Statistics
| Branch: | Revision:

root / vl.c @ 6a3b9cc9

History | View | Annotate | Download (222.6 kB)

1
/*
2
 * QEMU System Emulator
3
 *
4
 * Copyright (c) 2003-2007 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25

    
26
#include <unistd.h>
27
#include <fcntl.h>
28
#include <signal.h>
29
#include <time.h>
30
#include <errno.h>
31
#include <sys/time.h>
32
#include <zlib.h>
33

    
34
#ifndef _WIN32
35
#include <sys/times.h>
36
#include <sys/wait.h>
37
#include <termios.h>
38
#include <sys/poll.h>
39
#include <sys/mman.h>
40
#include <sys/ioctl.h>
41
#include <sys/socket.h>
42
#include <netinet/in.h>
43
#include <dirent.h>
44
#include <netdb.h>
45
#include <sys/select.h>
46
#include <arpa/inet.h>
47
#ifdef _BSD
48
#include <sys/stat.h>
49
#ifndef __APPLE__
50
#include <libutil.h>
51
#endif
52
#elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
53
#include <freebsd/stdlib.h>
54
#else
55
#ifndef __sun__
56
#include <linux/if.h>
57
#include <linux/if_tun.h>
58
#include <pty.h>
59
#include <malloc.h>
60
#include <linux/rtc.h>
61

    
62
/* For the benefit of older linux systems which don't supply it,
63
   we use a local copy of hpet.h. */
64
/* #include <linux/hpet.h> */
65
#include "hpet.h"
66

    
67
#include <linux/ppdev.h>
68
#include <linux/parport.h>
69
#else
70
#include <sys/stat.h>
71
#include <sys/ethernet.h>
72
#include <sys/sockio.h>
73
#include <netinet/arp.h>
74
#include <netinet/in.h>
75
#include <netinet/in_systm.h>
76
#include <netinet/ip.h>
77
#include <netinet/ip_icmp.h> // must come after ip.h
78
#include <netinet/udp.h>
79
#include <netinet/tcp.h>
80
#include <net/if.h>
81
#include <syslog.h>
82
#include <stropts.h>
83
#endif
84
#endif
85
#else
86
#include <winsock2.h>
87
int inet_aton(const char *cp, struct in_addr *ia);
88
#endif
89

    
90
#if defined(CONFIG_SLIRP)
91
#include "libslirp.h"
92
#endif
93

    
94
#ifdef _WIN32
95
#include <malloc.h>
96
#include <sys/timeb.h>
97
#include <windows.h>
98
#define getopt_long_only getopt_long
99
#define memalign(align, size) malloc(size)
100
#endif
101

    
102
#include "qemu_socket.h"
103

    
104
#ifdef CONFIG_SDL
105
#ifdef __APPLE__
106
#include <SDL/SDL.h>
107
#endif
108
#endif /* CONFIG_SDL */
109

    
110
#ifdef CONFIG_COCOA
111
#undef main
112
#define main qemu_main
113
#endif /* CONFIG_COCOA */
114

    
115
#include "disas.h"
116

    
117
#include "exec-all.h"
118

    
119
#define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
120
#define DEFAULT_NETWORK_DOWN_SCRIPT "/etc/qemu-ifdown"
121
#ifdef __sun__
122
#define SMBD_COMMAND "/usr/sfw/sbin/smbd"
123
#else
124
#define SMBD_COMMAND "/usr/sbin/smbd"
125
#endif
126

    
127
//#define DEBUG_UNUSED_IOPORT
128
//#define DEBUG_IOPORT
129

    
130
#define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
131

    
132
#ifdef TARGET_PPC
133
#define DEFAULT_RAM_SIZE 144
134
#else
135
#define DEFAULT_RAM_SIZE 128
136
#endif
137
/* in ms */
138
#define GUI_REFRESH_INTERVAL 30
139

    
140
/* Max number of USB devices that can be specified on the commandline.  */
141
#define MAX_USB_CMDLINE 8
142

    
143
/* XXX: use a two level table to limit memory usage */
144
#define MAX_IOPORTS 65536
145

    
146
const char *bios_dir = CONFIG_QEMU_SHAREDIR;
147
const char *bios_name = NULL;
148
char phys_ram_file[1024];
149
void *ioport_opaque[MAX_IOPORTS];
150
IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
151
IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
152
/* Note: bs_table[MAX_DISKS] is a dummy block driver if none available
153
   to store the VM snapshots */
154
BlockDriverState *bs_table[MAX_DISKS + 1], *fd_table[MAX_FD];
155
BlockDriverState *pflash_table[MAX_PFLASH];
156
BlockDriverState *sd_bdrv;
157
BlockDriverState *mtd_bdrv;
158
/* point to the block driver where the snapshots are managed */
159
BlockDriverState *bs_snapshots;
160
int vga_ram_size;
161
static DisplayState display_state;
162
int nographic;
163
const char* keyboard_layout = NULL;
164
int64_t ticks_per_sec;
165
int ram_size;
166
int pit_min_timer_count = 0;
167
int nb_nics;
168
NICInfo nd_table[MAX_NICS];
169
int vm_running;
170
int rtc_utc = 1;
171
int rtc_start_date = -1; /* -1 means now */
172
int cirrus_vga_enabled = 1;
173
int vmsvga_enabled = 0;
174
#ifdef TARGET_SPARC
175
int graphic_width = 1024;
176
int graphic_height = 768;
177
int graphic_depth = 8;
178
#else
179
int graphic_width = 800;
180
int graphic_height = 600;
181
int graphic_depth = 15;
182
#endif
183
int full_screen = 0;
184
int no_frame = 0;
185
int no_quit = 0;
186
CharDriverState *serial_hds[MAX_SERIAL_PORTS];
187
CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
188
#ifdef TARGET_I386
189
int win2k_install_hack = 0;
190
#endif
191
int usb_enabled = 0;
192
static VLANState *first_vlan;
193
int smp_cpus = 1;
194
const char *vnc_display;
195
#if defined(TARGET_SPARC)
196
#define MAX_CPUS 16
197
#elif defined(TARGET_I386)
198
#define MAX_CPUS 255
199
#else
200
#define MAX_CPUS 1
201
#endif
202
int acpi_enabled = 1;
203
int fd_bootchk = 1;
204
int no_reboot = 0;
205
int cursor_hide = 1;
206
int graphic_rotate = 0;
207
int daemonize = 0;
208
const char *option_rom[MAX_OPTION_ROMS];
209
int nb_option_roms;
210
int semihosting_enabled = 0;
211
int autostart = 1;
212
#ifdef TARGET_ARM
213
int old_param = 0;
214
#endif
215
const char *qemu_name;
216
int alt_grab = 0;
217
#ifdef TARGET_SPARC
218
unsigned int nb_prom_envs = 0;
219
const char *prom_envs[MAX_PROM_ENVS];
220
#endif
221

    
222
#define TFR(expr) do { if ((expr) != -1) break; } while (errno == EINTR)
223

    
224
/***********************************************************/
225
/* x86 ISA bus support */
226

    
227
target_phys_addr_t isa_mem_base = 0;
228
PicState2 *isa_pic;
229

    
230
uint32_t default_ioport_readb(void *opaque, uint32_t address)
231
{
232
#ifdef DEBUG_UNUSED_IOPORT
233
    fprintf(stderr, "unused inb: port=0x%04x\n", address);
234
#endif
235
    return 0xff;
236
}
237

    
238
void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
239
{
240
#ifdef DEBUG_UNUSED_IOPORT
241
    fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
242
#endif
243
}
244

    
245
/* default is to make two byte accesses */
246
uint32_t default_ioport_readw(void *opaque, uint32_t address)
247
{
248
    uint32_t data;
249
    data = ioport_read_table[0][address](ioport_opaque[address], address);
250
    address = (address + 1) & (MAX_IOPORTS - 1);
251
    data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8;
252
    return data;
253
}
254

    
255
void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
256
{
257
    ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff);
258
    address = (address + 1) & (MAX_IOPORTS - 1);
259
    ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff);
260
}
261

    
262
uint32_t default_ioport_readl(void *opaque, uint32_t address)
263
{
264
#ifdef DEBUG_UNUSED_IOPORT
265
    fprintf(stderr, "unused inl: port=0x%04x\n", address);
266
#endif
267
    return 0xffffffff;
268
}
269

    
270
void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
271
{
272
#ifdef DEBUG_UNUSED_IOPORT
273
    fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
274
#endif
275
}
276

    
277
void init_ioports(void)
278
{
279
    int i;
280

    
281
    for(i = 0; i < MAX_IOPORTS; i++) {
282
        ioport_read_table[0][i] = default_ioport_readb;
283
        ioport_write_table[0][i] = default_ioport_writeb;
284
        ioport_read_table[1][i] = default_ioport_readw;
285
        ioport_write_table[1][i] = default_ioport_writew;
286
        ioport_read_table[2][i] = default_ioport_readl;
287
        ioport_write_table[2][i] = default_ioport_writel;
288
    }
289
}
290

    
291
/* size is the word size in byte */
292
int register_ioport_read(int start, int length, int size,
293
                         IOPortReadFunc *func, void *opaque)
294
{
295
    int i, bsize;
296

