Statistics
| Branch: | Revision:

root / target-i386 / ops_sse.h @ 66fcf8ff

History | View | Annotate | Download (59.1 kB)

1
/*
2
 *  MMX/3DNow!/SSE/SSE2/SSE3/SSSE3/SSE4/PNI support
3
 *
4
 *  Copyright (c) 2005 Fabrice Bellard
5
 *  Copyright (c) 2008 Intel Corporation  <andrew.zaborowski@intel.com>
6
 *
7
 * This library is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2 of the License, or (at your option) any later version.
11
 *
12
 * This library is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19
 */
20
#if SHIFT == 0
21
#define Reg MMXReg
22
#define XMM_ONLY(...)
23
#define B(n) MMX_B(n)
24
#define W(n) MMX_W(n)
25
#define L(n) MMX_L(n)
26
#define Q(n) q
27
#define SUFFIX _mmx
28
#else
29
#define Reg XMMReg
30
#define XMM_ONLY(...) __VA_ARGS__
31
#define B(n) XMM_B(n)
32
#define W(n) XMM_W(n)
33
#define L(n) XMM_L(n)
34
#define Q(n) XMM_Q(n)
35
#define SUFFIX _xmm
36
#endif
37

    
38
void glue(helper_psrlw, SUFFIX)(Reg *d, Reg *s)
39
{
40
    int shift;
41

    
42
    if (s->Q(0) > 15) {
43
        d->Q(0) = 0;
44
#if SHIFT == 1
45
        d->Q(1) = 0;
46
#endif
47
    } else {
48
        shift = s->B(0);
49
        d->W(0) >>= shift;
50
        d->W(1) >>= shift;
51
        d->W(2) >>= shift;
52
        d->W(3) >>= shift;
53
#if SHIFT == 1
54
        d->W(4) >>= shift;
55
        d->W(5) >>= shift;
56
        d->W(6) >>= shift;
57
        d->W(7) >>= shift;
58
#endif
59
    }
60
}
61

    
62
void glue(helper_psraw, SUFFIX)(Reg *d, Reg *s)
63
{
64
    int shift;
65

    
66
    if (s->Q(0) > 15) {
67
        shift = 15;
68
    } else {
69
        shift = s->B(0);
70
    }
71
    d->W(0) = (int16_t)d->W(0) >> shift;
72
    d->W(1) = (int16_t)d->W(1) >> shift;
73
    d->W(2) = (int16_t)d->W(2) >> shift;
74
    d->W(3) = (int16_t)d->W(3) >> shift;
75
#if SHIFT == 1
76
    d->W(4) = (int16_t)d->W(4) >> shift;
77
    d->W(5) = (int16_t)d->W(5) >> shift;
78
    d->W(6) = (int16_t)d->W(6) >> shift;
79
    d->W(7) = (int16_t)d->W(7) >> shift;
80
#endif
81
}
82

    
83
void glue(helper_psllw, SUFFIX)(Reg *d, Reg *s)
84
{
85
    int shift;
86

    
87
    if (s->Q(0) > 15) {
88
        d->Q(0) = 0;
89
#if SHIFT == 1
90
        d->Q(1) = 0;
91
#endif
92
    } else {
93
        shift = s->B(0);
94
        d->W(0) <<= shift;
95
        d->W(1) <<= shift;
96
        d->W(2) <<= shift;
97
        d->W(3) <<= shift;
98
#if SHIFT == 1
99
        d->W(4) <<= shift;
100
        d->W(5) <<= shift;
101
        d->W(6) <<= shift;
102
        d->W(7) <<= shift;
103
#endif
104
    }
105
}
106

    
107
void glue(helper_psrld, SUFFIX)(Reg *d, Reg *s)
108
{
109
    int shift;
110

    
111
    if (s->Q(0) > 31) {
112
        d->Q(0) = 0;
113
#if SHIFT == 1
114
        d->Q(1) = 0;
115
#endif
116
    } else {
117
        shift = s->B(0);
118
        d->L(0) >>= shift;
119
        d->L(1) >>= shift;
120
#if SHIFT == 1
121
        d->L(2) >>= shift;
122
        d->L(3) >>= shift;
123
#endif
124
    }
125
}
126

    
127
void glue(helper_psrad, SUFFIX)(Reg *d, Reg *s)
128
{
129
    int shift;
130

    
131
    if (s->Q(0) > 31) {
132
        shift = 31;
133
    } else {
134
        shift = s->B(0);
135
    }
136
    d->L(0) = (int32_t)d->L(0) >> shift;
137
    d->L(1) = (int32_t)d->L(1) >> shift;
138
#if SHIFT == 1
139
    d->L(2) = (int32_t)d->L(2) >> shift;
140
    d->L(3) = (int32_t)d->L(3) >> shift;
141
#endif
142
}
143

    
144
void glue(helper_pslld, SUFFIX)(Reg *d, Reg *s)
145
{
146
    int shift;
147

    
148
    if (s->Q(0) > 31) {
149
        d->Q(0) = 0;
150
#if SHIFT == 1
151
        d->Q(1) = 0;
152
#endif
153
    } else {
154
        shift = s->B(0);
155
        d->L(0) <<= shift;
156
        d->L(1) <<= shift;
157
#if SHIFT == 1
158
        d->L(2) <<= shift;
159
        d->L(3) <<= shift;
160
#endif
161
    }
162
}
163

    
164
void glue(helper_psrlq, SUFFIX)(Reg *d, Reg *s)
165
{
166
    int shift;
167

    
168
    if (s->Q(0) > 63) {
169
        d->Q(0) = 0;
170
#if SHIFT == 1
171
        d->Q(1) = 0;
172
#endif
173
    } else {
174
        shift = s->B(0);
175
        d->Q(0) >>= shift;
176
#if SHIFT == 1
177
        d->Q(1) >>= shift;
178
#endif
179
    }
180
}
181

    
182
void glue(helper_psllq, SUFFIX)(Reg *d, Reg *s)
183
{
184
    int shift;
185

    
186
    if (s->Q(0) > 63) {
187
        d->Q(0) = 0;
188
#if SHIFT == 1
189
        d->Q(1) = 0;
190
#endif
191
    } else {
192
        shift = s->B(0);
193
        d->Q(0) <<= shift;
194
#if SHIFT == 1
195
        d->Q(1) <<= shift;
196
#endif
197
    }
198
}
199

    
200
#if SHIFT == 1
201
void glue(helper_psrldq, SUFFIX)(Reg *d, Reg *s)
202
{
203
    int shift, i;
204

    
205
    shift = s->L(0);
206
    if (shift > 16)
207
        shift = 16;
208
    for(i = 0; i < 16 - shift; i++)
209
        d->B(i) = d->B(i + shift);
210
    for(i = 16 - shift; i < 16; i++)
211
        d->B(i) = 0;
212
}
213

    
214
void glue(helper_pslldq, SUFFIX)(Reg *d, Reg *s)
215
{
216
    int shift, i;
217

    
218
    shift = s->L(0);
219
    if (shift > 16)
220
        shift = 16;
221
    for(i = 15; i >= shift; i--)
222
        d->B(i) = d->B(i - shift);
223
    for(i = 0; i < shift; i++)
224
        d->B(i) = 0;
225
}
226
#endif
227

    
228
#define SSE_HELPER_B(name, F)\
229
void glue(name, SUFFIX) (Reg *d, Reg *s)\
230
{\
231
    d->B(0) = F(d->B(0), s->B(0));\
232
    d->B(1) = F(d->B(1), s->B(1));\
233
    d->B(2) = F(d->B(2), s->B(2));\
234
    d->B(3) = F(d->B(3), s->B(3));\
235
    d->B(4) = F(d->B(4), s->B(4));\
236
    d->B(5) = F(d->B(5), s->B(5));\
237
    d->B(6) = F(d->B(6), s->B(6));\
238
    d->B(7) = F(d->B(7), s->B(7));\
239
    XMM_ONLY(\
240
    d->B(8) = F(d->B(8), s->B(8));\
241
    d->B(9) = F(d->B(9), s->B(9));\
242
    d->B(10) = F(d->B(10), s->B(10));\
243
    d->B(11) = F(d->B(11), s->B(11));\
244
    d->B(12) = F(d->B(12), s->B(12));\
245
    d->B(13) = F(d->B(13), s->B(13));\
246
    d->B(14) = F(d->B(14), s->B(14));\
247
    d->B(15) = F(d->B(15), s->B(15));\
248
    )\
249
}
250

    
251
#define SSE_HELPER_W(name, F)\
252
void glue(name, SUFFIX) (Reg *d, Reg *s)\
253
{\
254
    d->W(0) = F(d->W(0), s->W(0));\
255
    d->W(1) = F(d->W(1), s->W(1));\
256
    d->W(2) = F(d->W(2), s->W(2));\
257
    d->W(3) = F(d->W(3), s->W(3));\
258
    XMM_ONLY(\
259
    d->W(4) = F(d->W(4), s->W(4));\
260
    d->W(5) = F(d->W(5), s->W(5));\
261
    d->W(6) = F(d->W(6), s->W(6));\
262
    d->W(7) = F(d->W(7), s->W(7));\
263
    )\
264
}
265

    
266
#define SSE_HELPER_L(name, F)\
267
void glue(name, SUFFIX) (Reg *d, Reg *s)\
268
{\
269
    d->L(0) = F(d->L(0), s->L(0));\
270
    d->L(1) = F(d->L(1), s->L(1));\
271
    XMM_ONLY(\
272
    d->L(2) = F(d->L(2), s->L(2));\
273
    d->L(3) = F(d->L(3), s->L(3));\
274
    )\
275
}
276

    
277
#define SSE_HELPER_Q(name, F)\
278
void glue(name, SUFFIX) (Reg *d, Reg *s)\
279
{\
280
    d->Q(0) = F(d->Q(0), s->Q(0));\
281
    XMM_ONLY(\
282
    d->Q(1) = F(d->Q(1), s->Q(1));\
283
    )\
284
}
285

    
286
#if SHIFT == 0
287
static inline int satub(int x)
288
{
289
    if (x < 0)
290
        return 0;
291
    else if (x > 255)
292
        return 255;
293
    else
294
        return x;
295
}
296

    
297
static inline int satuw(int x)
298
{
299
    if (x < 0)
300
        return 0;
301
    else if (x > 65535)
302
        return 65535;
303
    else
304
        return x;
305
}
306

    
307
static inline int satsb(int x)
308
{
309
    if (x < -128)
310
        return -128;
311
    else if (x > 127)
312
        return 127;
313
    else
314
        return x;
315
}
316

    
317
static inline int satsw(int x)
318
{
319
    if (x < -32768)
320
        return -32768;
321
    else if (x > 32767)
322
        return 32767;
323
    else
324
        return x;
325
}
326

    
327
#define FADD(a, b) ((a) + (b))
328
#define FADDUB(a, b) satub((a) + (b))
329
#define FADDUW(a, b) satuw((a) + (b))
330
#define FADDSB(a, b) satsb((int8_t)(a) + (int8_t)(b))
331
#define FADDSW(a, b) satsw((int16_t)(a) + (int16_t)(b))
332

    
333
#define FSUB(a, b) ((a) - (b))
334
#define FSUBUB(a, b) satub((a) - (b))
335
#define FSUBUW(a, b) satuw((a) - (b))
336
#define FSUBSB(a, b) satsb((int8_t)(a) - (int8_t)(b))
337
#define FSUBSW(a, b) satsw((int16_t)(a) - (int16_t)(b))
338
#define FMINUB(a, b) ((a) < (b)) ? (a) : (b)
339
#define FMINSW(a, b) ((int16_t)(a) < (int16_t)(b)) ? (a) : (b)
340
#define FMAXUB(a, b) ((a) > (b)) ? (a) : (b)
341
#define FMAXSW(a, b) ((int16_t)(a) > (int16_t)(b)) ? (a) : (b)
342

