoisonPage *page;
213

    
214
    QLIST_FOREACH(page, &hwpoison_page_list, list) {
215
        if (page->ram_addr == ram_addr) {
216
            return;
217
        }
218
    }
219
    page = qemu_malloc(sizeof(HWPoisonPage));
220
    page->ram_addr = ram_addr;
221
    QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
222
}
223

    
224
static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
225
                                     int *max_banks)
226
{
227
    int r;
228

    
229
    r = kvm_check_extension(s, KVM_CAP_MCE);
230
    if (r > 0) {
231
        *max_banks = r;
232
        return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
233
    }
234
    return -ENOSYS;
235
}
236

    
237
static void kvm_mce_inject(CPUState *env, target_phys_addr_t paddr, int code)
238
{
239
    uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
240
                      MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
241
    uint64_t mcg_status = MCG_STATUS_MCIP;
242

    
243
    if (code == BUS_MCEERR_AR) {
244
        status |= MCI_STATUS_AR | 0x134;
245
        mcg_status |= MCG_STATUS_EIPV;
246
    } else {
247
        status |= 0xc0;
248
        mcg_status |= MCG_STATUS_RIPV;
249
    }
250
    cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
251
                       (MCM_ADDR_PHYS << 6) | 0xc,
252
                       cpu_x86_support_mca_broadcast(env) ?
253
                       MCE_INJECT_BROADCAST : 0);
254
}
255
#endif /* KVM_CAP_MCE */
256

    
257
static void hardware_memory_error(void)
258
{
259
    fprintf(stderr, "Hardware memory error!\n");
260
    exit(1);
261
}
262

    
263
int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
264
{
265
#ifdef KVM_CAP_MCE
266
    ram_addr_t ram_addr;
267
    target_phys_addr_t paddr;
268

    
269
    if ((env->mcg_cap & MCG_SER_P) && addr
270
        && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
271
        if (qemu_ram_addr_from_host(addr, &ram_addr) ||
272
            !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr,
273
                                               &paddr)) {
274
            fprintf(stderr, "Hardware memory error for memory used by "
275
                    "QEMU itself instead of guest system!\n");
276
            /* Hope we are lucky for AO MCE */
277
            if (code == BUS_MCEERR_AO) {
278
                return 0;
279
            } else {
280
                hardware_memory_error();
281
            }
282
        }
283
        kvm_hwpoison_page_add(ram_addr);
284
        kvm_mce_inject(env, paddr, code);
285
    } else
286
#endif /* KVM_CAP_MCE */
287
    {
288
        if (code == BUS_MCEERR_AO) {
289
            return 0;
290
        } else if (code == BUS_MCEERR_AR) {
291
            hardware_memory_error();
292
        } else {
293
            return 1;
294
        }
295
    }
296
    return 0;
297
}
298

    
299
int kvm_arch_on_sigbus(int code, void *addr)
300
{
301
#ifdef KVM_CAP_MCE
302
    if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
303
        ram_addr_t ram_addr;
304
        target_phys_addr_t paddr;
305

    
306
        /* Hope we are lucky for AO MCE */
307
        if (qemu_ram_addr_from_host(addr, &ram_addr) ||
308
            !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr,
309
                                               &paddr)) {
310
            fprintf(stderr, "Hardware memory error for memory used by "
311
                    "QEMU itself instead of guest system!: %p\n", addr);
312
            return 0;
313
        }
314
        kvm_hwpoison_page_add(ram_addr);
315
        kvm_mce_inject(first_cpu, paddr, code);
316
    } else
317
#endif /* KVM_CAP_MCE */
318
    {
319
        if (code == BUS_MCEERR_AO) {
320
            return 0;
321
        } else if (code == BUS_MCEERR_AR) {
322
            hardware_memory_error();
323
        } else {
324
            return 1;
325
        }
326
    }
327
    return 0;
328
}
329

    
330
static int kvm_inject_mce_oldstyle(CPUState *env)
331
{
332
#ifdef KVM_CAP_MCE
333
    if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
334
        unsigned int bank, bank_num = env->mcg_cap & 0xff;
335
        struct kvm_x86_mce mce;
336

    
337
        env->exception_injected = -1;
338

    
339
        /*
340
         * There must be at least one bank in use if an MCE is pending.
341
         * Find it and use its values for the event injection.
342
         */
343
        for (bank = 0; bank < bank_num; bank++) {
344
            if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
345
                break;
346
            }
347
        }
348
        assert(bank < bank_num);
349

    
350
        mce.bank = bank;
351
        mce.status = env->mce_banks[bank * 4 + 1];
352
        mce.mcg_status = env->mcg_status;
353
        mce.addr = env->mce_banks[bank * 4 + 2];
354
        mce.misc = env->mce_banks[bank * 4 + 3];
355

    
356
        return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
357
    }
358
#endif /* KVM_CAP_MCE */
359
    return 0;
360
}
361

    
362
static void cpu_update_state(void *opaque, int running, int reason)
363
{
364
    CPUState *env = opaque;
365

    
366
    if (running) {
367
        env->tsc_valid = false;
368
    }
369
}
370

    
371
int kvm_arch_init_vcpu(CPUState *env)
372
{
373
    struct {
374
        struct kvm_cpuid2 cpuid;
375
        struct kvm_cpuid_entry2 entries[100];
376
    } __attribute__((packed)) cpuid_data;
377
    uint32_t limit, i, j, cpuid_i;
378
    uint32_t unused;
379
    struct kvm_cpuid_entry2 *c;
380
#ifdef CONFIG_KVM_PARA
381
    uint32_t signature[3];
382
#endif
383

    
384
    env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
385

    
386
    i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
387
    env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
388
    env->cpuid_ext_features |= i;
389

    
390
    env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
391
                                                             0, R_EDX);
392
    env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
393
                                                             0, R_ECX);
394
    env->cpuid_svm_features  &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
395
                                                             0, R_EDX);
396

    
397

    
398
    cpuid_i = 0;
399

    
400
#ifdef CONFIG_KVM_PARA
401
    /* Paravirtualization CPUIDs */
402
    memcpy(signature, "KVMKVMKVM\0\0\0", 12);
403
    c = &cpuid_data.entries[cpuid_i++];
404
    memset(c, 0, sizeof(*c));
405
    c->function = KVM_CPUID_SIGNATURE;
406
    c->eax = 0;
407
    c->ebx = signature[0];
408
    c->ecx = signature[1];
409
    c->edx = signature[2];
410