    
297
    if (size == 1) {
298
        bsize = 0;
299
    } else if (size == 2) {
300
        bsize = 1;
301
    } else if (size == 4) {
302
        bsize = 2;
303
    } else {
304
        hw_error("register_ioport_read: invalid size");
305
        return -1;
306
    }
307
    for(i = start; i < start + length; i += size) {
308
        ioport_read_table[bsize][i] = func;
309
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
310
            hw_error("register_ioport_read: invalid opaque");
311
        ioport_opaque[i] = opaque;
312
    }
313
    return 0;
314
}
315

    
316
/* size is the word size in byte */
317
int register_ioport_write(int start, int length, int size,
318
                          IOPortWriteFunc *func, void *opaque)
319
{
320
    int i, bsize;
321

    
322
    if (size == 1) {
323
        bsize = 0;
324
    } else if (size == 2) {
325
        bsize = 1;
326
    } else if (size == 4) {
327
        bsize = 2;
328
    } else {
329
        hw_error("register_ioport_write: invalid size");
330
        return -1;
331
    }
332
    for(i = start; i < start + length; i += size) {
333
        ioport_write_table[bsize][i] = func;
334
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
335
            hw_error("register_ioport_write: invalid opaque");
336
        ioport_opaque[i] = opaque;
337
    }
338
    return 0;
339
}
340

    
341
void isa_unassign_ioport(int start, int length)
342
{
343
    int i;
344

    
345
    for(i = start; i < start + length; i++) {
346
        ioport_read_table[0][i] = default_ioport_readb;
347
        ioport_read_table[1][i] = default_ioport_readw;
348
        ioport_read_table[2][i] = default_ioport_readl;
349

    
350
        ioport_write_table[0][i] = default_ioport_writeb;
351
        ioport_write_table[1][i] = default_ioport_writew;
352
        ioport_write_table[2][i] = default_ioport_writel;
353
    }
354
}
355

    
356
/***********************************************************/
357

    
358
void cpu_outb(CPUState *env, int addr, int val)
359
{
360
#ifdef DEBUG_IOPORT
361
    if (loglevel & CPU_LOG_IOPORT)
362
        fprintf(logfile, "outb: %04x %02x\n", addr, val);
363
#endif
364
    ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
365
#ifdef USE_KQEMU
366
    if (env)
367
        env->last_io_time = cpu_get_time_fast();
368
#endif
369
}
370

    
371
void cpu_outw(CPUState *env, int addr, int val)
372
{
373
#ifdef DEBUG_IOPORT
374
    if (loglevel & CPU_LOG_IOPORT)
375
        fprintf(logfile, "outw: %04x %04x\n", addr, val);
376
#endif
377
    ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
378
#ifdef USE_KQEMU
379
    if (env)
380
        env->last_io_time = cpu_get_time_fast();
381
#endif
382
}
383

    
384
void cpu_outl(CPUState *env, int addr, int val)
385
{
386
#ifdef DEBUG_IOPORT
387
    if (loglevel & CPU_LOG_IOPORT)
388
        fprintf(logfile, "outl: %04x %08x\n", addr, val);
389
#endif
390
    ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
391
#ifdef USE_KQEMU
392
    if (env)
393
        env->last_io_time = cpu_get_time_fast();
394
#endif
395
}
396

    
397
int cpu_inb(CPUState *env, int addr)
398
{
399
    int val;
400
    val = ioport_read_table[0][addr](ioport_opaque[addr], addr);
401
#ifdef DEBUG_IOPORT
402
    if (loglevel & CPU_LOG_IOPORT)
403
        fprintf(logfile, "inb : %04x %02x\n", addr, val);
404
#endif
405
#ifdef USE_KQEMU
406
    if (env)
407
        env->last_io_time = cpu_get_time_fast();
408
#endif
409
    return val;
410
}
411

    
412
int cpu_inw(CPUState *env, int addr)
413
{
414
    int val;
415
    val = ioport_read_table[1][addr](ioport_opaque[addr], addr);
416
#ifdef DEBUG_IOPORT
417
    if (loglevel & CPU_LOG_IOPORT)
418
        fprintf(logfile, "inw : %04x %04x\n", addr, val);
419
#endif
420
#ifdef USE_KQEMU
421
    if (env)
422
        env->last_io_time = cpu_get_time_fast();
423
#endif
424
    return val;
425
}
426

    
427
int cpu_inl(CPUState *env, int addr)
428
{
429
    int val;
430
    val = ioport_read_table[2][addr](ioport_opaque[addr], addr);
431
#ifdef DEBUG_IOPORT
432
    if (loglevel & CPU_LOG_IOPORT)
433
        fprintf(logfile, "inl : %04x %08x\n", addr, val);
434
#endif
435
#ifdef USE_KQEMU
436
    if (env)
437
        env->last_io_time = cpu_get_time_fast();
438
#endif
439
    return val;
440
}
441

    
442
/***********************************************************/
443
void hw_error(const char *fmt, ...)
444
{
445
    va_list ap;
446
    CPUState *env;
447

    
448
    va_start(ap, fmt);
449
    fprintf(stderr, "qemu: hardware error: ");
450
    vfprintf(stderr, fmt, ap);
451
    fprintf(stderr, "\n");
452
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
453
        fprintf(stderr, "CPU #%d:\n", env->cpu_index);
454
#ifdef TARGET_I386
455
        cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
456
#else
457
        cpu_dump_state(env, stderr, fprintf, 0);
458
#endif
459
    }
460
    va_end(ap);
461
    abort();
462
}
463

    
464
/***********************************************************/
465
/* keyboard/mouse */
466

    
467
static QEMUPutKBDEvent *qemu_put_kbd_event;
468
static void *qemu_put_kbd_event_opaque;
469
static QEMUPutMouseEntry *qemu_put_mouse_event_head;
470
static QEMUPutMouseEntry *qemu_put_mouse_event_current;
471

    
472
void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
473
{
474
    qemu_put_kbd_event_opaque = opaque;
475
    qemu_put_kbd_event = func;
476
}
477

    
478
QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
479
                                                void *opaque, int absolute,
480
                                                const char *name)
481
{
482
    QEMUPutMouseEntry *s, *cursor;
483

    
484
    s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
485
    if (!s)
486
        return NULL;
487

    
488
    s->qemu_put_mouse_event = func;
489
    s->qemu_put_mouse_event_opaque = opaque;
490
    s->qemu_put_mouse_event_absolute = absolute;
491
    s->qemu_put_mouse_event_name = qemu_strdup(name);
492
    s->next = NULL;
493

    
494
    if (!qemu_put_mouse_event_head) {
495
        qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
496
        return s;
497
    }
498

    
499
    cursor = qemu_put_mouse_event_head;
500
    while (cursor->next != NULL)
501
        cursor = cursor->next;
502

    
503
    cursor->next = s;
504
    qemu_put_mouse_event_current = s;
505

    
506
    return s;
507
}
508

    
509
void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
510
{
511
    QEMUPutMouseEntry *prev = NULL, *cursor;
512

    
513
    if (!qemu_put_mouse_event_head || entry == NULL)
514
        return;
515

    
516
    cursor = qemu_put_mouse_event_head;
517
    while (cursor != NULL && cursor != entry) {
518
        prev = cursor;
519
        cursor = cursor->next;
520
    }
521

    
522
    if (cursor == NULL) // does not exist or list empty
523
        return;
524
    else if (prev == NULL) { // entry is head
525
        qemu_put_mouse_event_head = cursor->next;
526
        if (qemu_put_mouse_event_current == entry)
527
            qemu_put_mouse_event_current = cursor->next;
528
        qemu_free(entry->qemu_put_mouse_event_name);
529
        qemu_free(entry);
530
        return;
531
    }
532

    
533
    prev->next = entry->next;
534

    
535
    if (qemu_put_mouse_event_current == entry)
536
        qemu_put_mouse_event_current = prev;
537

    
538
    qemu_free(entry->qemu_put_mouse_event_name);
539
    qemu_free(entry);
540
}
541

    
542
void kbd_put_keycode(int keycode)
543
{
544
    if (qemu_put_kbd_event) {
545
        qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
546
    }
547
}
548

    
549
void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
550
{
551
    QEMUPutMouseEvent *mouse_event;
552
    void *mouse_event_opaque;
553
    int width;
554

    
555
    if (!qemu_put_mouse_event_current) {
556
        return;
557
    }
558

    
559
    mouse_event =
560
        qemu_put_mouse_event_current->qemu_put_mouse_event;
561
    mouse_event_opaque =
562
        qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
563

    
564
    if (mouse_event) {
565
        if (graphic_rotate) {
566
            if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
567
                width = 0x7fff;
568
            else
569
                width = graphic_width;
570
            mouse_event(mouse_event_opaque,
571
                                 width - dy, dx, dz, buttons_state);
572
        } else
573
            mouse_event(mouse_event_opaque,
574
                                 dx, dy, dz, buttons_state);
575
    }
576
}
577

    
578
int kbd_mouse_is_absolute(void)
579
{
580
    if (!qemu_put_mouse_event_current)
581
        return 0;
582

    
583
    return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
584
}
585

    
586
void do_info_mice(void)
587
{
588
    QEMUPutMouseEntry *cursor;
589
    int index = 0;
590

    
591
    if (!qemu_put_mouse_event_head) {
592
        term_printf("No mouse devices connected\n");
593
        return;
594
    }
595

    
596
    term_printf("Mouse devices available:\n");
597
    cursor = qemu_put_mouse_event_head;
598
    while (cursor != NULL) {
599
        term_printf("%c Mouse #%d: %s\n",
600
                    (cursor == qemu_put_mouse_event_current ? '*' : ' '),
601
                    index, cursor->qemu_put_mouse_event_name);
602
        index++;
603
        cursor = cursor->next;
604
    }
605
}
606