    
343
#define FAND(a, b) (a) & (b)
344
#define FANDN(a, b) ((~(a)) & (b))
345
#define FOR(a, b) (a) | (b)
346
#define FXOR(a, b) (a) ^ (b)
347

    
348
#define FCMPGTB(a, b) (int8_t)(a) > (int8_t)(b) ? -1 : 0
349
#define FCMPGTW(a, b) (int16_t)(a) > (int16_t)(b) ? -1 : 0
350
#define FCMPGTL(a, b) (int32_t)(a) > (int32_t)(b) ? -1 : 0
351
#define FCMPEQ(a, b) (a) == (b) ? -1 : 0
352

    
353
#define FMULLW(a, b) (a) * (b)
354
#define FMULHRW(a, b) ((int16_t)(a) * (int16_t)(b) + 0x8000) >> 16
355
#define FMULHUW(a, b) (a) * (b) >> 16
356
#define FMULHW(a, b) (int16_t)(a) * (int16_t)(b) >> 16
357

    
358
#define FAVG(a, b) ((a) + (b) + 1) >> 1
359
#endif
360

    
361
SSE_HELPER_B(helper_paddb, FADD)
362
SSE_HELPER_W(helper_paddw, FADD)
363
SSE_HELPER_L(helper_paddl, FADD)
364
SSE_HELPER_Q(helper_paddq, FADD)
365

    
366
SSE_HELPER_B(helper_psubb, FSUB)
367
SSE_HELPER_W(helper_psubw, FSUB)
368
SSE_HELPER_L(helper_psubl, FSUB)
369
SSE_HELPER_Q(helper_psubq, FSUB)
370

    
371
SSE_HELPER_B(helper_paddusb, FADDUB)
372
SSE_HELPER_B(helper_paddsb, FADDSB)
373
SSE_HELPER_B(helper_psubusb, FSUBUB)
374
SSE_HELPER_B(helper_psubsb, FSUBSB)
375

    
376
SSE_HELPER_W(helper_paddusw, FADDUW)
377
SSE_HELPER_W(helper_paddsw, FADDSW)
378
SSE_HELPER_W(helper_psubusw, FSUBUW)
379
SSE_HELPER_W(helper_psubsw, FSUBSW)
380

    
381
SSE_HELPER_B(helper_pminub, FMINUB)
382
SSE_HELPER_B(helper_pmaxub, FMAXUB)
383

    
384
SSE_HELPER_W(helper_pminsw, FMINSW)
385
SSE_HELPER_W(helper_pmaxsw, FMAXSW)
386

    
387
SSE_HELPER_Q(helper_pand, FAND)
388
SSE_HELPER_Q(helper_pandn, FANDN)
389
SSE_HELPER_Q(helper_por, FOR)
390
SSE_HELPER_Q(helper_pxor, FXOR)
391

    
392
SSE_HELPER_B(helper_pcmpgtb, FCMPGTB)
393
SSE_HELPER_W(helper_pcmpgtw, FCMPGTW)
394
SSE_HELPER_L(helper_pcmpgtl, FCMPGTL)
395

    
396
SSE_HELPER_B(helper_pcmpeqb, FCMPEQ)
397
SSE_HELPER_W(helper_pcmpeqw, FCMPEQ)
398
SSE_HELPER_L(helper_pcmpeql, FCMPEQ)
399

    
400
SSE_HELPER_W(helper_pmullw, FMULLW)
401
#if SHIFT == 0
402
SSE_HELPER_W(helper_pmulhrw, FMULHRW)
403
#endif
404
SSE_HELPER_W(helper_pmulhuw, FMULHUW)
405
SSE_HELPER_W(helper_pmulhw, FMULHW)
406

    
407
SSE_HELPER_B(helper_pavgb, FAVG)
408
SSE_HELPER_W(helper_pavgw, FAVG)
409

    
410
void glue(helper_pmuludq, SUFFIX) (Reg *d, Reg *s)
411
{
412
    d->Q(0) = (uint64_t)s->L(0) * (uint64_t)d->L(0);
413
#if SHIFT == 1
414
    d->Q(1) = (uint64_t)s->L(2) * (uint64_t)d->L(2);
415
#endif
416
}
417

    
418
void glue(helper_pmaddwd, SUFFIX) (Reg *d, Reg *s)
419
{
420
    int i;
421

    
422
    for(i = 0; i < (2 << SHIFT); i++) {
423
        d->L(i) = (int16_t)s->W(2*i) * (int16_t)d->W(2*i) +
424
            (int16_t)s->W(2*i+1) * (int16_t)d->W(2*i+1);
425
    }
426
}
427

    
428
#if SHIFT == 0
429
static inline int abs1(int a)
430
{
431
    if (a < 0)
432
        return -a;
433
    else
434
        return a;
435
}
436
#endif
437
void glue(helper_psadbw, SUFFIX) (Reg *d, Reg *s)
438
{
439
    unsigned int val;
440

    
441
    val = 0;
442
    val += abs1(d->B(0) - s->B(0));
443
    val += abs1(d->B(1) - s->B(1));
444
    val += abs1(d->B(2) - s->B(2));
445
    val += abs1(d->B(3) - s->B(3));
446
    val += abs1(d->B(4) - s->B(4));
447
    val += abs1(d->B(5) - s->B(5));
448
    val += abs1(d->B(6) - s->B(6));
449
    val += abs1(d->B(7) - s->B(7));
450
    d->Q(0) = val;
451
#if SHIFT == 1
452
    val = 0;
453
    val += abs1(d->B(8) - s->B(8));
454
    val += abs1(d->B(9) - s->B(9));
455
    val += abs1(d->B(10) - s->B(10));
456
    val += abs1(d->B(11) - s->B(11));
457
    val += abs1(d->B(12) - s->B(12));
458
    val += abs1(d->B(13) - s->B(13));
459
    val += abs1(d->B(14) - s->B(14));
460
    val += abs1(d->B(15) - s->B(15));
461
    d->Q(1) = val;
462
#endif
463
}
464

    
465
void glue(helper_maskmov, SUFFIX) (Reg *d, Reg *s, target_ulong a0)
466
{
467
    int i;
468
    for(i = 0; i < (8 << SHIFT); i++) {
469
        if (s->B(i) & 0x80)
470
            stb(a0 + i, d->B(i));
471
    }
472
}
473

    
474
void glue(helper_movl_mm_T0, SUFFIX) (Reg *d, uint32_t val)
475
{
476
    d->L(0) = val;
477
    d->L(1) = 0;
478
#if SHIFT == 1
479
    d->Q(1) = 0;
480
#endif
481
}
482

    
483
#ifdef TARGET_X86_64
484
void glue(helper_movq_mm_T0, SUFFIX) (Reg *d, uint64_t val)
485
{
486
    d->Q(0) = val;
487
#if SHIFT == 1
488
    d->Q(1) = 0;
489
#endif
490
}
491
#endif
492

    
493
#if SHIFT == 0
494
void glue(helper_pshufw, SUFFIX) (Reg *d, Reg *s, int order)
495
{
496
    Reg r;
497
    r.W(0) = s->W(order & 3);
498
    r.W(1) = s->W((order >> 2) & 3);
499
    r.W(2) = s->W((order >> 4) & 3);
500
    r.W(3) = s->W((order >> 6) & 3);
501
    *d = r;
502
}
503
#else
504
void helper_shufps(Reg *d, Reg *s, int order)
505
{
506
    Reg r;
507
    r.L(0) = d->L(order & 3);
508
    r.L(1) = d->L((order >> 2) & 3);
509
    r.L(2) = s->L((order >> 4) & 3);
510
    r.L(3) = s->L((order >> 6) & 3);
511
    *d = r;
512
}
513

    
514
void helper_shufpd(Reg *d, Reg *s, int order)
515
{
516
    Reg r;
517
    r.Q(0) = d->Q(order & 1);
518
    r.Q(1) = s->Q((order >> 1) & 1);
519
    *d = r;
520
}
521

    
522
void glue(helper_pshufd, SUFFIX) (Reg *d, Reg *s, int order)
523
{
524
    Reg r;
525
    r.L(0) = s->L(order & 3);
526
    r.L(1) = s->L((order >> 2) & 3);
527
    r.L(2) = s->L((order >> 4) & 3);
528
    r.L(3) = s->L((order >> 6) & 3);
529
    *d = r;
530
}
531

    
532
void glue(helper_pshuflw, SUFFIX) (Reg *d, Reg *s, int order)
533
{
534
    Reg r;
535
    r.W(0) = s->W(order & 3);
536
    r.W(1) = s->W((order >> 2) & 3);
537
    r.W(2) = s->W((order >> 4) & 3);
538
    r.W(3) = s->W((order >> 6) & 3);
539
    r.Q(1) = s->Q(1);
540
    *d = r;
541
}
542

    
543
void glue(helper_pshufhw, SUFFIX) (Reg *d, Reg *s, int order)
544
{
545
    Reg r;
546
    r.Q(0) = s->Q(0);
547
    r.W(4) = s->W(4 + (order & 3));
548
    r.W(5) = s->W(4 + ((order >> 2) & 3));
549
    r.W(6) = s->W(4 + ((order >> 4) & 3));
550
    r.W(7) = s->W(4 + ((order >> 6) & 3));
551
    *d = r;
552
}
553
#endif
554

    
555
#if SHIFT == 1
556
/* FPU ops */
557
/* XXX: not accurate */
558

    
559
#define SSE_HELPER_S(name, F)\
560
void helper_ ## name ## ps (Reg *d, Reg *s)\
561
{\
562
    d->XMM_S(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
563
    d->XMM_S(1) = F(32, d->XMM_S(1), s->XMM_S(1));\
564
    d->XMM_S(2) = F(32, d->XMM_S(2), s->XMM_S(2));\
565
    d->XMM_S(3) = F(32, d->XMM_S(3), s->XMM_S(3));\
566
}\
567
\
568
void helper_ ## name ## ss (Reg *d, Reg *s)\
569
{\
570
    d->XMM_S(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
571
}\
572
void helper_ ## name ## pd (Reg *d, Reg *s)\
573
{\
574
    d->XMM_D(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
575
    d->XMM_D(1) = F(64, d->XMM_D(1), s->XMM_D(1));\
576
}\
577
\
578
void helper_ ## name ## sd (Reg *d, Reg *s)\
579
{\
580
    d->XMM_D(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
581
}
582

    
583
#define FPU_ADD(size, a, b) float ## size ## _add(a, b, &env->sse_status)
584
#define FPU_SUB(size, a, b) float ## size ## _sub(a, b, &env->sse_status)
585
#define FPU_MUL(size, a, b) float ## size ## _mul(a, b, &env->sse_status)
586
#define FPU_DIV(size, a, b) float ## size ## _div(a, b, &env->sse_status)
587
#define FPU_MIN(size, a, b) (a) < (b) ? (a) : (b)
588
#define FPU_MAX(size, a, b) (a) > (b) ? (a) : (b)
589
#define FPU_SQRT(size, a, b) float ## size ## _sqrt(b, &env->sse_status)
590

    
591
SSE_HELPER_S(add, FPU_ADD)
592
SSE_HELPER_S(sub, FPU_SUB)
593
SSE_HELPER_S(mul, FPU_MUL)
594
SSE_HELPER_S(div, FPU_DIV)
595
SSE_HELPER_S(min, FPU_MIN)
596
SSE_HELPER_S(max, FPU_MAX)
597
SSE_HELPER_S(sqrt, FPU_SQRT)
598

    
599

    
600
/* float to float conversions */
601
void helper_cvtps2pd(Reg *d, Reg *s)
602
{
603
    float32 s0, s1;
604
    s0 = s->XMM_S(0);
605
    s1 = s->XMM_S(1);
606
    d->XMM_D(0) = float32_to_float64(s0, &env->sse_status);
607
    d->XMM_D(1) = float32_to_float64(s1, &env->sse_status);
608
}
609