    
411
    c = &cpuid_data.entries[cpuid_i++];
412
    memset(c, 0, sizeof(*c));
413
    c->function = KVM_CPUID_FEATURES;
414
    c->eax = env->cpuid_kvm_features & kvm_arch_get_supported_cpuid(env,
415
                                                KVM_CPUID_FEATURES, 0, R_EAX);
416

    
417
#ifdef KVM_CAP_ASYNC_PF
418
    has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
419
#endif
420

    
421
#endif
422

    
423
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
424

    
425
    for (i = 0; i <= limit; i++) {
426
        c = &cpuid_data.entries[cpuid_i++];
427

    
428
        switch (i) {
429
        case 2: {
430
            /* Keep reading function 2 till all the input is received */
431
            int times;
432

    
433
            c->function = i;
434
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
435
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
436
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
437
            times = c->eax & 0xff;
438

    
439
            for (j = 1; j < times; ++j) {
440
                c = &cpuid_data.entries[cpuid_i++];
441
                c->function = i;
442
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
443
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
444
            }
445
            break;
446
        }
447
        case 4:
448
        case 0xb:
449
        case 0xd:
450
            for (j = 0; ; j++) {
451
                c->function = i;
452
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
453
                c->index = j;
454
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
455

    
456
                if (i == 4 && c->eax == 0) {
457
                    break;
458
                }
459
                if (i == 0xb && !(c->ecx & 0xff00)) {
460
                    break;
461
                }
462
                if (i == 0xd && c->eax == 0) {
463
                    break;
464
                }
465
                c = &cpuid_data.entries[cpuid_i++];
466
            }
467
            break;
468
        default:
469
            c->function = i;
470
            c->flags = 0;
471
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
472
            break;
473
        }
474
    }
475
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
476

    
477
    for (i = 0x80000000; i <= limit; i++) {
478
        c = &cpuid_data.entries[cpuid_i++];
479

    
480
        c->function = i;
481
        c->flags = 0;
482
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
483
    }
484

    
485
    cpuid_data.cpuid.nent = cpuid_i;
486

    
487
#ifdef KVM_CAP_MCE
488
    if (((env->cpuid_version >> 8)&0xF) >= 6
489
        && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
490
        && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
491
        uint64_t mcg_cap;
492
        int banks;
493
        int ret;
494

    
495
        ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
496
        if (ret < 0) {
497
            fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
498
            return ret;
499
        }
500

    
501
        if (banks > MCE_BANKS_DEF) {
502
            banks = MCE_BANKS_DEF;
503
        }
504
        mcg_cap &= MCE_CAP_DEF;
505
        mcg_cap |= banks;
506
        ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
507
        if (ret < 0) {
508
            fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
509
            return ret;
510
        }
511

    
512
        env->mcg_cap = mcg_cap;
513
    }
514
#endif
515

    
516
    qemu_add_vm_change_state_handler(cpu_update_state, env);
517

    
518
    return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
519
}
520

    
521
void kvm_arch_reset_vcpu(CPUState *env)
522
{
523
    env->exception_injected = -1;
524
    env->interrupt_injected = -1;
525
    env->xcr0 = 1;
526
    if (kvm_irqchip_in_kernel()) {
527
        env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
528
                                          KVM_MP_STATE_UNINITIALIZED;
529
    } else {
530
        env->mp_state = KVM_MP_STATE_RUNNABLE;
531
    }
532
}
533

    
534
static int kvm_get_supported_msrs(KVMState *s)
535
{
536
    static int kvm_supported_msrs;
537
    int ret = 0;
538

    
539
    /* first time */
540
    if (kvm_supported_msrs == 0) {
541
        struct kvm_msr_list msr_list, *kvm_msr_list;
542

    
543
        kvm_supported_msrs = -1;
544

    
545
        /* Obtain MSR list from KVM.  These are the MSRs that we must
546
         * save/restore */
547
        msr_list.nmsrs = 0;
548
        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
549
        if (ret < 0 && ret != -E2BIG) {
550
            return ret;
551
        }
552
        /* Old kernel modules had a bug and could write beyond the provided
553
           memory. Allocate at least a safe amount of 1K. */
554
        kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
555
                                              msr_list.nmsrs *
556
                                              sizeof(msr_list.indices[0])));
557

    
558
        kvm_msr_list->nmsrs = msr_list.nmsrs;
559
        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
560
        if (ret >= 0) {
561
            int i;
562

    
563
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
564
                if (kvm_msr_list->indices[i] == MSR_STAR) {
565
                    has_msr_star = true;
566
                    continue;
567
                }
568
                if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
569
                    has_msr_hsave_pa = true;
570
                    continue;
571
                }
572
            }
573
        }
574

    
575
        qemu_free(kvm_msr_list);
576
    }
577

    
578
    return ret;
579
}
580

    
581
int kvm_arch_init(KVMState *s)
582
{
583
    uint64_t identity_base = 0xfffbc000;
584
    int ret;
585
    struct utsname utsname;
586

    
587
    ret = kvm_get_supported_msrs(s);
588
    if (ret < 0) {
589
        return ret;
590
    }
591

    
592
    uname(&utsname);
593
    lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
594

    
595
    /*
596
     * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
597
     * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
598
     * Since these must be part of guest physical memory, we need to allocate
599
     * them, both by setting their start addresses in the kernel and by
600
     * creating a corresponding e820 entry. We need 4 pages before the BIOS.
601
     *
602
     * Older KVM versions may not support setting the identity map base. In
603
     * that case we need to stick with the default, i.e. a 256K maximum BIOS
604
     * size.
605
     */
606
#ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
607
    if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
608
        /* Allows up to 16M BIOSes. */
609
        identity_base = 0xfeffc000;
610

    
611
        ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
612
        if (ret < 0) {
613
            return ret;
614
        }
615
    }
616
#endif
617
    /* Set TSS base one page after EPT identity map. */
618
    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
619
    if (ret < 0) {
620
        return ret;
621
    }
622

    
623
    /* Tell fw_cfg to notify the BIOS to reserve the range. */
624
    ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
625
    if (ret < 0) {
626
        fprintf(stderr, "e820_add_entry() table is full\n");
627
        return ret;
628
    }
629
    qemu_register_reset(kvm_unpoison_all, NULL);
630

