Statistics
| Branch: | Revision:

root / linux-user / elfload.c @ 68a1c816

History | View | Annotate | Download (81.2 kB)

1
/* This is the Linux kernel elf-loading code, ported into user space */
2
#include <sys/time.h>
3
#include <sys/param.h>
4

    
5
#include <stdio.h>
6
#include <sys/types.h>
7
#include <fcntl.h>
8
#include <errno.h>
9
#include <unistd.h>
10
#include <sys/mman.h>
11
#include <sys/resource.h>
12
#include <stdlib.h>
13
#include <string.h>
14
#include <time.h>
15

    
16
#include "qemu.h"
17
#include "disas.h"
18

    
19
#ifdef _ARCH_PPC64
20
#undef ARCH_DLINFO
21
#undef ELF_PLATFORM
22
#undef ELF_HWCAP
23
#undef ELF_CLASS
24
#undef ELF_DATA
25
#undef ELF_ARCH
26
#endif
27

    
28
#define ELF_OSABI   ELFOSABI_SYSV
29

    
30
/* from personality.h */
31

    
32
/*
33
 * Flags for bug emulation.
34
 *
35
 * These occupy the top three bytes.
36
 */
37
enum {
38
        ADDR_NO_RANDOMIZE =         0x0040000,        /* disable randomization of VA space */
39
        FDPIC_FUNCPTRS =        0x0080000,        /* userspace function ptrs point to descriptors
40
                                                 * (signal handling)
41
                                                 */
42
        MMAP_PAGE_ZERO =        0x0100000,
43
        ADDR_COMPAT_LAYOUT =        0x0200000,
44
        READ_IMPLIES_EXEC =        0x0400000,
45
        ADDR_LIMIT_32BIT =        0x0800000,
46
        SHORT_INODE =                0x1000000,
47
        WHOLE_SECONDS =                0x2000000,
48
        STICKY_TIMEOUTS        =        0x4000000,
49
        ADDR_LIMIT_3GB =         0x8000000,
50
};
51

    
52
/*
53
 * Personality types.
54
 *
55
 * These go in the low byte.  Avoid using the top bit, it will
56
 * conflict with error returns.
57
 */
58
enum {
59
        PER_LINUX =                0x0000,
60
        PER_LINUX_32BIT =        0x0000 | ADDR_LIMIT_32BIT,
61
        PER_LINUX_FDPIC =        0x0000 | FDPIC_FUNCPTRS,
62
        PER_SVR4 =                0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
63
        PER_SVR3 =                0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
64
        PER_SCOSVR3 =                0x0003 | STICKY_TIMEOUTS |
65
                                         WHOLE_SECONDS | SHORT_INODE,
66
        PER_OSR5 =                0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
67
        PER_WYSEV386 =                0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
68
        PER_ISCR4 =                0x0005 | STICKY_TIMEOUTS,
69
        PER_BSD =                0x0006,
70
        PER_SUNOS =                0x0006 | STICKY_TIMEOUTS,
71
        PER_XENIX =                0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
72
        PER_LINUX32 =                0x0008,
73
        PER_LINUX32_3GB =        0x0008 | ADDR_LIMIT_3GB,
74
        PER_IRIX32 =                0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
75
        PER_IRIXN32 =                0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
76
        PER_IRIX64 =                0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
77
        PER_RISCOS =                0x000c,
78
        PER_SOLARIS =                0x000d | STICKY_TIMEOUTS,
79
        PER_UW7 =                0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
80
        PER_OSF4 =                0x000f,                         /* OSF/1 v4 */
81
        PER_HPUX =                0x0010,
82
        PER_MASK =                0x00ff,
83
};
84

    
85
/*
86
 * Return the base personality without flags.
87
 */
88
#define personality(pers)        (pers & PER_MASK)
89

    
90
/* this flag is uneffective under linux too, should be deleted */
91
#ifndef MAP_DENYWRITE
92
#define MAP_DENYWRITE 0
93
#endif
94

    
95
/* should probably go in elf.h */
96
#ifndef ELIBBAD
97
#define ELIBBAD 80
98
#endif
99

    
100
typedef target_ulong        target_elf_greg_t;
101
#ifdef USE_UID16
102
typedef uint16_t        target_uid_t;
103
typedef uint16_t        target_gid_t;
104
#else
105
typedef uint32_t        target_uid_t;
106
typedef uint32_t        target_gid_t;
107
#endif
108
typedef int32_t                target_pid_t;
109

    
110
#ifdef TARGET_I386
111

    
112
#define ELF_PLATFORM get_elf_platform()
113

    
114
static const char *get_elf_platform(void)
115
{
116
    static char elf_platform[] = "i386";
117
    int family = (thread_env->cpuid_version >> 8) & 0xff;
118
    if (family > 6)
119
        family = 6;
120
    if (family >= 3)
121
        elf_platform[1] = '0' + family;
122
    return elf_platform;
123
}
124

    
125
#define ELF_HWCAP get_elf_hwcap()
126

    
127
static uint32_t get_elf_hwcap(void)
128
{
129
  return thread_env->cpuid_features;
130
}
131

    
132
#ifdef TARGET_X86_64
133
#define ELF_START_MMAP 0x2aaaaab000ULL
134
#define elf_check_arch(x) ( ((x) == ELF_ARCH) )
135

    
136
#define ELF_CLASS      ELFCLASS64
137
#define ELF_DATA       ELFDATA2LSB
138
#define ELF_ARCH       EM_X86_64
139

    
140
static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
141
{
142
    regs->rax = 0;
143
    regs->rsp = infop->start_stack;
144
    regs->rip = infop->entry;
145
}
146

    
147
#define ELF_NREG    27
148
typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
149

    
150
/*
151
 * Note that ELF_NREG should be 29 as there should be place for
152
 * TRAPNO and ERR "registers" as well but linux doesn't dump
153
 * those.
154
 *
155
 * See linux kernel: arch/x86/include/asm/elf.h
156
 */
157
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
158
{
159
    (*regs)[0] = env->regs[15];
160
    (*regs)[1] = env->regs[14];
161
    (*regs)[2] = env->regs[13];
162
    (*regs)[3] = env->regs[12];
163
    (*regs)[4] = env->regs[R_EBP];
164
    (*regs)[5] = env->regs[R_EBX];
165
    (*regs)[6] = env->regs[11];
166
    (*regs)[7] = env->regs[10];
167
    (*regs)[8] = env->regs[9];
168
    (*regs)[9] = env->regs[8];
169
    (*regs)[10] = env->regs[R_EAX];
170
    (*regs)[11] = env->regs[R_ECX];
171
    (*regs)[12] = env->regs[R_EDX];
172
    (*regs)[13] = env->regs[R_ESI];
173
    (*regs)[14] = env->regs[R_EDI];
174
    (*regs)[15] = env->regs[R_EAX]; /* XXX */
175
    (*regs)[16] = env->eip;
176
    (*regs)[17] = env->segs[R_CS].selector & 0xffff;
177
    (*regs)[18] = env->eflags;
178
    (*regs)[19] = env->regs[R_ESP];
179
    (*regs)[20] = env->segs[R_SS].selector & 0xffff;
180
    (*regs)[21] = env->segs[R_FS].selector & 0xffff;
181
    (*regs)[22] = env->segs[R_GS].selector & 0xffff;
182
    (*regs)[23] = env->segs[R_DS].selector & 0xffff;
183
    (*regs)[24] = env->segs[R_ES].selector & 0xffff;
184
    (*regs)[25] = env->segs[R_FS].selector & 0xffff;
185
    (*regs)[26] = env->segs[R_GS].selector & 0xffff;
186
}
187

    
188
#else
189

    
190
#define ELF_START_MMAP 0x80000000
191

    
192
/*
193
 * This is used to ensure we don't load something for the wrong architecture.
194
 */
195
#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
196

    
197
/*
198
 * These are used to set parameters in the core dumps.
199
 */
200
#define ELF_CLASS        ELFCLASS32
201
#define ELF_DATA        ELFDATA2LSB
202
#define ELF_ARCH        EM_386
203

    
204
static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
205
{
206
    regs->esp = infop->start_stack;
207
    regs->eip = infop->entry;
208

    
209
    /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
210
       starts %edx contains a pointer to a function which might be
211
       registered using `atexit'.  This provides a mean for the
212
       dynamic linker to call DT_FINI functions for shared libraries
213
       that have been loaded before the code runs.
214

215
       A value of 0 tells we have no such handler.  */
216
    regs->edx = 0;
217
}
218

    
219
#define ELF_NREG    17
220
typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
221

    
222
/*
223
 * Note that ELF_NREG should be 19 as there should be place for
224
 * TRAPNO and ERR "registers" as well but linux doesn't dump
225
 * those.
226
 *
227
 * See linux kernel: arch/x86/include/asm/elf.h
228
 */
229
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
230
{
231
    (*regs)[0] = env->regs[R_EBX];
232
    (*regs)[1] = env->regs[R_ECX];
233
    (*regs)[2] = env->regs[R_EDX];
234
    (*regs)[3] = env->regs[R_ESI];
235
    (*regs)[4] = env->regs[R_EDI];
236
    (*regs)[5] = env->regs[R_EBP];
237
    (*regs)[6] = env->regs[R_EAX];
238
    (*regs)[7] = env->segs[R_DS].selector & 0xffff;
239
    (*regs)[8] = env->segs[R_ES].selector & 0xffff;
240
    (*regs)[9] = env->segs[R_FS].selector & 0xffff;
241
    (*regs)[10] = env->segs[R_GS].selector & 0xffff;
242
    (*regs)[11] = env->regs[R_EAX]; /* XXX */
243
    (*regs)[12] = env->eip;
244
    (*regs)[13] = env->segs[R_CS].selector & 0xffff;
245
    (*regs)[14] = env->eflags;
246
    (*regs)[15] = env->regs[R_ESP];
247
    (*regs)[16] = env->segs[R_SS].selector & 0xffff;
248
}
249
#endif
250

    
251
#define USE_ELF_CORE_DUMP
252
#define ELF_EXEC_PAGESIZE        4096
253

    
254
#endif
255

    
256
#ifdef TARGET_ARM
257

    
258
#define ELF_START_MMAP 0x80000000
259

    
260
#define elf_check_arch(x) ( (x) == EM_ARM )
261

    
262
#define ELF_CLASS        ELFCLASS32
263
#ifdef TARGET_WORDS_BIGENDIAN
264
#define ELF_DATA        ELFDATA2MSB
265
#else
266
#define ELF_DATA        ELFDATA2LSB
267
#endif
268
#define ELF_ARCH        EM_ARM
269

    
270
static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
271
{
272
    abi_long stack = infop->start_stack;
273
    memset(regs, 0, sizeof(*regs));
274
    regs->ARM_cpsr = 0x10;
275
    if (infop->entry & 1)
276
      regs->ARM_cpsr |= CPSR_T;
277
    regs->ARM_pc = infop->entry & 0xfffffffe;
278
    regs->ARM_sp = infop->start_stack;
279
    /* FIXME - what to for failure of get_user()? */
280
    get_user_ual(regs->ARM_r2, stack + 8); /* envp */
281
    get_user_ual(regs->ARM_r1, stack + 4); /* envp */
282
    /* XXX: it seems that r0 is zeroed after ! */
283
    regs->ARM_r0 = 0;
284
    /* For uClinux PIC binaries.  */
285
    /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
286
    regs->ARM_r10 = infop->start_data;
287
}
288

    
289
#define ELF_NREG    18
290
typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
291

    
292
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
293
{
294
    (*regs)[0] = tswapl(env->regs[0]);
295
    (*regs)[1] = tswapl(env->regs[1]);
296
    (*regs)[2] = tswapl(env->regs[2]);
297
    (*regs)[3] = tswapl(env->regs[3]);
298
    (*regs)[4] = tswapl(env->regs[4]);
299
    (*regs)[5] = tswapl(env->regs[5]);
300
    (*regs)[6] = tswapl(env->regs[6]);
301
    (*regs)[7] = tswapl(env->regs[7]);
302
    (*regs)[8] = tswapl(env->regs[8]);
303
    (*regs)[9] = tswapl(env->regs[9]);
304
    (*regs)[10] = tswapl(env->regs[10]);
305
    (*regs)[11] = tswapl(env->regs[11]);
306
    (*regs)[12] = tswapl(env->regs[12]);
307
    (*regs)[13] = tswapl(env->regs[13]);
308
    (*regs)[14] = tswapl(env->regs[14]);
309
    (*regs)[15] = tswapl(env->regs[15]);
310

    
311
    (*regs)[16] = tswapl(cpsr_read((CPUState *)env));
312
    (*regs)[17] = tswapl(env->regs[0]); /* XXX */
313
}
314

    
315
#define USE_ELF_CORE_DUMP
316
#define ELF_EXEC_PAGESIZE        4096
317

    
318
enum
319
{
320
  ARM_HWCAP_ARM_SWP       = 1 << 0,
321
  ARM_HWCAP_ARM_HALF      = 1 << 1,
322
  ARM_HWCAP_ARM_THUMB     = 1 << 2,
323
  ARM_HWCAP_ARM_26BIT     = 1 << 3,
324
  ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
325
  ARM_HWCAP_ARM_FPA       = 1 << 5,
326
  ARM_HWCAP_ARM_VFP       = 1 << 6,
327
  ARM_HWCAP_ARM_EDSP      = 1 << 7,
328
  ARM_HWCAP_ARM_JAVA      = 1 << 8,
329
  ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
330
  ARM_HWCAP_ARM_THUMBEE   = 1 << 10,
331
  ARM_HWCAP_ARM_NEON      = 1 << 11,
332
  ARM_HWCAP_ARM_VFPv3     = 1 << 12,
333
  ARM_HWCAP_ARM_VFPv3D16  = 1 << 13,
334
};
335