    
610
void helper_cvtpd2ps(Reg *d, Reg *s)
611
{
612
    d->XMM_S(0) = float64_to_float32(s->XMM_D(0), &env->sse_status);
613
    d->XMM_S(1) = float64_to_float32(s->XMM_D(1), &env->sse_status);
614
    d->Q(1) = 0;
615
}
616

    
617
void helper_cvtss2sd(Reg *d, Reg *s)
618
{
619
    d->XMM_D(0) = float32_to_float64(s->XMM_S(0), &env->sse_status);
620
}
621

    
622
void helper_cvtsd2ss(Reg *d, Reg *s)
623
{
624
    d->XMM_S(0) = float64_to_float32(s->XMM_D(0), &env->sse_status);
625
}
626

    
627
/* integer to float */
628
void helper_cvtdq2ps(Reg *d, Reg *s)
629
{
630
    d->XMM_S(0) = int32_to_float32(s->XMM_L(0), &env->sse_status);
631
    d->XMM_S(1) = int32_to_float32(s->XMM_L(1), &env->sse_status);
632
    d->XMM_S(2) = int32_to_float32(s->XMM_L(2), &env->sse_status);
633
    d->XMM_S(3) = int32_to_float32(s->XMM_L(3), &env->sse_status);
634
}
635

    
636
void helper_cvtdq2pd(Reg *d, Reg *s)
637
{
638
    int32_t l0, l1;
639
    l0 = (int32_t)s->XMM_L(0);
640
    l1 = (int32_t)s->XMM_L(1);
641
    d->XMM_D(0) = int32_to_float64(l0, &env->sse_status);
642
    d->XMM_D(1) = int32_to_float64(l1, &env->sse_status);
643
}
644

    
645
void helper_cvtpi2ps(XMMReg *d, MMXReg *s)
646
{
647
    d->XMM_S(0) = int32_to_float32(s->MMX_L(0), &env->sse_status);
648
    d->XMM_S(1) = int32_to_float32(s->MMX_L(1), &env->sse_status);
649
}
650

    
651
void helper_cvtpi2pd(XMMReg *d, MMXReg *s)
652
{
653
    d->XMM_D(0) = int32_to_float64(s->MMX_L(0), &env->sse_status);
654
    d->XMM_D(1) = int32_to_float64(s->MMX_L(1), &env->sse_status);
655
}
656

    
657
void helper_cvtsi2ss(XMMReg *d, uint32_t val)
658
{
659
    d->XMM_S(0) = int32_to_float32(val, &env->sse_status);
660
}
661

    
662
void helper_cvtsi2sd(XMMReg *d, uint32_t val)
663
{
664
    d->XMM_D(0) = int32_to_float64(val, &env->sse_status);
665
}
666

    
667
#ifdef TARGET_X86_64
668
void helper_cvtsq2ss(XMMReg *d, uint64_t val)
669
{
670
    d->XMM_S(0) = int64_to_float32(val, &env->sse_status);
671
}
672

    
673
void helper_cvtsq2sd(XMMReg *d, uint64_t val)
674
{
675
    d->XMM_D(0) = int64_to_float64(val, &env->sse_status);
676
}
677
#endif
678

    
679
/* float to integer */
680
void helper_cvtps2dq(XMMReg *d, XMMReg *s)
681
{
682
    d->XMM_L(0) = float32_to_int32(s->XMM_S(0), &env->sse_status);
683
    d->XMM_L(1) = float32_to_int32(s->XMM_S(1), &env->sse_status);
684
    d->XMM_L(2) = float32_to_int32(s->XMM_S(2), &env->sse_status);
685
    d->XMM_L(3) = float32_to_int32(s->XMM_S(3), &env->sse_status);
686
}
687

    
688
void helper_cvtpd2dq(XMMReg *d, XMMReg *s)
689
{
690
    d->XMM_L(0) = float64_to_int32(s->XMM_D(0), &env->sse_status);
691
    d->XMM_L(1) = float64_to_int32(s->XMM_D(1), &env->sse_status);
692
    d->XMM_Q(1) = 0;
693
}
694

    
695
void helper_cvtps2pi(MMXReg *d, XMMReg *s)
696
{
697
    d->MMX_L(0) = float32_to_int32(s->XMM_S(0), &env->sse_status);
698
    d->MMX_L(1) = float32_to_int32(s->XMM_S(1), &env->sse_status);
699
}
700

    
701
void helper_cvtpd2pi(MMXReg *d, XMMReg *s)
702
{
703
    d->MMX_L(0) = float64_to_int32(s->XMM_D(0), &env->sse_status);
704
    d->MMX_L(1) = float64_to_int32(s->XMM_D(1), &env->sse_status);
705
}
706

    
707
int32_t helper_cvtss2si(XMMReg *s)
708
{
709
    return float32_to_int32(s->XMM_S(0), &env->sse_status);
710
}
711

    
712
int32_t helper_cvtsd2si(XMMReg *s)
713
{
714
    return float64_to_int32(s->XMM_D(0), &env->sse_status);
715
}
716

    
717
#ifdef TARGET_X86_64
718
int64_t helper_cvtss2sq(XMMReg *s)
719
{
720
    return float32_to_int64(s->XMM_S(0), &env->sse_status);
721
}
722

    
723
int64_t helper_cvtsd2sq(XMMReg *s)
724
{
725
    return float64_to_int64(s->XMM_D(0), &env->sse_status);
726
}
727
#endif
728

    
729
/* float to integer truncated */
730
void helper_cvttps2dq(XMMReg *d, XMMReg *s)
731
{
732
    d->XMM_L(0) = float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status);
733
    d->XMM_L(1) = float32_to_int32_round_to_zero(s->XMM_S(1), &env->sse_status);
734
    d->XMM_L(2) = float32_to_int32_round_to_zero(s->XMM_S(2), &env->sse_status);
735
    d->XMM_L(3) = float32_to_int32_round_to_zero(s->XMM_S(3), &env->sse_status);
736
}
737

    
738
void helper_cvttpd2dq(XMMReg *d, XMMReg *s)
739
{
740
    d->XMM_L(0) = float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status);
741
    d->XMM_L(1) = float64_to_int32_round_to_zero(s->XMM_D(1), &env->sse_status);
742
    d->XMM_Q(1) = 0;
743
}
744

    
745
void helper_cvttps2pi(MMXReg *d, XMMReg *s)
746
{
747
    d->MMX_L(0) = float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status);
748
    d->MMX_L(1) = float32_to_int32_round_to_zero(s->XMM_S(1), &env->sse_status);
749
}
750

    
751
void helper_cvttpd2pi(MMXReg *d, XMMReg *s)
752
{
753
    d->MMX_L(0) = float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status);
754
    d->MMX_L(1) = float64_to_int32_round_to_zero(s->XMM_D(1), &env->sse_status);
755
}
756

    
757
int32_t helper_cvttss2si(XMMReg *s)
758
{
759
    return float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status);
760
}
761

    
762
int32_t helper_cvttsd2si(XMMReg *s)
763
{
764
    return float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status);
765
}
766

    
767
#ifdef TARGET_X86_64
768
int64_t helper_cvttss2sq(XMMReg *s)
769
{
770
    return float32_to_int64_round_to_zero(s->XMM_S(0), &env->sse_status);
771
}
772

    
773
int64_t helper_cvttsd2sq(XMMReg *s)
774
{
775
    return float64_to_int64_round_to_zero(s->XMM_D(0), &env->sse_status);
776
}
777
#endif
778

    
779
void helper_rsqrtps(XMMReg *d, XMMReg *s)
780
{
781
    d->XMM_S(0) = float32_div(float32_one,
782
                              float32_sqrt(s->XMM_S(0), &env->sse_status),
783
                              &env->sse_status);
784
    d->XMM_S(1) = float32_div(float32_one,
785
                              float32_sqrt(s->XMM_S(1), &env->sse_status),
786
                              &env->sse_status);
787
    d->XMM_S(2) = float32_div(float32_one,
788
                              float32_sqrt(s->XMM_S(2), &env->sse_status),
789
                              &env->sse_status);
790
    d->XMM_S(3) = float32_div(float32_one,
791
                              float32_sqrt(s->XMM_S(3), &env->sse_status),
792
                              &env->sse_status);
793
}
794

    
795
void helper_rsqrtss(XMMReg *d, XMMReg *s)
796
{
797
    d->XMM_S(0) = float32_div(float32_one,
798
                              float32_sqrt(s->XMM_S(0), &env->sse_status),
799
                              &env->sse_status);
800
}
801

    
802
void helper_rcpps(XMMReg *d, XMMReg *s)
803
{
804
    d->XMM_S(0) = float32_div(float32_one, s->XMM_S(0), &env->sse_status);
805
    d->XMM_S(1) = float32_div(float32_one, s->XMM_S(1), &env->sse_status);
806
    d->XMM_S(2) = float32_div(float32_one, s->XMM_S(2), &env->sse_status);
807
    d->XMM_S(3) = float32_div(float32_one, s->XMM_S(3), &env->sse_status);
808
}
809

    
810
void helper_rcpss(XMMReg *d, XMMReg *s)
811
{
812
    d->XMM_S(0) = float32_div(float32_one, s->XMM_S(0), &env->sse_status);
813
}
814

    
815
static inline uint64_t helper_extrq(uint64_t src, int shift, int len)
816
{
817
    uint64_t mask;
818

    
819
    if (len == 0) {
820
        mask = ~0LL;
821
    } else {
822
        mask = (1ULL << len) - 1;
823
    }
824
    return (src >> shift) & mask;
825
}
826

    
827
void helper_extrq_r(XMMReg *d, XMMReg *s)
828
{
829
    d->XMM_Q(0) = helper_extrq(d->XMM_Q(0), s->XMM_B(1), s->XMM_B(0));
830
}
831

    
832
void helper_extrq_i(XMMReg *d, int index, int length)
833
{
834
    d->XMM_Q(0) = helper_extrq(d->XMM_Q(0), index, length);
835
}
836

    
837
static inline uint64_t helper_insertq(uint64_t src, int shift, int len)
838
{
839
    uint64_t mask;
840

    
841
    if (len == 0) {
842
        mask = ~0ULL;
843
    } else {
844
        mask = (1ULL << len) - 1;
845
    }
846
    return (src & ~(mask << shift)) | ((src & mask) << shift);
847
}
848

    
849
void helper_insertq_r(XMMReg *d, XMMReg *s)
850
{
851
    d->XMM_Q(0) = helper_insertq(s->XMM_Q(0), s->XMM_B(9), s->XMM_B(8));
852
}
853

    
854
void helper_insertq_i(XMMReg *d, int index, int length)
855
{
856
    d->XMM_Q(0) = helper_insertq(d->XMM_Q(0), index, length);
857
}
858

    
859
void helper_haddps(XMMReg *d, XMMReg *s)
860
{
861
    XMMReg r;
862
    r.XMM_S(0) = d->XMM_S(0) + d->XMM_S(1);
863
    r.XMM_S(1) = d->XMM_S(2) + d->XMM_S(3);
864
    r.XMM_S(2) = s->XMM_S(0) + s->XMM_S(1);
865
    r.XMM_S(3) = s->XMM_S(2) + s->XMM_S(3);
866
    *d = r;
867
}
868

    
869
void helper_haddpd(XMMReg *d, XMMReg *s)
870
{
871
    XMMReg r;
872
    r.XMM_D(0) = d->XMM_D(0) + d->XMM_D(1);
873
    r.XMM_D(1) = s->XMM_D(0) + s->XMM_D(1);
874
    *d = r;
875
}
876

    
877
void helper_hsubps(XMMReg *d, XMMReg *s)
878
{
879
    XMMReg r;
880
    r.XMM_S(0) = d->XMM_S(0) - d->XMM_S(1);
881
    r.XMM_S(1) = d->XMM_S(2) - d->XMM_S(3);
882
    r.XMM_S(2) = s->XMM_S(0) - s->XMM_S(1);
883
    r.XMM_S(3) = s->XMM_S(2) - s->XMM_S(3);
884
    *d = r;
885
}
886