    
631
    return 0;
632
}
633

    
634
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
635
{
636
    lhs->selector = rhs->selector;
637
    lhs->base = rhs->base;
638
    lhs->limit = rhs->limit;
639
    lhs->type = 3;
640
    lhs->present = 1;
641
    lhs->dpl = 3;
642
    lhs->db = 0;
643
    lhs->s = 1;
644
    lhs->l = 0;
645
    lhs->g = 0;
646
    lhs->avl = 0;
647
    lhs->unusable = 0;
648
}
649

    
650
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
651
{
652
    unsigned flags = rhs->flags;
653
    lhs->selector = rhs->selector;
654
    lhs->base = rhs->base;
655
    lhs->limit = rhs->limit;
656
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
657
    lhs->present = (flags & DESC_P_MASK) != 0;
658
    lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
659
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
660
    lhs->s = (flags & DESC_S_MASK) != 0;
661
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
662
    lhs->g = (flags & DESC_G_MASK) != 0;
663
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
664
    lhs->unusable = 0;
665
}
666

    
667
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
668
{
669
    lhs->selector = rhs->selector;
670
    lhs->base = rhs->base;
671
    lhs->limit = rhs->limit;
672
    lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
673
                 (rhs->present * DESC_P_MASK) |
674
                 (rhs->dpl << DESC_DPL_SHIFT) |
675
                 (rhs->db << DESC_B_SHIFT) |
676
                 (rhs->s * DESC_S_MASK) |
677
                 (rhs->l << DESC_L_SHIFT) |
678
                 (rhs->g * DESC_G_MASK) |
679
                 (rhs->avl * DESC_AVL_MASK);
680
}
681

    
682
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
683
{
684
    if (set) {
685
        *kvm_reg = *qemu_reg;
686
    } else {
687
        *qemu_reg = *kvm_reg;
688
    }
689
}
690

    
691
static int kvm_getput_regs(CPUState *env, int set)
692
{
693
    struct kvm_regs regs;
694
    int ret = 0;
695

    
696
    if (!set) {
697
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
698
        if (ret < 0) {
699
            return ret;
700
        }
701
    }
702

    
703
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
704
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
705
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
706
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
707
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
708
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
709
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
710
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
711
#ifdef TARGET_X86_64
712
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
713
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
714
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
715
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
716
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
717
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
718
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
719
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
720
#endif
721

    
722
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
723
    kvm_getput_reg(&regs.rip, &env->eip, set);
724

    
725
    if (set) {
726
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
727
    }
728

    
729
    return ret;
730
}
731

    
732
static int kvm_put_fpu(CPUState *env)
733
{
734
    struct kvm_fpu fpu;
735
    int i;
736

    
737
    memset(&fpu, 0, sizeof fpu);
738
    fpu.fsw = env->fpus & ~(7 << 11);
739
    fpu.fsw |= (env->fpstt & 7) << 11;
740
    fpu.fcw = env->fpuc;
741
    for (i = 0; i < 8; ++i) {
742
        fpu.ftwx |= (!env->fptags[i]) << i;
743
    }
744
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
745
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
746
    fpu.mxcsr = env->mxcsr;
747

    
748
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
749
}
750

    
751
#ifdef KVM_CAP_XSAVE
752
#define XSAVE_CWD_RIP     2
753
#define XSAVE_CWD_RDP     4
754
#define XSAVE_MXCSR       6
755
#define XSAVE_ST_SPACE    8
756
#define XSAVE_XMM_SPACE   40
757
#define XSAVE_XSTATE_BV   128
758
#define XSAVE_YMMH_SPACE  144
759
#endif
760

    
761
static int kvm_put_xsave(CPUState *env)
762
{
763
#ifdef KVM_CAP_XSAVE
764
    int i, r;
765
    struct kvm_xsave* xsave;
766
    uint16_t cwd, swd, twd, fop;
767

    
768
    if (!kvm_has_xsave()) {
769
        return kvm_put_fpu(env);
770
    }
771

    
772
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
773
    memset(xsave, 0, sizeof(struct kvm_xsave));
774
    cwd = swd = twd = fop = 0;
775
    swd = env->fpus & ~(7 << 11);
776
    swd |= (env->fpstt & 7) << 11;
777
    cwd = env->fpuc;
778
    for (i = 0; i < 8; ++i) {
779
        twd |= (!env->fptags[i]) << i;
780
    }
781
    xsave->region[0] = (uint32_t)(swd << 16) + cwd;
782
    xsave->region[1] = (uint32_t)(fop << 16) + twd;
783
    memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
784
            sizeof env->fpregs);
785
    memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
786
            sizeof env->xmm_regs);
787
    xsave->region[XSAVE_MXCSR] = env->mxcsr;
788
    *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
789
    memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
790
            sizeof env->ymmh_regs);
791
    r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
792
    qemu_free(xsave);
793
    return r;
794
#else
795
    return kvm_put_fpu(env);
796
#endif
797
}
798

    
799
static int kvm_put_xcrs(CPUState *env)
800
{
801
#ifdef KVM_CAP_XCRS
802
    struct kvm_xcrs xcrs;
803

    
804
    if (!kvm_has_xcrs()) {
805
        return 0;
806
    }
807

    
808
    xcrs.nr_xcrs = 1;
809
    xcrs.flags = 0;
810
    xcrs.xcrs[0].xcr = 0;
811
    xcrs.xcrs[0].value = env->xcr0;
812
    return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
813
#else
814
    return 0;
815
#endif
816
}
817

    
818
static int kvm_put_sregs(CPUState *env)
819
{
820
    struct kvm_sregs sregs;
821

    
822
    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
823
    if (env->interrupt_injected >= 0) {
824
        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
825
                (uint64_t)1 << (env->interrupt_injected % 64);
826
    }
827

    
828
    if ((env->eflags & VM_MASK)) {
829
        set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
830
        set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
831
        set_v8086_seg(&sregs.es, &env->segs[R_ES]);
832
        set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
833
        set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
834
        set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
835
    } else {
836
        set_seg(&sregs.cs, &env->segs[R_CS]);
837
        set_seg(&sregs.ds, &env->segs[R_DS]);
838
        set_seg(&sregs.es, &env->segs[R_ES]);
839
        set_seg(&sregs.fs, &env->segs[R_FS]);
840
        set_seg(&sregs.gs, &env->segs[R_GS]);
841
        set_seg(&sregs.ss, &env->segs[R_SS]);
842
    }
843

    
844
    set_seg(&sregs.tr, &env->tr);
845
    set_seg(&sregs.ldt, &env->ldt);
846

    
847
    sregs.idt.limit = env->idt.limit;
848
    sregs.idt.base = env->idt.base;
849
    sregs.gdt.limit = env->gdt.limit;
850
    sregs.gdt.base = env->gdt.base;
851

