Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 68a1c816

History | View | Annotate | Download (71.8 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4

    
5
@documentlanguage en
6
@documentencoding UTF-8
7

    
8
@settitle QEMU Emulator User Documentation
9
@exampleindent 0
10
@paragraphindent 0
11
@c %**end of header
12

    
13
@ifinfo
14
@direntry
15
* QEMU: (qemu-doc).    The QEMU Emulator User Documentation.
16
@end direntry
17
@end ifinfo
18

    
19
@iftex
20
@titlepage
21
@sp 7
22
@center @titlefont{QEMU Emulator}
23
@sp 1
24
@center @titlefont{User Documentation}
25
@sp 3
26
@end titlepage
27
@end iftex
28

    
29
@ifnottex
30
@node Top
31
@top
32

    
33
@menu
34
* Introduction::
35
* Installation::
36
* QEMU PC System emulator::
37
* QEMU System emulator for non PC targets::
38
* QEMU User space emulator::
39
* compilation:: Compilation from the sources
40
* License::
41
* Index::
42
@end menu
43
@end ifnottex
44

    
45
@contents
46

    
47
@node Introduction
48
@chapter Introduction
49

    
50
@menu
51
* intro_features:: Features
52
@end menu
53

    
54
@node intro_features
55
@section Features
56

    
57
QEMU is a FAST! processor emulator using dynamic translation to
58
achieve good emulation speed.
59

    
60
QEMU has two operating modes:
61

    
62
@itemize
63
@cindex operating modes
64

    
65
@item
66
@cindex system emulation
67
Full system emulation. In this mode, QEMU emulates a full system (for
68
example a PC), including one or several processors and various
69
peripherals. It can be used to launch different Operating Systems
70
without rebooting the PC or to debug system code.
71

    
72
@item
73
@cindex user mode emulation
74
User mode emulation. In this mode, QEMU can launch
75
processes compiled for one CPU on another CPU. It can be used to
76
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77
to ease cross-compilation and cross-debugging.
78

    
79
@end itemize
80

    
81
QEMU can run without an host kernel driver and yet gives acceptable
82
performance.
83

    
84
For system emulation, the following hardware targets are supported:
85
@itemize
86
@cindex emulated target systems
87
@cindex supported target systems
88
@item PC (x86 or x86_64 processor)
89
@item ISA PC (old style PC without PCI bus)
90
@item PREP (PowerPC processor)
91
@item G3 Beige PowerMac (PowerPC processor)
92
@item Mac99 PowerMac (PowerPC processor, in progress)
93
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
94
@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
95
@item Malta board (32-bit and 64-bit MIPS processors)
96
@item MIPS Magnum (64-bit MIPS processor)
97
@item ARM Integrator/CP (ARM)
98
@item ARM Versatile baseboard (ARM)
99
@item ARM RealView Emulation/Platform baseboard (ARM)
100
@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
101
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
103
@item Freescale MCF5208EVB (ColdFire V2).
104
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
105
@item Palm Tungsten|E PDA (OMAP310 processor)
106
@item N800 and N810 tablets (OMAP2420 processor)
107
@item MusicPal (MV88W8618 ARM processor)
108
@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109
@item Siemens SX1 smartphone (OMAP310 processor)
110
@item Syborg SVP base model (ARM Cortex-A8).
111
@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
112
@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
113
@end itemize
114

    
115
@cindex supported user mode targets
116
For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117
ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118
Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
119

    
120
@node Installation
121
@chapter Installation
122

    
123
If you want to compile QEMU yourself, see @ref{compilation}.
124

    
125
@menu
126
* install_linux::   Linux
127
* install_windows:: Windows
128
* install_mac::     Macintosh
129
@end menu
130

    
131
@node install_linux
132
@section Linux
133
@cindex installation (Linux)
134

    
135
If a precompiled package is available for your distribution - you just
136
have to install it. Otherwise, see @ref{compilation}.
137

    
138
@node install_windows
139
@section Windows
140
@cindex installation (Windows)
141

    
142
Download the experimental binary installer at
143
@url{http://www.free.oszoo.org/@/download.html}.
144
TODO (no longer available)
145

    
146
@node install_mac
147
@section Mac OS X
148

    
149
Download the experimental binary installer at
150
@url{http://www.free.oszoo.org/@/download.html}.
151
TODO (no longer available)
152

    
153
@node QEMU PC System emulator
154
@chapter QEMU PC System emulator
155
@cindex system emulation (PC)
156

    
157
@menu
158
* pcsys_introduction:: Introduction
159
* pcsys_quickstart::   Quick Start
160
* sec_invocation::     Invocation
161
* pcsys_keys::         Keys
162
* pcsys_monitor::      QEMU Monitor
163
* disk_images::        Disk Images
164
* pcsys_network::      Network emulation
165
* direct_linux_boot::  Direct Linux Boot
166
* pcsys_usb::          USB emulation
167
* vnc_security::       VNC security
168
* gdb_usage::          GDB usage
169
* pcsys_os_specific::  Target OS specific information
170
@end menu
171

    
172
@node pcsys_introduction
173
@section Introduction
174

    
175
@c man begin DESCRIPTION
176

    
177
The QEMU PC System emulator simulates the
178
following peripherals:
179

    
180
@itemize @minus
181
@item
182
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
183
@item
184
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
185
extensions (hardware level, including all non standard modes).
186
@item
187
PS/2 mouse and keyboard
188
@item
189
2 PCI IDE interfaces with hard disk and CD-ROM support
190
@item
191
Floppy disk
192
@item
193
PCI and ISA network adapters
194
@item
195
Serial ports
196
@item
197
Creative SoundBlaster 16 sound card
198
@item
199
ENSONIQ AudioPCI ES1370 sound card
200
@item
201
Intel 82801AA AC97 Audio compatible sound card
202
@item
203
Adlib(OPL2) - Yamaha YM3812 compatible chip
204
@item
205
Gravis Ultrasound GF1 sound card
206
@item
207
CS4231A compatible sound card
208
@item
209
PCI UHCI USB controller and a virtual USB hub.
210
@end itemize
211

    
212
SMP is supported with up to 255 CPUs.
213

    
214
Note that adlib, gus and cs4231a are only available when QEMU was
215
configured with --audio-card-list option containing the name(s) of
216
required card(s).
217

    
218
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
219
VGA BIOS.
220

    
221
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
222

    
223
QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
224
by Tibor "TS" Schütz.
225

    
226
Not that, by default, GUS shares IRQ(7) with parallel ports and so
227
qemu must be told to not have parallel ports to have working GUS
228

    
229
@example
230
qemu dos.img -soundhw gus -parallel none
231
@end example
232

    
233
Alternatively:
234
@example
235
qemu dos.img -device gus,irq=5
236
@end example
237

    
238
Or some other unclaimed IRQ.
239

    
240
CS4231A is the chip used in Windows Sound System and GUSMAX products
241

    
242
@c man end
243

    
244
@node pcsys_quickstart
245
@section Quick Start
246
@cindex quick start
247

    
248
Download and uncompress the linux image (@file{linux.img}) and type:
249

    
250
@example
251
qemu linux.img
252
@end example
253

    
254
Linux should boot and give you a prompt.
255

    
256
@node sec_invocation
257
@section Invocation
258

    
259
@example
260
@c man begin SYNOPSIS
261
usage: qemu [options] [@var{disk_image}]
262
@c man end
263
@end example
264

    
265
@c man begin OPTIONS
266
@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
267
targets do not need a disk image.
268

    
269
@include qemu-options.texi
270

    
271
@c man end
272

    
273
@node pcsys_keys
274
@section Keys
275

    
276
@c man begin OPTIONS
277

    
278
During the graphical emulation, you can use the following keys:
279
@table @key
280
@item Ctrl-Alt-f
281
@kindex Ctrl-Alt-f
282
Toggle full screen
283

    
284
@item Ctrl-Alt-u
285
@kindex Ctrl-Alt-u
286
Restore the screen's un-scaled dimensions
287

    
288
@item Ctrl-Alt-n
289
@kindex Ctrl-Alt-n
290
Switch to virtual console 'n'. Standard console mappings are:
291
@table @emph
292
@item 1
293
Target system display
294
@item 2
295
Monitor
296
@item 3
297
Serial port
298
@end table
299

    
300
@item Ctrl-Alt
301
@kindex Ctrl-Alt
302
Toggle mouse and keyboard grab.
303
@end table
304

    
305
@kindex Ctrl-Up
306
@kindex Ctrl-Down
307
@kindex Ctrl-PageUp
308
@kindex Ctrl-PageDown
309
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
310
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
311

    
312
@kindex Ctrl-a h
313
During emulation, if you are using the @option{-nographic} option, use
314
@key{Ctrl-a h} to get terminal commands:
315

    
316
@table @key
317
@item Ctrl-a h
318
@kindex Ctrl-a h
319
@item Ctrl-a ?
320
@kindex Ctrl-a ?
321
Print this help
322
@item Ctrl-a x
323
@kindex Ctrl-a x
324
Exit emulator
325
@item Ctrl-a s
326
@kindex Ctrl-a s
327
Save disk data back to file (if -snapshot)
328
@item Ctrl-a t
329
@kindex Ctrl-a t
330
Toggle console timestamps
331
@item Ctrl-a b
332
@kindex Ctrl-a b
333
Send break (magic sysrq in Linux)
334
@item Ctrl-a c
335
@kindex Ctrl-a c
336
Switch between console and monitor
337
@item Ctrl-a Ctrl-a
338
@kindex Ctrl-a a
339
Send Ctrl-a
340
@end table
341
@c man end
342

    
343
@ignore
344

    
345
@c man begin SEEALSO
346
The HTML documentation of QEMU for more precise information and Linux
347
user mode emulator invocation.
348
@c man end
349