    
887
void helper_hsubpd(XMMReg *d, XMMReg *s)
888
{
889
    XMMReg r;
890
    r.XMM_D(0) = d->XMM_D(0) - d->XMM_D(1);
891
    r.XMM_D(1) = s->XMM_D(0) - s->XMM_D(1);
892
    *d = r;
893
}
894

    
895
void helper_addsubps(XMMReg *d, XMMReg *s)
896
{
897
    d->XMM_S(0) = d->XMM_S(0) - s->XMM_S(0);
898
    d->XMM_S(1) = d->XMM_S(1) + s->XMM_S(1);
899
    d->XMM_S(2) = d->XMM_S(2) - s->XMM_S(2);
900
    d->XMM_S(3) = d->XMM_S(3) + s->XMM_S(3);
901
}
902

    
903
void helper_addsubpd(XMMReg *d, XMMReg *s)
904
{
905
    d->XMM_D(0) = d->XMM_D(0) - s->XMM_D(0);
906
    d->XMM_D(1) = d->XMM_D(1) + s->XMM_D(1);
907
}
908

    
909
/* XXX: unordered */
910
#define SSE_HELPER_CMP(name, F)\
911
void helper_ ## name ## ps (Reg *d, Reg *s)\
912
{\
913
    d->XMM_L(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
914
    d->XMM_L(1) = F(32, d->XMM_S(1), s->XMM_S(1));\
915
    d->XMM_L(2) = F(32, d->XMM_S(2), s->XMM_S(2));\
916
    d->XMM_L(3) = F(32, d->XMM_S(3), s->XMM_S(3));\
917
}\
918
\
919
void helper_ ## name ## ss (Reg *d, Reg *s)\
920
{\
921
    d->XMM_L(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
922
}\
923
void helper_ ## name ## pd (Reg *d, Reg *s)\
924
{\
925
    d->XMM_Q(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
926
    d->XMM_Q(1) = F(64, d->XMM_D(1), s->XMM_D(1));\
927
}\
928
\
929
void helper_ ## name ## sd (Reg *d, Reg *s)\
930
{\
931
    d->XMM_Q(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
932
}
933

    
934
#define FPU_CMPEQ(size, a, b) float ## size ## _eq_quiet(a, b, &env->sse_status) ? -1 : 0
935
#define FPU_CMPLT(size, a, b) float ## size ## _lt(a, b, &env->sse_status) ? -1 : 0
936
#define FPU_CMPLE(size, a, b) float ## size ## _le(a, b, &env->sse_status) ? -1 : 0
937
#define FPU_CMPUNORD(size, a, b) float ## size ## _unordered_quiet(a, b, &env->sse_status) ? - 1 : 0
938
#define FPU_CMPNEQ(size, a, b) float ## size ## _eq_quiet(a, b, &env->sse_status) ? 0 : -1
939
#define FPU_CMPNLT(size, a, b) float ## size ## _lt(a, b, &env->sse_status) ? 0 : -1
940
#define FPU_CMPNLE(size, a, b) float ## size ## _le(a, b, &env->sse_status) ? 0 : -1
941
#define FPU_CMPORD(size, a, b) float ## size ## _unordered_quiet(a, b, &env->sse_status) ? 0 : -1
942

    
943
SSE_HELPER_CMP(cmpeq, FPU_CMPEQ)
944
SSE_HELPER_CMP(cmplt, FPU_CMPLT)
945
SSE_HELPER_CMP(cmple, FPU_CMPLE)
946
SSE_HELPER_CMP(cmpunord, FPU_CMPUNORD)
947
SSE_HELPER_CMP(cmpneq, FPU_CMPNEQ)
948
SSE_HELPER_CMP(cmpnlt, FPU_CMPNLT)
949
SSE_HELPER_CMP(cmpnle, FPU_CMPNLE)
950
SSE_HELPER_CMP(cmpord, FPU_CMPORD)
951

    
952
static const int comis_eflags[4] = {CC_C, CC_Z, 0, CC_Z | CC_P | CC_C};
953

    
954
void helper_ucomiss(Reg *d, Reg *s)
955
{
956
    int ret;
957
    float32 s0, s1;
958

    
959
    s0 = d->XMM_S(0);
960
    s1 = s->XMM_S(0);
961
    ret = float32_compare_quiet(s0, s1, &env->sse_status);
962
    CC_SRC = comis_eflags[ret + 1];
963
}
964

    
965
void helper_comiss(Reg *d, Reg *s)
966
{
967
    int ret;
968
    float32 s0, s1;
969

    
970
    s0 = d->XMM_S(0);
971
    s1 = s->XMM_S(0);
972
    ret = float32_compare(s0, s1, &env->sse_status);
973
    CC_SRC = comis_eflags[ret + 1];
974
}
975

    
976
void helper_ucomisd(Reg *d, Reg *s)
977
{
978
    int ret;
979
    float64 d0, d1;
980

    
981
    d0 = d->XMM_D(0);
982
    d1 = s->XMM_D(0);
983
    ret = float64_compare_quiet(d0, d1, &env->sse_status);
984
    CC_SRC = comis_eflags[ret + 1];
985
}
986

    
987
void helper_comisd(Reg *d, Reg *s)
988
{
989
    int ret;
990
    float64 d0, d1;
991

    
992
    d0 = d->XMM_D(0);
993
    d1 = s->XMM_D(0);
994
    ret = float64_compare(d0, d1, &env->sse_status);
995
    CC_SRC = comis_eflags[ret + 1];
996
}
997

    
998
uint32_t helper_movmskps(Reg *s)
999
{
1000
    int b0, b1, b2, b3;
1001
    b0 = s->XMM_L(0) >> 31;
1002
    b1 = s->XMM_L(1) >> 31;
1003
    b2 = s->XMM_L(2) >> 31;
1004
    b3 = s->XMM_L(3) >> 31;
1005
    return b0 | (b1 << 1) | (b2 << 2) | (b3 << 3);
1006
}
1007

    
1008
uint32_t helper_movmskpd(Reg *s)
1009
{
1010
    int b0, b1;
1011
    b0 = s->XMM_L(1) >> 31;
1012
    b1 = s->XMM_L(3) >> 31;
1013
    return b0 | (b1 << 1);
1014
}
1015

    
1016
#endif
1017

    
1018
uint32_t glue(helper_pmovmskb, SUFFIX)(Reg *s)
1019
{
1020
    uint32_t val;
1021
    val = 0;
1022
    val |= (s->B(0) >> 7);
1023
    val |= (s->B(1) >> 6) & 0x02;
1024
    val |= (s->B(2) >> 5) & 0x04;
1025
    val |= (s->B(3) >> 4) & 0x08;
1026
    val |= (s->B(4) >> 3) & 0x10;
1027
    val |= (s->B(5) >> 2) & 0x20;
1028
    val |= (s->B(6) >> 1) & 0x40;
1029
    val |= (s->B(7)) & 0x80;
1030
#if SHIFT == 1
1031
    val |= (s->B(8) << 1) & 0x0100;
1032
    val |= (s->B(9) << 2) & 0x0200;
1033
    val |= (s->B(10) << 3) & 0x0400;
1034
    val |= (s->B(11) << 4) & 0x0800;
1035
    val |= (s->B(12) << 5) & 0x1000;
1036
    val |= (s->B(13) << 6) & 0x2000;
1037
    val |= (s->B(14) << 7) & 0x4000;
1038
    val |= (s->B(15) << 8) & 0x8000;
1039
#endif
1040
    return val;
1041
}
1042

    
1043
void glue(helper_packsswb, SUFFIX) (Reg *d, Reg *s)
1044
{
1045
    Reg r;
1046

    
1047
    r.B(0) = satsb((int16_t)d->W(0));
1048
    r.B(1) = satsb((int16_t)d->W(1));
1049
    r.B(2) = satsb((int16_t)d->W(2));
1050
    r.B(3) = satsb((int16_t)d->W(3));
1051
#if SHIFT == 1
1052
    r.B(4) = satsb((int16_t)d->W(4));
1053
    r.B(5) = satsb((int16_t)d->W(5));
1054
    r.B(6) = satsb((int16_t)d->W(6));
1055
    r.B(7) = satsb((int16_t)d->W(7));
1056
#endif
1057
    r.B((4 << SHIFT) + 0) = satsb((int16_t)s->W(0));
1058
    r.B((4 << SHIFT) + 1) = satsb((int16_t)s->W(1));
1059
    r.B((4 << SHIFT) + 2) = satsb((int16_t)s->W(2));
1060
    r.B((4 << SHIFT) + 3) = satsb((int16_t)s->W(3));
1061
#if SHIFT == 1
1062
    r.B(12) = satsb((int16_t)s->W(4));
1063
    r.B(13) = satsb((int16_t)s->W(5));
1064
    r.B(14) = satsb((int16_t)s->W(6));
1065
    r.B(15) = satsb((int16_t)s->W(7));
1066
#endif
1067
    *d = r;
1068
}
1069

    
1070
void glue(helper_packuswb, SUFFIX) (Reg *d, Reg *s)
1071
{
1072
    Reg r;
1073

    
1074
    r.B(0) = satub((int16_t)d->W(0));
1075
    r.B(1) = satub((int16_t)d->W(1));
1076
    r.B(2) = satub((int16_t)d->W(2));
1077
    r.B(3) = satub((int16_t)d->W(3));
1078
#if SHIFT == 1
1079
    r.B(4) = satub((int16_t)d->W(4));
1080
    r.B(5) = satub((int16_t)d->W(5));
1081
    r.B(6) = satub((int16_t)d->W(6));
1082
    r.B(7) = satub((int16_t)d->W(7));
1083
#endif
1084
    r.B((4 << SHIFT) + 0) = satub((int16_t)s->W(0));
1085
    r.B((4 << SHIFT) + 1) = satub((int16_t)s->W(1));
1086
    r.B((4 << SHIFT) + 2) = satub((int16_t)s->W(2));
1087
    r.B((4 << SHIFT) + 3) = satub((int16_t)s->W(3));
1088
#if SHIFT == 1
1089
    r.B(12) = satub((int16_t)s->W(4));
1090
    r.B(13) = satub((int16_t)s->W(5));
1091
    r.B(14) = satub((int16_t)s->W(6));
1092
    r.B(15) = satub((int16_t)s->W(7));
1093
#endif
1094
    *d = r;
1095
}
1096

    
1097
void glue(helper_packssdw, SUFFIX) (Reg *d, Reg *s)
1098
{
1099
    Reg r;
1100

    
1101
    r.W(0) = satsw(d->L(0));
1102
    r.W(1) = satsw(d->L(1));
1103
#if SHIFT == 1
1104
    r.W(2) = satsw(d->L(2));
1105
    r.W(3) = satsw(d->L(3));
1106
#endif
1107
    r.W((2 << SHIFT) + 0) = satsw(s->L(0));
1108
    r.W((2 << SHIFT) + 1) = satsw(s->L(1));
1109
#if SHIFT == 1
1110
    r.W(6) = satsw(s->L(2));
1111
    r.W(7) = satsw(s->L(3));
1112
#endif
1113
    *d = r;
1114
}
1115