    
607
void do_mouse_set(int index)
608
{
609
    QEMUPutMouseEntry *cursor;
610
    int i = 0;
611

    
612
    if (!qemu_put_mouse_event_head) {
613
        term_printf("No mouse devices connected\n");
614
        return;
615
    }
616

    
617
    cursor = qemu_put_mouse_event_head;
618
    while (cursor != NULL && index != i) {
619
        i++;
620
        cursor = cursor->next;
621
    }
622

    
623
    if (cursor != NULL)
624
        qemu_put_mouse_event_current = cursor;
625
    else
626
        term_printf("Mouse at given index not found\n");
627
}
628

    
629
/* compute with 96 bit intermediate result: (a*b)/c */
630
uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
631
{
632
    union {
633
        uint64_t ll;
634
        struct {
635
#ifdef WORDS_BIGENDIAN
636
            uint32_t high, low;
637
#else
638
            uint32_t low, high;
639
#endif
640
        } l;
641
    } u, res;
642
    uint64_t rl, rh;
643

    
644
    u.ll = a;
645
    rl = (uint64_t)u.l.low * (uint64_t)b;
646
    rh = (uint64_t)u.l.high * (uint64_t)b;
647
    rh += (rl >> 32);
648
    res.l.high = rh / c;
649
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
650
    return res.ll;
651
}
652

    
653
/***********************************************************/
654
/* real time host monotonic timer */
655

    
656
#define QEMU_TIMER_BASE 1000000000LL
657

    
658
#ifdef WIN32
659

    
660
static int64_t clock_freq;
661

    
662
static void init_get_clock(void)
663
{
664
    LARGE_INTEGER freq;
665
    int ret;
666
    ret = QueryPerformanceFrequency(&freq);
667
    if (ret == 0) {
668
        fprintf(stderr, "Could not calibrate ticks\n");
669
        exit(1);
670
    }
671
    clock_freq = freq.QuadPart;
672
}
673

    
674
static int64_t get_clock(void)
675
{
676
    LARGE_INTEGER ti;
677
    QueryPerformanceCounter(&ti);
678
    return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
679
}
680

    
681
#else
682

    
683
static int use_rt_clock;
684

    
685
static void init_get_clock(void)
686
{
687
    use_rt_clock = 0;
688
#if defined(__linux__)
689
    {
690
        struct timespec ts;
691
        if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
692
            use_rt_clock = 1;
693
        }
694
    }
695
#endif
696
}
697

    
698
static int64_t get_clock(void)
699
{
700
#if defined(__linux__)
701
    if (use_rt_clock) {
702
        struct timespec ts;
703
        clock_gettime(CLOCK_MONOTONIC, &ts);
704
        return ts.tv_sec * 1000000000LL + ts.tv_nsec;
705
    } else
706
#endif
707
    {
708
        /* XXX: using gettimeofday leads to problems if the date
709
           changes, so it should be avoided. */
710
        struct timeval tv;
711
        gettimeofday(&tv, NULL);
712
        return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
713
    }
714
}
715

    
716
#endif
717

    
718
/***********************************************************/
719
/* guest cycle counter */
720

    
721
static int64_t cpu_ticks_prev;
722
static int64_t cpu_ticks_offset;
723
static int64_t cpu_clock_offset;
724
static int cpu_ticks_enabled;
725

    
726
/* return the host CPU cycle counter and handle stop/restart */
727
int64_t cpu_get_ticks(void)
728
{
729
    if (!cpu_ticks_enabled) {
730
        return cpu_ticks_offset;
731
    } else {
732
        int64_t ticks;
733
        ticks = cpu_get_real_ticks();
734
        if (cpu_ticks_prev > ticks) {
735
            /* Note: non increasing ticks may happen if the host uses
736
               software suspend */
737
            cpu_ticks_offset += cpu_ticks_prev - ticks;
738
        }
739
        cpu_ticks_prev = ticks;
740
        return ticks + cpu_ticks_offset;
741
    }
742
}
743

    
744
/* return the host CPU monotonic timer and handle stop/restart */
745
static int64_t cpu_get_clock(void)
746
{
747
    int64_t ti;
748
    if (!cpu_ticks_enabled) {
749
        return cpu_clock_offset;
750
    } else {
751
        ti = get_clock();
752
        return ti + cpu_clock_offset;
753
    }
754
}
755

    
756
/* enable cpu_get_ticks() */
757
void cpu_enable_ticks(void)
758
{
759
    if (!cpu_ticks_enabled) {
760
        cpu_ticks_offset -= cpu_get_real_ticks();
761
        cpu_clock_offset -= get_clock();
762
        cpu_ticks_enabled = 1;
763
    }
764
}
765

    
766
/* disable cpu_get_ticks() : the clock is stopped. You must not call
767
   cpu_get_ticks() after that.  */
768
void cpu_disable_ticks(void)
769
{
770
    if (cpu_ticks_enabled) {
771
        cpu_ticks_offset = cpu_get_ticks();
772
        cpu_clock_offset = cpu_get_clock();
773
        cpu_ticks_enabled = 0;
774
    }
775
}
776

    
777
/***********************************************************/
778
/* timers */
779

    
780
#define QEMU_TIMER_REALTIME 0
781
#define QEMU_TIMER_VIRTUAL  1
782

    
783
struct QEMUClock {
784
    int type;
785
    /* XXX: add frequency */
786
};
787

    
788
struct QEMUTimer {
789
    QEMUClock *clock;
790
    int64_t expire_time;
791
    QEMUTimerCB *cb;
792
    void *opaque;
793
    struct QEMUTimer *next;
794
};
795

    
796
struct qemu_alarm_timer {
797
    char const *name;
798
    unsigned int flags;
799

    
800
    int (*start)(struct qemu_alarm_timer *t);
801
    void (*stop)(struct qemu_alarm_timer *t);
802
    void (*rearm)(struct qemu_alarm_timer *t);
803
    void *priv;
804
};
805

    
806
#define ALARM_FLAG_DYNTICKS  0x1
807

    
808
static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
809
{
810
    return t->flags & ALARM_FLAG_DYNTICKS;
811
}
812

    
813
static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
814
{
815
    if (!alarm_has_dynticks(t))
816
        return;
817

    
818
    t->rearm(t);
819
}
820

    
821
/* TODO: MIN_TIMER_REARM_US should be optimized */
822
#define MIN_TIMER_REARM_US 250
823

    
824
static struct qemu_alarm_timer *alarm_timer;
825

    
826
#ifdef _WIN32
827

    
828
struct qemu_alarm_win32 {
829
    MMRESULT timerId;
830
    HANDLE host_alarm;
831
    unsigned int period;
832
} alarm_win32_data = {0, NULL, -1};
833

    
834
static int win32_start_timer(struct qemu_alarm_timer *t);
835
static void win32_stop_timer(struct qemu_alarm_timer *t);
836
static void win32_rearm_timer(struct qemu_alarm_timer *t);
837

    
838
#else
839

    
840
static int unix_start_timer(struct qemu_alarm_timer *t);
841
static void unix_stop_timer(struct qemu_alarm_timer *t);
842

    
843
#ifdef __linux__
844

    
845
static int dynticks_start_timer(struct qemu_alarm_timer *t);
846
static void dynticks_stop_timer(struct qemu_alarm_timer *t);
847
static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
848

    
849
static int hpet_start_timer(struct qemu_alarm_timer *t);
850
static void hpet_stop_timer(struct qemu_alarm_timer *t);
851

    
852
static int rtc_start_timer(struct qemu_alarm_timer *t);
853
static void rtc_stop_timer(struct qemu_alarm_timer *t);
854

    
855
#endif /* __linux__ */
856

    
857
#endif /* _WIN32 */
858

    
859
static struct qemu_alarm_timer alarm_timers[] = {
860
#ifndef _WIN32
861
#ifdef __linux__
862
    {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
863
     dynticks_stop_timer, dynticks_rearm_timer, NULL},
864
    /* HPET - if available - is preferred */
865
    {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
866
    /* ...otherwise try RTC */
867
    {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
868
#endif
869
    {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
870
#else
871
    {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
872
     win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
873
    {"win32", 0, win32_start_timer,
874
     win32_stop_timer, NULL, &alarm_win32_data},
875
#endif
876
    {NULL, }
877
};
878

    
879
static void show_available_alarms()
880
{
881
    int i;
882

    
883
    printf("Available alarm timers, in order of precedence:\n");
884
    for (i = 0; alarm_timers[i].name; i++)
885
        printf("%s\n", alarm_timers[i].name);
886
}
887

    
888
static void configure_alarms(char const *opt)
889
{
890
    int i;
891
    int cur = 0;
892
    int count = (sizeof(alarm_timers) / sizeof(*alarm_timers)) - 1;
893
    char *arg;
894
    char *name;
895

    
896
    if (!strcmp(opt, "help")) {
897
        show_available_alarms();
898
        exit(0);
899
    }
900

    
901
    arg = strdup(opt);
902

    
903
    /* Reorder the array */
904
    name = strtok(arg, ",");
905
    while (name) {
906
        struct qemu_alarm_timer tmp;
907

    
908
        for (i = 0; i < count && alarm_timers[i].name; i++) {
909
            if (!strcmp(alarm_timers[i].name, name))
910
                break;
911
        }
912

    
913
        if (i == count) {
914
            fprintf(stderr, "Unknown clock %s\n", name);
915
            goto next;
916
        }
917