    
350
@c man begin AUTHOR
351
Fabrice Bellard
352
@c man end
353

    
354
@end ignore
355

    
356
@node pcsys_monitor
357
@section QEMU Monitor
358
@cindex QEMU monitor
359

    
360
The QEMU monitor is used to give complex commands to the QEMU
361
emulator. You can use it to:
362

    
363
@itemize @minus
364

    
365
@item
366
Remove or insert removable media images
367
(such as CD-ROM or floppies).
368

    
369
@item
370
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
371
from a disk file.
372

    
373
@item Inspect the VM state without an external debugger.
374

    
375
@end itemize
376

    
377
@subsection Commands
378

    
379
The following commands are available:
380

    
381
@include qemu-monitor.texi
382

    
383
@subsection Integer expressions
384

    
385
The monitor understands integers expressions for every integer
386
argument. You can use register names to get the value of specifics
387
CPU registers by prefixing them with @emph{$}.
388

    
389
@node disk_images
390
@section Disk Images
391

    
392
Since version 0.6.1, QEMU supports many disk image formats, including
393
growable disk images (their size increase as non empty sectors are
394
written), compressed and encrypted disk images. Version 0.8.3 added
395
the new qcow2 disk image format which is essential to support VM
396
snapshots.
397

    
398
@menu
399
* disk_images_quickstart::    Quick start for disk image creation
400
* disk_images_snapshot_mode:: Snapshot mode
401
* vm_snapshots::              VM snapshots
402
* qemu_img_invocation::       qemu-img Invocation
403
* qemu_nbd_invocation::       qemu-nbd Invocation
404
* host_drives::               Using host drives
405
* disk_images_fat_images::    Virtual FAT disk images
406
* disk_images_nbd::           NBD access
407
@end menu
408

    
409
@node disk_images_quickstart
410
@subsection Quick start for disk image creation
411

    
412
You can create a disk image with the command:
413
@example
414
qemu-img create myimage.img mysize
415
@end example
416
where @var{myimage.img} is the disk image filename and @var{mysize} is its
417
size in kilobytes. You can add an @code{M} suffix to give the size in
418
megabytes and a @code{G} suffix for gigabytes.
419

    
420
See @ref{qemu_img_invocation} for more information.
421

    
422
@node disk_images_snapshot_mode
423
@subsection Snapshot mode
424

    
425
If you use the option @option{-snapshot}, all disk images are
426
considered as read only. When sectors in written, they are written in
427
a temporary file created in @file{/tmp}. You can however force the
428
write back to the raw disk images by using the @code{commit} monitor
429
command (or @key{C-a s} in the serial console).
430

    
431
@node vm_snapshots
432
@subsection VM snapshots
433

    
434
VM snapshots are snapshots of the complete virtual machine including
435
CPU state, RAM, device state and the content of all the writable
436
disks. In order to use VM snapshots, you must have at least one non
437
removable and writable block device using the @code{qcow2} disk image
438
format. Normally this device is the first virtual hard drive.
439

    
440
Use the monitor command @code{savevm} to create a new VM snapshot or
441
replace an existing one. A human readable name can be assigned to each
442
snapshot in addition to its numerical ID.
443

    
444
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
445
a VM snapshot. @code{info snapshots} lists the available snapshots
446
with their associated information:
447

    
448
@example
449
(qemu) info snapshots
450
Snapshot devices: hda
451
Snapshot list (from hda):
452
ID        TAG                 VM SIZE                DATE       VM CLOCK
453
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
454
2                                 40M 2006-08-06 12:43:29   00:00:18.633
455
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
456
@end example
457

    
458
A VM snapshot is made of a VM state info (its size is shown in
459
@code{info snapshots}) and a snapshot of every writable disk image.
460
The VM state info is stored in the first @code{qcow2} non removable
461
and writable block device. The disk image snapshots are stored in
462
every disk image. The size of a snapshot in a disk image is difficult
463
to evaluate and is not shown by @code{info snapshots} because the
464
associated disk sectors are shared among all the snapshots to save
465
disk space (otherwise each snapshot would need a full copy of all the
466
disk images).
467

    
468
When using the (unrelated) @code{-snapshot} option
469
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
470
but they are deleted as soon as you exit QEMU.
471

    
472
VM snapshots currently have the following known limitations:
473
@itemize
474
@item
475
They cannot cope with removable devices if they are removed or
476
inserted after a snapshot is done.
477
@item
478
A few device drivers still have incomplete snapshot support so their
479
state is not saved or restored properly (in particular USB).
480
@end itemize
481

    
482
@node qemu_img_invocation
483
@subsection @code{qemu-img} Invocation
484

    
485
@include qemu-img.texi
486

    
487
@node qemu_nbd_invocation
488
@subsection @code{qemu-nbd} Invocation
489

    
490
@include qemu-nbd.texi
491

    
492
@node host_drives
493
@subsection Using host drives
494

    
495
In addition to disk image files, QEMU can directly access host
496
devices. We describe here the usage for QEMU version >= 0.8.3.
497

    
498
@subsubsection Linux
499

    
500
On Linux, you can directly use the host device filename instead of a
501
disk image filename provided you have enough privileges to access
502
it. For example, use @file{/dev/cdrom} to access to the CDROM or
503
@file{/dev/fd0} for the floppy.
504

    
505
@table @code
506
@item CD
507
You can specify a CDROM device even if no CDROM is loaded. QEMU has
508
specific code to detect CDROM insertion or removal. CDROM ejection by
509
the guest OS is supported. Currently only data CDs are supported.
510
@item Floppy
511
You can specify a floppy device even if no floppy is loaded. Floppy
512
removal is currently not detected accurately (if you change floppy
513
without doing floppy access while the floppy is not loaded, the guest
514
OS will think that the same floppy is loaded).
515
@item Hard disks
516
Hard disks can be used. Normally you must specify the whole disk
517
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
518
see it as a partitioned disk. WARNING: unless you know what you do, it
519
is better to only make READ-ONLY accesses to the hard disk otherwise
520
you may corrupt your host data (use the @option{-snapshot} command
521
line option or modify the device permissions accordingly).
522
@end table
523

    
524
@subsubsection Windows
525

    
526
@table @code
527
@item CD
528
The preferred syntax is the drive letter (e.g. @file{d:}). The
529
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
530
supported as an alias to the first CDROM drive.
531

    
532
Currently there is no specific code to handle removable media, so it
533
is better to use the @code{change} or @code{eject} monitor commands to
534
change or eject media.
535
@item Hard disks
536
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
537
where @var{N} is the drive number (0 is the first hard disk).
538

    
539
WARNING: unless you know what you do, it is better to only make
540
READ-ONLY accesses to the hard disk otherwise you may corrupt your
541
host data (use the @option{-snapshot} command line so that the
542
modifications are written in a temporary file).
543
@end table
544

    
545

    
546
@subsubsection Mac OS X
547

    
548
@file{/dev/cdrom} is an alias to the first CDROM.
549

    
550
Currently there is no specific code to handle removable media, so it
551
is better to use the @code{change} or @code{eject} monitor commands to
552
change or eject media.
553

    
554
@node disk_images_fat_images
555
@subsection Virtual FAT disk images
556

    
557
QEMU can automatically create a virtual FAT disk image from a
558
directory tree. In order to use it, just type:
559

    
560
@example
561
qemu linux.img -hdb fat:/my_directory
562
@end example
563

    
564
Then you access access to all the files in the @file{/my_directory}
565
directory without having to copy them in a disk image or to export
566
them via SAMBA or NFS. The default access is @emph{read-only}.
567

    
568
Floppies can be emulated with the @code{:floppy:} option:
569

    
570
@example
571
qemu linux.img -fda fat:floppy:/my_directory
572
@end example
573

    
574
A read/write support is available for testing (beta stage) with the
575
@code{:rw:} option:
576

    
577
@example
578
qemu linux.img -fda fat:floppy:rw:/my_directory
579
@end example
580

    
581
What you should @emph{never} do:
582
@itemize
583
@item use non-ASCII filenames ;
584
@item use "-snapshot" together with ":rw:" ;
585
@item expect it to work when loadvm'ing ;
586
@item write to the FAT directory on the host system while accessing it with the guest system.
587
@end itemize
588

    
589
@node disk_images_nbd
590
@subsection NBD access
591

    
592
QEMU can access directly to block device exported using the Network Block Device
593
protocol.
594

    
595
@example
596
qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
597
@end example
598

    
599
If the NBD server is located on the same host, you can use an unix socket instead
600
of an inet socket:
601

    
602
@example
603
qemu linux.img -hdb nbd:unix:/tmp/my_socket
604
@end example
605

    
606
In this case, the block device must be exported using qemu-nbd:
607

    
608
@example
609
qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
610
@end example
611

    
612
The use of qemu-nbd allows to share a disk between several guests:
613
@example
614
qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
615
@end example
616

    
617
and then you can use it with two guests:
618
@example
619
qemu linux1.img -hdb nbd:unix:/tmp/my_socket
620
qemu linux2.img -hdb nbd:unix:/tmp/my_socket
621
@end example
622

    
623
@node pcsys_network
624
@section Network emulation
625

    
626
QEMU can simulate several network cards (PCI or ISA cards on the PC
627
target) and can connect them to an arbitrary number of Virtual Local
628
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
629
VLAN. VLAN can be connected between separate instances of QEMU to
630
simulate large networks. For simpler usage, a non privileged user mode
631
network stack can replace the TAP device to have a basic network
632
connection.
633

    
634
@subsection VLANs
635

    
636
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
637
connection between several network devices. These devices can be for
638
example QEMU virtual Ethernet cards or virtual Host ethernet devices
639
(TAP devices).
640

    
641
@subsection Using TAP network interfaces
642

    
643
This is the standard way to connect QEMU to a real network. QEMU adds
644
a virtual network device on your host (called @code{tapN}), and you
645
can then configure it as if it was a real ethernet card.
646