    
336
#define ELF_HWCAP (ARM_HWCAP_ARM_SWP | ARM_HWCAP_ARM_HALF              \
337
                    | ARM_HWCAP_ARM_THUMB | ARM_HWCAP_ARM_FAST_MULT     \
338
                    | ARM_HWCAP_ARM_FPA | ARM_HWCAP_ARM_VFP \
339
                    | ARM_HWCAP_ARM_NEON | ARM_HWCAP_ARM_VFPv3 )
340

    
341
#endif
342

    
343
#ifdef TARGET_SPARC
344
#ifdef TARGET_SPARC64
345

    
346
#define ELF_START_MMAP 0x80000000
347

    
348
#ifndef TARGET_ABI32
349
#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
350
#else
351
#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
352
#endif
353

    
354
#define ELF_CLASS   ELFCLASS64
355
#define ELF_DATA    ELFDATA2MSB
356
#define ELF_ARCH    EM_SPARCV9
357

    
358
#define STACK_BIAS                2047
359

    
360
static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
361
{
362
#ifndef TARGET_ABI32
363
    regs->tstate = 0;
364
#endif
365
    regs->pc = infop->entry;
366
    regs->npc = regs->pc + 4;
367
    regs->y = 0;
368
#ifdef TARGET_ABI32
369
    regs->u_regs[14] = infop->start_stack - 16 * 4;
370
#else
371
    if (personality(infop->personality) == PER_LINUX32)
372
        regs->u_regs[14] = infop->start_stack - 16 * 4;
373
    else
374
        regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
375
#endif
376
}
377

    
378
#else
379
#define ELF_START_MMAP 0x80000000
380

    
381
#define elf_check_arch(x) ( (x) == EM_SPARC )
382

    
383
#define ELF_CLASS   ELFCLASS32
384
#define ELF_DATA    ELFDATA2MSB
385
#define ELF_ARCH    EM_SPARC
386

    
387
static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
388
{
389
    regs->psr = 0;
390
    regs->pc = infop->entry;
391
    regs->npc = regs->pc + 4;
392
    regs->y = 0;
393
    regs->u_regs[14] = infop->start_stack - 16 * 4;
394
}
395

    
396
#endif
397
#endif
398

    
399
#ifdef TARGET_PPC
400

    
401
#define ELF_START_MMAP 0x80000000
402

    
403
#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
404

    
405
#define elf_check_arch(x) ( (x) == EM_PPC64 )
406

    
407
#define ELF_CLASS        ELFCLASS64
408

    
409
#else
410

    
411
#define elf_check_arch(x) ( (x) == EM_PPC )
412

    
413
#define ELF_CLASS        ELFCLASS32
414

    
415
#endif
416

    
417
#ifdef TARGET_WORDS_BIGENDIAN
418
#define ELF_DATA        ELFDATA2MSB
419
#else
420
#define ELF_DATA        ELFDATA2LSB
421
#endif
422
#define ELF_ARCH        EM_PPC
423

    
424
/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
425
   See arch/powerpc/include/asm/cputable.h.  */
426
enum {
427
    QEMU_PPC_FEATURE_32 = 0x80000000,
428
    QEMU_PPC_FEATURE_64 = 0x40000000,
429
    QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
430
    QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
431
    QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
432
    QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
433
    QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
434
    QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
435
    QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
436
    QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
437
    QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
438
    QEMU_PPC_FEATURE_NO_TB = 0x00100000,
439
    QEMU_PPC_FEATURE_POWER4 = 0x00080000,
440
    QEMU_PPC_FEATURE_POWER5 = 0x00040000,
441
    QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
442
    QEMU_PPC_FEATURE_CELL = 0x00010000,
443
    QEMU_PPC_FEATURE_BOOKE = 0x00008000,
444
    QEMU_PPC_FEATURE_SMT = 0x00004000,
445
    QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
446
    QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
447
    QEMU_PPC_FEATURE_PA6T = 0x00000800,
448
    QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
449
    QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
450
    QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
451
    QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
452
    QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
453

    
454
    QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
455
    QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
456
};
457

    
458
#define ELF_HWCAP get_elf_hwcap()
459

    
460
static uint32_t get_elf_hwcap(void)
461
{
462
    CPUState *e = thread_env;
463
    uint32_t features = 0;
464

    
465
    /* We don't have to be terribly complete here; the high points are
466
       Altivec/FP/SPE support.  Anything else is just a bonus.  */
467
#define GET_FEATURE(flag, feature)              \
468
    do {if (e->insns_flags & flag) features |= feature; } while(0)
469
    GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
470
    GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
471
    GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
472
    GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
473
    GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
474
    GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
475
    GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
476
    GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
477
#undef GET_FEATURE
478

    
479
    return features;
480
}
481

    
482
/*
483
 * We need to put in some extra aux table entries to tell glibc what
484
 * the cache block size is, so it can use the dcbz instruction safely.
485
 */
486
#define AT_DCACHEBSIZE          19
487
#define AT_ICACHEBSIZE          20
488
#define AT_UCACHEBSIZE          21
489
/* A special ignored type value for PPC, for glibc compatibility.  */
490
#define AT_IGNOREPPC            22
491
/*
492
 * The requirements here are:
493
 * - keep the final alignment of sp (sp & 0xf)
494
 * - make sure the 32-bit value at the first 16 byte aligned position of
495
 *   AUXV is greater than 16 for glibc compatibility.
496
 *   AT_IGNOREPPC is used for that.
497
 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
498
 *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
499
 */
500
#define DLINFO_ARCH_ITEMS       5
501
#define ARCH_DLINFO                                                     \
502
do {                                                                    \
503
        NEW_AUX_ENT(AT_DCACHEBSIZE, 0x20);                              \
504
        NEW_AUX_ENT(AT_ICACHEBSIZE, 0x20);                              \
505
        NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                                 \
506
        /*                                                              \
507
         * Now handle glibc compatibility.                              \
508
         */                                                             \
509
        NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);                        \
510
        NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);                        \
511
 } while (0)
512

    
513
static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
514
{
515
    _regs->gpr[1] = infop->start_stack;
516
#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
517
    _regs->gpr[2] = ldq_raw(infop->entry + 8) + infop->load_addr;
518
    infop->entry = ldq_raw(infop->entry) + infop->load_addr;
519
#endif
520
    _regs->nip = infop->entry;
521
}
522

    
523
/* See linux kernel: arch/powerpc/include/asm/elf.h.  */
524
#define ELF_NREG 48
525
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
526

    
527
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
528
{
529
    int i;
530
    target_ulong ccr = 0;
531

    
532
    for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
533
        (*regs)[i] = tswapl(env->gpr[i]);
534
    }
535

    
536
    (*regs)[32] = tswapl(env->nip);
537
    (*regs)[33] = tswapl(env->msr);
538
    (*regs)[35] = tswapl(env->ctr);
539
    (*regs)[36] = tswapl(env->lr);
540
    (*regs)[37] = tswapl(env->xer);
541

    
542
    for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
543
        ccr |= env->crf[i] << (32 - ((i + 1) * 4));
544
    }
545
    (*regs)[38] = tswapl(ccr);
546
}
547

    
548
#define USE_ELF_CORE_DUMP
549
#define ELF_EXEC_PAGESIZE        4096
550

    
551
#endif
552

    
553
#ifdef TARGET_MIPS
554

    
555
#define ELF_START_MMAP 0x80000000
556

    
557
#define elf_check_arch(x) ( (x) == EM_MIPS )
558

    
559
#ifdef TARGET_MIPS64
560
#define ELF_CLASS   ELFCLASS64
561
#else
562
#define ELF_CLASS   ELFCLASS32
563
#endif
564
#ifdef TARGET_WORDS_BIGENDIAN
565
#define ELF_DATA        ELFDATA2MSB
566
#else
567
#define ELF_DATA        ELFDATA2LSB
568
#endif
569
#define ELF_ARCH    EM_MIPS
570

    
571
static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
572
{
573
    regs->cp0_status = 2 << CP0St_KSU;
574
    regs->cp0_epc = infop->entry;
575
    regs->regs[29] = infop->start_stack;
576
}
577

    
578
/* See linux kernel: arch/mips/include/asm/elf.h.  */
579
#define ELF_NREG 45
580
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
581

    
582
/* See linux kernel: arch/mips/include/asm/reg.h.  */
583
enum {
584
#ifdef TARGET_MIPS64
585
    TARGET_EF_R0 = 0,
586
#else
587
    TARGET_EF_R0 = 6,
588
#endif
589
    TARGET_EF_R26 = TARGET_EF_R0 + 26,
590
    TARGET_EF_R27 = TARGET_EF_R0 + 27,
591
    TARGET_EF_LO = TARGET_EF_R0 + 32,
592
    TARGET_EF_HI = TARGET_EF_R0 + 33,
593
    TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
594
    TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
595
    TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
596
    TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
597
};
598

    
599
/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
600
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
601
{
602
    int i;
603

    
604
    for (i = 0; i < TARGET_EF_R0; i++) {
605
        (*regs)[i] = 0;
606
    }
607
    (*regs)[TARGET_EF_R0] = 0;
608

    
609
    for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
610
        (*regs)[TARGET_EF_R0 + i] = tswapl(env->active_tc.gpr[i]);
611
    }
612

    
613
    (*regs)[TARGET_EF_R26] = 0;
614
    (*regs)[TARGET_EF_R27] = 0;
615
    (*regs)[TARGET_EF_LO] = tswapl(env->active_tc.LO[0]);
616
    (*regs)[TARGET_EF_HI] = tswapl(env->active_tc.HI[0]);
617
    (*regs)[TARGET_EF_CP0_EPC] = tswapl(env->active_tc.PC);
618
    (*regs)[TARGET_EF_CP0_BADVADDR] = tswapl(env->CP0_BadVAddr);
619
    (*regs)[TARGET_EF_CP0_STATUS] = tswapl(env->CP0_Status);
620
    (*regs)[TARGET_EF_CP0_CAUSE] = tswapl(env->CP0_Cause);
621
}
622

    
623
#define USE_ELF_CORE_DUMP
624
#define ELF_EXEC_PAGESIZE        4096
625

    
626
#endif /* TARGET_MIPS */
627

    
628
#ifdef TARGET_MICROBLAZE
629

    
630
#define ELF_START_MMAP 0x80000000
631

    
632
#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
633

    
634
#define ELF_CLASS   ELFCLASS32
635
#define ELF_DATA        ELFDATA2MSB
636
#define ELF_ARCH    EM_MICROBLAZE
637

    
638
static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
639
{
640
    regs->pc = infop->entry;
641
    regs->r1 = infop->start_stack;
642

    
643
}
644

    
645
#define ELF_EXEC_PAGESIZE        4096
646

    
647
#define USE_ELF_CORE_DUMP
648
#define ELF_NREG 38
649
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
650

    
651
/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
652
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
653
{
654
    int i, pos = 0;
655

    
656
    for (i = 0; i < 32; i++) {
657
        (*regs)[pos++] = tswapl(env->regs[i]);
658
    }
659

    
660
    for (i = 0; i < 6; i++) {
661
        (*regs)[pos++] = tswapl(env->sregs[i]);
662
    }
663
}
664

    
665
#endif /* TARGET_MICROBLAZE */
666

    
667
#ifdef TARGET_SH4
668

    
669
#define ELF_START_MMAP 0x80000000
670

    
671
#define elf_check_arch(x) ( (x) == EM_SH )
672

    
673
#define ELF_CLASS ELFCLASS32
674
#define ELF_DATA  ELFDATA2LSB
675
#define ELF_ARCH  EM_SH
676

    
677
static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
678
{
679
  /* Check other registers XXXXX */
680
  regs->pc = infop->entry;
681
  regs->regs[15] = infop->start_stack;
682
}
683

    
684
/* See linux kernel: arch/sh/include/asm/elf.h.  */
685
#define ELF_NREG 23
686
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
687

    
688
/* See linux kernel: arch/sh/include/asm/ptrace.h.  */
689
enum {
690
    TARGET_REG_PC = 16,
691
    TARGET_REG_PR = 17,
692
    TARGET_REG_SR = 18,
693
    TARGET_REG_GBR = 19,
694
    TARGET_REG_MACH = 20,
695
    TARGET_REG_MACL = 21,
696
    TARGET_REG_SYSCALL = 22
697
};
698

    
699
static inline void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
700
{
701
    int i;
702

    
703
    for (i = 0; i < 16; i++) {
704
        (*regs[i]) = tswapl(env->gregs[i]);
705
    }
706