    
918
        if (i < cur)
919
            /* Ignore */
920
            goto next;
921

    
922
        /* Swap */
923
        tmp = alarm_timers[i];
924
        alarm_timers[i] = alarm_timers[cur];
925
        alarm_timers[cur] = tmp;
926

    
927
        cur++;
928
next:
929
        name = strtok(NULL, ",");
930
    }
931

    
932
    free(arg);
933

    
934
    if (cur) {
935
        /* Disable remaining timers */
936
        for (i = cur; i < count; i++)
937
            alarm_timers[i].name = NULL;
938
    }
939

    
940
    /* debug */
941
    show_available_alarms();
942
}
943

    
944
QEMUClock *rt_clock;
945
QEMUClock *vm_clock;
946

    
947
static QEMUTimer *active_timers[2];
948

    
949
QEMUClock *qemu_new_clock(int type)
950
{
951
    QEMUClock *clock;
952
    clock = qemu_mallocz(sizeof(QEMUClock));
953
    if (!clock)
954
        return NULL;
955
    clock->type = type;
956
    return clock;
957
}
958

    
959
QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
960
{
961
    QEMUTimer *ts;
962

    
963
    ts = qemu_mallocz(sizeof(QEMUTimer));
964
    ts->clock = clock;
965
    ts->cb = cb;
966
    ts->opaque = opaque;
967
    return ts;
968
}
969

    
970
void qemu_free_timer(QEMUTimer *ts)
971
{
972
    qemu_free(ts);
973
}
974

    
975
/* stop a timer, but do not dealloc it */
976
void qemu_del_timer(QEMUTimer *ts)
977
{
978
    QEMUTimer **pt, *t;
979

    
980
    /* NOTE: this code must be signal safe because
981
       qemu_timer_expired() can be called from a signal. */
982
    pt = &active_timers[ts->clock->type];
983
    for(;;) {
984
        t = *pt;
985
        if (!t)
986
            break;
987
        if (t == ts) {
988
            *pt = t->next;
989
            break;
990
        }
991
        pt = &t->next;
992
    }
993
}
994

    
995
/* modify the current timer so that it will be fired when current_time
996
   >= expire_time. The corresponding callback will be called. */
997
void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
998
{
999
    QEMUTimer **pt, *t;
1000

    
1001
    qemu_del_timer(ts);
1002

    
1003
    /* add the timer in the sorted list */
1004
    /* NOTE: this code must be signal safe because
1005
       qemu_timer_expired() can be called from a signal. */
1006
    pt = &active_timers[ts->clock->type];
1007
    for(;;) {
1008
        t = *pt;
1009
        if (!t)
1010
            break;
1011
        if (t->expire_time > expire_time)
1012
            break;
1013
        pt = &t->next;
1014
    }
1015
    ts->expire_time = expire_time;
1016
    ts->next = *pt;
1017
    *pt = ts;
1018
}
1019

    
1020
int qemu_timer_pending(QEMUTimer *ts)
1021
{
1022
    QEMUTimer *t;
1023
    for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1024
        if (t == ts)
1025
            return 1;
1026
    }
1027
    return 0;
1028
}
1029

    
1030
static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1031
{
1032
    if (!timer_head)
1033
        return 0;
1034
    return (timer_head->expire_time <= current_time);
1035
}
1036

    
1037
static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1038
{
1039
    QEMUTimer *ts;
1040

    
1041
    for(;;) {
1042
        ts = *ptimer_head;
1043
        if (!ts || ts->expire_time > current_time)
1044
            break;
1045
        /* remove timer from the list before calling the callback */
1046
        *ptimer_head = ts->next;
1047
        ts->next = NULL;
1048

    
1049
        /* run the callback (the timer list can be modified) */
1050
        ts->cb(ts->opaque);
1051
    }
1052
    qemu_rearm_alarm_timer(alarm_timer);
1053
}
1054

    
1055
int64_t qemu_get_clock(QEMUClock *clock)
1056
{
1057
    switch(clock->type) {
1058
    case QEMU_TIMER_REALTIME:
1059
        return get_clock() / 1000000;
1060
    default:
1061
    case QEMU_TIMER_VIRTUAL:
1062
        return cpu_get_clock();
1063
    }
1064
}
1065

    
1066
static void init_timers(void)
1067
{
1068
    init_get_clock();
1069
    ticks_per_sec = QEMU_TIMER_BASE;
1070
    rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1071
    vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1072
}
1073

    
1074
/* save a timer */
1075
void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1076
{
1077
    uint64_t expire_time;
1078

    
1079
    if (qemu_timer_pending(ts)) {
1080
        expire_time = ts->expire_time;
1081
    } else {
1082
        expire_time = -1;
1083
    }
1084
    qemu_put_be64(f, expire_time);
1085
}
1086

    
1087
void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1088
{
1089
    uint64_t expire_time;
1090

    
1091
    expire_time = qemu_get_be64(f);
1092
    if (expire_time != -1) {
1093
        qemu_mod_timer(ts, expire_time);
1094
    } else {
1095
        qemu_del_timer(ts);
1096
    }
1097
}
1098

    
1099
static void timer_save(QEMUFile *f, void *opaque)
1100
{
1101
    if (cpu_ticks_enabled) {
1102
        hw_error("cannot save state if virtual timers are running");
1103
    }
1104
    qemu_put_be64s(f, &cpu_ticks_offset);
1105
    qemu_put_be64s(f, &ticks_per_sec);
1106
    qemu_put_be64s(f, &cpu_clock_offset);
1107
}
1108

    
1109
static int timer_load(QEMUFile *f, void *opaque, int version_id)
1110
{
1111
    if (version_id != 1 && version_id != 2)
1112
        return -EINVAL;
1113
    if (cpu_ticks_enabled) {
1114
        return -EINVAL;
1115
    }
1116
    qemu_get_be64s(f, &cpu_ticks_offset);
1117
    qemu_get_be64s(f, &ticks_per_sec);
1118
    if (version_id == 2) {
1119
        qemu_get_be64s(f, &cpu_clock_offset);
1120
    }
1121
    return 0;
1122
}
1123

    
1124
#ifdef _WIN32
1125
void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1126
                                 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1127
#else
1128
static void host_alarm_handler(int host_signum)
1129
#endif
1130
{
1131
#if 0
1132
#define DISP_FREQ 1000
1133
    {
1134
        static int64_t delta_min = INT64_MAX;
1135
        static int64_t delta_max, delta_cum, last_clock, delta, ti;
1136
        static int count;
1137
        ti = qemu_get_clock(vm_clock);
1138
        if (last_clock != 0) {
1139
            delta = ti - last_clock;
1140
            if (delta < delta_min)
1141
                delta_min = delta;
1142
            if (delta > delta_max)
1143
                delta_max = delta;
1144
            delta_cum += delta;
1145
            if (++count == DISP_FREQ) {
1146
                printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1147
                       muldiv64(delta_min, 1000000, ticks_per_sec),
1148
                       muldiv64(delta_max, 1000000, ticks_per_sec),
1149
                       muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1150
                       (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1151
                count = 0;
1152
                delta_min = INT64_MAX;
1153
                delta_max = 0;
1154
                delta_cum = 0;
1155
            }
1156
        }
1157
        last_clock = ti;
1158
    }
1159
#endif
1160
    if (alarm_has_dynticks(alarm_timer) ||
1161
        qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1162
                           qemu_get_clock(vm_clock)) ||
1163
        qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1164
                           qemu_get_clock(rt_clock))) {
1165
#ifdef _WIN32
1166
        struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1167
        SetEvent(data->host_alarm);
1168
#endif
1169
        CPUState *env = cpu_single_env;
1170
        if (env) {
1171
            /* stop the currently executing cpu because a timer occured */
1172
            cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1173
#ifdef USE_KQEMU
1174
            if (env->kqemu_enabled) {
1175
                kqemu_cpu_interrupt(env);
1176
            }
1177
#endif
1178
        }
1179
    }
1180
}
1181

    
1182
static uint64_t qemu_next_deadline(void)
1183
{
1184
    int64_t nearest_delta_us = INT64_MAX;
1185
    int64_t vmdelta_us;
1186

    
1187
    if (active_timers[QEMU_TIMER_REALTIME])
1188
        nearest_delta_us = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1189
                            qemu_get_clock(rt_clock))*1000;
1190

    
1191
    if (active_timers[QEMU_TIMER_VIRTUAL]) {
1192
        /* round up */
1193
        vmdelta_us = (active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1194
                      qemu_get_clock(vm_clock)+999)/1000;
1195
        if (vmdelta_us < nearest_delta_us)
1196
            nearest_delta_us = vmdelta_us;
1197
    }
1198

    
1199
    /* Avoid arming the timer to negative, zero, or too low values */
1200
    if (nearest_delta_us <= MIN_TIMER_REARM_US)
1201
        nearest_delta_us = MIN_TIMER_REARM_US;
1202

    
1203
    return nearest_delta_us;
1204
}
1205

    
1206
#ifndef _WIN32
1207

    
1208
#if defined(__linux__)
1209

    
1210
#define RTC_FREQ 1024
1211

    
1212
static void enable_sigio_timer(int fd)
1213
{
1214
    struct sigaction act;
1215

    
1216
    /* timer signal */
1217
    sigfillset(&act.sa_mask);
1218
    act.sa_flags = 0;
1219
    act.sa_handler = host_alarm_handler;
1220