    
647
@subsubsection Linux host
648

    
649
As an example, you can download the @file{linux-test-xxx.tar.gz}
650
archive and copy the script @file{qemu-ifup} in @file{/etc} and
651
configure properly @code{sudo} so that the command @code{ifconfig}
652
contained in @file{qemu-ifup} can be executed as root. You must verify
653
that your host kernel supports the TAP network interfaces: the
654
device @file{/dev/net/tun} must be present.
655

    
656
See @ref{sec_invocation} to have examples of command lines using the
657
TAP network interfaces.
658

    
659
@subsubsection Windows host
660

    
661
There is a virtual ethernet driver for Windows 2000/XP systems, called
662
TAP-Win32. But it is not included in standard QEMU for Windows,
663
so you will need to get it separately. It is part of OpenVPN package,
664
so download OpenVPN from : @url{http://openvpn.net/}.
665

    
666
@subsection Using the user mode network stack
667

    
668
By using the option @option{-net user} (default configuration if no
669
@option{-net} option is specified), QEMU uses a completely user mode
670
network stack (you don't need root privilege to use the virtual
671
network). The virtual network configuration is the following:
672

    
673
@example
674

    
675
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
676
                           |          (10.0.2.2)
677
                           |
678
                           ---->  DNS server (10.0.2.3)
679
                           |
680
                           ---->  SMB server (10.0.2.4)
681
@end example
682

    
683
The QEMU VM behaves as if it was behind a firewall which blocks all
684
incoming connections. You can use a DHCP client to automatically
685
configure the network in the QEMU VM. The DHCP server assign addresses
686
to the hosts starting from 10.0.2.15.
687

    
688
In order to check that the user mode network is working, you can ping
689
the address 10.0.2.2 and verify that you got an address in the range
690
10.0.2.x from the QEMU virtual DHCP server.
691

    
692
Note that @code{ping} is not supported reliably to the internet as it
693
would require root privileges. It means you can only ping the local
694
router (10.0.2.2).
695

    
696
When using the built-in TFTP server, the router is also the TFTP
697
server.
698

    
699
When using the @option{-redir} option, TCP or UDP connections can be
700
redirected from the host to the guest. It allows for example to
701
redirect X11, telnet or SSH connections.
702

    
703
@subsection Connecting VLANs between QEMU instances
704

    
705
Using the @option{-net socket} option, it is possible to make VLANs
706
that span several QEMU instances. See @ref{sec_invocation} to have a
707
basic example.
708

    
709
@node direct_linux_boot
710
@section Direct Linux Boot
711

    
712
This section explains how to launch a Linux kernel inside QEMU without
713
having to make a full bootable image. It is very useful for fast Linux
714
kernel testing.
715

    
716
The syntax is:
717
@example
718
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
719
@end example
720

    
721
Use @option{-kernel} to provide the Linux kernel image and
722
@option{-append} to give the kernel command line arguments. The
723
@option{-initrd} option can be used to provide an INITRD image.
724

    
725
When using the direct Linux boot, a disk image for the first hard disk
726
@file{hda} is required because its boot sector is used to launch the
727
Linux kernel.
728

    
729
If you do not need graphical output, you can disable it and redirect
730
the virtual serial port and the QEMU monitor to the console with the
731
@option{-nographic} option. The typical command line is:
732
@example
733
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
734
     -append "root=/dev/hda console=ttyS0" -nographic
735
@end example
736

    
737
Use @key{Ctrl-a c} to switch between the serial console and the
738
monitor (@pxref{pcsys_keys}).
739

    
740
@node pcsys_usb
741
@section USB emulation
742

    
743
QEMU emulates a PCI UHCI USB controller. You can virtually plug
744
virtual USB devices or real host USB devices (experimental, works only
745
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
746
as necessary to connect multiple USB devices.
747

    
748
@menu
749
* usb_devices::
750
* host_usb_devices::
751
@end menu
752
@node usb_devices
753
@subsection Connecting USB devices
754

    
755
USB devices can be connected with the @option{-usbdevice} commandline option
756
or the @code{usb_add} monitor command.  Available devices are:
757

    
758
@table @code
759
@item mouse
760
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
761
@item tablet
762
Pointer device that uses absolute coordinates (like a touchscreen).
763
This means qemu is able to report the mouse position without having
764
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
765
@item disk:@var{file}
766
Mass storage device based on @var{file} (@pxref{disk_images})
767
@item host:@var{bus.addr}
768
Pass through the host device identified by @var{bus.addr}
769
(Linux only)
770
@item host:@var{vendor_id:product_id}
771
Pass through the host device identified by @var{vendor_id:product_id}
772
(Linux only)
773
@item wacom-tablet
774
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
775
above but it can be used with the tslib library because in addition to touch
776
coordinates it reports touch pressure.
777
@item keyboard
778
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
779
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
780
Serial converter. This emulates an FTDI FT232BM chip connected to host character
781
device @var{dev}. The available character devices are the same as for the
782
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
783
used to override the default 0403:6001. For instance, 
784
@example
785
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
786
@end example
787
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
788
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
789
@item braille
790
Braille device.  This will use BrlAPI to display the braille output on a real
791
or fake device.
792
@item net:@var{options}
793
Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
794
specifies NIC options as with @code{-net nic,}@var{options} (see description).
795
For instance, user-mode networking can be used with
796
@example
797
qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
798
@end example
799
Currently this cannot be used in machines that support PCI NICs.
800
@item bt[:@var{hci-type}]
801
Bluetooth dongle whose type is specified in the same format as with
802
the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
803
no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
804
This USB device implements the USB Transport Layer of HCI.  Example
805
usage:
806
@example
807
qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
808
@end example
809
@end table
810

    
811
@node host_usb_devices
812
@subsection Using host USB devices on a Linux host
813

    
814
WARNING: this is an experimental feature. QEMU will slow down when
815
using it. USB devices requiring real time streaming (i.e. USB Video
816
Cameras) are not supported yet.
817

    
818
@enumerate
819
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
820
is actually using the USB device. A simple way to do that is simply to
821
disable the corresponding kernel module by renaming it from @file{mydriver.o}
822
to @file{mydriver.o.disabled}.
823

    
824
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
825
@example
826
ls /proc/bus/usb
827
001  devices  drivers
828
@end example
829

    
830
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
831
@example
832
chown -R myuid /proc/bus/usb
833
@end example
834

    
835
@item Launch QEMU and do in the monitor:
836
@example
837
info usbhost
838
  Device 1.2, speed 480 Mb/s
839
    Class 00: USB device 1234:5678, USB DISK
840
@end example
841
You should see the list of the devices you can use (Never try to use
842
hubs, it won't work).
843

    
844
@item Add the device in QEMU by using:
845
@example
846
usb_add host:1234:5678
847
@end example
848

    
849
Normally the guest OS should report that a new USB device is
850
plugged. You can use the option @option{-usbdevice} to do the same.
851

    
852
@item Now you can try to use the host USB device in QEMU.
853

    
854
@end enumerate
855

    
856
When relaunching QEMU, you may have to unplug and plug again the USB
857
device to make it work again (this is a bug).
858

    
859
@node vnc_security
860
@section VNC security
861

    
862
The VNC server capability provides access to the graphical console
863
of the guest VM across the network. This has a number of security
864
considerations depending on the deployment scenarios.
865

    
866
@menu
867
* vnc_sec_none::
868
* vnc_sec_password::
869
* vnc_sec_certificate::
870
* vnc_sec_certificate_verify::
871
* vnc_sec_certificate_pw::
872
* vnc_sec_sasl::
873
* vnc_sec_certificate_sasl::
874
* vnc_generate_cert::
875
* vnc_setup_sasl::
876
@end menu
877
@node vnc_sec_none
878
@subsection Without passwords
879

    
880
The simplest VNC server setup does not include any form of authentication.
881
For this setup it is recommended to restrict it to listen on a UNIX domain
882
socket only. For example
883

    
884
@example
885
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
886
@end example
887

    
888
This ensures that only users on local box with read/write access to that
889
path can access the VNC server. To securely access the VNC server from a
890
remote machine, a combination of netcat+ssh can be used to provide a secure
891
tunnel.
892

    
893
@node vnc_sec_password
894
@subsection With passwords
895

    
896
The VNC protocol has limited support for password based authentication. Since
897
the protocol limits passwords to 8 characters it should not be considered
898
to provide high security. The password can be fairly easily brute-forced by
899
a client making repeat connections. For this reason, a VNC server using password
900
authentication should be restricted to only listen on the loopback interface
901
or UNIX domain sockets. Password authentication is requested with the @code{password}
902
option, and then once QEMU is running the password is set with the monitor. Until
903
the monitor is used to set the password all clients will be rejected.
904

    
905
@example
906
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
907
(qemu) change vnc password
908
Password: ********
909
(qemu)
910
@end example
911

    
912
@node vnc_sec_certificate
913
@subsection With x509 certificates
914

    
915
The QEMU VNC server also implements the VeNCrypt extension allowing use of
916
TLS for encryption of the session, and x509 certificates for authentication.
917
The use of x509 certificates is strongly recommended, because TLS on its
918
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
919
support provides a secure session, but no authentication. This allows any
920
client to connect, and provides an encrypted session.
921

    
922
@example
923
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
924
@end example
925

    
926
In the above example @code{/etc/pki/qemu} should contain at least three files,
927
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
928
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
929
NB the @code{server-key.pem} file should be protected with file mode 0600 to
930
only be readable by the user owning it.
931

    
932
@node vnc_sec_certificate_verify
933
@subsection With x509 certificates and client verification
934

    
935
Certificates can also provide a means to authenticate the client connecting.
936
The server will request that the client provide a certificate, which it will
937
then validate against the CA certificate. This is a good choice if deploying
938
in an environment with a private internal certificate authority.
939

    
940
@example
941
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
942
@end example
943