    
1116
#define UNPCK_OP(base_name, base)                               \
1117
                                                                \
1118
void glue(helper_punpck ## base_name ## bw, SUFFIX) (Reg *d, Reg *s)   \
1119
{                                                               \
1120
    Reg r;                                              \
1121
                                                                \
1122
    r.B(0) = d->B((base << (SHIFT + 2)) + 0);                   \
1123
    r.B(1) = s->B((base << (SHIFT + 2)) + 0);                   \
1124
    r.B(2) = d->B((base << (SHIFT + 2)) + 1);                   \
1125
    r.B(3) = s->B((base << (SHIFT + 2)) + 1);                   \
1126
    r.B(4) = d->B((base << (SHIFT + 2)) + 2);                   \
1127
    r.B(5) = s->B((base << (SHIFT + 2)) + 2);                   \
1128
    r.B(6) = d->B((base << (SHIFT + 2)) + 3);                   \
1129
    r.B(7) = s->B((base << (SHIFT + 2)) + 3);                   \
1130
XMM_ONLY(                                                       \
1131
    r.B(8) = d->B((base << (SHIFT + 2)) + 4);                   \
1132
    r.B(9) = s->B((base << (SHIFT + 2)) + 4);                   \
1133
    r.B(10) = d->B((base << (SHIFT + 2)) + 5);                  \
1134
    r.B(11) = s->B((base << (SHIFT + 2)) + 5);                  \
1135
    r.B(12) = d->B((base << (SHIFT + 2)) + 6);                  \
1136
    r.B(13) = s->B((base << (SHIFT + 2)) + 6);                  \
1137
    r.B(14) = d->B((base << (SHIFT + 2)) + 7);                  \
1138
    r.B(15) = s->B((base << (SHIFT + 2)) + 7);                  \
1139
)                                                               \
1140
    *d = r;                                                     \
1141
}                                                               \
1142
                                                                \
1143
void glue(helper_punpck ## base_name ## wd, SUFFIX) (Reg *d, Reg *s)   \
1144
{                                                               \
1145
    Reg r;                                              \
1146
                                                                \
1147
    r.W(0) = d->W((base << (SHIFT + 1)) + 0);                   \
1148
    r.W(1) = s->W((base << (SHIFT + 1)) + 0);                   \
1149
    r.W(2) = d->W((base << (SHIFT + 1)) + 1);                   \
1150
    r.W(3) = s->W((base << (SHIFT + 1)) + 1);                   \
1151
XMM_ONLY(                                                       \
1152
    r.W(4) = d->W((base << (SHIFT + 1)) + 2);                   \
1153
    r.W(5) = s->W((base << (SHIFT + 1)) + 2);                   \
1154
    r.W(6) = d->W((base << (SHIFT + 1)) + 3);                   \
1155
    r.W(7) = s->W((base << (SHIFT + 1)) + 3);                   \
1156
)                                                               \
1157
    *d = r;                                                     \
1158
}                                                               \
1159
                                                                \
1160
void glue(helper_punpck ## base_name ## dq, SUFFIX) (Reg *d, Reg *s)   \
1161
{                                                               \
1162
    Reg r;                                              \
1163
                                                                \
1164
    r.L(0) = d->L((base << SHIFT) + 0);                         \
1165
    r.L(1) = s->L((base << SHIFT) + 0);                         \
1166
XMM_ONLY(                                                       \
1167
    r.L(2) = d->L((base << SHIFT) + 1);                         \
1168
    r.L(3) = s->L((base << SHIFT) + 1);                         \
1169
)                                                               \
1170
    *d = r;                                                     \
1171
}                                                               \
1172
                                                                \
1173
XMM_ONLY(                                                       \
1174
void glue(helper_punpck ## base_name ## qdq, SUFFIX) (Reg *d, Reg *s)  \
1175
{                                                               \
1176
    Reg r;                                              \
1177
                                                                \
1178
    r.Q(0) = d->Q(base);                                        \
1179
    r.Q(1) = s->Q(base);                                        \
1180
    *d = r;                                                     \
1181
}                                                               \
1182
)
1183

    
1184
UNPCK_OP(l, 0)
1185
UNPCK_OP(h, 1)
1186

    
1187
/* 3DNow! float ops */
1188
#if SHIFT == 0
1189
void helper_pi2fd(MMXReg *d, MMXReg *s)
1190
{
1191
    d->MMX_S(0) = int32_to_float32(s->MMX_L(0), &env->mmx_status);
1192
    d->MMX_S(1) = int32_to_float32(s->MMX_L(1), &env->mmx_status);
1193
}
1194

    
1195
void helper_pi2fw(MMXReg *d, MMXReg *s)
1196
{
1197
    d->MMX_S(0) = int32_to_float32((int16_t)s->MMX_W(0), &env->mmx_status);
1198
    d->MMX_S(1) = int32_to_float32((int16_t)s->MMX_W(2), &env->mmx_status);
1199
}
1200

    
1201
void helper_pf2id(MMXReg *d, MMXReg *s)
1202
{
1203
    d->MMX_L(0) = float32_to_int32_round_to_zero(s->MMX_S(0), &env->mmx_status);
1204
    d->MMX_L(1) = float32_to_int32_round_to_zero(s->MMX_S(1), &env->mmx_status);
1205
}
1206

    
1207
void helper_pf2iw(MMXReg *d, MMXReg *s)
1208
{
1209
    d->MMX_L(0) = satsw(float32_to_int32_round_to_zero(s->MMX_S(0), &env->mmx_status));
1210
    d->MMX_L(1) = satsw(float32_to_int32_round_to_zero(s->MMX_S(1), &env->mmx_status));
1211
}
1212

    
1213
void helper_pfacc(MMXReg *d, MMXReg *s)
1214
{
1215
    MMXReg r;
1216
    r.MMX_S(0) = float32_add(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1217
    r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1218
    *d = r;
1219
}
1220

    
1221
void helper_pfadd(MMXReg *d, MMXReg *s)
1222
{
1223
    d->MMX_S(0) = float32_add(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1224
    d->MMX_S(1) = float32_add(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1225
}
1226

    
1227
void helper_pfcmpeq(MMXReg *d, MMXReg *s)
1228
{
1229
    d->MMX_L(0) = float32_eq_quiet(d->MMX_S(0), s->MMX_S(0), &env->mmx_status) ? -1 : 0;
1230
    d->MMX_L(1) = float32_eq_quiet(d->MMX_S(1), s->MMX_S(1), &env->mmx_status) ? -1 : 0;
1231
}
1232

    
1233
void helper_pfcmpge(MMXReg *d, MMXReg *s)
1234
{
1235
    d->MMX_L(0) = float32_le(s->MMX_S(0), d->MMX_S(0), &env->mmx_status) ? -1 : 0;
1236
    d->MMX_L(1) = float32_le(s->MMX_S(1), d->MMX_S(1), &env->mmx_status) ? -1 : 0;
1237
}
1238

    
1239
void helper_pfcmpgt(MMXReg *d, MMXReg *s)
1240
{
1241
    d->MMX_L(0) = float32_lt(s->MMX_S(0), d->MMX_S(0), &env->mmx_status) ? -1 : 0;
1242
    d->MMX_L(1) = float32_lt(s->MMX_S(1), d->MMX_S(1), &env->mmx_status) ? -1 : 0;
1243
}
1244

    
1245
void helper_pfmax(MMXReg *d, MMXReg *s)
1246
{
1247
    if (float32_lt(d->MMX_S(0), s->MMX_S(0), &env->mmx_status))
1248
        d->MMX_S(0) = s->MMX_S(0);
1249
    if (float32_lt(d->MMX_S(1), s->MMX_S(1), &env->mmx_status))
1250
        d->MMX_S(1) = s->MMX_S(1);
1251
}
1252

    
1253
void helper_pfmin(MMXReg *d, MMXReg *s)
1254
{
1255
    if (float32_lt(s->MMX_S(0), d->MMX_S(0), &env->mmx_status))
1256
        d->MMX_S(0) = s->MMX_S(0);
1257
    if (float32_lt(s->MMX_S(1), d->MMX_S(1), &env->mmx_status))
1258
        d->MMX_S(1) = s->MMX_S(1);
1259
}
1260

    
1261
void helper_pfmul(MMXReg *d, MMXReg *s)
1262
{
1263
    d->MMX_S(0) = float32_mul(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1264
    d->MMX_S(1) = float32_mul(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1265
}
1266

    
1267
void helper_pfnacc(MMXReg *d, MMXReg *s)
1268
{
1269
    MMXReg r;
1270
    r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1271
    r.MMX_S(1) = float32_sub(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1272
    *d = r;
1273
}
1274

    
1275
void helper_pfpnacc(MMXReg *d, MMXReg *s)
1276
{
1277
    MMXReg r;
1278
    r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1279
    r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1280
    *d = r;
1281
}
1282

    
1283
void helper_pfrcp(MMXReg *d, MMXReg *s)
1284
{
1285
    d->MMX_S(0) = float32_div(float32_one, s->MMX_S(0), &env->mmx_status);
1286
    d->MMX_S(1) = d->MMX_S(0);
1287
}
1288

    
1289
void helper_pfrsqrt(MMXReg *d, MMXReg *s)
1290
{
1291
    d->MMX_L(1) = s->MMX_L(0) & 0x7fffffff;
1292
    d->MMX_S(1) = float32_div(float32_one,
1293
                              float32_sqrt(d->MMX_S(1), &env->mmx_status),
1294
                              &env->mmx_status);
1295
    d->MMX_L(1) |= s->MMX_L(0) & 0x80000000;
1296
    d->MMX_L(0) = d->MMX_L(1);
1297
}
1298

    
1299
void helper_pfsub(MMXReg *d, MMXReg *s)
1300
{
1301
    d->MMX_S(0) = float32_sub(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1302
    d->MMX_S(1) = float32_sub(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1303
}
1304

    
1305
void helper_pfsubr(MMXReg *d, MMXReg *s)
1306
{
1307
    d->MMX_S(0) = float32_sub(s->MMX_S(0), d->MMX_S(0), &env->mmx_status);
1308
    d->MMX_S(1) = float32_sub(s->MMX_S(1), d->MMX_S(1), &env->mmx_status);
1309
}
1310

    
1311
void helper_pswapd(MMXReg *d, MMXReg *s)
1312
{
1313
    MMXReg r;
1314
    r.MMX_L(0) = s->MMX_L(1);
1315
    r.MMX_L(1) = s->MMX_L(0);
1316
    *d = r;
1317
}
1318
#endif
1319

    
1320
/* SSSE3 op helpers */
1321
void glue(helper_pshufb, SUFFIX) (Reg *d, Reg *s)
1322
{
1323
    int i;
1324
    Reg r;
1325

    
1326
    for (i = 0; i < (8 << SHIFT); i++)
1327
        r.B(i) = (s->B(i) & 0x80) ? 0 : (d->B(s->B(i) & ((8 << SHIFT) - 1)));
1328

    
1329
    *d = r;
1330
}
1331

    
1332
void glue(helper_phaddw, SUFFIX) (Reg *d, Reg *s)
1333
{
1334
    d->W(0) = (int16_t)d->W(0) + (int16_t)d->W(1);
1335
    d->W(1) = (int16_t)d->W(2) + (int16_t)d->W(3);
1336
    XMM_ONLY(d->W(2) = (int16_t)d->W(4) + (int16_t)d->W(5));
1337
    XMM_ONLY(d->W(3) = (int16_t)d->W(6) + (int16_t)d->W(7));
1338
    d->W((2 << SHIFT) + 0) = (int16_t)s->W(0) + (int16_t)s->W(1);
1339
    d->W((2 << SHIFT) + 1) = (int16_t)s->W(2) + (int16_t)s->W(3);
1340
    XMM_ONLY(d->W(6) = (int16_t)s->W(4) + (int16_t)s->W(5));
1341
    XMM_ONLY(d->W(7) = (int16_t)s->W(6) + (int16_t)s->W(7));
1342
}
1343

    
1344
void glue(helper_phaddd, SUFFIX) (Reg *d, Reg *s)
1345
{
1346
    d->L(0) = (int32_t)d->L(0) + (int32_t)d->L(1);
1347
    XMM_ONLY(d->L(1) = (int32_t)d->L(2) + (int32_t)d->L(3));
1348
    d->L((1 << SHIFT) + 0) = (int32_t)s->L(0) + (int32_t)s->L(1);
1349
    XMM_ONLY(d->L(3) = (int32_t)s->L(2) + (int32_t)s->L(3));
1350
}
1351