    
1221
    sigaction(SIGIO, &act, NULL);
1222
    fcntl(fd, F_SETFL, O_ASYNC);
1223
    fcntl(fd, F_SETOWN, getpid());
1224
}
1225

    
1226
static int hpet_start_timer(struct qemu_alarm_timer *t)
1227
{
1228
    struct hpet_info info;
1229
    int r, fd;
1230

    
1231
    fd = open("/dev/hpet", O_RDONLY);
1232
    if (fd < 0)
1233
        return -1;
1234

    
1235
    /* Set frequency */
1236
    r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1237
    if (r < 0) {
1238
        fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1239
                "error, but for better emulation accuracy type:\n"
1240
                "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1241
        goto fail;
1242
    }
1243

    
1244
    /* Check capabilities */
1245
    r = ioctl(fd, HPET_INFO, &info);
1246
    if (r < 0)
1247
        goto fail;
1248

    
1249
    /* Enable periodic mode */
1250
    r = ioctl(fd, HPET_EPI, 0);
1251
    if (info.hi_flags && (r < 0))
1252
        goto fail;
1253

    
1254
    /* Enable interrupt */
1255
    r = ioctl(fd, HPET_IE_ON, 0);
1256
    if (r < 0)
1257
        goto fail;
1258

    
1259
    enable_sigio_timer(fd);
1260
    t->priv = (void *)(long)fd;
1261

    
1262
    return 0;
1263
fail:
1264
    close(fd);
1265
    return -1;
1266
}
1267

    
1268
static void hpet_stop_timer(struct qemu_alarm_timer *t)
1269
{
1270
    int fd = (long)t->priv;
1271

    
1272
    close(fd);
1273
}
1274

    
1275
static int rtc_start_timer(struct qemu_alarm_timer *t)
1276
{
1277
    int rtc_fd;
1278

    
1279
    TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1280
    if (rtc_fd < 0)
1281
        return -1;
1282
    if (ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1283
        fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1284
                "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1285
                "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1286
        goto fail;
1287
    }
1288
    if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1289
    fail:
1290
        close(rtc_fd);
1291
        return -1;
1292
    }
1293

    
1294
    enable_sigio_timer(rtc_fd);
1295

    
1296
    t->priv = (void *)(long)rtc_fd;
1297

    
1298
    return 0;
1299
}
1300

    
1301
static void rtc_stop_timer(struct qemu_alarm_timer *t)
1302
{
1303
    int rtc_fd = (long)t->priv;
1304

    
1305
    close(rtc_fd);
1306
}
1307

    
1308
static int dynticks_start_timer(struct qemu_alarm_timer *t)
1309
{
1310
    struct sigevent ev;
1311
    timer_t host_timer;
1312
    struct sigaction act;
1313

    
1314
    sigfillset(&act.sa_mask);
1315
    act.sa_flags = 0;
1316
    act.sa_handler = host_alarm_handler;
1317

    
1318
    sigaction(SIGALRM, &act, NULL);
1319

    
1320
    ev.sigev_value.sival_int = 0;
1321
    ev.sigev_notify = SIGEV_SIGNAL;
1322
    ev.sigev_signo = SIGALRM;
1323

    
1324
    if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1325
        perror("timer_create");
1326

    
1327
        /* disable dynticks */
1328
        fprintf(stderr, "Dynamic Ticks disabled\n");
1329

    
1330
        return -1;
1331
    }
1332

    
1333
    t->priv = (void *)host_timer;
1334

    
1335
    return 0;
1336
}
1337

    
1338
static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1339
{
1340
    timer_t host_timer = (timer_t)t->priv;
1341

    
1342
    timer_delete(host_timer);
1343
}
1344

    
1345
static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1346
{
1347
    timer_t host_timer = (timer_t)t->priv;
1348
    struct itimerspec timeout;
1349
    int64_t nearest_delta_us = INT64_MAX;
1350
    int64_t current_us;
1351

    
1352
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1353
                !active_timers[QEMU_TIMER_VIRTUAL])
1354
            return;
1355

    
1356
    nearest_delta_us = qemu_next_deadline();
1357

    
1358
    /* check whether a timer is already running */
1359
    if (timer_gettime(host_timer, &timeout)) {
1360
        perror("gettime");
1361
        fprintf(stderr, "Internal timer error: aborting\n");
1362
        exit(1);
1363
    }
1364
    current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1365
    if (current_us && current_us <= nearest_delta_us)
1366
        return;
1367

    
1368
    timeout.it_interval.tv_sec = 0;
1369
    timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1370
    timeout.it_value.tv_sec =  nearest_delta_us / 1000000;
1371
    timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1372
    if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1373
        perror("settime");
1374
        fprintf(stderr, "Internal timer error: aborting\n");
1375
        exit(1);
1376
    }
1377
}
1378

    
1379
#endif /* defined(__linux__) */
1380

    
1381
static int unix_start_timer(struct qemu_alarm_timer *t)
1382
{
1383
    struct sigaction act;
1384
    struct itimerval itv;
1385
    int err;
1386

    
1387
    /* timer signal */
1388
    sigfillset(&act.sa_mask);
1389
    act.sa_flags = 0;
1390
    act.sa_handler = host_alarm_handler;
1391

    
1392
    sigaction(SIGALRM, &act, NULL);
1393

    
1394
    itv.it_interval.tv_sec = 0;
1395
    /* for i386 kernel 2.6 to get 1 ms */
1396
    itv.it_interval.tv_usec = 999;
1397
    itv.it_value.tv_sec = 0;
1398
    itv.it_value.tv_usec = 10 * 1000;
1399

    
1400
    err = setitimer(ITIMER_REAL, &itv, NULL);
1401
    if (err)
1402
        return -1;
1403

    
1404
    return 0;
1405
}
1406

    
1407
static void unix_stop_timer(struct qemu_alarm_timer *t)
1408
{
1409
    struct itimerval itv;
1410

    
1411
    memset(&itv, 0, sizeof(itv));
1412
    setitimer(ITIMER_REAL, &itv, NULL);
1413
}
1414

    
1415
#endif /* !defined(_WIN32) */
1416

    
1417
#ifdef _WIN32
1418

    
1419
static int win32_start_timer(struct qemu_alarm_timer *t)
1420
{
1421
    TIMECAPS tc;
1422
    struct qemu_alarm_win32 *data = t->priv;
1423
    UINT flags;
1424

    
1425
    data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1426
    if (!data->host_alarm) {
1427
        perror("Failed CreateEvent");
1428
        return -1;
1429
    }
1430

    
1431
    memset(&tc, 0, sizeof(tc));
1432
    timeGetDevCaps(&tc, sizeof(tc));
1433

    
1434
    if (data->period < tc.wPeriodMin)
1435
        data->period = tc.wPeriodMin;
1436

    
1437
    timeBeginPeriod(data->period);
1438

    
1439
    flags = TIME_CALLBACK_FUNCTION;
1440
    if (alarm_has_dynticks(t))
1441
        flags |= TIME_ONESHOT;
1442
    else
1443
        flags |= TIME_PERIODIC;
1444

    
1445
    data->timerId = timeSetEvent(1,         // interval (ms)
1446
                        data->period,       // resolution
1447
                        host_alarm_handler, // function
1448
                        (DWORD)t,           // parameter
1449
                        flags);
1450

    
1451
    if (!data->timerId) {
1452
        perror("Failed to initialize win32 alarm timer");
1453

    
1454
        timeEndPeriod(data->period);
1455
        CloseHandle(data->host_alarm);
1456
        return -1;
1457
    }
1458

    
1459
    qemu_add_wait_object(data->host_alarm, NULL, NULL);
1460

    
1461
    return 0;
1462
}
1463

    
1464
static void win32_stop_timer(struct qemu_alarm_timer *t)
1465
{
1466
    struct qemu_alarm_win32 *data = t->priv;
1467

    
1468
    timeKillEvent(data->timerId);
1469
    timeEndPeriod(data->period);
1470

    
1471
    CloseHandle(data->host_alarm);
1472
}
1473

    
1474
static void win32_rearm_timer(struct qemu_alarm_timer *t)
1475
{
1476
    struct qemu_alarm_win32 *data = t->priv;
1477
    uint64_t nearest_delta_us;
1478

    
1479
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1480
                !active_timers[QEMU_TIMER_VIRTUAL])
1481
            return;
1482

    
1483
    nearest_delta_us = qemu_next_deadline();
1484
    nearest_delta_us /= 1000;
1485

    
1486
    timeKillEvent(data->timerId);
1487

    
1488
    data->timerId = timeSetEvent(1,
1489
                        data->period,
1490
                        host_alarm_handler,
1491
                        (DWORD)t,
1492
                        TIME_ONESHOT | TIME_PERIODIC);
1493

    
1494
    if (!data->timerId) {
1495
        perror("Failed to re-arm win32 alarm timer");
1496

    
1497
        timeEndPeriod(data->period);
1498
        CloseHandle(data->host_alarm);
1499
        exit(1);
1500
    }
1501
}
1502

    
1503
#endif /* _WIN32 */
1504

    
1505
static void init_timer_alarm(void)
1506
{
1507
    struct qemu_alarm_timer *t;
1508
    int i, err = -1;
1509

    
1510
    for (i = 0; alarm_timers[i].name; i++) {
1511
        t = &alarm_timers[i];
1512

    
1513
        err = t->start(t);
1514
        if (!err)
1515
            break;
1516
    }
1517

    
1518
    if (err) {
1519
        fprintf(stderr, "Unable to find any suitable alarm timer.\n");
1520
        fprintf(stderr, "Terminating\n");
1521
        exit(1);
1522
    }
1523