    
944

    
945
@node vnc_sec_certificate_pw
946
@subsection With x509 certificates, client verification and passwords
947

    
948
Finally, the previous method can be combined with VNC password authentication
949
to provide two layers of authentication for clients.
950

    
951
@example
952
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
953
(qemu) change vnc password
954
Password: ********
955
(qemu)
956
@end example
957

    
958

    
959
@node vnc_sec_sasl
960
@subsection With SASL authentication
961

    
962
The SASL authentication method is a VNC extension, that provides an
963
easily extendable, pluggable authentication method. This allows for
964
integration with a wide range of authentication mechanisms, such as
965
PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
966
The strength of the authentication depends on the exact mechanism
967
configured. If the chosen mechanism also provides a SSF layer, then
968
it will encrypt the datastream as well.
969

    
970
Refer to the later docs on how to choose the exact SASL mechanism
971
used for authentication, but assuming use of one supporting SSF,
972
then QEMU can be launched with:
973

    
974
@example
975
qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio
976
@end example
977

    
978
@node vnc_sec_certificate_sasl
979
@subsection With x509 certificates and SASL authentication
980

    
981
If the desired SASL authentication mechanism does not supported
982
SSF layers, then it is strongly advised to run it in combination
983
with TLS and x509 certificates. This provides securely encrypted
984
data stream, avoiding risk of compromising of the security
985
credentials. This can be enabled, by combining the 'sasl' option
986
with the aforementioned TLS + x509 options:
987

    
988
@example
989
qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
990
@end example
991

    
992

    
993
@node vnc_generate_cert
994
@subsection Generating certificates for VNC
995

    
996
The GNU TLS packages provides a command called @code{certtool} which can
997
be used to generate certificates and keys in PEM format. At a minimum it
998
is neccessary to setup a certificate authority, and issue certificates to
999
each server. If using certificates for authentication, then each client
1000
will also need to be issued a certificate. The recommendation is for the
1001
server to keep its certificates in either @code{/etc/pki/qemu} or for
1002
unprivileged users in @code{$HOME/.pki/qemu}.
1003

    
1004
@menu
1005
* vnc_generate_ca::
1006
* vnc_generate_server::
1007
* vnc_generate_client::
1008
@end menu
1009
@node vnc_generate_ca
1010
@subsubsection Setup the Certificate Authority
1011

    
1012
This step only needs to be performed once per organization / organizational
1013
unit. First the CA needs a private key. This key must be kept VERY secret
1014
and secure. If this key is compromised the entire trust chain of the certificates
1015
issued with it is lost.
1016

    
1017
@example
1018
# certtool --generate-privkey > ca-key.pem
1019
@end example
1020

    
1021
A CA needs to have a public certificate. For simplicity it can be a self-signed
1022
certificate, or one issue by a commercial certificate issuing authority. To
1023
generate a self-signed certificate requires one core piece of information, the
1024
name of the organization.
1025

    
1026
@example
1027
# cat > ca.info <<EOF
1028
cn = Name of your organization
1029
ca
1030
cert_signing_key
1031
EOF
1032
# certtool --generate-self-signed \
1033
           --load-privkey ca-key.pem
1034
           --template ca.info \
1035
           --outfile ca-cert.pem
1036
@end example
1037

    
1038
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1039
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1040

    
1041
@node vnc_generate_server
1042
@subsubsection Issuing server certificates
1043

    
1044
Each server (or host) needs to be issued with a key and certificate. When connecting
1045
the certificate is sent to the client which validates it against the CA certificate.
1046
The core piece of information for a server certificate is the hostname. This should
1047
be the fully qualified hostname that the client will connect with, since the client
1048
will typically also verify the hostname in the certificate. On the host holding the
1049
secure CA private key:
1050

    
1051
@example
1052
# cat > server.info <<EOF
1053
organization = Name  of your organization
1054
cn = server.foo.example.com
1055
tls_www_server
1056
encryption_key
1057
signing_key
1058
EOF
1059
# certtool --generate-privkey > server-key.pem
1060
# certtool --generate-certificate \
1061
           --load-ca-certificate ca-cert.pem \
1062
           --load-ca-privkey ca-key.pem \
1063
           --load-privkey server server-key.pem \
1064
           --template server.info \
1065
           --outfile server-cert.pem
1066
@end example
1067

    
1068
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1069
to the server for which they were generated. The @code{server-key.pem} is security
1070
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1071

    
1072
@node vnc_generate_client
1073
@subsubsection Issuing client certificates
1074

    
1075
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1076
certificates as its authentication mechanism, each client also needs to be issued
1077
a certificate. The client certificate contains enough metadata to uniquely identify
1078
the client, typically organization, state, city, building, etc. On the host holding
1079
the secure CA private key:
1080

    
1081
@example
1082
# cat > client.info <<EOF
1083
country = GB
1084
state = London
1085
locality = London
1086
organiazation = Name of your organization
1087
cn = client.foo.example.com
1088
tls_www_client
1089
encryption_key
1090
signing_key
1091
EOF
1092
# certtool --generate-privkey > client-key.pem
1093
# certtool --generate-certificate \
1094
           --load-ca-certificate ca-cert.pem \
1095
           --load-ca-privkey ca-key.pem \
1096
           --load-privkey client-key.pem \
1097
           --template client.info \
1098
           --outfile client-cert.pem
1099
@end example
1100

    
1101
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1102
copied to the client for which they were generated.
1103

    
1104

    
1105
@node vnc_setup_sasl
1106

    
1107
@subsection Configuring SASL mechanisms
1108

    
1109
The following documentation assumes use of the Cyrus SASL implementation on a
1110
Linux host, but the principals should apply to any other SASL impl. When SASL
1111
is enabled, the mechanism configuration will be loaded from system default
1112
SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1113
unprivileged user, an environment variable SASL_CONF_PATH can be used
1114
to make it search alternate locations for the service config.
1115

    
1116
The default configuration might contain
1117

    
1118
@example
1119
mech_list: digest-md5
1120
sasldb_path: /etc/qemu/passwd.db
1121
@end example
1122

    
1123
This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1124
Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1125
in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1126
command. While this mechanism is easy to configure and use, it is not
1127
considered secure by modern standards, so only suitable for developers /
1128
ad-hoc testing.
1129

    
1130
A more serious deployment might use Kerberos, which is done with the 'gssapi'
1131
mechanism
1132

    
1133
@example
1134
mech_list: gssapi
1135
keytab: /etc/qemu/krb5.tab
1136
@end example
1137

    
1138
For this to work the administrator of your KDC must generate a Kerberos
1139
principal for the server, with a name of  'qemu/somehost.example.com@@EXAMPLE.COM'
1140
replacing 'somehost.example.com' with the fully qualified host name of the
1141
machine running QEMU, and 'EXAMPLE.COM' with the Keberos Realm.
1142

    
1143
Other configurations will be left as an exercise for the reader. It should
1144
be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1145
encryption. For all other mechanisms, VNC should always be configured to
1146
use TLS and x509 certificates to protect security credentials from snooping.
1147

    
1148
@node gdb_usage
1149
@section GDB usage
1150

    
1151
QEMU has a primitive support to work with gdb, so that you can do
1152
'Ctrl-C' while the virtual machine is running and inspect its state.
1153

    
1154
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1155
gdb connection:
1156
@example
1157
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1158
       -append "root=/dev/hda"
1159
Connected to host network interface: tun0
1160
Waiting gdb connection on port 1234
1161
@end example
1162

    
1163
Then launch gdb on the 'vmlinux' executable:
1164
@example
1165
> gdb vmlinux
1166
@end example
1167

    
1168
In gdb, connect to QEMU:
1169
@example
1170
(gdb) target remote localhost:1234
1171
@end example
1172

    
1173
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1174
@example
1175
(gdb) c
1176
@end example
1177

    
1178
Here are some useful tips in order to use gdb on system code:
1179

    
1180
@enumerate
1181
@item
1182
Use @code{info reg} to display all the CPU registers.
1183
@item
1184
Use @code{x/10i $eip} to display the code at the PC position.
1185
@item
1186
Use @code{set architecture i8086} to dump 16 bit code. Then use
1187
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1188
@end enumerate
1189

    
1190
Advanced debugging options:
1191

    
1192
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1193
@table @code
1194
@item maintenance packet qqemu.sstepbits
1195

    
1196
This will display the MASK bits used to control the single stepping IE:
1197
@example
1198
(gdb) maintenance packet qqemu.sstepbits
1199
sending: "qqemu.sstepbits"
1200
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1201
@end example
1202
@item maintenance packet qqemu.sstep
1203

    
1204
This will display the current value of the mask used when single stepping IE:
1205
@example
1206
(gdb) maintenance packet qqemu.sstep
1207
sending: "qqemu.sstep"
1208
received: "0x7"
1209
@end example
1210
@item maintenance packet Qqemu.sstep=HEX_VALUE
1211

    
1212
This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1213
@example
1214
(gdb) maintenance packet Qqemu.sstep=0x5
1215
sending: "qemu.sstep=0x5"
1216
received: "OK"
1217
@end example
1218
@end table
1219

    
1220
@node pcsys_os_specific
1221
@section Target OS specific information
1222

    
1223
@subsection Linux
1224

    
1225
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1226
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1227
color depth in the guest and the host OS.
1228

    
1229
When using a 2.6 guest Linux kernel, you should add the option
1230
@code{clock=pit} on the kernel command line because the 2.6 Linux
1231
kernels make very strict real time clock checks by default that QEMU
1232
cannot simulate exactly.
1233

    
1234
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1235
not activated because QEMU is slower with this patch. The QEMU
1236
Accelerator Module is also much slower in this case. Earlier Fedora
1237
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1238
patch by default. Newer kernels don't have it.
1239