    
707
    (*regs)[TARGET_REG_PC] = tswapl(env->pc);
708
    (*regs)[TARGET_REG_PR] = tswapl(env->pr);
709
    (*regs)[TARGET_REG_SR] = tswapl(env->sr);
710
    (*regs)[TARGET_REG_GBR] = tswapl(env->gbr);
711
    (*regs)[TARGET_REG_MACH] = tswapl(env->mach);
712
    (*regs)[TARGET_REG_MACL] = tswapl(env->macl);
713
    (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
714
}
715

    
716
#define USE_ELF_CORE_DUMP
717
#define ELF_EXEC_PAGESIZE        4096
718

    
719
#endif
720

    
721
#ifdef TARGET_CRIS
722

    
723
#define ELF_START_MMAP 0x80000000
724

    
725
#define elf_check_arch(x) ( (x) == EM_CRIS )
726

    
727
#define ELF_CLASS ELFCLASS32
728
#define ELF_DATA  ELFDATA2LSB
729
#define ELF_ARCH  EM_CRIS
730

    
731
static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
732
{
733
  regs->erp = infop->entry;
734
}
735

    
736
#define ELF_EXEC_PAGESIZE        8192
737

    
738
#endif
739

    
740
#ifdef TARGET_M68K
741

    
742
#define ELF_START_MMAP 0x80000000
743

    
744
#define elf_check_arch(x) ( (x) == EM_68K )
745

    
746
#define ELF_CLASS        ELFCLASS32
747
#define ELF_DATA        ELFDATA2MSB
748
#define ELF_ARCH        EM_68K
749

    
750
/* ??? Does this need to do anything?
751
#define ELF_PLAT_INIT(_r) */
752

    
753
static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
754
{
755
    regs->usp = infop->start_stack;
756
    regs->sr = 0;
757
    regs->pc = infop->entry;
758
}
759

    
760
/* See linux kernel: arch/m68k/include/asm/elf.h.  */
761
#define ELF_NREG 20
762
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
763

    
764
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
765
{
766
    (*regs)[0] = tswapl(env->dregs[1]);
767
    (*regs)[1] = tswapl(env->dregs[2]);
768
    (*regs)[2] = tswapl(env->dregs[3]);
769
    (*regs)[3] = tswapl(env->dregs[4]);
770
    (*regs)[4] = tswapl(env->dregs[5]);
771
    (*regs)[5] = tswapl(env->dregs[6]);
772
    (*regs)[6] = tswapl(env->dregs[7]);
773
    (*regs)[7] = tswapl(env->aregs[0]);
774
    (*regs)[8] = tswapl(env->aregs[1]);
775
    (*regs)[9] = tswapl(env->aregs[2]);
776
    (*regs)[10] = tswapl(env->aregs[3]);
777
    (*regs)[11] = tswapl(env->aregs[4]);
778
    (*regs)[12] = tswapl(env->aregs[5]);
779
    (*regs)[13] = tswapl(env->aregs[6]);
780
    (*regs)[14] = tswapl(env->dregs[0]);
781
    (*regs)[15] = tswapl(env->aregs[7]);
782
    (*regs)[16] = tswapl(env->dregs[0]); /* FIXME: orig_d0 */
783
    (*regs)[17] = tswapl(env->sr);
784
    (*regs)[18] = tswapl(env->pc);
785
    (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
786
}
787

    
788
#define USE_ELF_CORE_DUMP
789
#define ELF_EXEC_PAGESIZE        8192
790

    
791
#endif
792

    
793
#ifdef TARGET_ALPHA
794

    
795
#define ELF_START_MMAP (0x30000000000ULL)
796

    
797
#define elf_check_arch(x) ( (x) == ELF_ARCH )
798

    
799
#define ELF_CLASS      ELFCLASS64
800
#define ELF_DATA       ELFDATA2MSB
801
#define ELF_ARCH       EM_ALPHA
802

    
803
static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
804
{
805
    regs->pc = infop->entry;
806
    regs->ps = 8;
807
    regs->usp = infop->start_stack;
808
}
809

    
810
#define ELF_EXEC_PAGESIZE        8192
811

    
812
#endif /* TARGET_ALPHA */
813

    
814
#ifndef ELF_PLATFORM
815
#define ELF_PLATFORM (NULL)
816
#endif
817

    
818
#ifndef ELF_HWCAP
819
#define ELF_HWCAP 0
820
#endif
821

    
822
#ifdef TARGET_ABI32
823
#undef ELF_CLASS
824
#define ELF_CLASS ELFCLASS32
825
#undef bswaptls
826
#define bswaptls(ptr) bswap32s(ptr)
827
#endif
828

    
829
#include "elf.h"
830

    
831
struct exec
832
{
833
  unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
834
  unsigned int a_text;   /* length of text, in bytes */
835
  unsigned int a_data;   /* length of data, in bytes */
836
  unsigned int a_bss;    /* length of uninitialized data area, in bytes */
837
  unsigned int a_syms;   /* length of symbol table data in file, in bytes */
838
  unsigned int a_entry;  /* start address */
839
  unsigned int a_trsize; /* length of relocation info for text, in bytes */
840
  unsigned int a_drsize; /* length of relocation info for data, in bytes */
841
};
842

    
843

    
844
#define N_MAGIC(exec) ((exec).a_info & 0xffff)
845
#define OMAGIC 0407
846
#define NMAGIC 0410
847
#define ZMAGIC 0413
848
#define QMAGIC 0314
849

    
850
/* max code+data+bss space allocated to elf interpreter */
851
#define INTERP_MAP_SIZE (32 * 1024 * 1024)
852

    
853
/* max code+data+bss+brk space allocated to ET_DYN executables */
854
#define ET_DYN_MAP_SIZE (128 * 1024 * 1024)
855

    
856
/* Necessary parameters */
857
#define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
858
#define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1))
859
#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
860

    
861
#define INTERPRETER_NONE 0
862
#define INTERPRETER_AOUT 1
863
#define INTERPRETER_ELF 2
864

    
865
#define DLINFO_ITEMS 12
866

    
867
static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
868
{
869
        memcpy(to, from, n);
870
}
871

    
872
static int load_aout_interp(void * exptr, int interp_fd);
873

    
874
#ifdef BSWAP_NEEDED
875
static void bswap_ehdr(struct elfhdr *ehdr)
876
{
877
    bswap16s(&ehdr->e_type);                        /* Object file type */
878
    bswap16s(&ehdr->e_machine);                /* Architecture */
879
    bswap32s(&ehdr->e_version);                /* Object file version */
880
    bswaptls(&ehdr->e_entry);                /* Entry point virtual address */
881
    bswaptls(&ehdr->e_phoff);                /* Program header table file offset */
882
    bswaptls(&ehdr->e_shoff);                /* Section header table file offset */
883
    bswap32s(&ehdr->e_flags);                /* Processor-specific flags */
884
    bswap16s(&ehdr->e_ehsize);                /* ELF header size in bytes */
885
    bswap16s(&ehdr->e_phentsize);                /* Program header table entry size */
886
    bswap16s(&ehdr->e_phnum);                /* Program header table entry count */
887
    bswap16s(&ehdr->e_shentsize);                /* Section header table entry size */
888
    bswap16s(&ehdr->e_shnum);                /* Section header table entry count */
889
    bswap16s(&ehdr->e_shstrndx);                /* Section header string table index */
890
}
891

    
892
static void bswap_phdr(struct elf_phdr *phdr)
893
{
894
    bswap32s(&phdr->p_type);                        /* Segment type */
895
    bswaptls(&phdr->p_offset);                /* Segment file offset */
896
    bswaptls(&phdr->p_vaddr);                /* Segment virtual address */
897
    bswaptls(&phdr->p_paddr);                /* Segment physical address */
898
    bswaptls(&phdr->p_filesz);                /* Segment size in file */
899
    bswaptls(&phdr->p_memsz);                /* Segment size in memory */
900
    bswap32s(&phdr->p_flags);                /* Segment flags */
901
    bswaptls(&phdr->p_align);                /* Segment alignment */
902
}
903

    
904
static void bswap_shdr(struct elf_shdr *shdr)
905
{
906
    bswap32s(&shdr->sh_name);
907
    bswap32s(&shdr->sh_type);
908
    bswaptls(&shdr->sh_flags);
909
    bswaptls(&shdr->sh_addr);
910
    bswaptls(&shdr->sh_offset);
911
    bswaptls(&shdr->sh_size);
912
    bswap32s(&shdr->sh_link);
913
    bswap32s(&shdr->sh_info);
914
    bswaptls(&shdr->sh_addralign);
915
    bswaptls(&shdr->sh_entsize);
916
}
917

    
918
static void bswap_sym(struct elf_sym *sym)
919
{
920
    bswap32s(&sym->st_name);
921
    bswaptls(&sym->st_value);
922
    bswaptls(&sym->st_size);
923
    bswap16s(&sym->st_shndx);
924
}
925
#endif
926

    
927
#ifdef USE_ELF_CORE_DUMP
928
static int elf_core_dump(int, const CPUState *);
929

    
930
#ifdef BSWAP_NEEDED
931
static void bswap_note(struct elf_note *en)
932
{
933
    bswap32s(&en->n_namesz);
934
    bswap32s(&en->n_descsz);
935
    bswap32s(&en->n_type);
936
}
937
#endif /* BSWAP_NEEDED */
938

    
939
#endif /* USE_ELF_CORE_DUMP */
940

    
941
/*
942
 * 'copy_elf_strings()' copies argument/envelope strings from user
943
 * memory to free pages in kernel mem. These are in a format ready
944
 * to be put directly into the top of new user memory.
945
 *
946
 */
947
static abi_ulong copy_elf_strings(int argc,char ** argv, void **page,
948
                                  abi_ulong p)
949
{
950
    char *tmp, *tmp1, *pag = NULL;
951
    int len, offset = 0;
952

    
953
    if (!p) {
954
        return 0;       /* bullet-proofing */
955
    }
956
    while (argc-- > 0) {
957
        tmp = argv[argc];
958
        if (!tmp) {
959
            fprintf(stderr, "VFS: argc is wrong");
960
            exit(-1);
961
        }
962
        tmp1 = tmp;
963
        while (*tmp++);
964
        len = tmp - tmp1;
965
        if (p < len) {  /* this shouldn't happen - 128kB */
966
                return 0;
967
        }
968
        while (len) {
969
            --p; --tmp; --len;
970
            if (--offset < 0) {
971
                offset = p % TARGET_PAGE_SIZE;
972
                pag = (char *)page[p/TARGET_PAGE_SIZE];
973
                if (!pag) {
974
                    pag = (char *)malloc(TARGET_PAGE_SIZE);
975
                    memset(pag, 0, TARGET_PAGE_SIZE);
976
                    page[p/TARGET_PAGE_SIZE] = pag;
977
                    if (!pag)
978
                        return 0;
979
                }
980
            }
981
            if (len == 0 || offset == 0) {
982
                *(pag + offset) = *tmp;
983
            }
984
            else {
985
              int bytes_to_copy = (len > offset) ? offset : len;
986
              tmp -= bytes_to_copy;
987
              p -= bytes_to_copy;
988
              offset -= bytes_to_copy;
989
              len -= bytes_to_copy;
990
              memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1);
991
            }
992
        }
993
    }
994
    return p;
995
}
996

    
997
static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm,
998
                                 struct image_info *info)
999
{
1000
    abi_ulong stack_base, size, error;
1001
    int i;
1002

    
1003
    /* Create enough stack to hold everything.  If we don't use
1004
     * it for args, we'll use it for something else...
1005
     */
1006
    size = guest_stack_size;
1007
    if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE)
1008
        size = MAX_ARG_PAGES*TARGET_PAGE_SIZE;
1009
    error = target_mmap(0,
1010
                        size + qemu_host_page_size,
1011
                        PROT_READ | PROT_WRITE,
1012
                        MAP_PRIVATE | MAP_ANONYMOUS,
1013
                        -1, 0);
1014
    if (error == -1) {
1015
        perror("stk mmap");
1016
        exit(-1);
1017
    }
1018
    /* we reserve one extra page at the top of the stack as guard */
1019
    target_mprotect(error + size, qemu_host_page_size, PROT_NONE);
1020

    
1021
    stack_base = error + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE;
1022
    p += stack_base;
1023

    
1024
    for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
1025
        if (bprm->page[i]) {
1026
            info->rss++;
1027
            /* FIXME - check return value of memcpy_to_target() for failure */
1028
            memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE);
1029
            free(bprm->page[i]);
1030
        }
1031
        stack_base += TARGET_PAGE_SIZE;
1032
    }
1033
    return p;
1034
}
1035

    
1036
static void set_brk(abi_ulong start, abi_ulong end)
1037
{
1038
        /* page-align the start and end addresses... */
1039
        start = HOST_PAGE_ALIGN(start);
1040
        end = HOST_PAGE_ALIGN(end);
1041
        if (end <= start)
1042
                return;
1043
        if(target_mmap(start, end - start,
1044
                       PROT_READ | PROT_WRITE | PROT_EXEC,
1045
                       MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0) == -1) {
1046
            perror("cannot mmap brk");
1047
            exit(-1);
1048
        }
1049
}
1050

    
1051

    
1052
/* We need to explicitly zero any fractional pages after the data
1053
   section (i.e. bss).  This would contain the junk from the file that
1054
   should not be in memory. */
1055
static void padzero(abi_ulong elf_bss, abi_ulong last_bss)
1056
{
1057
        abi_ulong nbyte;
1058