    
1524
    alarm_timer = t;
1525
}
1526

    
1527
void quit_timers(void)
1528
{
1529
    alarm_timer->stop(alarm_timer);
1530
    alarm_timer = NULL;
1531
}
1532

    
1533
/***********************************************************/
1534
/* character device */
1535

    
1536
static void qemu_chr_event(CharDriverState *s, int event)
1537
{
1538
    if (!s->chr_event)
1539
        return;
1540
    s->chr_event(s->handler_opaque, event);
1541
}
1542

    
1543
static void qemu_chr_reset_bh(void *opaque)
1544
{
1545
    CharDriverState *s = opaque;
1546
    qemu_chr_event(s, CHR_EVENT_RESET);
1547
    qemu_bh_delete(s->bh);
1548
    s->bh = NULL;
1549
}
1550

    
1551
void qemu_chr_reset(CharDriverState *s)
1552
{
1553
    if (s->bh == NULL) {
1554
        s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1555
        qemu_bh_schedule(s->bh);
1556
    }
1557
}
1558

    
1559
int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1560
{
1561
    return s->chr_write(s, buf, len);
1562
}
1563

    
1564
int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1565
{
1566
    if (!s->chr_ioctl)
1567
        return -ENOTSUP;
1568
    return s->chr_ioctl(s, cmd, arg);
1569
}
1570

    
1571
int qemu_chr_can_read(CharDriverState *s)
1572
{
1573
    if (!s->chr_can_read)
1574
        return 0;
1575
    return s->chr_can_read(s->handler_opaque);
1576
}
1577

    
1578
void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1579
{
1580
    s->chr_read(s->handler_opaque, buf, len);
1581
}
1582

    
1583

    
1584
void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1585
{
1586
    char buf[4096];
1587
    va_list ap;
1588
    va_start(ap, fmt);
1589
    vsnprintf(buf, sizeof(buf), fmt, ap);
1590
    qemu_chr_write(s, buf, strlen(buf));
1591
    va_end(ap);
1592
}
1593

    
1594
void qemu_chr_send_event(CharDriverState *s, int event)
1595
{
1596
    if (s->chr_send_event)
1597
        s->chr_send_event(s, event);
1598
}
1599

    
1600
void qemu_chr_add_handlers(CharDriverState *s,
1601
                           IOCanRWHandler *fd_can_read,
1602
                           IOReadHandler *fd_read,
1603
                           IOEventHandler *fd_event,
1604
                           void *opaque)
1605
{
1606
    s->chr_can_read = fd_can_read;
1607
    s->chr_read = fd_read;
1608
    s->chr_event = fd_event;
1609
    s->handler_opaque = opaque;
1610
    if (s->chr_update_read_handler)
1611
        s->chr_update_read_handler(s);
1612
}
1613

    
1614
static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1615
{
1616
    return len;
1617
}
1618

    
1619
static CharDriverState *qemu_chr_open_null(void)
1620
{
1621
    CharDriverState *chr;
1622

    
1623
    chr = qemu_mallocz(sizeof(CharDriverState));
1624
    if (!chr)
1625
        return NULL;
1626
    chr->chr_write = null_chr_write;
1627
    return chr;
1628
}
1629

    
1630
/* MUX driver for serial I/O splitting */
1631
static int term_timestamps;
1632
static int64_t term_timestamps_start;
1633
#define MAX_MUX 4
1634
typedef struct {
1635
    IOCanRWHandler *chr_can_read[MAX_MUX];
1636
    IOReadHandler *chr_read[MAX_MUX];
1637
    IOEventHandler *chr_event[MAX_MUX];
1638
    void *ext_opaque[MAX_MUX];
1639
    CharDriverState *drv;
1640
    int mux_cnt;
1641
    int term_got_escape;
1642
    int max_size;
1643
} MuxDriver;
1644

    
1645

    
1646
static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1647
{
1648
    MuxDriver *d = chr->opaque;
1649
    int ret;
1650
    if (!term_timestamps) {
1651
        ret = d->drv->chr_write(d->drv, buf, len);
1652
    } else {
1653
        int i;
1654

    
1655
        ret = 0;
1656
        for(i = 0; i < len; i++) {
1657
            ret += d->drv->chr_write(d->drv, buf+i, 1);
1658
            if (buf[i] == '\n') {
1659
                char buf1[64];
1660
                int64_t ti;
1661
                int secs;
1662

    
1663
                ti = get_clock();
1664
                if (term_timestamps_start == -1)
1665
                    term_timestamps_start = ti;
1666
                ti -= term_timestamps_start;
1667
                secs = ti / 1000000000;
1668
                snprintf(buf1, sizeof(buf1),
1669
                         "[%02d:%02d:%02d.%03d] ",
1670
                         secs / 3600,
1671
                         (secs / 60) % 60,
1672
                         secs % 60,
1673
                         (int)((ti / 1000000) % 1000));
1674
                d->drv->chr_write(d->drv, buf1, strlen(buf1));
1675
            }
1676
        }
1677
    }
1678
    return ret;
1679
}
1680

    
1681
static char *mux_help[] = {
1682
    "% h    print this help\n\r",
1683
    "% x    exit emulator\n\r",
1684
    "% s    save disk data back to file (if -snapshot)\n\r",
1685
    "% t    toggle console timestamps\n\r"
1686
    "% b    send break (magic sysrq)\n\r",
1687
    "% c    switch between console and monitor\n\r",
1688
    "% %  sends %\n\r",
1689
    NULL
1690
};
1691

    
1692
static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1693
static void mux_print_help(CharDriverState *chr)
1694
{
1695
    int i, j;
1696
    char ebuf[15] = "Escape-Char";
1697
    char cbuf[50] = "\n\r";
1698

    
1699
    if (term_escape_char > 0 && term_escape_char < 26) {
1700
        sprintf(cbuf,"\n\r");
1701
        sprintf(ebuf,"C-%c", term_escape_char - 1 + 'a');
1702
    } else {
1703
        sprintf(cbuf,"\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r", term_escape_char);
1704
    }
1705
    chr->chr_write(chr, cbuf, strlen(cbuf));
1706
    for (i = 0; mux_help[i] != NULL; i++) {
1707
        for (j=0; mux_help[i][j] != '\0'; j++) {
1708
            if (mux_help[i][j] == '%')
1709
                chr->chr_write(chr, ebuf, strlen(ebuf));
1710
            else
1711
                chr->chr_write(chr, &mux_help[i][j], 1);
1712
        }
1713
    }
1714
}
1715

    
1716
static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1717
{
1718
    if (d->term_got_escape) {
1719
        d->term_got_escape = 0;
1720
        if (ch == term_escape_char)
1721
            goto send_char;
1722
        switch(ch) {
1723
        case '?':
1724
        case 'h':
1725
            mux_print_help(chr);
1726
            break;
1727
        case 'x':
1728
            {
1729
                 char *term =  "QEMU: Terminated\n\r";
1730
                 chr->chr_write(chr,term,strlen(term));
1731
                 exit(0);
1732
                 break;
1733
            }
1734
        case 's':
1735
            {
1736
                int i;
1737
                for (i = 0; i < MAX_DISKS; i++) {
1738
                    if (bs_table[i])
1739
                        bdrv_commit(bs_table[i]);
1740
                }
1741
                if (mtd_bdrv)
1742
                    bdrv_commit(mtd_bdrv);
1743
            }
1744
            break;
1745
        case 'b':
1746
            qemu_chr_event(chr, CHR_EVENT_BREAK);
1747
            break;
1748
        case 'c':
1749
            /* Switch to the next registered device */
1750
            chr->focus++;
1751
            if (chr->focus >= d->mux_cnt)
1752
                chr->focus = 0;
1753
            break;
1754
       case 't':
1755
           term_timestamps = !term_timestamps;
1756
           term_timestamps_start = -1;
1757
           break;
1758
        }
1759
    } else if (ch == term_escape_char) {
1760
        d->term_got_escape = 1;
1761
    } else {
1762
    send_char:
1763
        return 1;
1764
    }
1765
    return 0;
1766
}
1767

    
1768
static int mux_chr_can_read(void *opaque)
1769
{
1770
    CharDriverState *chr = opaque;
1771
    MuxDriver *d = chr->opaque;
1772
    if (d->chr_can_read[chr->focus])
1773
       return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
1774
    return 0;
1775
}
1776

    
1777
static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
1778
{
1779
    CharDriverState *chr = opaque;
1780
    MuxDriver *d = chr->opaque;
1781
    int i;
1782
    for(i = 0; i < size; i++)
1783
        if (mux_proc_byte(chr, d, buf[i]))
1784
            d->chr_read[chr->focus](d->ext_opaque[chr->focus], &buf[i], 1);
1785
}
1786

    
1787
static void mux_chr_event(void *opaque, int event)
1788
{
1789
    CharDriverState *chr = opaque;
1790
    MuxDriver *d = chr->opaque;
1791
    int i;
1792

    
1793
    /* Send the event to all registered listeners */
1794
    for (i = 0; i < d->mux_cnt; i++)
1795
        if (d->chr_event[i])
1796
            d->chr_event[i](d->ext_opaque[i], event);
1797
}
1798

    
1799
static void mux_chr_update_read_handler(CharDriverState *chr)
1800
{
1801
    MuxDriver *d = chr->opaque;
1802