    
1240
@subsection Windows
1241

    
1242
If you have a slow host, using Windows 95 is better as it gives the
1243
best speed. Windows 2000 is also a good choice.
1244

    
1245
@subsubsection SVGA graphic modes support
1246

    
1247
QEMU emulates a Cirrus Logic GD5446 Video
1248
card. All Windows versions starting from Windows 95 should recognize
1249
and use this graphic card. For optimal performances, use 16 bit color
1250
depth in the guest and the host OS.
1251

    
1252
If you are using Windows XP as guest OS and if you want to use high
1253
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1254
1280x1024x16), then you should use the VESA VBE virtual graphic card
1255
(option @option{-std-vga}).
1256

    
1257
@subsubsection CPU usage reduction
1258

    
1259
Windows 9x does not correctly use the CPU HLT
1260
instruction. The result is that it takes host CPU cycles even when
1261
idle. You can install the utility from
1262
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1263
problem. Note that no such tool is needed for NT, 2000 or XP.
1264

    
1265
@subsubsection Windows 2000 disk full problem
1266

    
1267
Windows 2000 has a bug which gives a disk full problem during its
1268
installation. When installing it, use the @option{-win2k-hack} QEMU
1269
option to enable a specific workaround. After Windows 2000 is
1270
installed, you no longer need this option (this option slows down the
1271
IDE transfers).
1272

    
1273
@subsubsection Windows 2000 shutdown
1274

    
1275
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1276
can. It comes from the fact that Windows 2000 does not automatically
1277
use the APM driver provided by the BIOS.
1278

    
1279
In order to correct that, do the following (thanks to Struan
1280
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1281
Add/Troubleshoot a device => Add a new device & Next => No, select the
1282
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1283
(again) a few times. Now the driver is installed and Windows 2000 now
1284
correctly instructs QEMU to shutdown at the appropriate moment.
1285

    
1286
@subsubsection Share a directory between Unix and Windows
1287

    
1288
See @ref{sec_invocation} about the help of the option @option{-smb}.
1289

    
1290
@subsubsection Windows XP security problem
1291

    
1292
Some releases of Windows XP install correctly but give a security
1293
error when booting:
1294
@example
1295
A problem is preventing Windows from accurately checking the
1296
license for this computer. Error code: 0x800703e6.
1297
@end example
1298

    
1299
The workaround is to install a service pack for XP after a boot in safe
1300
mode. Then reboot, and the problem should go away. Since there is no
1301
network while in safe mode, its recommended to download the full
1302
installation of SP1 or SP2 and transfer that via an ISO or using the
1303
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1304

    
1305
@subsection MS-DOS and FreeDOS
1306

    
1307
@subsubsection CPU usage reduction
1308

    
1309
DOS does not correctly use the CPU HLT instruction. The result is that
1310
it takes host CPU cycles even when idle. You can install the utility
1311
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1312
problem.
1313

    
1314
@node QEMU System emulator for non PC targets
1315
@chapter QEMU System emulator for non PC targets
1316

    
1317
QEMU is a generic emulator and it emulates many non PC
1318
machines. Most of the options are similar to the PC emulator. The
1319
differences are mentioned in the following sections.
1320

    
1321
@menu
1322
* PowerPC System emulator::
1323
* Sparc32 System emulator::
1324
* Sparc64 System emulator::
1325
* MIPS System emulator::
1326
* ARM System emulator::
1327
* ColdFire System emulator::
1328
* Cris System emulator::
1329
* Microblaze System emulator::
1330
* SH4 System emulator::
1331
@end menu
1332

    
1333
@node PowerPC System emulator
1334
@section PowerPC System emulator
1335
@cindex system emulation (PowerPC)
1336

    
1337
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1338
or PowerMac PowerPC system.
1339

    
1340
QEMU emulates the following PowerMac peripherals:
1341

    
1342
@itemize @minus
1343
@item
1344
UniNorth or Grackle PCI Bridge
1345
@item
1346
PCI VGA compatible card with VESA Bochs Extensions
1347
@item
1348
2 PMAC IDE interfaces with hard disk and CD-ROM support
1349
@item
1350
NE2000 PCI adapters
1351
@item
1352
Non Volatile RAM
1353
@item
1354
VIA-CUDA with ADB keyboard and mouse.
1355
@end itemize
1356

    
1357
QEMU emulates the following PREP peripherals:
1358

    
1359
@itemize @minus
1360
@item
1361
PCI Bridge
1362
@item
1363
PCI VGA compatible card with VESA Bochs Extensions
1364
@item
1365
2 IDE interfaces with hard disk and CD-ROM support
1366
@item
1367
Floppy disk
1368
@item
1369
NE2000 network adapters
1370
@item
1371
Serial port
1372
@item
1373
PREP Non Volatile RAM
1374
@item
1375
PC compatible keyboard and mouse.
1376
@end itemize
1377

    
1378
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1379
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1380

    
1381
Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1382
for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1383
v2) portable firmware implementation. The goal is to implement a 100%
1384
IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1385

    
1386
@c man begin OPTIONS
1387

    
1388
The following options are specific to the PowerPC emulation:
1389

    
1390
@table @option
1391

    
1392
@item -g @var{W}x@var{H}[x@var{DEPTH}]
1393

    
1394
Set the initial VGA graphic mode. The default is 800x600x15.
1395

    
1396
@item -prom-env @var{string}
1397

    
1398
Set OpenBIOS variables in NVRAM, for example:
1399

    
1400
@example
1401
qemu-system-ppc -prom-env 'auto-boot?=false' \
1402
 -prom-env 'boot-device=hd:2,\yaboot' \
1403
 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1404
@end example
1405

    
1406
These variables are not used by Open Hack'Ware.
1407

    
1408
@end table
1409

    
1410
@c man end
1411

    
1412

    
1413
More information is available at
1414
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1415

    
1416
@node Sparc32 System emulator
1417
@section Sparc32 System emulator
1418
@cindex system emulation (Sparc32)
1419

    
1420
Use the executable @file{qemu-system-sparc} to simulate the following
1421
Sun4m architecture machines:
1422
@itemize @minus
1423
@item
1424
SPARCstation 4
1425
@item
1426
SPARCstation 5
1427
@item
1428
SPARCstation 10
1429
@item
1430
SPARCstation 20
1431
@item
1432
SPARCserver 600MP
1433
@item
1434
SPARCstation LX
1435
@item
1436
SPARCstation Voyager
1437
@item
1438
SPARCclassic
1439
@item
1440
SPARCbook
1441
@end itemize
1442

    
1443
The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1444
but Linux limits the number of usable CPUs to 4.
1445

    
1446
It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1447
SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1448
emulators are not usable yet.
1449

    
1450
QEMU emulates the following sun4m/sun4c/sun4d peripherals:
1451

    
1452
@itemize @minus
1453
@item
1454
IOMMU or IO-UNITs
1455
@item
1456
TCX Frame buffer
1457
@item
1458
Lance (Am7990) Ethernet
1459
@item
1460
Non Volatile RAM M48T02/M48T08
1461
@item
1462
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1463
and power/reset logic
1464
@item
1465
ESP SCSI controller with hard disk and CD-ROM support
1466
@item
1467
Floppy drive (not on SS-600MP)
1468
@item
1469
CS4231 sound device (only on SS-5, not working yet)
1470
@end itemize
1471

    
1472
The number of peripherals is fixed in the architecture.  Maximum
1473
memory size depends on the machine type, for SS-5 it is 256MB and for
1474
others 2047MB.
1475

    
1476
Since version 0.8.2, QEMU uses OpenBIOS
1477
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1478
firmware implementation. The goal is to implement a 100% IEEE
1479
1275-1994 (referred to as Open Firmware) compliant firmware.
1480

    
1481
A sample Linux 2.6 series kernel and ram disk image are available on
1482
the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1483
some kernel versions work. Please note that currently Solaris kernels
1484
don't work probably due to interface issues between OpenBIOS and
1485
Solaris.
1486

    
1487
@c man begin OPTIONS
1488

    
1489
The following options are specific to the Sparc32 emulation:
1490

    
1491
@table @option
1492

    
1493
@item -g @var{W}x@var{H}x[x@var{DEPTH}]
1494

    
1495
Set the initial TCX graphic mode. The default is 1024x768x8, currently
1496
the only other possible mode is 1024x768x24.
1497

    
1498
@item -prom-env @var{string}
1499

    
1500
Set OpenBIOS variables in NVRAM, for example:
1501

    
1502
@example
1503
qemu-system-sparc -prom-env 'auto-boot?=false' \
1504
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1505
@end example
1506

    
1507
@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook|SS-2|SS-1000|SS-2000]
1508

    
1509
Set the emulated machine type. Default is SS-5.
1510

    
1511
@end table
1512

    
1513
@c man end
1514

    
1515
@node Sparc64 System emulator
1516
@section Sparc64 System emulator
1517
@cindex system emulation (Sparc64)
1518

    
1519
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1520
(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1521
Niagara (T1) machine. The emulator is not usable for anything yet, but
1522
it can launch some kernels.
1523

    
1524
QEMU emulates the following peripherals:
1525

    
1526
@itemize @minus
1527
@item
1528
UltraSparc IIi APB PCI Bridge
1529
@item
1530
PCI VGA compatible card with VESA Bochs Extensions
1531
@item
1532
PS/2 mouse and keyboard
1533
@item
1534
Non Volatile RAM M48T59
1535
@item
1536
PC-compatible serial ports
1537
@item
1538
2 PCI IDE interfaces with hard disk and CD-ROM support
1539
@item
1540
Floppy disk
1541
@end itemize
1542

    
1543
@c man begin OPTIONS
1544

    
1545
The following options are specific to the Sparc64 emulation:
1546

    
1547
@table @option
1548

    
1549
@item -prom-env @var{string}
1550

    
1551
Set OpenBIOS variables in NVRAM, for example:
1552

    
1553
@example
1554
qemu-system-sparc64 -prom-env 'auto-boot?=false'
1555
@end example
1556