    
1059
        if (elf_bss >= last_bss)
1060
                return;
1061

    
1062
        /* XXX: this is really a hack : if the real host page size is
1063
           smaller than the target page size, some pages after the end
1064
           of the file may not be mapped. A better fix would be to
1065
           patch target_mmap(), but it is more complicated as the file
1066
           size must be known */
1067
        if (qemu_real_host_page_size < qemu_host_page_size) {
1068
            abi_ulong end_addr, end_addr1;
1069
            end_addr1 = (elf_bss + qemu_real_host_page_size - 1) &
1070
                ~(qemu_real_host_page_size - 1);
1071
            end_addr = HOST_PAGE_ALIGN(elf_bss);
1072
            if (end_addr1 < end_addr) {
1073
                mmap((void *)g2h(end_addr1), end_addr - end_addr1,
1074
                     PROT_READ|PROT_WRITE|PROT_EXEC,
1075
                     MAP_FIXED|MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
1076
            }
1077
        }
1078

    
1079
        nbyte = elf_bss & (qemu_host_page_size-1);
1080
        if (nbyte) {
1081
            nbyte = qemu_host_page_size - nbyte;
1082
            do {
1083
                /* FIXME - what to do if put_user() fails? */
1084
                put_user_u8(0, elf_bss);
1085
                elf_bss++;
1086
            } while (--nbyte);
1087
        }
1088
}
1089

    
1090

    
1091
static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1092
                                   struct elfhdr * exec,
1093
                                   abi_ulong load_addr,
1094
                                   abi_ulong load_bias,
1095
                                   abi_ulong interp_load_addr, int ibcs,
1096
                                   struct image_info *info)
1097
{
1098
        abi_ulong sp;
1099
        int size;
1100
        abi_ulong u_platform;
1101
        const char *k_platform;
1102
        const int n = sizeof(elf_addr_t);
1103

    
1104
        sp = p;
1105
        u_platform = 0;
1106
        k_platform = ELF_PLATFORM;
1107
        if (k_platform) {
1108
            size_t len = strlen(k_platform) + 1;
1109
            sp -= (len + n - 1) & ~(n - 1);
1110
            u_platform = sp;
1111
            /* FIXME - check return value of memcpy_to_target() for failure */
1112
            memcpy_to_target(sp, k_platform, len);
1113
        }
1114
        /*
1115
         * Force 16 byte _final_ alignment here for generality.
1116
         */
1117
        sp = sp &~ (abi_ulong)15;
1118
        size = (DLINFO_ITEMS + 1) * 2;
1119
        if (k_platform)
1120
          size += 2;
1121
#ifdef DLINFO_ARCH_ITEMS
1122
        size += DLINFO_ARCH_ITEMS * 2;
1123
#endif
1124
        size += envc + argc + 2;
1125
        size += (!ibcs ? 3 : 1);        /* argc itself */
1126
        size *= n;
1127
        if (size & 15)
1128
            sp -= 16 - (size & 15);
1129

    
1130
        /* This is correct because Linux defines
1131
         * elf_addr_t as Elf32_Off / Elf64_Off
1132
         */
1133
#define NEW_AUX_ENT(id, val) do {                \
1134
            sp -= n; put_user_ual(val, sp);        \
1135
            sp -= n; put_user_ual(id, sp);        \
1136
          } while(0)
1137

    
1138
        NEW_AUX_ENT (AT_NULL, 0);
1139

    
1140
        /* There must be exactly DLINFO_ITEMS entries here.  */
1141
        NEW_AUX_ENT(AT_PHDR, (abi_ulong)(load_addr + exec->e_phoff));
1142
        NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1143
        NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1144
        NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1145
        NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_load_addr));
1146
        NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1147
        NEW_AUX_ENT(AT_ENTRY, load_bias + exec->e_entry);
1148
        NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1149
        NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1150
        NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1151
        NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1152
        NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1153
        NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1154
        if (k_platform)
1155
            NEW_AUX_ENT(AT_PLATFORM, u_platform);
1156
#ifdef ARCH_DLINFO
1157
        /*
1158
         * ARCH_DLINFO must come last so platform specific code can enforce
1159
         * special alignment requirements on the AUXV if necessary (eg. PPC).
1160
         */
1161
        ARCH_DLINFO;
1162
#endif
1163
#undef NEW_AUX_ENT
1164

    
1165
        info->saved_auxv = sp;
1166

    
1167
        sp = loader_build_argptr(envc, argc, sp, p, !ibcs);
1168
        return sp;
1169
}
1170

    
1171

    
1172
static abi_ulong load_elf_interp(struct elfhdr * interp_elf_ex,
1173
                                 int interpreter_fd,
1174
                                 abi_ulong *interp_load_addr)
1175
{
1176
        struct elf_phdr *elf_phdata  =  NULL;
1177
        struct elf_phdr *eppnt;
1178
        abi_ulong load_addr = 0;
1179
        int load_addr_set = 0;
1180
        int retval;
1181
        abi_ulong last_bss, elf_bss;
1182
        abi_ulong error;
1183
        int i;
1184

    
1185
        elf_bss = 0;
1186
        last_bss = 0;
1187
        error = 0;
1188

    
1189
#ifdef BSWAP_NEEDED
1190
        bswap_ehdr(interp_elf_ex);
1191
#endif
1192
        /* First of all, some simple consistency checks */
1193
        if ((interp_elf_ex->e_type != ET_EXEC &&
1194
             interp_elf_ex->e_type != ET_DYN) ||
1195
           !elf_check_arch(interp_elf_ex->e_machine)) {
1196
                return ~((abi_ulong)0UL);
1197
        }
1198

    
1199

    
1200
        /* Now read in all of the header information */
1201

    
1202
        if (sizeof(struct elf_phdr) * interp_elf_ex->e_phnum > TARGET_PAGE_SIZE)
1203
            return ~(abi_ulong)0UL;
1204

    
1205
        elf_phdata =  (struct elf_phdr *)
1206
                malloc(sizeof(struct elf_phdr) * interp_elf_ex->e_phnum);
1207

    
1208
        if (!elf_phdata)
1209
          return ~((abi_ulong)0UL);
1210

    
1211
        /*
1212
         * If the size of this structure has changed, then punt, since
1213
         * we will be doing the wrong thing.
1214
         */
1215
        if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr)) {
1216
            free(elf_phdata);
1217
            return ~((abi_ulong)0UL);
1218
        }
1219

    
1220
        retval = lseek(interpreter_fd, interp_elf_ex->e_phoff, SEEK_SET);
1221
        if(retval >= 0) {
1222
            retval = read(interpreter_fd,
1223
                           (char *) elf_phdata,
1224
                           sizeof(struct elf_phdr) * interp_elf_ex->e_phnum);
1225
        }
1226
        if (retval < 0) {
1227
                perror("load_elf_interp");
1228
                exit(-1);
1229
                free (elf_phdata);
1230
                return retval;
1231
         }
1232
#ifdef BSWAP_NEEDED
1233
        eppnt = elf_phdata;
1234
        for (i=0; i<interp_elf_ex->e_phnum; i++, eppnt++) {
1235
            bswap_phdr(eppnt);
1236
        }
1237
#endif
1238

    
1239
        if (interp_elf_ex->e_type == ET_DYN) {
1240
            /* in order to avoid hardcoding the interpreter load
1241
               address in qemu, we allocate a big enough memory zone */
1242
            error = target_mmap(0, INTERP_MAP_SIZE,
1243
                                PROT_NONE, MAP_PRIVATE | MAP_ANON,
1244
                                -1, 0);
1245
            if (error == -1) {
1246
                perror("mmap");
1247
                exit(-1);
1248
            }
1249
            load_addr = error;
1250
            load_addr_set = 1;
1251
        }
1252

    
1253
        eppnt = elf_phdata;
1254
        for(i=0; i<interp_elf_ex->e_phnum; i++, eppnt++)
1255
          if (eppnt->p_type == PT_LOAD) {
1256
            int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
1257
            int elf_prot = 0;
1258
            abi_ulong vaddr = 0;
1259
            abi_ulong k;
1260

    
1261
            if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
1262
            if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1263
            if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
1264
            if (interp_elf_ex->e_type == ET_EXEC || load_addr_set) {
1265
                    elf_type |= MAP_FIXED;
1266
                    vaddr = eppnt->p_vaddr;
1267
            }
1268
            error = target_mmap(load_addr+TARGET_ELF_PAGESTART(vaddr),
1269
                 eppnt->p_filesz + TARGET_ELF_PAGEOFFSET(eppnt->p_vaddr),
1270
                 elf_prot,
1271
                 elf_type,
1272
                 interpreter_fd,
1273
                 eppnt->p_offset - TARGET_ELF_PAGEOFFSET(eppnt->p_vaddr));
1274

    
1275
            if (error == -1) {
1276
              /* Real error */
1277
              close(interpreter_fd);
1278
              free(elf_phdata);
1279
              return ~((abi_ulong)0UL);
1280
            }
1281

    
1282
            if (!load_addr_set && interp_elf_ex->e_type == ET_DYN) {
1283
              load_addr = error;
1284
              load_addr_set = 1;
1285
            }
1286

    
1287
            /*
1288
             * Find the end of the file  mapping for this phdr, and keep
1289
             * track of the largest address we see for this.
1290
             */
1291
            k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
1292
            if (k > elf_bss) elf_bss = k;
1293

    
1294
            /*
1295
             * Do the same thing for the memory mapping - between
1296
             * elf_bss and last_bss is the bss section.
1297
             */
1298
            k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
1299
            if (k > last_bss) last_bss = k;
1300
          }
1301

    
1302
        /* Now use mmap to map the library into memory. */
1303

    
1304
        close(interpreter_fd);
1305

    
1306
        /*
1307
         * Now fill out the bss section.  First pad the last page up
1308
         * to the page boundary, and then perform a mmap to make sure
1309
         * that there are zeromapped pages up to and including the last
1310
         * bss page.
1311
         */
1312
        padzero(elf_bss, last_bss);
1313
        elf_bss = TARGET_ELF_PAGESTART(elf_bss + qemu_host_page_size - 1); /* What we have mapped so far */
1314

    
1315
        /* Map the last of the bss segment */
1316
        if (last_bss > elf_bss) {
1317
            target_mmap(elf_bss, last_bss-elf_bss,
1318
                        PROT_READ|PROT_WRITE|PROT_EXEC,
1319
                        MAP_FIXED|MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
1320
        }
1321
        free(elf_phdata);
1322

    
1323
        *interp_load_addr = load_addr;
1324
        return ((abi_ulong) interp_elf_ex->e_entry) + load_addr;
1325
}
1326

    
1327
static int symfind(const void *s0, const void *s1)
1328
{
1329
    struct elf_sym *key = (struct elf_sym *)s0;
1330
    struct elf_sym *sym = (struct elf_sym *)s1;
1331
    int result = 0;
1332
    if (key->st_value < sym->st_value) {
1333
        result = -1;
1334
    } else if (key->st_value >= sym->st_value + sym->st_size) {
1335
        result = 1;
1336
    }
1337
    return result;
1338
}
1339

    
1340
static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
1341
{
1342
#if ELF_CLASS == ELFCLASS32
1343
    struct elf_sym *syms = s->disas_symtab.elf32;
1344
#else
1345
    struct elf_sym *syms = s->disas_symtab.elf64;
1346
#endif
1347

    
1348
    // binary search
1349
    struct elf_sym key;
1350
    struct elf_sym *sym;
1351

    
1352
    key.st_value = orig_addr;
1353

    
1354
    sym = bsearch(&key, syms, s->disas_num_syms, sizeof(*syms), symfind);
1355
    if (sym != NULL) {
1356
        return s->disas_strtab + sym->st_name;
1357
    }
1358

    
1359
    return "";
1360
}
1361

    
1362
/* FIXME: This should use elf_ops.h  */
1363
static int symcmp(const void *s0, const void *s1)
1364
{
1365
    struct elf_sym *sym0 = (struct elf_sym *)s0;
1366
    struct elf_sym *sym1 = (struct elf_sym *)s1;
1367
    return (sym0->st_value < sym1->st_value)
1368
        ? -1
1369
        : ((sym0->st_value > sym1->st_value) ? 1 : 0);
1370
}
1371

    
1372
/* Best attempt to load symbols from this ELF object. */
1373
static void load_symbols(struct elfhdr *hdr, int fd)
1374
{
1375
    unsigned int i, nsyms;
1376
    struct elf_shdr sechdr, symtab, strtab;
1377
    char *strings;
1378
    struct syminfo *s;
1379
    struct elf_sym *syms;
1380

    
1381
    lseek(fd, hdr->e_shoff, SEEK_SET);
1382
    for (i = 0; i < hdr->e_shnum; i++) {
1383
        if (read(fd, &sechdr, sizeof(sechdr)) != sizeof(sechdr))
1384
            return;
1385
#ifdef BSWAP_NEEDED
1386
        bswap_shdr(&sechdr);
1387
#endif
1388
        if (sechdr.sh_type == SHT_SYMTAB) {
1389
            symtab = sechdr;
1390
            lseek(fd, hdr->e_shoff
1391
                  + sizeof(sechdr) * sechdr.sh_link, SEEK_SET);
1392
            if (read(fd, &strtab, sizeof(strtab))
1393
                != sizeof(strtab))
1394
                return;
1395
#ifdef BSWAP_NEEDED
1396
            bswap_shdr(&strtab);
1397
#endif
1398
            goto found;
1399
        }
1400
    }
1401
    return; /* Shouldn't happen... */
1402