    
1803
    if (d->mux_cnt >= MAX_MUX) {
1804
        fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
1805
        return;
1806
    }
1807
    d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
1808
    d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
1809
    d->chr_read[d->mux_cnt] = chr->chr_read;
1810
    d->chr_event[d->mux_cnt] = chr->chr_event;
1811
    /* Fix up the real driver with mux routines */
1812
    if (d->mux_cnt == 0) {
1813
        qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
1814
                              mux_chr_event, chr);
1815
    }
1816
    chr->focus = d->mux_cnt;
1817
    d->mux_cnt++;
1818
}
1819

    
1820
CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
1821
{
1822
    CharDriverState *chr;
1823
    MuxDriver *d;
1824

    
1825
    chr = qemu_mallocz(sizeof(CharDriverState));
1826
    if (!chr)
1827
        return NULL;
1828
    d = qemu_mallocz(sizeof(MuxDriver));
1829
    if (!d) {
1830
        free(chr);
1831
        return NULL;
1832
    }
1833

    
1834
    chr->opaque = d;
1835
    d->drv = drv;
1836
    chr->focus = -1;
1837
    chr->chr_write = mux_chr_write;
1838
    chr->chr_update_read_handler = mux_chr_update_read_handler;
1839
    return chr;
1840
}
1841

    
1842

    
1843
#ifdef _WIN32
1844

    
1845
static void socket_cleanup(void)
1846
{
1847
    WSACleanup();
1848
}
1849

    
1850
static int socket_init(void)
1851
{
1852
    WSADATA Data;
1853
    int ret, err;
1854

    
1855
    ret = WSAStartup(MAKEWORD(2,2), &Data);
1856
    if (ret != 0) {
1857
        err = WSAGetLastError();
1858
        fprintf(stderr, "WSAStartup: %d\n", err);
1859
        return -1;
1860
    }
1861
    atexit(socket_cleanup);
1862
    return 0;
1863
}
1864

    
1865
static int send_all(int fd, const uint8_t *buf, int len1)
1866
{
1867
    int ret, len;
1868

    
1869
    len = len1;
1870
    while (len > 0) {
1871
        ret = send(fd, buf, len, 0);
1872
        if (ret < 0) {
1873
            int errno;
1874
            errno = WSAGetLastError();
1875
            if (errno != WSAEWOULDBLOCK) {
1876
                return -1;
1877
            }
1878
        } else if (ret == 0) {
1879
            break;
1880
        } else {
1881
            buf += ret;
1882
            len -= ret;
1883
        }
1884
    }
1885
    return len1 - len;
1886
}
1887

    
1888
void socket_set_nonblock(int fd)
1889
{
1890
    unsigned long opt = 1;
1891
    ioctlsocket(fd, FIONBIO, &opt);
1892
}
1893

    
1894
#else
1895

    
1896
static int unix_write(int fd, const uint8_t *buf, int len1)
1897
{
1898
    int ret, len;
1899

    
1900
    len = len1;
1901
    while (len > 0) {
1902
        ret = write(fd, buf, len);
1903
        if (ret < 0) {
1904
            if (errno != EINTR && errno != EAGAIN)
1905
                return -1;
1906
        } else if (ret == 0) {
1907
            break;
1908
        } else {
1909
            buf += ret;
1910
            len -= ret;
1911
        }
1912
    }
1913
    return len1 - len;
1914
}
1915

    
1916
static inline int send_all(int fd, const uint8_t *buf, int len1)
1917
{
1918
    return unix_write(fd, buf, len1);
1919
}
1920

    
1921
void socket_set_nonblock(int fd)
1922
{
1923
    fcntl(fd, F_SETFL, O_NONBLOCK);
1924
}
1925
#endif /* !_WIN32 */
1926

    
1927
#ifndef _WIN32
1928

    
1929
typedef struct {
1930
    int fd_in, fd_out;
1931
    int max_size;
1932
} FDCharDriver;
1933

    
1934
#define STDIO_MAX_CLIENTS 1
1935
static int stdio_nb_clients = 0;
1936

    
1937
static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1938
{
1939
    FDCharDriver *s = chr->opaque;
1940
    return unix_write(s->fd_out, buf, len);
1941
}
1942

    
1943
static int fd_chr_read_poll(void *opaque)
1944
{
1945
    CharDriverState *chr = opaque;
1946
    FDCharDriver *s = chr->opaque;
1947

    
1948
    s->max_size = qemu_chr_can_read(chr);
1949
    return s->max_size;
1950
}
1951

    
1952
static void fd_chr_read(void *opaque)
1953
{
1954
    CharDriverState *chr = opaque;
1955
    FDCharDriver *s = chr->opaque;
1956
    int size, len;
1957
    uint8_t buf[1024];
1958

    
1959
    len = sizeof(buf);
1960
    if (len > s->max_size)
1961
        len = s->max_size;
1962
    if (len == 0)
1963
        return;
1964
    size = read(s->fd_in, buf, len);
1965
    if (size == 0) {
1966
        /* FD has been closed. Remove it from the active list.  */
1967
        qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
1968
        return;
1969
    }
1970
    if (size > 0) {
1971
        qemu_chr_read(chr, buf, size);
1972
    }
1973
}
1974

    
1975
static void fd_chr_update_read_handler(CharDriverState *chr)
1976
{
1977
    FDCharDriver *s = chr->opaque;
1978

    
1979
    if (s->fd_in >= 0) {
1980
        if (nographic && s->fd_in == 0) {
1981
        } else {
1982
            qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
1983
                                 fd_chr_read, NULL, chr);
1984
        }
1985
    }
1986
}
1987

    
1988
/* open a character device to a unix fd */
1989
static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
1990
{
1991
    CharDriverState *chr;
1992
    FDCharDriver *s;
1993

    
1994
    chr = qemu_mallocz(sizeof(CharDriverState));
1995
    if (!chr)
1996
        return NULL;
1997
    s = qemu_mallocz(sizeof(FDCharDriver));
1998
    if (!s) {
1999
        free(chr);
2000
        return NULL;
2001
    }
2002
    s->fd_in = fd_in;
2003
    s->fd_out = fd_out;
2004
    chr->opaque = s;
2005
    chr->chr_write = fd_chr_write;
2006
    chr->chr_update_read_handler = fd_chr_update_read_handler;
2007

    
2008
    qemu_chr_reset(chr);
2009

    
2010
    return chr;
2011
}
2012

    
2013
static CharDriverState *qemu_chr_open_file_out(const char *file_out)
2014
{
2015
    int fd_out;
2016

    
2017
    TFR(fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666));
2018
    if (fd_out < 0)
2019
        return NULL;
2020
    return qemu_chr_open_fd(-1, fd_out);
2021
}
2022

    
2023
static CharDriverState *qemu_chr_open_pipe(const char *filename)
2024
{
2025
    int fd_in, fd_out;
2026
    char filename_in[256], filename_out[256];
2027

    
2028
    snprintf(filename_in, 256, "%s.in", filename);
2029
    snprintf(filename_out, 256, "%s.out", filename);
2030
    TFR(fd_in = open(filename_in, O_RDWR | O_BINARY));
2031
    TFR(fd_out = open(filename_out, O_RDWR | O_BINARY));
2032
    if (fd_in < 0 || fd_out < 0) {
2033
        if (fd_in >= 0)
2034
            close(fd_in);
2035
        if (fd_out >= 0)
2036
            close(fd_out);
2037
        TFR(fd_in = fd_out = open(filename, O_RDWR | O_BINARY));
2038
        if (fd_in < 0)
2039
            return NULL;
2040
    }
2041
    return qemu_chr_open_fd(fd_in, fd_out);
2042
}
2043

    
2044

    
2045
/* for STDIO, we handle the case where several clients use it
2046
   (nographic mode) */
2047

    
2048
#define TERM_FIFO_MAX_SIZE 1
2049

    
2050
static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
2051
static int term_fifo_size;
2052

    
2053
static int stdio_read_poll(void *opaque)
2054
{
2055
    CharDriverState *chr = opaque;
2056

    
2057
    /* try to flush the queue if needed */
2058
    if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
2059
        qemu_chr_read(chr, term_fifo, 1);
2060
        term_fifo_size = 0;
2061
    }
2062
    /* see if we can absorb more chars */
2063
    if (term_fifo_size == 0)
2064
        return 1;
2065
    else
2066
        return 0;
2067
}
2068

    
2069
static void stdio_read(void *opaque)
2070
{
2071
    int size;
2072
    uint8_t buf[1];
2073
    CharDriverState *chr = opaque;
2074

    
2075
    size = read(0, buf, 1);
2076
    if (size == 0) {
2077
        /* stdin has been closed. Remove it from the active list.  */
2078
        qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2079
        return;
2080
    }
2081
    if (size > 0) {
2082
        if (qemu_chr_can_read(chr) > 0) {
2083
            qemu_chr_read(chr, buf, 1);
2084
        } else if (term_fifo_size == 0) {
2085
            term_fifo[term_fifo_size++] = buf[0];
2086
        }
2087
    }
2088
}
2089

    
2090
/* init terminal so that we can grab keys */
2091
static struct termios oldtty;
2092
static int old_fd0_flags;
2093

    
2094
static void term_exit(void)
2095
{
2096
    tcsetattr (0, TCSANOW, &oldtty);
2097
    fcntl(0, F_SETFL, old_fd0_flags);
2098
}
2099

    
2100
static void term_init(void)
2101
{
2102
    struct termios tty;
2103

    
2104
    tcgetattr (0, &tty);
2105
    oldtty = tty;
2106
    old_fd0_flags = fcntl(0, F_GETFL);
2107