    
1557
@item -M [sun4u|sun4v|Niagara]
1558

    
1559
Set the emulated machine type. The default is sun4u.
1560

    
1561
@end table
1562

    
1563
@c man end
1564

    
1565
@node MIPS System emulator
1566
@section MIPS System emulator
1567
@cindex system emulation (MIPS)
1568

    
1569
Four executables cover simulation of 32 and 64-bit MIPS systems in
1570
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1571
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
1572
Five different machine types are emulated:
1573

    
1574
@itemize @minus
1575
@item
1576
A generic ISA PC-like machine "mips"
1577
@item
1578
The MIPS Malta prototype board "malta"
1579
@item
1580
An ACER Pica "pica61". This machine needs the 64-bit emulator.
1581
@item
1582
MIPS emulator pseudo board "mipssim"
1583
@item
1584
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
1585
@end itemize
1586

    
1587
The generic emulation is supported by Debian 'Etch' and is able to
1588
install Debian into a virtual disk image. The following devices are
1589
emulated:
1590

    
1591
@itemize @minus
1592
@item
1593
A range of MIPS CPUs, default is the 24Kf
1594
@item
1595
PC style serial port
1596
@item
1597
PC style IDE disk
1598
@item
1599
NE2000 network card
1600
@end itemize
1601

    
1602
The Malta emulation supports the following devices:
1603

    
1604
@itemize @minus
1605
@item
1606
Core board with MIPS 24Kf CPU and Galileo system controller
1607
@item
1608
PIIX4 PCI/USB/SMbus controller
1609
@item
1610
The Multi-I/O chip's serial device
1611
@item
1612
PCI network cards (PCnet32 and others)
1613
@item
1614
Malta FPGA serial device
1615
@item
1616
Cirrus (default) or any other PCI VGA graphics card
1617
@end itemize
1618

    
1619
The ACER Pica emulation supports:
1620

    
1621
@itemize @minus
1622
@item
1623
MIPS R4000 CPU
1624
@item
1625
PC-style IRQ and DMA controllers
1626
@item
1627
PC Keyboard
1628
@item
1629
IDE controller
1630
@end itemize
1631

    
1632
The mipssim pseudo board emulation provides an environment similiar
1633
to what the proprietary MIPS emulator uses for running Linux.
1634
It supports:
1635

    
1636
@itemize @minus
1637
@item
1638
A range of MIPS CPUs, default is the 24Kf
1639
@item
1640
PC style serial port
1641
@item
1642
MIPSnet network emulation
1643
@end itemize
1644

    
1645
The MIPS Magnum R4000 emulation supports:
1646

    
1647
@itemize @minus
1648
@item
1649
MIPS R4000 CPU
1650
@item
1651
PC-style IRQ controller
1652
@item
1653
PC Keyboard
1654
@item
1655
SCSI controller
1656
@item
1657
G364 framebuffer
1658
@end itemize
1659

    
1660

    
1661
@node ARM System emulator
1662
@section ARM System emulator
1663
@cindex system emulation (ARM)
1664

    
1665
Use the executable @file{qemu-system-arm} to simulate a ARM
1666
machine. The ARM Integrator/CP board is emulated with the following
1667
devices:
1668

    
1669
@itemize @minus
1670
@item
1671
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
1672
@item
1673
Two PL011 UARTs
1674
@item
1675
SMC 91c111 Ethernet adapter
1676
@item
1677
PL110 LCD controller
1678
@item
1679
PL050 KMI with PS/2 keyboard and mouse.
1680
@item
1681
PL181 MultiMedia Card Interface with SD card.
1682
@end itemize
1683

    
1684
The ARM Versatile baseboard is emulated with the following devices:
1685

    
1686
@itemize @minus
1687
@item
1688
ARM926E, ARM1136 or Cortex-A8 CPU
1689
@item
1690
PL190 Vectored Interrupt Controller
1691
@item
1692
Four PL011 UARTs
1693
@item
1694
SMC 91c111 Ethernet adapter
1695
@item
1696
PL110 LCD controller
1697
@item
1698
PL050 KMI with PS/2 keyboard and mouse.
1699
@item
1700
PCI host bridge.  Note the emulated PCI bridge only provides access to
1701
PCI memory space.  It does not provide access to PCI IO space.
1702
This means some devices (eg. ne2k_pci NIC) are not usable, and others
1703
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
1704
mapped control registers.
1705
@item
1706
PCI OHCI USB controller.
1707
@item
1708
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1709
@item
1710
PL181 MultiMedia Card Interface with SD card.
1711
@end itemize
1712

    
1713
Several variants of the ARM RealView baseboard are emulated,
1714
including the EB, PB-A8 and PBX-A9.  Due to interactions with the
1715
bootloader, only certain Linux kernel configurations work out
1716
of the box on these boards.
1717

    
1718
Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1719
enabled in the kernel, and expect 512M RAM.  Kernels for The PBX-A9 board
1720
should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1721
disabled and expect 1024M RAM.
1722

    
1723
The following devices are emuilated:
1724

    
1725
@itemize @minus
1726
@item
1727
ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
1728
@item
1729
ARM AMBA Generic/Distributed Interrupt Controller
1730
@item
1731
Four PL011 UARTs
1732
@item
1733
SMC 91c111 or SMSC LAN9118 Ethernet adapter
1734
@item
1735
PL110 LCD controller
1736
@item
1737
PL050 KMI with PS/2 keyboard and mouse
1738
@item
1739
PCI host bridge
1740
@item
1741
PCI OHCI USB controller
1742
@item
1743
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
1744
@item
1745
PL181 MultiMedia Card Interface with SD card.
1746
@end itemize
1747

    
1748
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1749
and "Terrier") emulation includes the following peripherals:
1750

    
1751
@itemize @minus
1752
@item
1753
Intel PXA270 System-on-chip (ARM V5TE core)
1754
@item
1755
NAND Flash memory
1756
@item
1757
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1758
@item
1759
On-chip OHCI USB controller
1760
@item
1761
On-chip LCD controller
1762
@item
1763
On-chip Real Time Clock
1764
@item
1765
TI ADS7846 touchscreen controller on SSP bus
1766
@item
1767
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1768
@item
1769
GPIO-connected keyboard controller and LEDs
1770
@item
1771
Secure Digital card connected to PXA MMC/SD host
1772
@item
1773
Three on-chip UARTs
1774
@item
1775
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
1776
@end itemize
1777

    
1778
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
1779
following elements:
1780

    
1781
@itemize @minus
1782
@item
1783
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1784
@item
1785
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
1786
@item
1787
On-chip LCD controller
1788
@item
1789
On-chip Real Time Clock
1790
@item
1791
TI TSC2102i touchscreen controller / analog-digital converter / Audio
1792
CODEC, connected through MicroWire and I@math{^2}S busses
1793
@item
1794
GPIO-connected matrix keypad
1795
@item
1796
Secure Digital card connected to OMAP MMC/SD host
1797
@item
1798
Three on-chip UARTs
1799
@end itemize
1800

    
1801
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
1802
emulation supports the following elements:
1803

    
1804
@itemize @minus
1805
@item
1806
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
1807
@item
1808
RAM and non-volatile OneNAND Flash memories
1809
@item
1810
Display connected to EPSON remote framebuffer chip and OMAP on-chip
1811
display controller and a LS041y3 MIPI DBI-C controller
1812
@item
1813
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
1814
driven through SPI bus
1815
@item
1816
National Semiconductor LM8323-controlled qwerty keyboard driven
1817
through I@math{^2}C bus
1818
@item
1819
Secure Digital card connected to OMAP MMC/SD host
1820
@item
1821
Three OMAP on-chip UARTs and on-chip STI debugging console
1822
@item
1823
A Bluetooth(R) transciever and HCI connected to an UART
1824
@item
1825
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
1826
TUSB6010 chip - only USB host mode is supported
1827
@item
1828
TI TMP105 temperature sensor driven through I@math{^2}C bus
1829
@item
1830
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
1831
@item
1832
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
1833
through CBUS
1834
@end itemize
1835

    
1836
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
1837
devices:
1838

    
1839
@itemize @minus
1840
@item
1841
Cortex-M3 CPU core.
1842
@item
1843
64k Flash and 8k SRAM.
1844
@item
1845
Timers, UARTs, ADC and I@math{^2}C interface.
1846
@item
1847
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
1848
@end itemize
1849

    
1850
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
1851
devices:
1852

    
1853
@itemize @minus
1854
@item
1855
Cortex-M3 CPU core.
1856
@item
1857
256k Flash and 64k SRAM.
1858
@item
1859
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
1860
@item
1861
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
1862
@end itemize
1863

    
1864
The Freecom MusicPal internet radio emulation includes the following
1865
elements:
1866

    
1867
@itemize @minus
1868
@item
1869
Marvell MV88W8618 ARM core.
1870
@item
1871
32 MB RAM, 256 KB SRAM, 8 MB flash.
1872
@item
1873
Up to 2 16550 UARTs
1874
@item
1875
MV88W8xx8 Ethernet controller
1876
@item
1877
MV88W8618 audio controller, WM8750 CODEC and mixer
1878
@item
1879
128×64 display with brightness control
1880
@item
1881
2 buttons, 2 navigation wheels with button function
1882
@end itemize
1883

    
1884
The Siemens SX1 models v1 and v2 (default) basic emulation.
1885
The emulaton includes the following elements:
1886

    
1887
@itemize @minus
1888
@item
1889
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1890
@item
1891
ROM and RAM memories (ROM firmware image can be loaded with -pflash)
1892
V1
1893
1 Flash of 16MB and 1 Flash of 8MB
1894
V2
1895
1 Flash of 32MB
1896
@item
1897
On-chip LCD controller
1898
@item
1899
On-chip Real Time Clock
1900
@item
1901
Secure Digital card connected to OMAP MMC/SD host
1902
@item
1903
Three on-chip UARTs
1904
@end itemize
1905