    
1403
 found:
1404
    /* Now know where the strtab and symtab are.  Snarf them. */
1405
    s = malloc(sizeof(*s));
1406
    syms = malloc(symtab.sh_size);
1407
    if (!syms)
1408
        return;
1409
    s->disas_strtab = strings = malloc(strtab.sh_size);
1410
    if (!s->disas_strtab)
1411
        return;
1412

    
1413
    lseek(fd, symtab.sh_offset, SEEK_SET);
1414
    if (read(fd, syms, symtab.sh_size) != symtab.sh_size)
1415
        return;
1416

    
1417
    nsyms = symtab.sh_size / sizeof(struct elf_sym);
1418

    
1419
    i = 0;
1420
    while (i < nsyms) {
1421
#ifdef BSWAP_NEEDED
1422
        bswap_sym(syms + i);
1423
#endif
1424
        // Throw away entries which we do not need.
1425
        if (syms[i].st_shndx == SHN_UNDEF ||
1426
                syms[i].st_shndx >= SHN_LORESERVE ||
1427
                ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
1428
            nsyms--;
1429
            if (i < nsyms) {
1430
                syms[i] = syms[nsyms];
1431
            }
1432
            continue;
1433
        }
1434
#if defined(TARGET_ARM) || defined (TARGET_MIPS)
1435
        /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
1436
        syms[i].st_value &= ~(target_ulong)1;
1437
#endif
1438
        i++;
1439
    }
1440
    syms = realloc(syms, nsyms * sizeof(*syms));
1441

    
1442
    qsort(syms, nsyms, sizeof(*syms), symcmp);
1443

    
1444
    lseek(fd, strtab.sh_offset, SEEK_SET);
1445
    if (read(fd, strings, strtab.sh_size) != strtab.sh_size)
1446
        return;
1447
    s->disas_num_syms = nsyms;
1448
#if ELF_CLASS == ELFCLASS32
1449
    s->disas_symtab.elf32 = syms;
1450
    s->lookup_symbol = lookup_symbolxx;
1451
#else
1452
    s->disas_symtab.elf64 = syms;
1453
    s->lookup_symbol = lookup_symbolxx;
1454
#endif
1455
    s->next = syminfos;
1456
    syminfos = s;
1457
}
1458

    
1459
int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
1460
                    struct image_info * info)
1461
{
1462
    struct elfhdr elf_ex;
1463
    struct elfhdr interp_elf_ex;
1464
    struct exec interp_ex;
1465
    int interpreter_fd = -1; /* avoid warning */
1466
    abi_ulong load_addr, load_bias;
1467
    int load_addr_set = 0;
1468
    unsigned int interpreter_type = INTERPRETER_NONE;
1469
    unsigned char ibcs2_interpreter;
1470
    int i;
1471
    abi_ulong mapped_addr;
1472
    struct elf_phdr * elf_ppnt;
1473
    struct elf_phdr *elf_phdata;
1474
    abi_ulong elf_bss, k, elf_brk;
1475
    int retval;
1476
    char * elf_interpreter;
1477
    abi_ulong elf_entry, interp_load_addr = 0;
1478
    int status;
1479
    abi_ulong start_code, end_code, start_data, end_data;
1480
    abi_ulong reloc_func_desc = 0;
1481
    abi_ulong elf_stack;
1482
    char passed_fileno[6];
1483

    
1484
    ibcs2_interpreter = 0;
1485
    status = 0;
1486
    load_addr = 0;
1487
    load_bias = 0;
1488
    elf_ex = *((struct elfhdr *) bprm->buf);          /* exec-header */
1489
#ifdef BSWAP_NEEDED
1490
    bswap_ehdr(&elf_ex);
1491
#endif
1492

    
1493
    /* First of all, some simple consistency checks */
1494
    if ((elf_ex.e_type != ET_EXEC && elf_ex.e_type != ET_DYN) ||
1495
                                       (! elf_check_arch(elf_ex.e_machine))) {
1496
            return -ENOEXEC;
1497
    }
1498

    
1499
    bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p);
1500
    bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p);
1501
    bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p);
1502
    if (!bprm->p) {
1503
        retval = -E2BIG;
1504
    }
1505

    
1506
    /* Now read in all of the header information */
1507
    elf_phdata = (struct elf_phdr *)malloc(elf_ex.e_phentsize*elf_ex.e_phnum);
1508
    if (elf_phdata == NULL) {
1509
        return -ENOMEM;
1510
    }
1511

    
1512
    retval = lseek(bprm->fd, elf_ex.e_phoff, SEEK_SET);
1513
    if(retval > 0) {
1514
        retval = read(bprm->fd, (char *) elf_phdata,
1515
                                elf_ex.e_phentsize * elf_ex.e_phnum);
1516
    }
1517

    
1518
    if (retval < 0) {
1519
        perror("load_elf_binary");
1520
        exit(-1);
1521
        free (elf_phdata);
1522
        return -errno;
1523
    }
1524

    
1525
#ifdef BSWAP_NEEDED
1526
    elf_ppnt = elf_phdata;
1527
    for (i=0; i<elf_ex.e_phnum; i++, elf_ppnt++) {
1528
        bswap_phdr(elf_ppnt);
1529
    }
1530
#endif
1531
    elf_ppnt = elf_phdata;
1532

    
1533
    elf_bss = 0;
1534
    elf_brk = 0;
1535

    
1536

    
1537
    elf_stack = ~((abi_ulong)0UL);
1538
    elf_interpreter = NULL;
1539
    start_code = ~((abi_ulong)0UL);
1540
    end_code = 0;
1541
    start_data = 0;
1542
    end_data = 0;
1543
    interp_ex.a_info = 0;
1544

    
1545
    for(i=0;i < elf_ex.e_phnum; i++) {
1546
        if (elf_ppnt->p_type == PT_INTERP) {
1547
            if ( elf_interpreter != NULL )
1548
            {
1549
                free (elf_phdata);
1550
                free(elf_interpreter);
1551
                close(bprm->fd);
1552
                return -EINVAL;
1553
            }
1554

    
1555
            /* This is the program interpreter used for
1556
             * shared libraries - for now assume that this
1557
             * is an a.out format binary
1558
             */
1559

    
1560
            elf_interpreter = (char *)malloc(elf_ppnt->p_filesz);
1561

    
1562
            if (elf_interpreter == NULL) {
1563
                free (elf_phdata);
1564
                close(bprm->fd);
1565
                return -ENOMEM;
1566
            }
1567

    
1568
            retval = lseek(bprm->fd, elf_ppnt->p_offset, SEEK_SET);
1569
            if(retval >= 0) {
1570
                retval = read(bprm->fd, elf_interpreter, elf_ppnt->p_filesz);
1571
            }
1572
            if(retval < 0) {
1573
                 perror("load_elf_binary2");
1574
                exit(-1);
1575
            }
1576

    
1577
            /* If the program interpreter is one of these two,
1578
               then assume an iBCS2 image. Otherwise assume
1579
               a native linux image. */
1580

    
1581
            /* JRP - Need to add X86 lib dir stuff here... */
1582

    
1583
            if (strcmp(elf_interpreter,"/usr/lib/libc.so.1") == 0 ||
1584
                strcmp(elf_interpreter,"/usr/lib/ld.so.1") == 0) {
1585
              ibcs2_interpreter = 1;
1586
            }
1587

    
1588
#if 0
1589
            printf("Using ELF interpreter %s\n", path(elf_interpreter));
1590
#endif
1591
            if (retval >= 0) {
1592
                retval = open(path(elf_interpreter), O_RDONLY);
1593
                if(retval >= 0) {
1594
                    interpreter_fd = retval;
1595
                }
1596
                else {
1597
                    perror(elf_interpreter);
1598
                    exit(-1);
1599
                    /* retval = -errno; */
1600
                }
1601
            }
1602

    
1603
            if (retval >= 0) {
1604
                retval = lseek(interpreter_fd, 0, SEEK_SET);
1605
                if(retval >= 0) {
1606
                    retval = read(interpreter_fd,bprm->buf,128);
1607
                }
1608
            }
1609
            if (retval >= 0) {
1610
                interp_ex = *((struct exec *) bprm->buf); /* aout exec-header */
1611
                interp_elf_ex = *((struct elfhdr *) bprm->buf); /* elf exec-header */
1612
            }
1613
            if (retval < 0) {
1614
                perror("load_elf_binary3");
1615
                exit(-1);
1616
                free (elf_phdata);
1617
                free(elf_interpreter);
1618
                close(bprm->fd);
1619
                return retval;
1620
            }
1621
        }
1622
        elf_ppnt++;
1623
    }
1624

    
1625
    /* Some simple consistency checks for the interpreter */
1626
    if (elf_interpreter){
1627
        interpreter_type = INTERPRETER_ELF | INTERPRETER_AOUT;
1628

    
1629
        /* Now figure out which format our binary is */
1630
        if ((N_MAGIC(interp_ex) != OMAGIC) && (N_MAGIC(interp_ex) != ZMAGIC) &&
1631
                    (N_MAGIC(interp_ex) != QMAGIC)) {
1632
          interpreter_type = INTERPRETER_ELF;
1633
        }
1634

    
1635
        if (interp_elf_ex.e_ident[0] != 0x7f ||
1636
            strncmp((char *)&interp_elf_ex.e_ident[1], "ELF",3) != 0) {
1637
            interpreter_type &= ~INTERPRETER_ELF;
1638
        }
1639

    
1640
        if (!interpreter_type) {
1641
            free(elf_interpreter);
1642
            free(elf_phdata);
1643
            close(bprm->fd);
1644
            return -ELIBBAD;
1645
        }
1646
    }
1647

    
1648
    /* OK, we are done with that, now set up the arg stuff,
1649
       and then start this sucker up */
1650

    
1651
    {
1652
        char * passed_p;
1653

    
1654
        if (interpreter_type == INTERPRETER_AOUT) {
1655
            snprintf(passed_fileno, sizeof(passed_fileno), "%d", bprm->fd);
1656
            passed_p = passed_fileno;
1657

    
1658
            if (elf_interpreter) {
1659
                bprm->p = copy_elf_strings(1,&passed_p,bprm->page,bprm->p);
1660
                bprm->argc++;
1661
            }
1662
        }
1663
        if (!bprm->p) {
1664
            if (elf_interpreter) {
1665
                free(elf_interpreter);
1666
            }
1667
            free (elf_phdata);
1668
            close(bprm->fd);
1669
            return -E2BIG;
1670
        }
1671
    }
1672

    
1673
    /* OK, This is the point of no return */
1674
    info->end_data = 0;
1675
    info->end_code = 0;
1676
    info->start_mmap = (abi_ulong)ELF_START_MMAP;
1677
    info->mmap = 0;
1678
    elf_entry = (abi_ulong) elf_ex.e_entry;
1679

    
1680
#if defined(CONFIG_USE_GUEST_BASE)
1681
    /*
1682
     * In case where user has not explicitly set the guest_base, we
1683
     * probe here that should we set it automatically.
1684
     */
1685
    if (!(have_guest_base || reserved_va)) {
1686
        /*
1687
         * Go through ELF program header table and find the address
1688
         * range used by loadable segments.  Check that this is available on
1689
         * the host, and if not find a suitable value for guest_base.  */
1690
        abi_ulong app_start = ~0;
1691
        abi_ulong app_end = 0;
1692
        abi_ulong addr;
1693
        unsigned long host_start;
1694
        unsigned long real_start;
1695
        unsigned long host_size;
1696
        for (i = 0, elf_ppnt = elf_phdata; i < elf_ex.e_phnum;
1697
            i++, elf_ppnt++) {
1698
            if (elf_ppnt->p_type != PT_LOAD)
1699
                continue;
1700
            addr = elf_ppnt->p_vaddr;
1701
            if (addr < app_start) {
1702
                app_start = addr;
1703
            }
1704
            addr += elf_ppnt->p_memsz;
1705
            if (addr > app_end) {
1706
                app_end = addr;
1707
            }
1708
        }
1709

    
1710
        /* If we don't have any loadable segments then something
1711
           is very wrong.  */
1712
        assert(app_start < app_end);
1713