    
852
    sregs.cr0 = env->cr[0];
853
    sregs.cr2 = env->cr[2];
854
    sregs.cr3 = env->cr[3];
855
    sregs.cr4 = env->cr[4];
856

    
857
    sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
858
    sregs.apic_base = cpu_get_apic_base(env->apic_state);
859

    
860
    sregs.efer = env->efer;
861

    
862
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
863
}
864

    
865
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
866
                              uint32_t index, uint64_t value)
867
{
868
    entry->index = index;
869
    entry->data = value;
870
}
871

    
872
static int kvm_put_msrs(CPUState *env, int level)
873
{
874
    struct {
875
        struct kvm_msrs info;
876
        struct kvm_msr_entry entries[100];
877
    } msr_data;
878
    struct kvm_msr_entry *msrs = msr_data.entries;
879
    int n = 0;
880

    
881
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
882
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
883
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
884
    kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
885
    if (has_msr_star) {
886
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
887
    }
888
    if (has_msr_hsave_pa) {
889
        kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
890
    }
891
#ifdef TARGET_X86_64
892
    if (lm_capable_kernel) {
893
        kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
894
        kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
895
        kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
896
        kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
897
    }
898
#endif
899
    if (level == KVM_PUT_FULL_STATE) {
900
        /*
901
         * KVM is yet unable to synchronize TSC values of multiple VCPUs on
902
         * writeback. Until this is fixed, we only write the offset to SMP
903
         * guests after migration, desynchronizing the VCPUs, but avoiding
904
         * huge jump-backs that would occur without any writeback at all.
905
         */
906
        if (smp_cpus == 1 || env->tsc != 0) {
907
            kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
908
        }
909
    }
910
    /*
911
     * The following paravirtual MSRs have side effects on the guest or are
912
     * too heavy for normal writeback. Limit them to reset or full state
913
     * updates.
914
     */
915
    if (level >= KVM_PUT_RESET_STATE) {
916
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
917
                          env->system_time_msr);
918
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
919
#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
920
        if (has_msr_async_pf_en) {
921
            kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
922
                              env->async_pf_en_msr);
923
        }
924
#endif
925
    }
926
#ifdef KVM_CAP_MCE
927
    if (env->mcg_cap) {
928
        int i;
929

    
930
        kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
931
        kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
932
        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
933
            kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
934
        }
935
    }
936
#endif
937

    
938
    msr_data.info.nmsrs = n;
939

    
940
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
941

    
942
}
943

    
944

    
945
static int kvm_get_fpu(CPUState *env)
946
{
947
    struct kvm_fpu fpu;
948
    int i, ret;
949

    
950
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
951
    if (ret < 0) {
952
        return ret;
953
    }
954

    
955
    env->fpstt = (fpu.fsw >> 11) & 7;
956
    env->fpus = fpu.fsw;
957
    env->fpuc = fpu.fcw;
958
    for (i = 0; i < 8; ++i) {
959
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
960
    }
961
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
962
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
963
    env->mxcsr = fpu.mxcsr;
964

    
965
    return 0;
966
}
967

    
968
static int kvm_get_xsave(CPUState *env)
969
{
970
#ifdef KVM_CAP_XSAVE
971
    struct kvm_xsave* xsave;
972
    int ret, i;
973
    uint16_t cwd, swd, twd, fop;
974

    
975
    if (!kvm_has_xsave()) {
976
        return kvm_get_fpu(env);
977
    }
978

    
979
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
980
    ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
981
    if (ret < 0) {
982
        qemu_free(xsave);
983
        return ret;
984
    }
985

    
986
    cwd = (uint16_t)xsave->region[0];
987
    swd = (uint16_t)(xsave->region[0] >> 16);
988
    twd = (uint16_t)xsave->region[1];
989
    fop = (uint16_t)(xsave->region[1] >> 16);
990
    env->fpstt = (swd >> 11) & 7;
991
    env->fpus = swd;
992
    env->fpuc = cwd;
993
    for (i = 0; i < 8; ++i) {
994
        env->fptags[i] = !((twd >> i) & 1);
995
    }
996
    env->mxcsr = xsave->region[XSAVE_MXCSR];
997
    memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
998
            sizeof env->fpregs);
999
    memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1000
            sizeof env->xmm_regs);
1001
    env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1002
    memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1003
            sizeof env->ymmh_regs);
1004
    qemu_free(xsave);
1005
    return 0;
1006
#else
1007
    return kvm_get_fpu(env);
1008
#endif
1009
}
1010

    
1011
static int kvm_get_xcrs(CPUState *env)
1012
{
1013
#ifdef KVM_CAP_XCRS
1014
    int i, ret;
1015
    struct kvm_xcrs xcrs;
1016

    
1017
    if (!kvm_has_xcrs()) {
1018
        return 0;
1019
    }
1020

    
1021
    ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
1022
    if (ret < 0) {
1023
        return ret;
1024
    }
1025

    
1026
    for (i = 0; i < xcrs.nr_xcrs; i++) {
1027
        /* Only support xcr0 now */
1028
        if (xcrs.xcrs[0].xcr == 0) {
1029
            env->xcr0 = xcrs.xcrs[0].value;
1030
            break;
1031
        }
1032
    }
1033
    return 0;
1034
#else
1035
    return 0;
1036
#endif
1037
}
1038

    
1039
static int kvm_get_sregs(CPUState *env)
1040
{
1041
    struct kvm_sregs sregs;
1042
    uint32_t hflags;
1043
    int bit, i, ret;
1044

    
1045
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
1046
    if (ret < 0) {
1047
        return ret;
1048
    }
1049

    
1050
    /* There can only be one pending IRQ set in the bitmap at a time, so try
1051
       to find it and save its number instead (-1 for none). */
1052
    env->interrupt_injected = -1;
1053
    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1054
        if (sregs.interrupt_bitmap[i]) {
1055
            bit = ctz64(sregs.interrupt_bitmap[i]);
1056
            env->interrupt_injected = i * 64 + bit;
1057
            break;
1058
        }
1059
    }
1060

    
1061
    get_seg(&env->segs[R_CS], &sregs.cs);
1062
    get_seg(&env->segs[R_DS], &sregs.ds);
1063
    get_seg(&env->segs[R_ES], &sregs.es);
1064
    get_seg(&env->segs[R_FS], &sregs.fs);
1065
    get_seg(&env->segs[R_GS], &sregs.gs);
1066
    get_seg(&env->segs[R_SS], &sregs.ss);
1067