    
1906
The "Syborg" Symbian Virtual Platform base model includes the following
1907
elements:
1908

    
1909
@itemize @minus
1910
@item
1911
ARM Cortex-A8 CPU
1912
@item
1913
Interrupt controller
1914
@item
1915
Timer
1916
@item
1917
Real Time Clock
1918
@item
1919
Keyboard
1920
@item
1921
Framebuffer
1922
@item
1923
Touchscreen
1924
@item
1925
UARTs
1926
@end itemize
1927

    
1928
A Linux 2.6 test image is available on the QEMU web site. More
1929
information is available in the QEMU mailing-list archive.
1930

    
1931
@c man begin OPTIONS
1932

    
1933
The following options are specific to the ARM emulation:
1934

    
1935
@table @option
1936

    
1937
@item -semihosting
1938
Enable semihosting syscall emulation.
1939

    
1940
On ARM this implements the "Angel" interface.
1941

    
1942
Note that this allows guest direct access to the host filesystem,
1943
so should only be used with trusted guest OS.
1944

    
1945
@end table
1946

    
1947
@node ColdFire System emulator
1948
@section ColdFire System emulator
1949
@cindex system emulation (ColdFire)
1950
@cindex system emulation (M68K)
1951

    
1952
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
1953
The emulator is able to boot a uClinux kernel.
1954

    
1955
The M5208EVB emulation includes the following devices:
1956

    
1957
@itemize @minus
1958
@item
1959
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
1960
@item
1961
Three Two on-chip UARTs.
1962
@item
1963
Fast Ethernet Controller (FEC)
1964
@end itemize
1965

    
1966
The AN5206 emulation includes the following devices:
1967

    
1968
@itemize @minus
1969
@item
1970
MCF5206 ColdFire V2 Microprocessor.
1971
@item
1972
Two on-chip UARTs.
1973
@end itemize
1974

    
1975
@c man begin OPTIONS
1976

    
1977
The following options are specific to the ColdFire emulation:
1978

    
1979
@table @option
1980

    
1981
@item -semihosting
1982
Enable semihosting syscall emulation.
1983

    
1984
On M68K this implements the "ColdFire GDB" interface used by libgloss.
1985

    
1986
Note that this allows guest direct access to the host filesystem,
1987
so should only be used with trusted guest OS.
1988

    
1989
@end table
1990

    
1991
@node Cris System emulator
1992
@section Cris System emulator
1993
@cindex system emulation (Cris)
1994

    
1995
TODO
1996

    
1997
@node Microblaze System emulator
1998
@section Microblaze System emulator
1999
@cindex system emulation (Microblaze)
2000

    
2001
TODO
2002

    
2003
@node SH4 System emulator
2004
@section SH4 System emulator
2005
@cindex system emulation (SH4)
2006

    
2007
TODO
2008

    
2009
@node QEMU User space emulator
2010
@chapter QEMU User space emulator
2011

    
2012
@menu
2013
* Supported Operating Systems ::
2014
* Linux User space emulator::
2015
* Mac OS X/Darwin User space emulator ::
2016
* BSD User space emulator ::
2017
@end menu
2018

    
2019
@node Supported Operating Systems
2020
@section Supported Operating Systems
2021

    
2022
The following OS are supported in user space emulation:
2023

    
2024
@itemize @minus
2025
@item
2026
Linux (referred as qemu-linux-user)
2027
@item
2028
Mac OS X/Darwin (referred as qemu-darwin-user)
2029
@item
2030
BSD (referred as qemu-bsd-user)
2031
@end itemize
2032

    
2033
@node Linux User space emulator
2034
@section Linux User space emulator
2035

    
2036
@menu
2037
* Quick Start::
2038
* Wine launch::
2039
* Command line options::
2040
* Other binaries::
2041
@end menu
2042

    
2043
@node Quick Start
2044
@subsection Quick Start
2045

    
2046
In order to launch a Linux process, QEMU needs the process executable
2047
itself and all the target (x86) dynamic libraries used by it.
2048

    
2049
@itemize
2050

    
2051
@item On x86, you can just try to launch any process by using the native
2052
libraries:
2053

    
2054
@example
2055
qemu-i386 -L / /bin/ls
2056
@end example
2057

    
2058
@code{-L /} tells that the x86 dynamic linker must be searched with a
2059
@file{/} prefix.
2060

    
2061
@item Since QEMU is also a linux process, you can launch qemu with
2062
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2063

    
2064
@example
2065
qemu-i386 -L / qemu-i386 -L / /bin/ls
2066
@end example
2067

    
2068
@item On non x86 CPUs, you need first to download at least an x86 glibc
2069
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2070
@code{LD_LIBRARY_PATH} is not set:
2071

    
2072
@example
2073
unset LD_LIBRARY_PATH
2074
@end example
2075

    
2076
Then you can launch the precompiled @file{ls} x86 executable:
2077

    
2078
@example
2079
qemu-i386 tests/i386/ls
2080
@end example
2081
You can look at @file{qemu-binfmt-conf.sh} so that
2082
QEMU is automatically launched by the Linux kernel when you try to
2083
launch x86 executables. It requires the @code{binfmt_misc} module in the
2084
Linux kernel.
2085

    
2086
@item The x86 version of QEMU is also included. You can try weird things such as:
2087
@example
2088
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2089
          /usr/local/qemu-i386/bin/ls-i386
2090
@end example
2091

    
2092
@end itemize
2093

    
2094
@node Wine launch
2095
@subsection Wine launch
2096

    
2097
@itemize
2098

    
2099
@item Ensure that you have a working QEMU with the x86 glibc
2100
distribution (see previous section). In order to verify it, you must be
2101
able to do:
2102

    
2103
@example
2104
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2105
@end example
2106

    
2107
@item Download the binary x86 Wine install
2108
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2109

    
2110
@item Configure Wine on your account. Look at the provided script
2111
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2112
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2113

    
2114
@item Then you can try the example @file{putty.exe}:
2115

    
2116
@example
2117
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2118
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2119
@end example
2120

    
2121
@end itemize
2122

    
2123
@node Command line options
2124
@subsection Command line options
2125

    
2126
@example
2127
usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
2128
@end example
2129

    
2130
@table @option
2131
@item -h
2132
Print the help
2133
@item -L path
2134
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2135
@item -s size
2136
Set the x86 stack size in bytes (default=524288)
2137
@item -cpu model
2138
Select CPU model (-cpu ? for list and additional feature selection)
2139
@item -B offset
2140
Offset guest address by the specified number of bytes.  This is useful when
2141
the address region rewuired by guest applications is reserved on the host.
2142
Ths option is currently only supported on some hosts.
2143
@item -R size
2144
Pre-allocate a guest virtual address space of the given size (in bytes).
2145
"G", "M", and "k" suffixes may be used when specifying the size.  
2146
@end table
2147

    
2148
Debug options:
2149

    
2150
@table @option
2151
@item -d
2152
Activate log (logfile=/tmp/qemu.log)
2153
@item -p pagesize
2154
Act as if the host page size was 'pagesize' bytes
2155
@item -g port
2156
Wait gdb connection to port
2157
@item -singlestep
2158
Run the emulation in single step mode.
2159
@end table
2160

    
2161
Environment variables:
2162

    
2163
@table @env
2164
@item QEMU_STRACE
2165
Print system calls and arguments similar to the 'strace' program
2166
(NOTE: the actual 'strace' program will not work because the user
2167
space emulator hasn't implemented ptrace).  At the moment this is
2168
incomplete.  All system calls that don't have a specific argument
2169
format are printed with information for six arguments.  Many
2170
flag-style arguments don't have decoders and will show up as numbers.
2171
@end table
2172

    
2173
@node Other binaries
2174
@subsection Other binaries
2175

    
2176
@cindex user mode (Alpha)
2177
@command{qemu-alpha} TODO.
2178

    
2179
@cindex user mode (ARM)
2180
@command{qemu-armeb} TODO.
2181

    
2182
@cindex user mode (ARM)
2183
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2184
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2185
configurations), and arm-uclinux bFLT format binaries.
2186

    
2187
@cindex user mode (ColdFire)
2188
@cindex user mode (M68K)
2189
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2190
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2191
coldfire uClinux bFLT format binaries.
2192

    
2193
The binary format is detected automatically.
2194

    
2195
@cindex user mode (Cris)
2196
@command{qemu-cris} TODO.
2197

    
2198
@cindex user mode (i386)
2199
@command{qemu-i386} TODO.
2200
@command{qemu-x86_64} TODO.
2201

    
2202
@cindex user mode (Microblaze)
2203
@command{qemu-microblaze} TODO.
2204

    
2205
@cindex user mode (MIPS)
2206
@command{qemu-mips} TODO.
2207
@command{qemu-mipsel} TODO.
2208

    
2209
@cindex user mode (PowerPC)
2210
@command{qemu-ppc64abi32} TODO.
2211
@command{qemu-ppc64} TODO.
2212
@command{qemu-ppc} TODO.
2213

    
2214
@cindex user mode (SH4)
2215
@command{qemu-sh4eb} TODO.
2216
@command{qemu-sh4} TODO.
2217

    
2218
@cindex user mode (SPARC)
2219
@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2220

    
2221
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2222
(Sparc64 CPU, 32 bit ABI).
2223

    
2224
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2225
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2226

    
2227
@node Mac OS X/Darwin User space emulator
2228
@section Mac OS X/Darwin User space emulator
2229

    
2230
@menu
2231
* Mac OS X/Darwin Status::
2232
* Mac OS X/Darwin Quick Start::
2233
* Mac OS X/Darwin Command line options::
2234
@end menu
2235