    
1714
        /* Round addresses to page boundaries.  */
1715
        app_start = app_start & qemu_host_page_mask;
1716
        app_end = HOST_PAGE_ALIGN(app_end);
1717
        if (app_start < mmap_min_addr) {
1718
            host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1719
        } else {
1720
            host_start = app_start;
1721
            if (host_start != app_start) {
1722
                fprintf(stderr, "qemu: Address overflow loading ELF binary\n");
1723
                abort();
1724
            }
1725
        }
1726
        host_size = app_end - app_start;
1727
        while (1) {
1728
            /* Do not use mmap_find_vma here because that is limited to the
1729
               guest address space.  We are going to make the
1730
               guest address space fit whatever we're given.  */
1731
            real_start = (unsigned long)mmap((void *)host_start, host_size,
1732
                PROT_NONE, MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE, -1, 0);
1733
            if (real_start == (unsigned long)-1) {
1734
                fprintf(stderr, "qemu: Virtual memory exausted\n");
1735
                abort();
1736
            }
1737
            if (real_start == host_start) {
1738
                break;
1739
            }
1740
            /* That address didn't work.  Unmap and try a different one.
1741
               The address the host picked because is typically
1742
               right at the top of the host address space and leaves the
1743
               guest with no usable address space.  Resort to a linear search.
1744
               We already compensated for mmap_min_addr, so this should not
1745
               happen often.  Probably means we got unlucky and host address
1746
               space randomization put a shared library somewhere
1747
               inconvenient.  */
1748
            munmap((void *)real_start, host_size);
1749
            host_start += qemu_host_page_size;
1750
            if (host_start == app_start) {
1751
                /* Theoretically possible if host doesn't have any
1752
                   suitably aligned areas.  Normally the first mmap will
1753
                   fail.  */
1754
                fprintf(stderr, "qemu: Unable to find space for application\n");
1755
                abort();
1756
            }
1757
        }
1758
        qemu_log("Relocating guest address space from 0x" TARGET_ABI_FMT_lx
1759
                 " to 0x%lx\n", app_start, real_start);
1760
        guest_base = real_start - app_start;
1761
    }
1762
#endif /* CONFIG_USE_GUEST_BASE */
1763

    
1764
    /* Do this so that we can load the interpreter, if need be.  We will
1765
       change some of these later */
1766
    info->rss = 0;
1767
    bprm->p = setup_arg_pages(bprm->p, bprm, info);
1768
    info->start_stack = bprm->p;
1769

    
1770
    /* Now we do a little grungy work by mmaping the ELF image into
1771
     * the correct location in memory.  At this point, we assume that
1772
     * the image should be loaded at fixed address, not at a variable
1773
     * address.
1774
     */
1775

    
1776
    for(i = 0, elf_ppnt = elf_phdata; i < elf_ex.e_phnum; i++, elf_ppnt++) {
1777
        int elf_prot = 0;
1778
        int elf_flags = 0;
1779
        abi_ulong error;
1780

    
1781
        if (elf_ppnt->p_type != PT_LOAD)
1782
            continue;
1783

    
1784
        if (elf_ppnt->p_flags & PF_R) elf_prot |= PROT_READ;
1785
        if (elf_ppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1786
        if (elf_ppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
1787
        elf_flags = MAP_PRIVATE | MAP_DENYWRITE;
1788
        if (elf_ex.e_type == ET_EXEC || load_addr_set) {
1789
            elf_flags |= MAP_FIXED;
1790
        } else if (elf_ex.e_type == ET_DYN) {
1791
            /* Try and get dynamic programs out of the way of the default mmap
1792
               base, as well as whatever program they might try to exec.  This
1793
               is because the brk will follow the loader, and is not movable.  */
1794
            /* NOTE: for qemu, we do a big mmap to get enough space
1795
               without hardcoding any address */
1796
            error = target_mmap(0, ET_DYN_MAP_SIZE,
1797
                                PROT_NONE, MAP_PRIVATE | MAP_ANON,
1798
                                -1, 0);
1799
            if (error == -1) {
1800
                perror("mmap");
1801
                exit(-1);
1802
            }
1803
            load_bias = TARGET_ELF_PAGESTART(error - elf_ppnt->p_vaddr);
1804
        }
1805

    
1806
        error = target_mmap(TARGET_ELF_PAGESTART(load_bias + elf_ppnt->p_vaddr),
1807
                            (elf_ppnt->p_filesz +
1808
                             TARGET_ELF_PAGEOFFSET(elf_ppnt->p_vaddr)),
1809
                            elf_prot,
1810
                            (MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE),
1811
                            bprm->fd,
1812
                            (elf_ppnt->p_offset -
1813
                             TARGET_ELF_PAGEOFFSET(elf_ppnt->p_vaddr)));
1814
        if (error == -1) {
1815
            perror("mmap");
1816
            exit(-1);
1817
        }
1818

    
1819
#ifdef LOW_ELF_STACK
1820
        if (TARGET_ELF_PAGESTART(elf_ppnt->p_vaddr) < elf_stack)
1821
            elf_stack = TARGET_ELF_PAGESTART(elf_ppnt->p_vaddr);
1822
#endif
1823

    
1824
        if (!load_addr_set) {
1825
            load_addr_set = 1;
1826
            load_addr = elf_ppnt->p_vaddr - elf_ppnt->p_offset;
1827
            if (elf_ex.e_type == ET_DYN) {
1828
                load_bias += error -
1829
                    TARGET_ELF_PAGESTART(load_bias + elf_ppnt->p_vaddr);
1830
                load_addr += load_bias;
1831
                reloc_func_desc = load_bias;
1832
            }
1833
        }
1834
        k = elf_ppnt->p_vaddr;
1835
        if (k < start_code)
1836
            start_code = k;
1837
        if (start_data < k)
1838
            start_data = k;
1839
        k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1840
        if (k > elf_bss)
1841
            elf_bss = k;
1842
        if ((elf_ppnt->p_flags & PF_X) && end_code <  k)
1843
            end_code = k;
1844
        if (end_data < k)
1845
            end_data = k;
1846
        k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1847
        if (k > elf_brk) elf_brk = k;
1848
    }
1849

    
1850
    elf_entry += load_bias;
1851
    elf_bss += load_bias;
1852
    elf_brk += load_bias;
1853
    start_code += load_bias;
1854
    end_code += load_bias;
1855
    start_data += load_bias;
1856
    end_data += load_bias;
1857

    
1858
    if (elf_interpreter) {
1859
        if (interpreter_type & 1) {
1860
            elf_entry = load_aout_interp(&interp_ex, interpreter_fd);
1861
        }
1862
        else if (interpreter_type & 2) {
1863
            elf_entry = load_elf_interp(&interp_elf_ex, interpreter_fd,
1864
                                            &interp_load_addr);
1865
        }
1866
        reloc_func_desc = interp_load_addr;
1867

    
1868
        close(interpreter_fd);
1869
        free(elf_interpreter);
1870

    
1871
        if (elf_entry == ~((abi_ulong)0UL)) {
1872
            printf("Unable to load interpreter\n");
1873
            free(elf_phdata);
1874
            exit(-1);
1875
            return 0;
1876
        }
1877
    }
1878

    
1879
    free(elf_phdata);
1880

    
1881
    if (qemu_log_enabled())
1882
        load_symbols(&elf_ex, bprm->fd);
1883

    
1884
    if (interpreter_type != INTERPRETER_AOUT) close(bprm->fd);
1885
    info->personality = (ibcs2_interpreter ? PER_SVR4 : PER_LINUX);
1886

    
1887
#ifdef LOW_ELF_STACK
1888
    info->start_stack = bprm->p = elf_stack - 4;
1889
#endif
1890
    bprm->p = create_elf_tables(bprm->p,
1891
                    bprm->argc,
1892
                    bprm->envc,
1893
                    &elf_ex,
1894
                    load_addr, load_bias,
1895
                    interp_load_addr,
1896
                    (interpreter_type == INTERPRETER_AOUT ? 0 : 1),
1897
                    info);
1898
    info->load_addr = reloc_func_desc;
1899
    info->start_brk = info->brk = elf_brk;
1900
    info->end_code = end_code;
1901
    info->start_code = start_code;
1902
    info->start_data = start_data;
1903
    info->end_data = end_data;
1904
    info->start_stack = bprm->p;
1905

    
1906
    /* Calling set_brk effectively mmaps the pages that we need for the bss and break
1907
       sections */
1908
    set_brk(elf_bss, elf_brk);
1909

    
1910
    padzero(elf_bss, elf_brk);
1911

    
1912
#if 0
1913
    printf("(start_brk) %x\n" , info->start_brk);
1914
    printf("(end_code) %x\n" , info->end_code);
1915
    printf("(start_code) %x\n" , info->start_code);
1916
    printf("(end_data) %x\n" , info->end_data);
1917
    printf("(start_stack) %x\n" , info->start_stack);
1918
    printf("(brk) %x\n" , info->brk);
1919
#endif
1920

    
1921
    if ( info->personality == PER_SVR4 )
1922
    {
1923
            /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
1924
               and some applications "depend" upon this behavior.
1925
               Since we do not have the power to recompile these, we
1926
               emulate the SVr4 behavior.  Sigh.  */
1927
            mapped_addr = target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
1928
                                      MAP_FIXED | MAP_PRIVATE, -1, 0);
1929
    }
1930

    
1931
    info->entry = elf_entry;
1932

    
1933
#ifdef USE_ELF_CORE_DUMP
1934
    bprm->core_dump = &elf_core_dump;
1935
#endif
1936

    
1937
    return 0;
1938
}
1939

    
1940
#ifdef USE_ELF_CORE_DUMP
1941

    
1942
/*
1943
 * Definitions to generate Intel SVR4-like core files.
1944
 * These mostly have the same names as the SVR4 types with "target_elf_"
1945
 * tacked on the front to prevent clashes with linux definitions,
1946
 * and the typedef forms have been avoided.  This is mostly like
1947
 * the SVR4 structure, but more Linuxy, with things that Linux does
1948
 * not support and which gdb doesn't really use excluded.
1949
 *
1950
 * Fields we don't dump (their contents is zero) in linux-user qemu
1951
 * are marked with XXX.
1952
 *
1953
 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
1954
 *
1955
 * Porting ELF coredump for target is (quite) simple process.  First you
1956
 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
1957
 * the target resides):
1958
 *
1959
 * #define USE_ELF_CORE_DUMP
1960
 *
1961
 * Next you define type of register set used for dumping.  ELF specification
1962
 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
1963
 *
1964
 * typedef <target_regtype> target_elf_greg_t;
1965
 * #define ELF_NREG <number of registers>
1966
 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
1967
 *
1968
 * Last step is to implement target specific function that copies registers
1969
 * from given cpu into just specified register set.  Prototype is:
1970
 *
1971
 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
1972
 *                                const CPUState *env);
1973
 *
1974
 * Parameters:
1975
 *     regs - copy register values into here (allocated and zeroed by caller)
1976
 *     env - copy registers from here
1977
 *
1978
 * Example for ARM target is provided in this file.
1979
 */
1980

    
1981
/* An ELF note in memory */
1982
struct memelfnote {
1983
    const char *name;
1984
    size_t     namesz;
1985
    size_t     namesz_rounded;
1986
    int        type;
1987
    size_t     datasz;
1988
    void       *data;
1989
    size_t     notesz;
1990
};
1991

    
1992
struct target_elf_siginfo {
1993
    int  si_signo; /* signal number */
1994
    int  si_code;  /* extra code */
1995
    int  si_errno; /* errno */
1996
};
1997

    
1998
struct target_elf_prstatus {
1999
    struct target_elf_siginfo pr_info;      /* Info associated with signal */
2000
    short              pr_cursig;    /* Current signal */
2001
    target_ulong       pr_sigpend;   /* XXX */
2002
    target_ulong       pr_sighold;   /* XXX */
2003
    target_pid_t       pr_pid;
2004
    target_pid_t       pr_ppid;
2005
    target_pid_t       pr_pgrp;
2006
    target_pid_t       pr_sid;
2007
    struct target_timeval pr_utime;  /* XXX User time */
2008
    struct target_timeval pr_stime;  /* XXX System time */
2009
    struct target_timeval pr_cutime; /* XXX Cumulative user time */
2010
    struct target_timeval pr_cstime; /* XXX Cumulative system time */
2011
    target_elf_gregset_t      pr_reg;       /* GP registers */
2012
    int                pr_fpvalid;   /* XXX */
2013
};
2014

    
2015
#define ELF_PRARGSZ     (80) /* Number of chars for args */
2016

    
2017
struct target_elf_prpsinfo {
2018
    char         pr_state;       /* numeric process state */
2019
    char         pr_sname;       /* char for pr_state */
2020
    char         pr_zomb;        /* zombie */
2021
    char         pr_nice;        /* nice val */
2022
    target_ulong pr_flag;        /* flags */
2023
    target_uid_t pr_uid;
2024
    target_gid_t pr_gid;
2025
    target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2026
    /* Lots missing */
2027
    char    pr_fname[16];           /* filename of executable */
2028
    char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2029
};
2030

    
2031
/* Here is the structure in which status of each thread is captured. */
2032
struct elf_thread_status {
2033
    QTAILQ_ENTRY(elf_thread_status)  ets_link;
2034
    struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
2035
#if 0
2036
    elf_fpregset_t fpu;             /* NT_PRFPREG */
2037
    struct task_struct *thread;
2038
    elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
2039
#endif
2040
    struct memelfnote notes[1];
2041
    int num_notes;
2042
};
2043

    
2044
struct elf_note_info {
2045
    struct memelfnote   *notes;
2046
    struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
2047
    struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
2048

    
2049
    QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2050
#if 0
2051
    /*
2052
     * Current version of ELF coredump doesn't support
2053
     * dumping fp regs etc.
2054
     */
2055
    elf_fpregset_t *fpu;
2056
    elf_fpxregset_t *xfpu;
2057
    int thread_status_size;
2058
#endif
2059
    int notes_size;
2060
    int numnote;
2061
};
2062