    
1068
    get_seg(&env->tr, &sregs.tr);
1069
    get_seg(&env->ldt, &sregs.ldt);
1070

    
1071
    env->idt.limit = sregs.idt.limit;
1072
    env->idt.base = sregs.idt.base;
1073
    env->gdt.limit = sregs.gdt.limit;
1074
    env->gdt.base = sregs.gdt.base;
1075

    
1076
    env->cr[0] = sregs.cr0;
1077
    env->cr[2] = sregs.cr2;
1078
    env->cr[3] = sregs.cr3;
1079
    env->cr[4] = sregs.cr4;
1080

    
1081
    cpu_set_apic_base(env->apic_state, sregs.apic_base);
1082

    
1083
    env->efer = sregs.efer;
1084
    //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1085

    
1086
#define HFLAG_COPY_MASK \
1087
    ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1088
       HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1089
       HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1090
       HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1091

    
1092
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1093
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1094
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1095
                (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1096
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1097
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1098
                (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1099

    
1100
    if (env->efer & MSR_EFER_LMA) {
1101
        hflags |= HF_LMA_MASK;
1102
    }
1103

    
1104
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1105
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1106
    } else {
1107
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1108
                    (DESC_B_SHIFT - HF_CS32_SHIFT);
1109
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1110
                    (DESC_B_SHIFT - HF_SS32_SHIFT);
1111
        if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1112
            !(hflags & HF_CS32_MASK)) {
1113
            hflags |= HF_ADDSEG_MASK;
1114
        } else {
1115
            hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1116
                        env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1117
        }
1118
    }
1119
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1120

    
1121
    return 0;
1122
}
1123

    
1124
static int kvm_get_msrs(CPUState *env)
1125
{
1126
    struct {
1127
        struct kvm_msrs info;
1128
        struct kvm_msr_entry entries[100];
1129
    } msr_data;
1130
    struct kvm_msr_entry *msrs = msr_data.entries;
1131
    int ret, i, n;
1132

    
1133
    n = 0;
1134
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
1135
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1136
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1137
    msrs[n++].index = MSR_PAT;
1138
    if (has_msr_star) {
1139
        msrs[n++].index = MSR_STAR;
1140
    }
1141
    if (has_msr_hsave_pa) {
1142
        msrs[n++].index = MSR_VM_HSAVE_PA;
1143
    }
1144

    
1145
    if (!env->tsc_valid) {
1146
        msrs[n++].index = MSR_IA32_TSC;
1147
        env->tsc_valid = !vm_running;
1148
    }
1149

    
1150
#ifdef TARGET_X86_64
1151
    if (lm_capable_kernel) {
1152
        msrs[n++].index = MSR_CSTAR;
1153
        msrs[n++].index = MSR_KERNELGSBASE;
1154
        msrs[n++].index = MSR_FMASK;
1155
        msrs[n++].index = MSR_LSTAR;
1156
    }
1157
#endif
1158
    msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1159
    msrs[n++].index = MSR_KVM_WALL_CLOCK;
1160
#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1161
    if (has_msr_async_pf_en) {
1162
        msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1163
    }
1164
#endif
1165

    
1166
#ifdef KVM_CAP_MCE
1167
    if (env->mcg_cap) {
1168
        msrs[n++].index = MSR_MCG_STATUS;
1169
        msrs[n++].index = MSR_MCG_CTL;
1170
        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1171
            msrs[n++].index = MSR_MC0_CTL + i;
1172
        }
1173
    }
1174
#endif
1175

    
1176
    msr_data.info.nmsrs = n;
1177
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1178
    if (ret < 0) {
1179
        return ret;
1180
    }
1181

    
1182
    for (i = 0; i < ret; i++) {
1183
        switch (msrs[i].index) {
1184
        case MSR_IA32_SYSENTER_CS:
1185
            env->sysenter_cs = msrs[i].data;
1186
            break;
1187
        case MSR_IA32_SYSENTER_ESP:
1188
            env->sysenter_esp = msrs[i].data;
1189
            break;
1190
        case MSR_IA32_SYSENTER_EIP:
1191
            env->sysenter_eip = msrs[i].data;
1192
            break;
1193
        case MSR_PAT:
1194
            env->pat = msrs[i].data;
1195
            break;
1196
        case MSR_STAR:
1197
            env->star = msrs[i].data;
1198
            break;
1199
#ifdef TARGET_X86_64
1200
        case MSR_CSTAR:
1201
            env->cstar = msrs[i].data;
1202
            break;
1203
        case MSR_KERNELGSBASE:
1204
            env->kernelgsbase = msrs[i].data;
1205
            break;
1206
        case MSR_FMASK:
1207
            env->fmask = msrs[i].data;
1208
            break;
1209
        case MSR_LSTAR:
1210
            env->lstar = msrs[i].data;
1211
            break;
1212
#endif
1213
        case MSR_IA32_TSC:
1214
            env->tsc = msrs[i].data;
1215
            break;
1216
        case MSR_VM_HSAVE_PA:
1217
            env->vm_hsave = msrs[i].data;
1218
            break;
1219
        case MSR_KVM_SYSTEM_TIME:
1220
            env->system_time_msr = msrs[i].data;
1221
            break;
1222
        case MSR_KVM_WALL_CLOCK:
1223
            env->wall_clock_msr = msrs[i].data;
1224
            break;
1225
#ifdef KVM_CAP_MCE
1226
        case MSR_MCG_STATUS:
1227
            env->mcg_status = msrs[i].data;
1228
            break;
1229
        case MSR_MCG_CTL:
1230
            env->mcg_ctl = msrs[i].data;
1231
            break;
1232
#endif
1233
        default:
1234
#ifdef KVM_CAP_MCE
1235
            if (msrs[i].index >= MSR_MC0_CTL &&
1236
                msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1237
                env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1238
            }
1239
#endif
1240
            break;
1241
#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1242
        case MSR_KVM_ASYNC_PF_EN:
1243
            env->async_pf_en_msr = msrs[i].data;
1244
            break;
1245
#endif
1246
        }
1247
    }
1248

    
1249
    return 0;
1250
}
1251

    
1252
static int kvm_put_mp_state(CPUState *env)
1253
{
1254
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1255

    
1256
    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1257
}
1258

    
1259
static int kvm_get_mp_state(CPUState *env)
1260
{
1261
    struct kvm_mp_state mp_state;
1262
    int ret;
1263