    
1352
void glue(helper_phaddsw, SUFFIX) (Reg *d, Reg *s)
1353
{
1354
    d->W(0) = satsw((int16_t)d->W(0) + (int16_t)d->W(1));
1355
    d->W(1) = satsw((int16_t)d->W(2) + (int16_t)d->W(3));
1356
    XMM_ONLY(d->W(2) = satsw((int16_t)d->W(4) + (int16_t)d->W(5)));
1357
    XMM_ONLY(d->W(3) = satsw((int16_t)d->W(6) + (int16_t)d->W(7)));
1358
    d->W((2 << SHIFT) + 0) = satsw((int16_t)s->W(0) + (int16_t)s->W(1));
1359
    d->W((2 << SHIFT) + 1) = satsw((int16_t)s->W(2) + (int16_t)s->W(3));
1360
    XMM_ONLY(d->W(6) = satsw((int16_t)s->W(4) + (int16_t)s->W(5)));
1361
    XMM_ONLY(d->W(7) = satsw((int16_t)s->W(6) + (int16_t)s->W(7)));
1362
}
1363

    
1364
void glue(helper_pmaddubsw, SUFFIX) (Reg *d, Reg *s)
1365
{
1366
    d->W(0) = satsw((int8_t)s->B( 0) * (uint8_t)d->B( 0) +
1367
                    (int8_t)s->B( 1) * (uint8_t)d->B( 1));
1368
    d->W(1) = satsw((int8_t)s->B( 2) * (uint8_t)d->B( 2) +
1369
                    (int8_t)s->B( 3) * (uint8_t)d->B( 3));
1370
    d->W(2) = satsw((int8_t)s->B( 4) * (uint8_t)d->B( 4) +
1371
                    (int8_t)s->B( 5) * (uint8_t)d->B( 5));
1372
    d->W(3) = satsw((int8_t)s->B( 6) * (uint8_t)d->B( 6) +
1373
                    (int8_t)s->B( 7) * (uint8_t)d->B( 7));
1374
#if SHIFT == 1
1375
    d->W(4) = satsw((int8_t)s->B( 8) * (uint8_t)d->B( 8) +
1376
                    (int8_t)s->B( 9) * (uint8_t)d->B( 9));
1377
    d->W(5) = satsw((int8_t)s->B(10) * (uint8_t)d->B(10) +
1378
                    (int8_t)s->B(11) * (uint8_t)d->B(11));
1379
    d->W(6) = satsw((int8_t)s->B(12) * (uint8_t)d->B(12) +
1380
                    (int8_t)s->B(13) * (uint8_t)d->B(13));
1381
    d->W(7) = satsw((int8_t)s->B(14) * (uint8_t)d->B(14) +
1382
                    (int8_t)s->B(15) * (uint8_t)d->B(15));
1383
#endif
1384
}
1385

    
1386
void glue(helper_phsubw, SUFFIX) (Reg *d, Reg *s)
1387
{
1388
    d->W(0) = (int16_t)d->W(0) - (int16_t)d->W(1);
1389
    d->W(1) = (int16_t)d->W(2) - (int16_t)d->W(3);
1390
    XMM_ONLY(d->W(2) = (int16_t)d->W(4) - (int16_t)d->W(5));
1391
    XMM_ONLY(d->W(3) = (int16_t)d->W(6) - (int16_t)d->W(7));
1392
    d->W((2 << SHIFT) + 0) = (int16_t)s->W(0) - (int16_t)s->W(1);
1393
    d->W((2 << SHIFT) + 1) = (int16_t)s->W(2) - (int16_t)s->W(3);
1394
    XMM_ONLY(d->W(6) = (int16_t)s->W(4) - (int16_t)s->W(5));
1395
    XMM_ONLY(d->W(7) = (int16_t)s->W(6) - (int16_t)s->W(7));
1396
}
1397

    
1398
void glue(helper_phsubd, SUFFIX) (Reg *d, Reg *s)
1399
{
1400
    d->L(0) = (int32_t)d->L(0) - (int32_t)d->L(1);
1401
    XMM_ONLY(d->L(1) = (int32_t)d->L(2) - (int32_t)d->L(3));
1402
    d->L((1 << SHIFT) + 0) = (int32_t)s->L(0) - (int32_t)s->L(1);
1403
    XMM_ONLY(d->L(3) = (int32_t)s->L(2) - (int32_t)s->L(3));
1404
}
1405

    
1406
void glue(helper_phsubsw, SUFFIX) (Reg *d, Reg *s)
1407
{
1408
    d->W(0) = satsw((int16_t)d->W(0) - (int16_t)d->W(1));
1409
    d->W(1) = satsw((int16_t)d->W(2) - (int16_t)d->W(3));
1410
    XMM_ONLY(d->W(2) = satsw((int16_t)d->W(4) - (int16_t)d->W(5)));
1411
    XMM_ONLY(d->W(3) = satsw((int16_t)d->W(6) - (int16_t)d->W(7)));
1412
    d->W((2 << SHIFT) + 0) = satsw((int16_t)s->W(0) - (int16_t)s->W(1));
1413
    d->W((2 << SHIFT) + 1) = satsw((int16_t)s->W(2) - (int16_t)s->W(3));
1414
    XMM_ONLY(d->W(6) = satsw((int16_t)s->W(4) - (int16_t)s->W(5)));
1415
    XMM_ONLY(d->W(7) = satsw((int16_t)s->W(6) - (int16_t)s->W(7)));
1416
}
1417

    
1418
#define FABSB(_, x) x > INT8_MAX  ? -(int8_t ) x : x
1419
#define FABSW(_, x) x > INT16_MAX ? -(int16_t) x : x
1420
#define FABSL(_, x) x > INT32_MAX ? -(int32_t) x : x
1421
SSE_HELPER_B(helper_pabsb, FABSB)
1422
SSE_HELPER_W(helper_pabsw, FABSW)
1423
SSE_HELPER_L(helper_pabsd, FABSL)
1424

    
1425
#define FMULHRSW(d, s) ((int16_t) d * (int16_t) s + 0x4000) >> 15
1426
SSE_HELPER_W(helper_pmulhrsw, FMULHRSW)
1427

    
1428
#define FSIGNB(d, s) s <= INT8_MAX  ? s ? d : 0 : -(int8_t ) d
1429
#define FSIGNW(d, s) s <= INT16_MAX ? s ? d : 0 : -(int16_t) d
1430
#define FSIGNL(d, s) s <= INT32_MAX ? s ? d : 0 : -(int32_t) d
1431
SSE_HELPER_B(helper_psignb, FSIGNB)
1432
SSE_HELPER_W(helper_psignw, FSIGNW)
1433
SSE_HELPER_L(helper_psignd, FSIGNL)
1434

    
1435
void glue(helper_palignr, SUFFIX) (Reg *d, Reg *s, int32_t shift)
1436
{
1437
    Reg r;
1438

    
1439
    /* XXX could be checked during translation */
1440
    if (shift >= (16 << SHIFT)) {
1441
        r.Q(0) = 0;
1442
        XMM_ONLY(r.Q(1) = 0);
1443
    } else {
1444
        shift <<= 3;
1445
#define SHR(v, i) (i < 64 && i > -64 ? i > 0 ? v >> (i) : (v << -(i)) : 0)
1446
#if SHIFT == 0
1447
        r.Q(0) = SHR(s->Q(0), shift -   0) |
1448
                 SHR(d->Q(0), shift -  64);
1449
#else
1450
        r.Q(0) = SHR(s->Q(0), shift -   0) |
1451
                 SHR(s->Q(1), shift -  64) |
1452
                 SHR(d->Q(0), shift - 128) |
1453
                 SHR(d->Q(1), shift - 192);
1454
        r.Q(1) = SHR(s->Q(0), shift +  64) |
1455
                 SHR(s->Q(1), shift -   0) |
1456
                 SHR(d->Q(0), shift -  64) |
1457
                 SHR(d->Q(1), shift - 128);
1458
#endif
1459
#undef SHR
1460
    }
1461

    
1462
    *d = r;
1463
}
1464

    
1465
#define XMM0 env->xmm_regs[0]
1466

    
1467
#if SHIFT == 1
1468
#define SSE_HELPER_V(name, elem, num, F)\
1469
void glue(name, SUFFIX) (Reg *d, Reg *s)\
1470
{\
1471
    d->elem(0) = F(d->elem(0), s->elem(0), XMM0.elem(0));\
1472
    d->elem(1) = F(d->elem(1), s->elem(1), XMM0.elem(1));\
1473
    if (num > 2) {\
1474
        d->elem(2) = F(d->elem(2), s->elem(2), XMM0.elem(2));\
1475
        d->elem(3) = F(d->elem(3), s->elem(3), XMM0.elem(3));\
1476
        if (num > 4) {\
1477
            d->elem(4) = F(d->elem(4), s->elem(4), XMM0.elem(4));\
1478
            d->elem(5) = F(d->elem(5), s->elem(5), XMM0.elem(5));\
1479
            d->elem(6) = F(d->elem(6), s->elem(6), XMM0.elem(6));\
1480
            d->elem(7) = F(d->elem(7), s->elem(7), XMM0.elem(7));\
1481
            if (num > 8) {\
1482
                d->elem(8) = F(d->elem(8), s->elem(8), XMM0.elem(8));\
1483
                d->elem(9) = F(d->elem(9), s->elem(9), XMM0.elem(9));\
1484
                d->elem(10) = F(d->elem(10), s->elem(10), XMM0.elem(10));\
1485
                d->elem(11) = F(d->elem(11), s->elem(11), XMM0.elem(11));\
1486
                d->elem(12) = F(d->elem(12), s->elem(12), XMM0.elem(12));\
1487
                d->elem(13) = F(d->elem(13), s->elem(13), XMM0.elem(13));\
1488
                d->elem(14) = F(d->elem(14), s->elem(14), XMM0.elem(14));\
1489
                d->elem(15) = F(d->elem(15), s->elem(15), XMM0.elem(15));\
1490
            }\
1491
        }\
1492
    }\
1493
}
1494

    
1495
#define SSE_HELPER_I(name, elem, num, F)\
1496
void glue(name, SUFFIX) (Reg *d, Reg *s, uint32_t imm)\
1497
{\
1498
    d->elem(0) = F(d->elem(0), s->elem(0), ((imm >> 0) & 1));\
1499
    d->elem(1) = F(d->elem(1), s->elem(1), ((imm >> 1) & 1));\
1500
    if (num > 2) {\
1501
        d->elem(2) = F(d->elem(2), s->elem(2), ((imm >> 2) & 1));\
1502
        d->elem(3) = F(d->elem(3), s->elem(3), ((imm >> 3) & 1));\
1503
        if (num > 4) {\
1504
            d->elem(4) = F(d->elem(4), s->elem(4), ((imm >> 4) & 1));\
1505
            d->elem(5) = F(d->elem(5), s->elem(5), ((imm >> 5) & 1));\
1506
            d->elem(6) = F(d->elem(6), s->elem(6), ((imm >> 6) & 1));\
1507
            d->elem(7) = F(d->elem(7), s->elem(7), ((imm >> 7) & 1));\
1508
            if (num > 8) {\
1509
                d->elem(8) = F(d->elem(8), s->elem(8), ((imm >> 8) & 1));\
1510
                d->elem(9) = F(d->elem(9), s->elem(9), ((imm >> 9) & 1));\
1511
                d->elem(10) = F(d->elem(10), s->elem(10), ((imm >> 10) & 1));\
1512
                d->elem(11) = F(d->elem(11), s->elem(11), ((imm >> 11) & 1));\
1513
                d->elem(12) = F(d->elem(12), s->elem(12), ((imm >> 12) & 1));\
1514
                d->elem(13) = F(d->elem(13), s->elem(13), ((imm >> 13) & 1));\
1515
                d->elem(14) = F(d->elem(14), s->elem(14), ((imm >> 14) & 1));\
1516
                d->elem(15) = F(d->elem(15), s->elem(15), ((imm >> 15) & 1));\
1517
            }\
1518
        }\
1519
    }\
1520
}
1521