    
2236
@node Mac OS X/Darwin Status
2237
@subsection Mac OS X/Darwin Status
2238

    
2239
@itemize @minus
2240
@item
2241
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2242
@item
2243
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2244
@item
2245
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2246
@item
2247
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2248
@end itemize
2249

    
2250
[1] If you're host commpage can be executed by qemu.
2251

    
2252
@node Mac OS X/Darwin Quick Start
2253
@subsection Quick Start
2254

    
2255
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2256
itself and all the target dynamic libraries used by it. If you don't have the FAT
2257
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2258
CD or compile them by hand.
2259

    
2260
@itemize
2261

    
2262
@item On x86, you can just try to launch any process by using the native
2263
libraries:
2264

    
2265
@example
2266
qemu-i386 /bin/ls
2267
@end example
2268

    
2269
or to run the ppc version of the executable:
2270

    
2271
@example
2272
qemu-ppc /bin/ls
2273
@end example
2274

    
2275
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2276
are installed:
2277

    
2278
@example
2279
qemu-i386 -L /opt/x86_root/ /bin/ls
2280
@end example
2281

    
2282
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2283
@file{/opt/x86_root/usr/bin/dyld}.
2284

    
2285
@end itemize
2286

    
2287
@node Mac OS X/Darwin Command line options
2288
@subsection Command line options
2289

    
2290
@example
2291
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2292
@end example
2293

    
2294
@table @option
2295
@item -h
2296
Print the help
2297
@item -L path
2298
Set the library root path (default=/)
2299
@item -s size
2300
Set the stack size in bytes (default=524288)
2301
@end table
2302

    
2303
Debug options:
2304

    
2305
@table @option
2306
@item -d
2307
Activate log (logfile=/tmp/qemu.log)
2308
@item -p pagesize
2309
Act as if the host page size was 'pagesize' bytes
2310
@item -singlestep
2311
Run the emulation in single step mode.
2312
@end table
2313

    
2314
@node BSD User space emulator
2315
@section BSD User space emulator
2316

    
2317
@menu
2318
* BSD Status::
2319
* BSD Quick Start::
2320
* BSD Command line options::
2321
@end menu
2322

    
2323
@node BSD Status
2324
@subsection BSD Status
2325

    
2326
@itemize @minus
2327
@item
2328
target Sparc64 on Sparc64: Some trivial programs work.
2329
@end itemize
2330

    
2331
@node BSD Quick Start
2332
@subsection Quick Start
2333

    
2334
In order to launch a BSD process, QEMU needs the process executable
2335
itself and all the target dynamic libraries used by it.
2336

    
2337
@itemize
2338

    
2339
@item On Sparc64, you can just try to launch any process by using the native
2340
libraries:
2341

    
2342
@example
2343
qemu-sparc64 /bin/ls
2344
@end example
2345

    
2346
@end itemize
2347

    
2348
@node BSD Command line options
2349
@subsection Command line options
2350

    
2351
@example
2352
usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2353
@end example
2354

    
2355
@table @option
2356
@item -h
2357
Print the help
2358
@item -L path
2359
Set the library root path (default=/)
2360
@item -s size
2361
Set the stack size in bytes (default=524288)
2362
@item -bsd type
2363
Set the type of the emulated BSD Operating system. Valid values are
2364
FreeBSD, NetBSD and OpenBSD (default).
2365
@end table
2366

    
2367
Debug options:
2368

    
2369
@table @option
2370
@item -d
2371
Activate log (logfile=/tmp/qemu.log)
2372
@item -p pagesize
2373
Act as if the host page size was 'pagesize' bytes
2374
@item -singlestep
2375
Run the emulation in single step mode.
2376
@end table
2377

    
2378
@node compilation
2379
@chapter Compilation from the sources
2380

    
2381
@menu
2382
* Linux/Unix::
2383
* Windows::
2384
* Cross compilation for Windows with Linux::
2385
* Mac OS X::
2386
* Make targets::
2387
@end menu
2388

    
2389
@node Linux/Unix
2390
@section Linux/Unix
2391

    
2392
@subsection Compilation
2393

    
2394
First you must decompress the sources:
2395
@example
2396
cd /tmp
2397
tar zxvf qemu-x.y.z.tar.gz
2398
cd qemu-x.y.z
2399
@end example
2400

    
2401
Then you configure QEMU and build it (usually no options are needed):
2402
@example
2403
./configure
2404
make
2405
@end example
2406

    
2407
Then type as root user:
2408
@example
2409
make install
2410
@end example
2411
to install QEMU in @file{/usr/local}.
2412

    
2413
@node Windows
2414
@section Windows
2415

    
2416
@itemize
2417
@item Install the current versions of MSYS and MinGW from
2418
@url{http://www.mingw.org/}. You can find detailed installation
2419
instructions in the download section and the FAQ.
2420

    
2421
@item Download
2422
the MinGW development library of SDL 1.2.x
2423
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2424
@url{http://www.libsdl.org}. Unpack it in a temporary place and
2425
edit the @file{sdl-config} script so that it gives the
2426
correct SDL directory when invoked.
2427

    
2428
@item Install the MinGW version of zlib and make sure
2429
@file{zlib.h} and @file{libz.dll.a} are in
2430
MingGW's default header and linker search paths.
2431

    
2432
@item Extract the current version of QEMU.
2433

    
2434
@item Start the MSYS shell (file @file{msys.bat}).
2435

    
2436
@item Change to the QEMU directory. Launch @file{./configure} and
2437
@file{make}.  If you have problems using SDL, verify that
2438
@file{sdl-config} can be launched from the MSYS command line.
2439

    
2440
@item You can install QEMU in @file{Program Files/Qemu} by typing
2441
@file{make install}. Don't forget to copy @file{SDL.dll} in
2442
@file{Program Files/Qemu}.
2443

    
2444
@end itemize
2445

    
2446
@node Cross compilation for Windows with Linux
2447
@section Cross compilation for Windows with Linux
2448

    
2449
@itemize
2450
@item
2451
Install the MinGW cross compilation tools available at
2452
@url{http://www.mingw.org/}.
2453

    
2454
@item Download
2455
the MinGW development library of SDL 1.2.x
2456
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2457
@url{http://www.libsdl.org}. Unpack it in a temporary place and
2458
edit the @file{sdl-config} script so that it gives the
2459
correct SDL directory when invoked.  Set up the @code{PATH} environment
2460
variable so that @file{sdl-config} can be launched by
2461
the QEMU configuration script.
2462

    
2463
@item Install the MinGW version of zlib and make sure
2464
@file{zlib.h} and @file{libz.dll.a} are in
2465
MingGW's default header and linker search paths.
2466

    
2467
@item
2468
Configure QEMU for Windows cross compilation:
2469
@example
2470
PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2471
@end example
2472
The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2473
MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
2474
We set the @code{PATH} environment variable to ensure the MingW version of @file{sdl-config} is used and
2475
use --cross-prefix to specify the name of the cross compiler.
2476
You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/Qemu}.
2477

    
2478
Under Fedora Linux, you can run:
2479
@example
2480
yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
2481
@end example
2482
to get a suitable cross compilation environment.
2483

    
2484
@item You can install QEMU in the installation directory by typing
2485
@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
2486
installation directory.
2487

    
2488
@end itemize
2489

    
2490
Wine can be used to launch the resulting qemu.exe compiled for Win32.
2491

    
2492
@node Mac OS X
2493
@section Mac OS X
2494

    
2495
The Mac OS X patches are not fully merged in QEMU, so you should look
2496
at the QEMU mailing list archive to have all the necessary
2497
information.
2498

    
2499
@node Make targets
2500
@section Make targets
2501

    
2502
@table @code
2503

    
2504
@item make
2505
@item make all
2506
Make everything which is typically needed.
2507

    
2508
@item install
2509
TODO
2510

    
2511
@item install-doc
2512
TODO
2513

    
2514
@item make clean
2515
Remove most files which were built during make.
2516

    
2517
@item make distclean
2518
Remove everything which was built during make.
2519

    
2520
@item make dvi
2521
@item make html
2522
@item make info
2523
@item make pdf
2524
Create documentation in dvi, html, info or pdf format.
2525

    
2526
@item make cscope
2527
TODO
2528

    
2529
@item make defconfig
2530
(Re-)create some build configuration files.
2531
User made changes will be overwritten.
2532

    
2533
@item tar
2534
@item tarbin
2535
TODO
2536

    
2537
@end table
2538

    
2539
@node License
2540
@appendix License
2541

    
2542
QEMU is a trademark of Fabrice Bellard.
2543

    
2544
QEMU is released under the GNU General Public License (TODO: add link).
2545
Parts of QEMU have specific licenses, see file LICENSE.
2546

    
2547
TODO (refer to file LICENSE, include it, include the GPL?)
2548

    
2549
@node Index
2550
@appendix Index
2551
@menu
2552
* Concept Index::
2553
* Function Index::
2554
* Keystroke Index::
2555
* Program Index::
2556
* Data Type Index::
2557
* Variable Index::
2558
@end menu
2559

    
2560
@node Concept Index
2561
@section Concept Index
2562
This is the main index. Should we combine all keywords in one index? TODO
2563
@printindex cp
2564

    
2565
@node Function Index
2566
@section Function Index
2567
This index could be used for command line options and monitor functions.
2568
@printindex fn
2569

    
2570
@node Keystroke Index
2571
@section Keystroke Index
2572

    
2573
This is a list of all keystrokes which have a special function
2574
in system emulation.
2575

    
2576
@printindex ky
2577

    
2578
@node Program Index
2579
@section Program Index
2580
@printindex pg
2581

    
2582
@node Data Type Index
2583
@section Data Type Index
2584

    
2585
This index could be used for qdev device names and options.
2586

    
2587
@printindex tp
2588

    
2589
@node Variable Index
2590
@section Variable Index
2591
@printindex vr
2592

    
2593
@bye