    
1264
    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1265
    if (ret < 0) {
1266
        return ret;
1267
    }
1268
    env->mp_state = mp_state.mp_state;
1269
    if (kvm_irqchip_in_kernel()) {
1270
        env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1271
    }
1272
    return 0;
1273
}
1274

    
1275
static int kvm_put_vcpu_events(CPUState *env, int level)
1276
{
1277
#ifdef KVM_CAP_VCPU_EVENTS
1278
    struct kvm_vcpu_events events;
1279

    
1280
    if (!kvm_has_vcpu_events()) {
1281
        return 0;
1282
    }
1283

    
1284
    events.exception.injected = (env->exception_injected >= 0);
1285
    events.exception.nr = env->exception_injected;
1286
    events.exception.has_error_code = env->has_error_code;
1287
    events.exception.error_code = env->error_code;
1288

    
1289
    events.interrupt.injected = (env->interrupt_injected >= 0);
1290
    events.interrupt.nr = env->interrupt_injected;
1291
    events.interrupt.soft = env->soft_interrupt;
1292

    
1293
    events.nmi.injected = env->nmi_injected;
1294
    events.nmi.pending = env->nmi_pending;
1295
    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1296

    
1297
    events.sipi_vector = env->sipi_vector;
1298

    
1299
    events.flags = 0;
1300
    if (level >= KVM_PUT_RESET_STATE) {
1301
        events.flags |=
1302
            KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1303
    }
1304

    
1305
    return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1306
#else
1307
    return 0;
1308
#endif
1309
}
1310

    
1311
static int kvm_get_vcpu_events(CPUState *env)
1312
{
1313
#ifdef KVM_CAP_VCPU_EVENTS
1314
    struct kvm_vcpu_events events;
1315
    int ret;
1316

    
1317
    if (!kvm_has_vcpu_events()) {
1318
        return 0;
1319
    }
1320

    
1321
    ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1322
    if (ret < 0) {
1323
       return ret;
1324
    }
1325
    env->exception_injected =
1326
       events.exception.injected ? events.exception.nr : -1;
1327
    env->has_error_code = events.exception.has_error_code;
1328
    env->error_code = events.exception.error_code;
1329

    
1330
    env->interrupt_injected =
1331
        events.interrupt.injected ? events.interrupt.nr : -1;
1332
    env->soft_interrupt = events.interrupt.soft;
1333

    
1334
    env->nmi_injected = events.nmi.injected;
1335
    env->nmi_pending = events.nmi.pending;
1336
    if (events.nmi.masked) {
1337
        env->hflags2 |= HF2_NMI_MASK;
1338
    } else {
1339
        env->hflags2 &= ~HF2_NMI_MASK;
1340
    }
1341

    
1342
    env->sipi_vector = events.sipi_vector;
1343
#endif
1344

    
1345
    return 0;
1346
}
1347

    
1348
static int kvm_guest_debug_workarounds(CPUState *env)
1349
{
1350
    int ret = 0;
1351
#ifdef KVM_CAP_SET_GUEST_DEBUG
1352
    unsigned long reinject_trap = 0;
1353

    
1354
    if (!kvm_has_vcpu_events()) {
1355
        if (env->exception_injected == 1) {
1356
            reinject_trap = KVM_GUESTDBG_INJECT_DB;
1357
        } else if (env->exception_injected == 3) {
1358
            reinject_trap = KVM_GUESTDBG_INJECT_BP;
1359
        }
1360
        env->exception_injected = -1;
1361
    }
1362

    
1363
    /*
1364
     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1365
     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1366
     * by updating the debug state once again if single-stepping is on.
1367
     * Another reason to call kvm_update_guest_debug here is a pending debug
1368
     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1369
     * reinject them via SET_GUEST_DEBUG.
1370
     */
1371
    if (reinject_trap ||
1372
        (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1373
        ret = kvm_update_guest_debug(env, reinject_trap);
1374
    }
1375
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1376
    return ret;
1377
}
1378

    
1379
static int kvm_put_debugregs(CPUState *env)
1380
{
1381
#ifdef KVM_CAP_DEBUGREGS
1382
    struct kvm_debugregs dbgregs;
1383
    int i;
1384

    
1385
    if (!kvm_has_debugregs()) {
1386
        return 0;
1387
    }
1388

    
1389
    for (i = 0; i < 4; i++) {
1390
        dbgregs.db[i] = env->dr[i];
1391
    }
1392
    dbgregs.dr6 = env->dr[6];
1393
    dbgregs.dr7 = env->dr[7];
1394
    dbgregs.flags = 0;
1395

    
1396
    return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1397
#else
1398
    return 0;
1399
#endif
1400
}
1401

    
1402
static int kvm_get_debugregs(CPUState *env)
1403
{
1404
#ifdef KVM_CAP_DEBUGREGS
1405
    struct kvm_debugregs dbgregs;
1406
    int i, ret;
1407

    
1408
    if (!kvm_has_debugregs()) {
1409
        return 0;
1410
    }
1411

    
1412
    ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1413
    if (ret < 0) {
1414
        return ret;
1415
    }
1416
    for (i = 0; i < 4; i++) {
1417
        env->dr[i] = dbgregs.db[i];
1418
    }
1419
    env->dr[4] = env->dr[6] = dbgregs.dr6;
1420
    env->dr[5] = env->dr[7] = dbgregs.dr7;
1421
#endif
1422

    
1423
    return 0;
1424
}
1425

    
1426
int kvm_arch_put_registers(CPUState *env, int level)
1427
{
1428
    int ret;
1429

    
1430
    assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1431

    
1432
    ret = kvm_getput_regs(env, 1);
1433
    if (ret < 0) {
1434
        return ret;
1435
    }
1436
    ret = kvm_put_xsave(env);
1437
    if (ret < 0) {
1438
        return ret;
1439
    }
1440
    ret = kvm_put_xcrs(env);
1441
    if (ret < 0) {
1442
        return ret;
1443
    }
1444
    ret = kvm_put_sregs(env);
1445
    if (ret < 0) {
1446
        return ret;
1447
    }
1448
    /* must be before kvm_put_msrs */
1449
    ret = kvm_inject_mce_oldstyle(env);
1450
    if (ret < 0) {
1451
        return ret;
1452
    }
1453
    ret = kvm_put_msrs(env, level);
1454
    if (ret < 0) {
1455
        return ret;
1456
    }
1457
    if (level >= KVM_PUT_RESET_STATE) {
1458
        ret = kvm_put_mp_state(env);
1459
        if (ret < 0) {
1460
            return ret;
1461
        }
1462
    }
1463
    ret = kvm_put_vcpu_events(env, level);
1464
    if (ret < 0) {
1465
        return ret;
1466
    }
1467
    ret = kvm_put_debugregs(env);
1468
    if (ret < 0) {
1469
        return ret;
1470
    }
1471
    /* must be last */
1472
    ret = kvm_guest_debug_workarounds(env);
1473
    if (ret < 0) {
1474
        return ret;
1475
    }
1476
    return 0;
1477
}
1478