    
1522
/* SSE4.1 op helpers */
1523
#define FBLENDVB(d, s, m) (m & 0x80) ? s : d
1524
#define FBLENDVPS(d, s, m) (m & 0x80000000) ? s : d
1525
#define FBLENDVPD(d, s, m) (m & 0x8000000000000000LL) ? s : d
1526
SSE_HELPER_V(helper_pblendvb, B, 16, FBLENDVB)
1527
SSE_HELPER_V(helper_blendvps, L, 4, FBLENDVPS)
1528
SSE_HELPER_V(helper_blendvpd, Q, 2, FBLENDVPD)
1529

    
1530
void glue(helper_ptest, SUFFIX) (Reg *d, Reg *s)
1531
{
1532
    uint64_t zf = (s->Q(0) &  d->Q(0)) | (s->Q(1) &  d->Q(1));
1533
    uint64_t cf = (s->Q(0) & ~d->Q(0)) | (s->Q(1) & ~d->Q(1));
1534

    
1535
    CC_SRC = (zf ? 0 : CC_Z) | (cf ? 0 : CC_C);
1536
}
1537

    
1538
#define SSE_HELPER_F(name, elem, num, F)\
1539
void glue(name, SUFFIX) (Reg *d, Reg *s)\
1540
{\
1541
    d->elem(0) = F(0);\
1542
    d->elem(1) = F(1);\
1543
    if (num > 2) {\
1544
        d->elem(2) = F(2);\
1545
        d->elem(3) = F(3);\
1546
        if (num > 4) {\
1547
            d->elem(4) = F(4);\
1548
            d->elem(5) = F(5);\
1549
            d->elem(6) = F(6);\
1550
            d->elem(7) = F(7);\
1551
        }\
1552
    }\
1553
}
1554

    
1555
SSE_HELPER_F(helper_pmovsxbw, W, 8, (int8_t) s->B)
1556
SSE_HELPER_F(helper_pmovsxbd, L, 4, (int8_t) s->B)
1557
SSE_HELPER_F(helper_pmovsxbq, Q, 2, (int8_t) s->B)
1558
SSE_HELPER_F(helper_pmovsxwd, L, 4, (int16_t) s->W)
1559
SSE_HELPER_F(helper_pmovsxwq, Q, 2, (int16_t) s->W)
1560
SSE_HELPER_F(helper_pmovsxdq, Q, 2, (int32_t) s->L)
1561
SSE_HELPER_F(helper_pmovzxbw, W, 8, s->B)
1562
SSE_HELPER_F(helper_pmovzxbd, L, 4, s->B)
1563
SSE_HELPER_F(helper_pmovzxbq, Q, 2, s->B)
1564
SSE_HELPER_F(helper_pmovzxwd, L, 4, s->W)
1565
SSE_HELPER_F(helper_pmovzxwq, Q, 2, s->W)
1566
SSE_HELPER_F(helper_pmovzxdq, Q, 2, s->L)
1567

    
1568
void glue(helper_pmuldq, SUFFIX) (Reg *d, Reg *s)
1569
{
1570
    d->Q(0) = (int64_t) (int32_t) d->L(0) * (int32_t) s->L(0);
1571
    d->Q(1) = (int64_t) (int32_t) d->L(2) * (int32_t) s->L(2);
1572
}
1573

    
1574
#define FCMPEQQ(d, s) d == s ? -1 : 0
1575
SSE_HELPER_Q(helper_pcmpeqq, FCMPEQQ)
1576

    
1577
void glue(helper_packusdw, SUFFIX) (Reg *d, Reg *s)
1578
{
1579
    d->W(0) = satuw((int32_t) d->L(0));
1580
    d->W(1) = satuw((int32_t) d->L(1));
1581
    d->W(2) = satuw((int32_t) d->L(2));
1582
    d->W(3) = satuw((int32_t) d->L(3));
1583
    d->W(4) = satuw((int32_t) s->L(0));
1584
    d->W(5) = satuw((int32_t) s->L(1));
1585
    d->W(6) = satuw((int32_t) s->L(2));
1586
    d->W(7) = satuw((int32_t) s->L(3));
1587
}
1588

    
1589
#define FMINSB(d, s) MIN((int8_t) d, (int8_t) s)
1590
#define FMINSD(d, s) MIN((int32_t) d, (int32_t) s)
1591
#define FMAXSB(d, s) MAX((int8_t) d, (int8_t) s)
1592
#define FMAXSD(d, s) MAX((int32_t) d, (int32_t) s)
1593
SSE_HELPER_B(helper_pminsb, FMINSB)
1594
SSE_HELPER_L(helper_pminsd, FMINSD)
1595
SSE_HELPER_W(helper_pminuw, MIN)
1596
SSE_HELPER_L(helper_pminud, MIN)
1597
SSE_HELPER_B(helper_pmaxsb, FMAXSB)
1598
SSE_HELPER_L(helper_pmaxsd, FMAXSD)
1599
SSE_HELPER_W(helper_pmaxuw, MAX)
1600
SSE_HELPER_L(helper_pmaxud, MAX)
1601

    
1602
#define FMULLD(d, s) (int32_t) d * (int32_t) s
1603
SSE_HELPER_L(helper_pmulld, FMULLD)
1604

    
1605
void glue(helper_phminposuw, SUFFIX) (Reg *d, Reg *s)
1606
{
1607
    int idx = 0;
1608

    
1609
    if (s->W(1) < s->W(idx))
1610
        idx = 1;
1611
    if (s->W(2) < s->W(idx))
1612
        idx = 2;
1613
    if (s->W(3) < s->W(idx))
1614
        idx = 3;
1615
    if (s->W(4) < s->W(idx))
1616
        idx = 4;
1617
    if (s->W(5) < s->W(idx))
1618
        idx = 5;
1619
    if (s->W(6) < s->W(idx))
1620
        idx = 6;
1621
    if (s->W(7) < s->W(idx))
1622
        idx = 7;
1623

    
1624
    d->Q(1) = 0;
1625
    d->L(1) = 0;
1626
    d->W(1) = idx;
1627
    d->W(0) = s->W(idx);
1628
}
1629

    
1630
void glue(helper_roundps, SUFFIX) (Reg *d, Reg *s, uint32_t mode)
1631
{
1632
    signed char prev_rounding_mode;
1633

    
1634
    prev_rounding_mode = env->sse_status.float_rounding_mode;
1635
    if (!(mode & (1 << 2)))
1636
        switch (mode & 3) {
1637
        case 0:
1638
            set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1639
            break;
1640
        case 1:
1641
            set_float_rounding_mode(float_round_down, &env->sse_status);
1642
            break;
1643
        case 2:
1644
            set_float_rounding_mode(float_round_up, &env->sse_status);
1645
            break;
1646
        case 3:
1647
            set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1648
            break;
1649
        }
1650

    
1651
    d->L(0) = float64_round_to_int(s->L(0), &env->sse_status);
1652
    d->L(1) = float64_round_to_int(s->L(1), &env->sse_status);
1653
    d->L(2) = float64_round_to_int(s->L(2), &env->sse_status);
1654
    d->L(3) = float64_round_to_int(s->L(3), &env->sse_status);
1655

    
1656
#if 0 /* TODO */
1657
    if (mode & (1 << 3))
1658
        set_float_exception_flags(
1659
                        get_float_exception_flags(&env->sse_status) &
1660
                        ~float_flag_inexact,
1661
                        &env->sse_status);
1662
#endif
1663
    env->sse_status.float_rounding_mode = prev_rounding_mode;
1664
}
1665

    
1666
void glue(helper_roundpd, SUFFIX) (Reg *d, Reg *s, uint32_t mode)
1667
{
1668
    signed char prev_rounding_mode;
1669

    
1670
    prev_rounding_mode = env->sse_status.float_rounding_mode;
1671
    if (!(mode & (1 << 2)))
1672
        switch (mode & 3) {
1673
        case 0:
1674
            set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1675
            break;
1676
        case 1:
1677
            set_float_rounding_mode(float_round_down, &env->sse_status);
1678
            break;
1679
        case 2:
1680
            set_float_rounding_mode(float_round_up, &env->sse_status);
1681
            break;
1682
        case 3:
1683
            set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1684
            break;
1685
        }
1686

    
1687
    d->Q(0) = float64_round_to_int(s->Q(0), &env->sse_status);
1688
    d->Q(1) = float64_round_to_int(s->Q(1), &env->sse_status);
1689

    
1690
#if 0 /* TODO */
1691
    if (mode & (1 << 3))
1692
        set_float_exception_flags(
1693
                        get_float_exception_flags(&env->sse_status) &
1694
                        ~float_flag_inexact,
1695
                        &env->sse_status);
1696
#endif
1697
    env->sse_status.float_rounding_mode = prev_rounding_mode;
1698
}
1699

    
1700
void glue(helper_roundss, SUFFIX) (Reg *d, Reg *s, uint32_t mode)
1701
{
1702
    signed char prev_rounding_mode;
1703

    
1704
    prev_rounding_mode = env->sse_status.float_rounding_mode;
1705
    if (!(mode & (1 << 2)))
1706
        switch (mode & 3) {
1707
        case 0:
1708
            set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1709
            break;
1710
        case 1:
1711
            set_float_rounding_mode(float_round_down, &env->sse_status);
1712
            break;
1713
        case 2:
1714
            set_float_rounding_mode(float_round_up, &env->sse_status);
1715
            break;
1716
        case 3:
1717
            set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1718
            break;
1719
        }
1720

    
1721
    d->L(0) = float64_round_to_int(s->L(0), &env->sse_status);
1722

    
1723
#if 0 /* TODO */
1724
    if (mode & (1 << 3))
1725
        set_float_exception_flags(
1726
                        get_float_exception_flags(&env->sse_status) &
1727
                        ~float_flag_inexact,
1728
                        &env->sse_status);
1729
#endif
1730
    env->sse_status.float_rounding_mode = prev_rounding_mode;
1731
}
1732

    
1733
void glue(helper_roundsd, SUFFIX) (Reg *d, Reg *s, uint32_t mode)
1734
{
1735
    signed char prev_rounding_mode;
1736

    
1737
    prev_rounding_mode = env->sse_status.float_rounding_mode;
1738
    if (!(mode & (1 << 2)))
1739
        switch (mode & 3) {
1740
        case 0:
1741
            set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1742
            break;
1743
        case 1:
1744
            set_float_rounding_mode(float_round_down, &env->sse_status);
1745
            break;
1746
        case 2:
1747
            set_float_rounding_mode(float_round_up, &env->sse_status);
1748
            break;
1749
        case 3:
1750
            set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1751
            break;
1752
        }
1753

    
1754
    d->Q(0) = float64_round_to_int(s->Q(0), &env->sse_status);
1755

    
1756
#if 0 /* TODO */
1757
    if (mode & (1 << 3))
1758
        set_float_exception_flags(
1759
                        get_float_exception_flags(&env->sse_status) &
1760
                        ~float_flag_inexact,
1761
                        &env->sse_status);
1762
#endif
1763
    env->sse_status.float_rounding_mode = prev_rounding_mode;
1764
}
1765

    
1766
#define FBLENDP(d, s, m) m ? s : d
1767
SSE_HELPER_I(helper_blendps, L, 4, FBLENDP)
1768
SSE_HELPER_I(helper_blendpd, Q, 2, FBLENDP)
1769
SSE_HELPER_I(helper_pblendw, W, 8, FBLENDP)
1770

    
1771
void glue(helper_dpps, SUFFIX) (Reg *d, Reg *s, uint32_t mask)
1772
{
1773
    float32 iresult = 0 /*float32_zero*/;
1774