    
2063
struct vm_area_struct {
2064
    abi_ulong   vma_start;  /* start vaddr of memory region */
2065
    abi_ulong   vma_end;    /* end vaddr of memory region */
2066
    abi_ulong   vma_flags;  /* protection etc. flags for the region */
2067
    QTAILQ_ENTRY(vm_area_struct) vma_link;
2068
};
2069

    
2070
struct mm_struct {
2071
    QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2072
    int mm_count;           /* number of mappings */
2073
};
2074

    
2075
static struct mm_struct *vma_init(void);
2076
static void vma_delete(struct mm_struct *);
2077
static int vma_add_mapping(struct mm_struct *, abi_ulong,
2078
    abi_ulong, abi_ulong);
2079
static int vma_get_mapping_count(const struct mm_struct *);
2080
static struct vm_area_struct *vma_first(const struct mm_struct *);
2081
static struct vm_area_struct *vma_next(struct vm_area_struct *);
2082
static abi_ulong vma_dump_size(const struct vm_area_struct *);
2083
static int vma_walker(void *priv, abi_ulong start, abi_ulong end,
2084
    unsigned long flags);
2085

    
2086
static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2087
static void fill_note(struct memelfnote *, const char *, int,
2088
    unsigned int, void *);
2089
static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2090
static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2091
static void fill_auxv_note(struct memelfnote *, const TaskState *);
2092
static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2093
static size_t note_size(const struct memelfnote *);
2094
static void free_note_info(struct elf_note_info *);
2095
static int fill_note_info(struct elf_note_info *, long, const CPUState *);
2096
static void fill_thread_info(struct elf_note_info *, const CPUState *);
2097
static int core_dump_filename(const TaskState *, char *, size_t);
2098

    
2099
static int dump_write(int, const void *, size_t);
2100
static int write_note(struct memelfnote *, int);
2101
static int write_note_info(struct elf_note_info *, int);
2102

    
2103
#ifdef BSWAP_NEEDED
2104
static void bswap_prstatus(struct target_elf_prstatus *);
2105
static void bswap_psinfo(struct target_elf_prpsinfo *);
2106

    
2107
static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2108
{
2109
    prstatus->pr_info.si_signo = tswapl(prstatus->pr_info.si_signo);
2110
    prstatus->pr_info.si_code = tswapl(prstatus->pr_info.si_code);
2111
    prstatus->pr_info.si_errno = tswapl(prstatus->pr_info.si_errno);
2112
    prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2113
    prstatus->pr_sigpend = tswapl(prstatus->pr_sigpend);
2114
    prstatus->pr_sighold = tswapl(prstatus->pr_sighold);
2115
    prstatus->pr_pid = tswap32(prstatus->pr_pid);
2116
    prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2117
    prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2118
    prstatus->pr_sid = tswap32(prstatus->pr_sid);
2119
    /* cpu times are not filled, so we skip them */
2120
    /* regs should be in correct format already */
2121
    prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2122
}
2123

    
2124
static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2125
{
2126
    psinfo->pr_flag = tswapl(psinfo->pr_flag);
2127
    psinfo->pr_uid = tswap16(psinfo->pr_uid);
2128
    psinfo->pr_gid = tswap16(psinfo->pr_gid);
2129
    psinfo->pr_pid = tswap32(psinfo->pr_pid);
2130
    psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2131
    psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2132
    psinfo->pr_sid = tswap32(psinfo->pr_sid);
2133
}
2134
#endif /* BSWAP_NEEDED */
2135

    
2136
/*
2137
 * Minimal support for linux memory regions.  These are needed
2138
 * when we are finding out what memory exactly belongs to
2139
 * emulated process.  No locks needed here, as long as
2140
 * thread that received the signal is stopped.
2141
 */
2142

    
2143
static struct mm_struct *vma_init(void)
2144
{
2145
    struct mm_struct *mm;
2146

    
2147
    if ((mm = qemu_malloc(sizeof (*mm))) == NULL)
2148
        return (NULL);
2149

    
2150
    mm->mm_count = 0;
2151
    QTAILQ_INIT(&mm->mm_mmap);
2152

    
2153
    return (mm);
2154
}
2155

    
2156
static void vma_delete(struct mm_struct *mm)
2157
{
2158
    struct vm_area_struct *vma;
2159

    
2160
    while ((vma = vma_first(mm)) != NULL) {
2161
        QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2162
        qemu_free(vma);
2163
    }
2164
    qemu_free(mm);
2165
}
2166

    
2167
static int vma_add_mapping(struct mm_struct *mm, abi_ulong start,
2168
    abi_ulong end, abi_ulong flags)
2169
{
2170
    struct vm_area_struct *vma;
2171

    
2172
    if ((vma = qemu_mallocz(sizeof (*vma))) == NULL)
2173
        return (-1);
2174

    
2175
    vma->vma_start = start;
2176
    vma->vma_end = end;
2177
    vma->vma_flags = flags;
2178

    
2179
    QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2180
    mm->mm_count++;
2181

    
2182
    return (0);
2183
}
2184

    
2185
static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2186
{
2187
    return (QTAILQ_FIRST(&mm->mm_mmap));
2188
}
2189

    
2190
static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2191
{
2192
    return (QTAILQ_NEXT(vma, vma_link));
2193
}
2194

    
2195
static int vma_get_mapping_count(const struct mm_struct *mm)
2196
{
2197
    return (mm->mm_count);
2198
}
2199

    
2200
/*
2201
 * Calculate file (dump) size of given memory region.
2202
 */
2203
static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2204
{
2205
    /* if we cannot even read the first page, skip it */
2206
    if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2207
        return (0);
2208

    
2209
    /*
2210
     * Usually we don't dump executable pages as they contain
2211
     * non-writable code that debugger can read directly from
2212
     * target library etc.  However, thread stacks are marked
2213
     * also executable so we read in first page of given region
2214
     * and check whether it contains elf header.  If there is
2215
     * no elf header, we dump it.
2216
     */
2217
    if (vma->vma_flags & PROT_EXEC) {
2218
        char page[TARGET_PAGE_SIZE];
2219

    
2220
        copy_from_user(page, vma->vma_start, sizeof (page));
2221
        if ((page[EI_MAG0] == ELFMAG0) &&
2222
            (page[EI_MAG1] == ELFMAG1) &&
2223
            (page[EI_MAG2] == ELFMAG2) &&
2224
            (page[EI_MAG3] == ELFMAG3)) {
2225
            /*
2226
             * Mappings are possibly from ELF binary.  Don't dump
2227
             * them.
2228
             */
2229
            return (0);
2230
        }
2231
    }
2232

    
2233
    return (vma->vma_end - vma->vma_start);
2234
}
2235

    
2236
static int vma_walker(void *priv, abi_ulong start, abi_ulong end,
2237
    unsigned long flags)
2238
{
2239
    struct mm_struct *mm = (struct mm_struct *)priv;
2240

    
2241
    vma_add_mapping(mm, start, end, flags);
2242
    return (0);
2243
}
2244

    
2245
static void fill_note(struct memelfnote *note, const char *name, int type,
2246
    unsigned int sz, void *data)
2247
{
2248
    unsigned int namesz;
2249

    
2250
    namesz = strlen(name) + 1;
2251
    note->name = name;
2252
    note->namesz = namesz;
2253
    note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2254
    note->type = type;
2255
    note->datasz = roundup(sz, sizeof (int32_t));;
2256
    note->data = data;
2257

    
2258
    /*
2259
     * We calculate rounded up note size here as specified by
2260
     * ELF document.
2261
     */
2262
    note->notesz = sizeof (struct elf_note) +
2263
        note->namesz_rounded + note->datasz;
2264
}
2265

    
2266
static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2267
    uint32_t flags)
2268
{
2269
    (void) memset(elf, 0, sizeof(*elf));
2270

    
2271
    (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2272
    elf->e_ident[EI_CLASS] = ELF_CLASS;
2273
    elf->e_ident[EI_DATA] = ELF_DATA;
2274
    elf->e_ident[EI_VERSION] = EV_CURRENT;
2275
    elf->e_ident[EI_OSABI] = ELF_OSABI;
2276

    
2277
    elf->e_type = ET_CORE;
2278
    elf->e_machine = machine;
2279
    elf->e_version = EV_CURRENT;
2280
    elf->e_phoff = sizeof(struct elfhdr);
2281
    elf->e_flags = flags;
2282
    elf->e_ehsize = sizeof(struct elfhdr);
2283
    elf->e_phentsize = sizeof(struct elf_phdr);
2284
    elf->e_phnum = segs;
2285

    
2286
#ifdef BSWAP_NEEDED
2287
    bswap_ehdr(elf);
2288
#endif
2289
}
2290

    
2291
static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2292
{
2293
    phdr->p_type = PT_NOTE;
2294
    phdr->p_offset = offset;
2295
    phdr->p_vaddr = 0;
2296
    phdr->p_paddr = 0;
2297
    phdr->p_filesz = sz;
2298
    phdr->p_memsz = 0;
2299
    phdr->p_flags = 0;
2300
    phdr->p_align = 0;
2301

    
2302
#ifdef BSWAP_NEEDED
2303
    bswap_phdr(phdr);
2304
#endif
2305
}
2306

    
2307
static size_t note_size(const struct memelfnote *note)
2308
{
2309
    return (note->notesz);
2310
}
2311

    
2312
static void fill_prstatus(struct target_elf_prstatus *prstatus,
2313
    const TaskState *ts, int signr)
2314
{
2315
    (void) memset(prstatus, 0, sizeof (*prstatus));
2316
    prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2317
    prstatus->pr_pid = ts->ts_tid;
2318
    prstatus->pr_ppid = getppid();
2319
    prstatus->pr_pgrp = getpgrp();
2320
    prstatus->pr_sid = getsid(0);
2321

    
2322
#ifdef BSWAP_NEEDED
2323
    bswap_prstatus(prstatus);
2324
#endif
2325
}
2326

    
2327
static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
2328
{
2329
    char *filename, *base_filename;
2330
    unsigned int i, len;
2331

    
2332
    (void) memset(psinfo, 0, sizeof (*psinfo));
2333

    
2334
    len = ts->info->arg_end - ts->info->arg_start;
2335
    if (len >= ELF_PRARGSZ)
2336
        len = ELF_PRARGSZ - 1;
2337
    if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2338
        return -EFAULT;
2339
    for (i = 0; i < len; i++)
2340
        if (psinfo->pr_psargs[i] == 0)
2341
            psinfo->pr_psargs[i] = ' ';
2342
    psinfo->pr_psargs[len] = 0;
2343

    
2344
    psinfo->pr_pid = getpid();
2345
    psinfo->pr_ppid = getppid();
2346
    psinfo->pr_pgrp = getpgrp();
2347
    psinfo->pr_sid = getsid(0);
2348
    psinfo->pr_uid = getuid();
2349
    psinfo->pr_gid = getgid();
2350

    
2351
    filename = strdup(ts->bprm->filename);
2352
    base_filename = strdup(basename(filename));
2353
    (void) strncpy(psinfo->pr_fname, base_filename,
2354
        sizeof(psinfo->pr_fname));
2355
    free(base_filename);
2356
    free(filename);
2357

    
2358
#ifdef BSWAP_NEEDED
2359
    bswap_psinfo(psinfo);
2360
#endif
2361
    return (0);
2362
}
2363

    
2364
static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2365
{
2366
    elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2367
    elf_addr_t orig_auxv = auxv;
2368
    abi_ulong val;
2369
    void *ptr;
2370
    int i, len;
2371

    
2372
    /*
2373
     * Auxiliary vector is stored in target process stack.  It contains
2374
     * {type, value} pairs that we need to dump into note.  This is not
2375
     * strictly necessary but we do it here for sake of completeness.
2376
     */
2377

    
2378
    /* find out lenght of the vector, AT_NULL is terminator */
2379
    i = len = 0;
2380
    do {
2381
        get_user_ual(val, auxv);
2382
        i += 2;
2383
        auxv += 2 * sizeof (elf_addr_t);
2384
    } while (val != AT_NULL);
2385
    len = i * sizeof (elf_addr_t);
2386

    
2387
    /* read in whole auxv vector and copy it to memelfnote */
2388
    ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2389
    if (ptr != NULL) {
2390
        fill_note(note, "CORE", NT_AUXV, len, ptr);
2391
        unlock_user(ptr, auxv, len);
2392
    }
2393
}
2394

    
2395
/*
2396
 * Constructs name of coredump file.  We have following convention
2397
 * for the name:
2398
 *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2399
 *
2400
 * Returns 0 in case of success, -1 otherwise (errno is set).
2401
 */
2402
static int core_dump_filename(const TaskState *ts, char *buf,
2403
    size_t bufsize)
2404
{
2405
    char timestamp[64];
2406
    char *filename = NULL;
2407
    char *base_filename = NULL;
2408
    struct timeval tv;
2409
    struct tm tm;
2410

    
2411
    assert(bufsize >= PATH_MAX);
2412

    
2413
    if (gettimeofday(&tv, NULL) < 0) {
2414
        (void) fprintf(stderr, "unable to get current timestamp: %s",
2415
            strerror(errno));
2416
        return (-1);
2417
    }
2418