    
1479
int kvm_arch_get_registers(CPUState *env)
1480
{
1481
    int ret;
1482

    
1483
    assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1484

    
1485
    ret = kvm_getput_regs(env, 0);
1486
    if (ret < 0) {
1487
        return ret;
1488
    }
1489
    ret = kvm_get_xsave(env);
1490
    if (ret < 0) {
1491
        return ret;
1492
    }
1493
    ret = kvm_get_xcrs(env);
1494
    if (ret < 0) {
1495
        return ret;
1496
    }
1497
    ret = kvm_get_sregs(env);
1498
    if (ret < 0) {
1499
        return ret;
1500
    }
1501
    ret = kvm_get_msrs(env);
1502
    if (ret < 0) {
1503
        return ret;
1504
    }
1505
    ret = kvm_get_mp_state(env);
1506
    if (ret < 0) {
1507
        return ret;
1508
    }
1509
    ret = kvm_get_vcpu_events(env);
1510
    if (ret < 0) {
1511
        return ret;
1512
    }
1513
    ret = kvm_get_debugregs(env);
1514
    if (ret < 0) {
1515
        return ret;
1516
    }
1517
    return 0;
1518
}
1519

    
1520
void kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1521
{
1522
    int ret;
1523

    
1524
    /* Inject NMI */
1525
    if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1526
        env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1527
        DPRINTF("injected NMI\n");
1528
        ret = kvm_vcpu_ioctl(env, KVM_NMI);
1529
        if (ret < 0) {
1530
            fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1531
                    strerror(-ret));
1532
        }
1533
    }
1534

    
1535
    if (!kvm_irqchip_in_kernel()) {
1536
        /* Force the VCPU out of its inner loop to process the INIT request */
1537
        if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1538
            env->exit_request = 1;
1539
        }
1540

    
1541
        /* Try to inject an interrupt if the guest can accept it */
1542
        if (run->ready_for_interrupt_injection &&
1543
            (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1544
            (env->eflags & IF_MASK)) {
1545
            int irq;
1546

    
1547
            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1548
            irq = cpu_get_pic_interrupt(env);
1549
            if (irq >= 0) {
1550
                struct kvm_interrupt intr;
1551

    
1552
                intr.irq = irq;
1553
                DPRINTF("injected interrupt %d\n", irq);
1554
                ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1555
                if (ret < 0) {
1556
                    fprintf(stderr,
1557
                            "KVM: injection failed, interrupt lost (%s)\n",
1558
                            strerror(-ret));
1559
                }
1560
            }
1561
        }
1562

    
1563
        /* If we have an interrupt but the guest is not ready to receive an
1564
         * interrupt, request an interrupt window exit.  This will
1565
         * cause a return to userspace as soon as the guest is ready to
1566
         * receive interrupts. */
1567
        if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1568
            run->request_interrupt_window = 1;
1569
        } else {
1570
            run->request_interrupt_window = 0;
1571
        }
1572

    
1573
        DPRINTF("setting tpr\n");
1574
        run->cr8 = cpu_get_apic_tpr(env->apic_state);
1575
    }
1576
}
1577

    
1578
void kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1579
{
1580
    if (run->if_flag) {
1581
        env->eflags |= IF_MASK;
1582
    } else {
1583
        env->eflags &= ~IF_MASK;
1584
    }
1585
    cpu_set_apic_tpr(env->apic_state, run->cr8);
1586
    cpu_set_apic_base(env->apic_state, run->apic_base);
1587
}
1588

    
1589
int kvm_arch_process_async_events(CPUState *env)
1590
{
1591
    if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1592
        /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1593
        assert(env->mcg_cap);
1594

    
1595
        env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1596

    
1597
        kvm_cpu_synchronize_state(env);
1598

    
1599
        if (env->exception_injected == EXCP08_DBLE) {
1600
            /* this means triple fault */
1601
            qemu_system_reset_request();
1602
            env->exit_request = 1;
1603
            return 0;
1604
        }
1605
        env->exception_injected = EXCP12_MCHK;
1606
        env->has_error_code = 0;
1607

    
1608
        env->halted = 0;
1609
        if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1610
            env->mp_state = KVM_MP_STATE_RUNNABLE;
1611
        }
1612
    }
1613

    
1614
    if (kvm_irqchip_in_kernel()) {
1615
        return 0;
1616
    }
1617

    
1618
    if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1619
         (env->eflags & IF_MASK)) ||
1620
        (env->interrupt_request & CPU_INTERRUPT_NMI)) {
1621
        env->halted = 0;
1622
    }
1623
    if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1624
        kvm_cpu_synchronize_state(env);
1625
        do_cpu_init(env);
1626
    }
1627
    if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1628
        kvm_cpu_synchronize_state(env);
1629
        do_cpu_sipi(env);
1630
    }
1631

    
1632
    return env->halted;
1633
}
1634

    
1635
static int kvm_handle_halt(CPUState *env)
1636
{
1637
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1638
          (env->eflags & IF_MASK)) &&
1639
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1640
        env->halted = 1;
1641
        return EXCP_HLT;
1642
    }
1643

    
1644
    return 0;
1645
}
1646

    
1647
#ifdef KVM_CAP_SET_GUEST_DEBUG
1648
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1649
{
1650
    static const uint8_t int3 = 0xcc;
1651

    
1652
    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1653
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1654
        return -EINVAL;
1655
    }
1656
    return 0;
1657
}
1658

    
1659
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1660
{
1661
    uint8_t int3;
1662

    
1663
    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1664
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1665
        return -EINVAL;
1666
    }
1667
    return 0;
1668
}
1669

    
1670
static struct {
1671
    target_ulong addr;
1672
    int len;
1673
    int type;
1674
} hw_breakpoint[4];
1675

    
1676
static int nb_hw_breakpoint;
1677

    
1678
static int find_hw_breakpoint(target_ulong addr, int len, int type)
1679
{
1680
    int n;
1681