    
1775
    if (mask & (1 << 4))
1776
        iresult = float32_add(iresult,
1777
                        float32_mul(d->L(0), s->L(0), &env->sse_status),
1778
                        &env->sse_status);
1779
    if (mask & (1 << 5))
1780
        iresult = float32_add(iresult,
1781
                        float32_mul(d->L(1), s->L(1), &env->sse_status),
1782
                        &env->sse_status);
1783
    if (mask & (1 << 6))
1784
        iresult = float32_add(iresult,
1785
                        float32_mul(d->L(2), s->L(2), &env->sse_status),
1786
                        &env->sse_status);
1787
    if (mask & (1 << 7))
1788
        iresult = float32_add(iresult,
1789
                        float32_mul(d->L(3), s->L(3), &env->sse_status),
1790
                        &env->sse_status);
1791
    d->L(0) = (mask & (1 << 0)) ? iresult : 0 /*float32_zero*/;
1792
    d->L(1) = (mask & (1 << 1)) ? iresult : 0 /*float32_zero*/;
1793
    d->L(2) = (mask & (1 << 2)) ? iresult : 0 /*float32_zero*/;
1794
    d->L(3) = (mask & (1 << 3)) ? iresult : 0 /*float32_zero*/;
1795
}
1796

    
1797
void glue(helper_dppd, SUFFIX) (Reg *d, Reg *s, uint32_t mask)
1798
{
1799
    float64 iresult = 0 /*float64_zero*/;
1800

    
1801
    if (mask & (1 << 4))
1802
        iresult = float64_add(iresult,
1803
                        float64_mul(d->Q(0), s->Q(0), &env->sse_status),
1804
                        &env->sse_status);
1805
    if (mask & (1 << 5))
1806
        iresult = float64_add(iresult,
1807
                        float64_mul(d->Q(1), s->Q(1), &env->sse_status),
1808
                        &env->sse_status);
1809
    d->Q(0) = (mask & (1 << 0)) ? iresult : 0 /*float64_zero*/;
1810
    d->Q(1) = (mask & (1 << 1)) ? iresult : 0 /*float64_zero*/;
1811
}
1812

    
1813
void glue(helper_mpsadbw, SUFFIX) (Reg *d, Reg *s, uint32_t offset)
1814
{
1815
    int s0 = (offset & 3) << 2;
1816
    int d0 = (offset & 4) << 0;
1817
    int i;
1818
    Reg r;
1819

    
1820
    for (i = 0; i < 8; i++, d0++) {
1821
        r.W(i) = 0;
1822
        r.W(i) += abs1(d->B(d0 + 0) - s->B(s0 + 0));
1823
        r.W(i) += abs1(d->B(d0 + 1) - s->B(s0 + 1));
1824
        r.W(i) += abs1(d->B(d0 + 2) - s->B(s0 + 2));
1825
        r.W(i) += abs1(d->B(d0 + 3) - s->B(s0 + 3));
1826
    }
1827

    
1828
    *d = r;
1829
}
1830

    
1831
/* SSE4.2 op helpers */
1832
/* it's unclear whether signed or unsigned */
1833
#define FCMPGTQ(d, s) d > s ? -1 : 0
1834
SSE_HELPER_Q(helper_pcmpgtq, FCMPGTQ)
1835

    
1836
static inline int pcmp_elen(int reg, uint32_t ctrl)
1837
{
1838
    int val;
1839

    
1840
    /* Presence of REX.W is indicated by a bit higher than 7 set */
1841
    if (ctrl >> 8)
1842
        val = abs1((int64_t) env->regs[reg]);
1843
    else
1844
        val = abs1((int32_t) env->regs[reg]);
1845

    
1846
    if (ctrl & 1) {
1847
        if (val > 8)
1848
            return 8;
1849
    } else
1850
        if (val > 16)
1851
            return 16;
1852

    
1853
    return val;
1854
}
1855

    
1856
static inline int pcmp_ilen(Reg *r, uint8_t ctrl)
1857
{
1858
    int val = 0;
1859

    
1860
    if (ctrl & 1) {
1861
        while (val < 8 && r->W(val))
1862
            val++;
1863
    } else
1864
        while (val < 16 && r->B(val))
1865
            val++;
1866

    
1867
    return val;
1868
}
1869

    
1870
static inline int pcmp_val(Reg *r, uint8_t ctrl, int i)
1871
{
1872
    switch ((ctrl >> 0) & 3) {
1873
    case 0:
1874
        return r->B(i);
1875
    case 1:
1876
        return r->W(i);
1877
    case 2:
1878
        return (int8_t) r->B(i);
1879
    case 3:
1880
    default:
1881
        return (int16_t) r->W(i);
1882
    }
1883
}
1884

    
1885
static inline unsigned pcmpxstrx(Reg *d, Reg *s,
1886
                int8_t ctrl, int valids, int validd)
1887
{
1888
    unsigned int res = 0;
1889
    int v;
1890
    int j, i;
1891
    int upper = (ctrl & 1) ? 7 : 15;
1892

    
1893
    valids--;
1894
    validd--;
1895

    
1896
    CC_SRC = (valids < upper ? CC_Z : 0) | (validd < upper ? CC_S : 0);
1897

    
1898
    switch ((ctrl >> 2) & 3) {
1899
    case 0:
1900
        for (j = valids; j >= 0; j--) {
1901
            res <<= 1;
1902
            v = pcmp_val(s, ctrl, j);
1903
            for (i = validd; i >= 0; i--)
1904
                res |= (v == pcmp_val(d, ctrl, i));
1905
        }
1906
        break;
1907
    case 1:
1908
        for (j = valids; j >= 0; j--) {
1909
            res <<= 1;
1910
            v = pcmp_val(s, ctrl, j);
1911
            for (i = ((validd - 1) | 1); i >= 0; i -= 2)
1912
                res |= (pcmp_val(d, ctrl, i - 0) <= v &&
1913
                        pcmp_val(d, ctrl, i - 1) >= v);
1914
        }
1915
        break;
1916
    case 2:
1917
        res = (2 << (upper - MAX(valids, validd))) - 1;
1918
        res <<= MAX(valids, validd) - MIN(valids, validd);
1919
        for (i = MIN(valids, validd); i >= 0; i--) {
1920
            res <<= 1;
1921
            v = pcmp_val(s, ctrl, i);
1922
            res |= (v == pcmp_val(d, ctrl, i));
1923
        }
1924
        break;
1925
    case 3:
1926
        for (j = valids - validd; j >= 0; j--) {
1927
            res <<= 1;
1928
            res |= 1;
1929
            for (i = MIN(upper - j, validd); i >= 0; i--)
1930
                res &= (pcmp_val(s, ctrl, i + j) == pcmp_val(d, ctrl, i));
1931
        }
1932
        break;
1933
    }
1934

    
1935
    switch ((ctrl >> 4) & 3) {
1936
    case 1:
1937
        res ^= (2 << upper) - 1;
1938
        break;
1939
    case 3:
1940
        res ^= (2 << valids) - 1;
1941
        break;
1942
    }
1943

    
1944
    if (res)
1945
       CC_SRC |= CC_C;
1946
    if (res & 1)
1947
       CC_SRC |= CC_O;
1948

    
1949
    return res;
1950
}
1951

    
1952
static inline int rffs1(unsigned int val)
1953
{
1954
    int ret = 1, hi;
1955

    
1956
    for (hi = sizeof(val) * 4; hi; hi /= 2)
1957
        if (val >> hi) {
1958
            val >>= hi;
1959
            ret += hi;
1960
        }
1961

    
1962
    return ret;
1963
}
1964

    
1965
static inline int ffs1(unsigned int val)
1966
{
1967
    int ret = 1, hi;
1968

    
1969
    for (hi = sizeof(val) * 4; hi; hi /= 2)
1970
        if (val << hi) {
1971
            val <<= hi;
1972
            ret += hi;
1973
        }
1974

    
1975
    return ret;
1976
}
1977

    
1978
void glue(helper_pcmpestri, SUFFIX) (Reg *d, Reg *s, uint32_t ctrl)
1979
{
1980
    unsigned int res = pcmpxstrx(d, s, ctrl,
1981
                    pcmp_elen(R_EDX, ctrl),
1982
                    pcmp_elen(R_EAX, ctrl));
1983

    
1984
    if (res)
1985
        env->regs[R_ECX] = ((ctrl & (1 << 6)) ? rffs1 : ffs1)(res) - 1;
1986
    else
1987
        env->regs[R_ECX] = 16 >> (ctrl & (1 << 0));
1988
}
1989

    
1990
void glue(helper_pcmpestrm, SUFFIX) (Reg *d, Reg *s, uint32_t ctrl)
1991
{
1992
    int i;
1993
    unsigned int res = pcmpxstrx(d, s, ctrl,
1994
                    pcmp_elen(R_EDX, ctrl),
1995
                    pcmp_elen(R_EAX, ctrl));
1996

    
1997
    if ((ctrl >> 6) & 1) {
1998
        if (ctrl & 1)
1999
            for (i = 0; i <= 8; i--, res >>= 1)
2000
                d->W(i) = (res & 1) ? ~0 : 0;
2001
        else
2002
            for (i = 0; i <= 16; i--, res >>= 1)
2003
                d->B(i) = (res & 1) ? ~0 : 0;
2004
    } else {
2005
        d->Q(1) = 0;
2006
        d->Q(0) = res;
2007
    }
2008
}
2009

    
2010
void glue(helper_pcmpistri, SUFFIX) (Reg *d, Reg *s, uint32_t ctrl)
2011
{
2012
    unsigned int res = pcmpxstrx(d, s, ctrl,
2013
                    pcmp_ilen(s, ctrl),
2014
                    pcmp_ilen(d, ctrl));
2015

    
2016
    if (res)
2017
        env->regs[R_ECX] = ((ctrl & (1 << 6)) ? rffs1 : ffs1)(res) - 1;
2018
    else
2019
        env->regs[R_ECX] = 16 >> (ctrl & (1 << 0));
2020
}
2021

    
2022
void glue(helper_pcmpistrm, SUFFIX) (Reg *d, Reg *s, uint32_t ctrl)
2023
{
2024
    int i;
2025
    unsigned int res = pcmpxstrx(d, s, ctrl,
2026
                    pcmp_ilen(s, ctrl),
2027
                    pcmp_ilen(d, ctrl));
2028

    
2029
    if ((ctrl >> 6) & 1) {
2030
        if (ctrl & 1)
2031
            for (i = 0; i <= 8; i--, res >>= 1)
2032
                d->W(i) = (res & 1) ? ~0 : 0;
2033
        else
2034
            for (i = 0; i <= 16; i--, res >>= 1)
2035
                d->B(i) = (res & 1) ? ~0 : 0;
2036
    } else {
2037
        d->Q(1) = 0;
2038
        d->Q(0) = res;
2039
    }
2040
}
2041

    
2042
#define CRCPOLY        0x1edc6f41
2043
#define CRCPOLY_BITREV 0x82f63b78
2044
target_ulong helper_crc32(uint32_t crc1, target_ulong msg, uint32_t len)
2045
{
2046
    target_ulong crc = (msg & ((target_ulong) -1 >>
2047
                            (TARGET_LONG_BITS - len))) ^ crc1;
2048

    
2049
    while (len--)
2050
        crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_BITREV : 0);
2051

    
2052
    return crc;
2053
}
2054

    
2055
#define POPMASK(i)     ((target_ulong) -1 / ((1LL << (1 << i)) + 1))
2056
#define POPCOUNT(n, i) (n & POPMASK(i)) + ((n >> (1 << i)) & POPMASK(i))
2057
target_ulong helper_popcnt(target_ulong n, uint32_t type)
2058
{
2059
    CC_SRC = n ? 0 : CC_Z;
2060

    
2061
    n = POPCOUNT(n, 0);
2062
    n = POPCOUNT(n, 1);
2063
    n = POPCOUNT(n, 2);
2064
    n = POPCOUNT(n, 3);
2065
    if (type == 1)
2066
        return n & 0xff;
2067

    
2068
    n = POPCOUNT(n, 4);
2069
#ifndef TARGET_X86_64
2070
    return n;
2071
#else
2072
    if (type == 2)
2073
        return n & 0xff;
2074

    
2075
    return POPCOUNT(n, 5);
2076
#endif
2077
}
2078
#endif
2079

    
2080
#undef SHIFT
2081
#undef XMM_ONLY
2082
#undef Reg
2083
#undef B
2084
#undef W
2085
#undef L
2086
#undef Q
2087
#undef SUFFIX