    
2419
    filename = strdup(ts->bprm->filename);
2420
    base_filename = strdup(basename(filename));
2421
    (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
2422
        localtime_r(&tv.tv_sec, &tm));
2423
    (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
2424
        base_filename, timestamp, (int)getpid());
2425
    free(base_filename);
2426
    free(filename);
2427

    
2428
    return (0);
2429
}
2430

    
2431
static int dump_write(int fd, const void *ptr, size_t size)
2432
{
2433
    const char *bufp = (const char *)ptr;
2434
    ssize_t bytes_written, bytes_left;
2435
    struct rlimit dumpsize;
2436
    off_t pos;
2437

    
2438
    bytes_written = 0;
2439
    getrlimit(RLIMIT_CORE, &dumpsize);
2440
    if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2441
        if (errno == ESPIPE) { /* not a seekable stream */
2442
            bytes_left = size;
2443
        } else {
2444
            return pos;
2445
        }
2446
    } else {
2447
        if (dumpsize.rlim_cur <= pos) {
2448
            return -1;
2449
        } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2450
            bytes_left = size;
2451
        } else {
2452
            size_t limit_left=dumpsize.rlim_cur - pos;
2453
            bytes_left = limit_left >= size ? size : limit_left ;
2454
        }
2455
    }
2456

    
2457
    /*
2458
     * In normal conditions, single write(2) should do but
2459
     * in case of socket etc. this mechanism is more portable.
2460
     */
2461
    do {
2462
        bytes_written = write(fd, bufp, bytes_left);
2463
        if (bytes_written < 0) {
2464
            if (errno == EINTR)
2465
                continue;
2466
            return (-1);
2467
        } else if (bytes_written == 0) { /* eof */
2468
            return (-1);
2469
        }
2470
        bufp += bytes_written;
2471
        bytes_left -= bytes_written;
2472
    } while (bytes_left > 0);
2473

    
2474
    return (0);
2475
}
2476

    
2477
static int write_note(struct memelfnote *men, int fd)
2478
{
2479
    struct elf_note en;
2480

    
2481
    en.n_namesz = men->namesz;
2482
    en.n_type = men->type;
2483
    en.n_descsz = men->datasz;
2484

    
2485
#ifdef BSWAP_NEEDED
2486
    bswap_note(&en);
2487
#endif
2488

    
2489
    if (dump_write(fd, &en, sizeof(en)) != 0)
2490
        return (-1);
2491
    if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2492
        return (-1);
2493
    if (dump_write(fd, men->data, men->datasz) != 0)
2494
        return (-1);
2495

    
2496
    return (0);
2497
}
2498

    
2499
static void fill_thread_info(struct elf_note_info *info, const CPUState *env)
2500
{
2501
    TaskState *ts = (TaskState *)env->opaque;
2502
    struct elf_thread_status *ets;
2503

    
2504
    ets = qemu_mallocz(sizeof (*ets));
2505
    ets->num_notes = 1; /* only prstatus is dumped */
2506
    fill_prstatus(&ets->prstatus, ts, 0);
2507
    elf_core_copy_regs(&ets->prstatus.pr_reg, env);
2508
    fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
2509
        &ets->prstatus);
2510

    
2511
    QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
2512

    
2513
    info->notes_size += note_size(&ets->notes[0]);
2514
}
2515

    
2516
static int fill_note_info(struct elf_note_info *info,
2517
    long signr, const CPUState *env)
2518
{
2519
#define NUMNOTES 3
2520
    CPUState *cpu = NULL;
2521
    TaskState *ts = (TaskState *)env->opaque;
2522
    int i;
2523

    
2524
    (void) memset(info, 0, sizeof (*info));
2525

    
2526
    QTAILQ_INIT(&info->thread_list);
2527

    
2528
    info->notes = qemu_mallocz(NUMNOTES * sizeof (struct memelfnote));
2529
    if (info->notes == NULL)
2530
        return (-ENOMEM);
2531
    info->prstatus = qemu_mallocz(sizeof (*info->prstatus));
2532
    if (info->prstatus == NULL)
2533
        return (-ENOMEM);
2534
    info->psinfo = qemu_mallocz(sizeof (*info->psinfo));
2535
    if (info->prstatus == NULL)
2536
        return (-ENOMEM);
2537

    
2538
    /*
2539
     * First fill in status (and registers) of current thread
2540
     * including process info & aux vector.
2541
     */
2542
    fill_prstatus(info->prstatus, ts, signr);
2543
    elf_core_copy_regs(&info->prstatus->pr_reg, env);
2544
    fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
2545
        sizeof (*info->prstatus), info->prstatus);
2546
    fill_psinfo(info->psinfo, ts);
2547
    fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
2548
        sizeof (*info->psinfo), info->psinfo);
2549
    fill_auxv_note(&info->notes[2], ts);
2550
    info->numnote = 3;
2551

    
2552
    info->notes_size = 0;
2553
    for (i = 0; i < info->numnote; i++)
2554
        info->notes_size += note_size(&info->notes[i]);
2555

    
2556
    /* read and fill status of all threads */
2557
    cpu_list_lock();
2558
    for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
2559
        if (cpu == thread_env)
2560
            continue;
2561
        fill_thread_info(info, cpu);
2562
    }
2563
    cpu_list_unlock();
2564

    
2565
    return (0);
2566
}
2567

    
2568
static void free_note_info(struct elf_note_info *info)
2569
{
2570
    struct elf_thread_status *ets;
2571

    
2572
    while (!QTAILQ_EMPTY(&info->thread_list)) {
2573
        ets = QTAILQ_FIRST(&info->thread_list);
2574
        QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
2575
        qemu_free(ets);
2576
    }
2577

    
2578
    qemu_free(info->prstatus);
2579
    qemu_free(info->psinfo);
2580
    qemu_free(info->notes);
2581
}
2582

    
2583
static int write_note_info(struct elf_note_info *info, int fd)
2584
{
2585
    struct elf_thread_status *ets;
2586
    int i, error = 0;
2587

    
2588
    /* write prstatus, psinfo and auxv for current thread */
2589
    for (i = 0; i < info->numnote; i++)
2590
        if ((error = write_note(&info->notes[i], fd)) != 0)
2591
            return (error);
2592

    
2593
    /* write prstatus for each thread */
2594
    for (ets = info->thread_list.tqh_first; ets != NULL;
2595
        ets = ets->ets_link.tqe_next) {
2596
        if ((error = write_note(&ets->notes[0], fd)) != 0)
2597
            return (error);
2598
    }
2599

    
2600
    return (0);
2601
}
2602

    
2603
/*
2604
 * Write out ELF coredump.
2605
 *
2606
 * See documentation of ELF object file format in:
2607
 * http://www.caldera.com/developers/devspecs/gabi41.pdf
2608
 *
2609
 * Coredump format in linux is following:
2610
 *
2611
 * 0   +----------------------+         \
2612
 *     | ELF header           | ET_CORE  |
2613
 *     +----------------------+          |
2614
 *     | ELF program headers  |          |--- headers
2615
 *     | - NOTE section       |          |
2616
 *     | - PT_LOAD sections   |          |
2617
 *     +----------------------+         /
2618
 *     | NOTEs:               |
2619
 *     | - NT_PRSTATUS        |
2620
 *     | - NT_PRSINFO         |
2621
 *     | - NT_AUXV            |
2622
 *     +----------------------+ <-- aligned to target page
2623
 *     | Process memory dump  |
2624
 *     :                      :
2625
 *     .                      .
2626
 *     :                      :
2627
 *     |                      |
2628
 *     +----------------------+
2629
 *
2630
 * NT_PRSTATUS -> struct elf_prstatus (per thread)
2631
 * NT_PRSINFO  -> struct elf_prpsinfo
2632
 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2633
 *
2634
 * Format follows System V format as close as possible.  Current
2635
 * version limitations are as follows:
2636
 *     - no floating point registers are dumped
2637
 *
2638
 * Function returns 0 in case of success, negative errno otherwise.
2639
 *
2640
 * TODO: make this work also during runtime: it should be
2641
 * possible to force coredump from running process and then
2642
 * continue processing.  For example qemu could set up SIGUSR2
2643
 * handler (provided that target process haven't registered
2644
 * handler for that) that does the dump when signal is received.
2645
 */
2646
static int elf_core_dump(int signr, const CPUState *env)
2647
{
2648
    const TaskState *ts = (const TaskState *)env->opaque;
2649
    struct vm_area_struct *vma = NULL;
2650
    char corefile[PATH_MAX];
2651
    struct elf_note_info info;
2652
    struct elfhdr elf;
2653
    struct elf_phdr phdr;
2654
    struct rlimit dumpsize;
2655
    struct mm_struct *mm = NULL;
2656
    off_t offset = 0, data_offset = 0;
2657
    int segs = 0;
2658
    int fd = -1;
2659

    
2660
    errno = 0;
2661
    getrlimit(RLIMIT_CORE, &dumpsize);
2662
    if (dumpsize.rlim_cur == 0)
2663
       return 0;
2664

    
2665
    if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
2666
        return (-errno);
2667

    
2668
    if ((fd = open(corefile, O_WRONLY | O_CREAT,
2669
        S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
2670
        return (-errno);
2671

    
2672
    /*
2673
     * Walk through target process memory mappings and
2674
     * set up structure containing this information.  After
2675
     * this point vma_xxx functions can be used.
2676
     */
2677
    if ((mm = vma_init()) == NULL)
2678
        goto out;
2679

    
2680
    walk_memory_regions(mm, vma_walker);
2681
    segs = vma_get_mapping_count(mm);
2682

    
2683
    /*
2684
     * Construct valid coredump ELF header.  We also
2685
     * add one more segment for notes.
2686
     */
2687
    fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
2688
    if (dump_write(fd, &elf, sizeof (elf)) != 0)
2689
        goto out;
2690

    
2691
    /* fill in in-memory version of notes */
2692
    if (fill_note_info(&info, signr, env) < 0)
2693
        goto out;
2694

    
2695
    offset += sizeof (elf);                             /* elf header */
2696
    offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
2697

    
2698
    /* write out notes program header */
2699
    fill_elf_note_phdr(&phdr, info.notes_size, offset);
2700

    
2701
    offset += info.notes_size;
2702
    if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
2703
        goto out;
2704

    
2705
    /*
2706
     * ELF specification wants data to start at page boundary so
2707
     * we align it here.
2708
     */
2709
    offset = roundup(offset, ELF_EXEC_PAGESIZE);
2710

    
2711
    /*
2712
     * Write program headers for memory regions mapped in
2713
     * the target process.
2714
     */
2715
    for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
2716
        (void) memset(&phdr, 0, sizeof (phdr));
2717

    
2718
        phdr.p_type = PT_LOAD;
2719
        phdr.p_offset = offset;
2720
        phdr.p_vaddr = vma->vma_start;
2721
        phdr.p_paddr = 0;
2722
        phdr.p_filesz = vma_dump_size(vma);
2723
        offset += phdr.p_filesz;
2724
        phdr.p_memsz = vma->vma_end - vma->vma_start;
2725
        phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
2726
        if (vma->vma_flags & PROT_WRITE)
2727
            phdr.p_flags |= PF_W;
2728
        if (vma->vma_flags & PROT_EXEC)
2729
            phdr.p_flags |= PF_X;
2730
        phdr.p_align = ELF_EXEC_PAGESIZE;
2731

    
2732
        dump_write(fd, &phdr, sizeof (phdr));
2733
    }
2734

    
2735
    /*
2736
     * Next we write notes just after program headers.  No
2737
     * alignment needed here.
2738
     */
2739
    if (write_note_info(&info, fd) < 0)
2740
        goto out;
2741

    
2742
    /* align data to page boundary */
2743
    data_offset = lseek(fd, 0, SEEK_CUR);
2744
    data_offset = TARGET_PAGE_ALIGN(data_offset);
2745
    if (lseek(fd, data_offset, SEEK_SET) != data_offset)
2746
        goto out;
2747

    
2748
    /*
2749
     * Finally we can dump process memory into corefile as well.
2750
     */
2751
    for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
2752
        abi_ulong addr;
2753
        abi_ulong end;
2754

    
2755
        end = vma->vma_start + vma_dump_size(vma);
2756

    
2757
        for (addr = vma->vma_start; addr < end;
2758
            addr += TARGET_PAGE_SIZE) {
2759
            char page[TARGET_PAGE_SIZE];
2760
            int error;
2761

    
2762
            /*
2763
             *  Read in page from target process memory and
2764
             *  write it to coredump file.
2765
             */
2766
            error = copy_from_user(page, addr, sizeof (page));
2767
            if (error != 0) {
2768
                (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
2769
                    addr);
2770
                errno = -error;
2771
                goto out;
2772
            }
2773
            if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
2774
                goto out;
2775
        }
2776
    }
2777

    
2778
out:
2779
    free_note_info(&info);
2780
    if (mm != NULL)
2781
        vma_delete(mm);
2782
    (void) close(fd);
2783

    
2784
    if (errno != 0)
2785
        return (-errno);
2786
    return (0);
2787
}
2788

    
2789
#endif /* USE_ELF_CORE_DUMP */
2790

    
2791
static int load_aout_interp(void * exptr, int interp_fd)
2792
{
2793
    printf("a.out interpreter not yet supported\n");
2794
    return(0);
2795
}
2796

    
2797
void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
2798
{
2799
    init_thread(regs, infop);
2800
}