    
1682
    for (n = 0; n < nb_hw_breakpoint; n++) {
1683
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1684
            (hw_breakpoint[n].len == len || len == -1)) {
1685
            return n;
1686
        }
1687
    }
1688
    return -1;
1689
}
1690

    
1691
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1692
                                  target_ulong len, int type)
1693
{
1694
    switch (type) {
1695
    case GDB_BREAKPOINT_HW:
1696
        len = 1;
1697
        break;
1698
    case GDB_WATCHPOINT_WRITE:
1699
    case GDB_WATCHPOINT_ACCESS:
1700
        switch (len) {
1701
        case 1:
1702
            break;
1703
        case 2:
1704
        case 4:
1705
        case 8:
1706
            if (addr & (len - 1)) {
1707
                return -EINVAL;
1708
            }
1709
            break;
1710
        default:
1711
            return -EINVAL;
1712
        }
1713
        break;
1714
    default:
1715
        return -ENOSYS;
1716
    }
1717

    
1718
    if (nb_hw_breakpoint == 4) {
1719
        return -ENOBUFS;
1720
    }
1721
    if (find_hw_breakpoint(addr, len, type) >= 0) {
1722
        return -EEXIST;
1723
    }
1724
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
1725
    hw_breakpoint[nb_hw_breakpoint].len = len;
1726
    hw_breakpoint[nb_hw_breakpoint].type = type;
1727
    nb_hw_breakpoint++;
1728

    
1729
    return 0;
1730
}
1731

    
1732
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1733
                                  target_ulong len, int type)
1734
{
1735
    int n;
1736

    
1737
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1738
    if (n < 0) {
1739
        return -ENOENT;
1740
    }
1741
    nb_hw_breakpoint--;
1742
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1743

    
1744
    return 0;
1745
}
1746

    
1747
void kvm_arch_remove_all_hw_breakpoints(void)
1748
{
1749
    nb_hw_breakpoint = 0;
1750
}
1751

    
1752
static CPUWatchpoint hw_watchpoint;
1753

    
1754
static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info)
1755
{
1756
    int ret = 0;
1757
    int n;
1758

    
1759
    if (arch_info->exception == 1) {
1760
        if (arch_info->dr6 & (1 << 14)) {
1761
            if (cpu_single_env->singlestep_enabled) {
1762
                ret = EXCP_DEBUG;
1763
            }
1764
        } else {
1765
            for (n = 0; n < 4; n++) {
1766
                if (arch_info->dr6 & (1 << n)) {
1767
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1768
                    case 0x0:
1769
                        ret = EXCP_DEBUG;
1770
                        break;
1771
                    case 0x1:
1772
                        ret = EXCP_DEBUG;
1773
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1774
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1775
                        hw_watchpoint.flags = BP_MEM_WRITE;
1776
                        break;
1777
                    case 0x3:
1778
                        ret = EXCP_DEBUG;
1779
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1780
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1781
                        hw_watchpoint.flags = BP_MEM_ACCESS;
1782
                        break;
1783
                    }
1784
                }
1785
            }
1786
        }
1787
    } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1788
        ret = EXCP_DEBUG;
1789
    }
1790
    if (ret == 0) {
1791
        cpu_synchronize_state(cpu_single_env);
1792
        assert(cpu_single_env->exception_injected == -1);
1793

    
1794
        /* pass to guest */
1795
        cpu_single_env->exception_injected = arch_info->exception;
1796
        cpu_single_env->has_error_code = 0;
1797
    }
1798

    
1799
    return ret;
1800
}
1801

    
1802
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1803
{
1804
    const uint8_t type_code[] = {
1805
        [GDB_BREAKPOINT_HW] = 0x0,
1806
        [GDB_WATCHPOINT_WRITE] = 0x1,
1807
        [GDB_WATCHPOINT_ACCESS] = 0x3
1808
    };
1809
    const uint8_t len_code[] = {
1810
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1811
    };
1812
    int n;
1813

    
1814
    if (kvm_sw_breakpoints_active(env)) {
1815
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1816
    }
1817
    if (nb_hw_breakpoint > 0) {
1818
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1819
        dbg->arch.debugreg[7] = 0x0600;
1820
        for (n = 0; n < nb_hw_breakpoint; n++) {
1821
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1822
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1823
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1824
                ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1825
        }
1826
    }
1827
}
1828
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1829

    
1830
static bool host_supports_vmx(void)
1831
{
1832
    uint32_t ecx, unused;
1833

    
1834
    host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1835
    return ecx & CPUID_EXT_VMX;
1836
}
1837

    
1838
#define VMX_INVALID_GUEST_STATE 0x80000021
1839

    
1840
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1841
{
1842
    uint64_t code;
1843
    int ret;
1844

    
1845
    switch (run->exit_reason) {
1846
    case KVM_EXIT_HLT:
1847
        DPRINTF("handle_hlt\n");
1848
        ret = kvm_handle_halt(env);
1849
        break;
1850
    case KVM_EXIT_SET_TPR:
1851
        ret = 0;
1852
        break;
1853
    case KVM_EXIT_FAIL_ENTRY:
1854
        code = run->fail_entry.hardware_entry_failure_reason;
1855
        fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1856
                code);
1857
        if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1858
            fprintf(stderr,
1859
                    "\nIf you're runnning a guest on an Intel machine without "
1860
                        "unrestricted mode\n"
1861
                    "support, the failure can be most likely due to the guest "
1862
                        "entering an invalid\n"
1863
                    "state for Intel VT. For example, the guest maybe running "
1864
                        "in big real mode\n"
1865
                    "which is not supported on less recent Intel processors."
1866
                        "\n\n");
1867
        }
1868
        ret = -1;
1869
        break;
1870
    case KVM_EXIT_EXCEPTION:
1871
        fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1872
                run->ex.exception, run->ex.error_code);
1873
        ret = -1;
1874
        break;
1875
#ifdef KVM_CAP_SET_GUEST_DEBUG
1876
    case KVM_EXIT_DEBUG:
1877
        DPRINTF("kvm_exit_debug\n");
1878
        ret = kvm_handle_debug(&run->debug.arch);
1879
        break;
1880
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1881
    default:
1882
        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1883
        ret = -1;
1884
        break;
1885
    }
1886

    
1887
    return ret;
1888
}
1889

    
1890
bool kvm_arch_stop_on_emulation_error(CPUState *env)
1891
{
1892
    return !(env->cr[0] & CR0_PE_MASK) ||
1893
           ((env->segs[R_CS].selector  & 3) != 3);
1894
}