    
2108
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2109
                          |INLCR|IGNCR|ICRNL|IXON);
2110
    tty.c_oflag |= OPOST;
2111
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
2112
    /* if graphical mode, we allow Ctrl-C handling */
2113
    if (nographic)
2114
        tty.c_lflag &= ~ISIG;
2115
    tty.c_cflag &= ~(CSIZE|PARENB);
2116
    tty.c_cflag |= CS8;
2117
    tty.c_cc[VMIN] = 1;
2118
    tty.c_cc[VTIME] = 0;
2119

    
2120
    tcsetattr (0, TCSANOW, &tty);
2121

    
2122
    atexit(term_exit);
2123

    
2124
    fcntl(0, F_SETFL, O_NONBLOCK);
2125
}
2126

    
2127
static CharDriverState *qemu_chr_open_stdio(void)
2128
{
2129
    CharDriverState *chr;
2130

    
2131
    if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
2132
        return NULL;
2133
    chr = qemu_chr_open_fd(0, 1);
2134
    qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
2135
    stdio_nb_clients++;
2136
    term_init();
2137

    
2138
    return chr;
2139
}
2140

    
2141
#if defined(__linux__) || defined(__sun__)
2142
static CharDriverState *qemu_chr_open_pty(void)
2143
{
2144
    struct termios tty;
2145
    char slave_name[1024];
2146
    int master_fd, slave_fd;
2147

    
2148
#if defined(__linux__)
2149
    /* Not satisfying */
2150
    if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) {
2151
        return NULL;
2152
    }
2153
#endif
2154

    
2155
    /* Disabling local echo and line-buffered output */
2156
    tcgetattr (master_fd, &tty);
2157
    tty.c_lflag &= ~(ECHO|ICANON|ISIG);
2158
    tty.c_cc[VMIN] = 1;
2159
    tty.c_cc[VTIME] = 0;
2160
    tcsetattr (master_fd, TCSAFLUSH, &tty);
2161

    
2162
    fprintf(stderr, "char device redirected to %s\n", slave_name);
2163
    return qemu_chr_open_fd(master_fd, master_fd);
2164
}
2165

    
2166
static void tty_serial_init(int fd, int speed,
2167
                            int parity, int data_bits, int stop_bits)
2168
{
2169
    struct termios tty;
2170
    speed_t spd;
2171

    
2172
#if 0
2173
    printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
2174
           speed, parity, data_bits, stop_bits);
2175
#endif
2176
    tcgetattr (fd, &tty);
2177

    
2178
    switch(speed) {
2179
    case 50:
2180
        spd = B50;
2181
        break;
2182
    case 75:
2183
        spd = B75;
2184
        break;
2185
    case 300:
2186
        spd = B300;
2187
        break;
2188
    case 600:
2189
        spd = B600;
2190
        break;
2191
    case 1200:
2192
        spd = B1200;
2193
        break;
2194
    case 2400:
2195
        spd = B2400;
2196
        break;
2197
    case 4800:
2198
        spd = B4800;
2199
        break;
2200
    case 9600:
2201
        spd = B9600;
2202
        break;
2203
    case 19200:
2204
        spd = B19200;
2205
        break;
2206
    case 38400:
2207
        spd = B38400;
2208
        break;
2209
    case 57600:
2210
        spd = B57600;
2211
        break;
2212
    default:
2213
    case 115200:
2214
        spd = B115200;
2215
        break;
2216
    }
2217

    
2218
    cfsetispeed(&tty, spd);
2219
    cfsetospeed(&tty, spd);
2220

    
2221
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2222
                          |INLCR|IGNCR|ICRNL|IXON);
2223
    tty.c_oflag |= OPOST;
2224
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
2225
    tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
2226
    switch(data_bits) {
2227
    default:
2228
    case 8:
2229
        tty.c_cflag |= CS8;
2230
        break;
2231
    case 7:
2232
        tty.c_cflag |= CS7;
2233
        break;
2234
    case 6:
2235
        tty.c_cflag |= CS6;
2236
        break;
2237
    case 5:
2238
        tty.c_cflag |= CS5;
2239
        break;
2240
    }
2241
    switch(parity) {
2242
    default:
2243
    case 'N':
2244
        break;
2245
    case 'E':
2246
        tty.c_cflag |= PARENB;
2247
        break;
2248
    case 'O':
2249
        tty.c_cflag |= PARENB | PARODD;
2250
        break;
2251
    }
2252
    if (stop_bits == 2)
2253
        tty.c_cflag |= CSTOPB;
2254

    
2255
    tcsetattr (fd, TCSANOW, &tty);
2256
}
2257

    
2258
static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
2259
{
2260
    FDCharDriver *s = chr->opaque;
2261

    
2262
    switch(cmd) {
2263
    case CHR_IOCTL_SERIAL_SET_PARAMS:
2264
        {
2265
            QEMUSerialSetParams *ssp = arg;
2266
            tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
2267
                            ssp->data_bits, ssp->stop_bits);
2268
        }
2269
        break;
2270
    case CHR_IOCTL_SERIAL_SET_BREAK:
2271
        {
2272
            int enable = *(int *)arg;
2273
            if (enable)
2274
                tcsendbreak(s->fd_in, 1);
2275
        }
2276
        break;
2277
    default:
2278
        return -ENOTSUP;
2279
    }
2280
    return 0;
2281
}
2282

    
2283
static CharDriverState *qemu_chr_open_tty(const char *filename)
2284
{
2285
    CharDriverState *chr;
2286
    int fd;
2287

    
2288
    TFR(fd = open(filename, O_RDWR | O_NONBLOCK));
2289
    fcntl(fd, F_SETFL, O_NONBLOCK);
2290
    tty_serial_init(fd, 115200, 'N', 8, 1);
2291
    chr = qemu_chr_open_fd(fd, fd);
2292
    if (!chr) {
2293
        close(fd);
2294
        return NULL;
2295
    }
2296
    chr->chr_ioctl = tty_serial_ioctl;
2297
    qemu_chr_reset(chr);
2298
    return chr;
2299
}
2300
#else  /* ! __linux__ && ! __sun__ */
2301
static CharDriverState *qemu_chr_open_pty(void)
2302
{
2303
    return NULL;
2304
}
2305
#endif /* __linux__ || __sun__ */
2306

    
2307
#if defined(__linux__)
2308
typedef struct {
2309
    int fd;
2310
    int mode;
2311
} ParallelCharDriver;
2312

    
2313
static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
2314
{
2315
    if (s->mode != mode) {
2316
        int m = mode;
2317
        if (ioctl(s->fd, PPSETMODE, &m) < 0)
2318
            return 0;
2319
        s->mode = mode;
2320
    }
2321
    return 1;
2322
}
2323

    
2324
static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
2325
{
2326
    ParallelCharDriver *drv = chr->opaque;
2327
    int fd = drv->fd;
2328
    uint8_t b;
2329

    
2330
    switch(cmd) {
2331
    case CHR_IOCTL_PP_READ_DATA:
2332
        if (ioctl(fd, PPRDATA, &b) < 0)
2333
            return -ENOTSUP;
2334
        *(uint8_t *)arg = b;
2335
        break;
2336
    case CHR_IOCTL_PP_WRITE_DATA:
2337
        b = *(uint8_t *)arg;
2338
        if (ioctl(fd, PPWDATA, &b) < 0)
2339
            return -ENOTSUP;
2340
        break;
2341
    case CHR_IOCTL_PP_READ_CONTROL:
2342
        if (ioctl(fd, PPRCONTROL, &b) < 0)
2343
            return -ENOTSUP;
2344
        /* Linux gives only the lowest bits, and no way to know data
2345
           direction! For better compatibility set the fixed upper
2346
           bits. */
2347
        *(uint8_t *)arg = b | 0xc0;
2348
        break;
2349
    case CHR_IOCTL_PP_WRITE_CONTROL:
2350
        b = *(uint8_t *)arg;
2351
        if (ioctl(fd, PPWCONTROL, &b) < 0)
2352
            return -ENOTSUP;
2353
        break;
2354
    case CHR_IOCTL_PP_READ_STATUS:
2355
        if (ioctl(fd, PPRSTATUS, &b) < 0)
2356
            return -ENOTSUP;
2357
        *(uint8_t *)arg = b;
2358
        break;
2359
    case CHR_IOCTL_PP_EPP_READ_ADDR:
2360
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2361
            struct ParallelIOArg *parg = arg;
2362
            int n = read(fd, parg->buffer, parg->count);
2363
            if (n != parg->count) {
2364
                return -EIO;
2365
            }
2366
        }
2367
        break;
2368
    case CHR_IOCTL_PP_EPP_READ:
2369
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2370
            struct ParallelIOArg *parg = arg;
2371
            int n = read(fd, parg->buffer, parg->count);
2372
            if (n != parg->count) {
2373
                return -EIO;
2374
            }
2375
        }
2376
        break;
2377
    case CHR_IOCTL_PP_EPP_WRITE_ADDR:
2378
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2379
            struct ParallelIOArg *parg = arg;
2380
            int n = write(fd, parg->buffer, parg->count);
2381
            if (n != parg->count) {
2382
                return -EIO;
2383
            }
2384
        }
2385
        break;
2386
    case CHR_IOCTL_PP_EPP_WRITE:
2387
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2388
            struct ParallelIOArg *parg = arg;
2389
            int n = write(fd, parg->buffer, parg->count);
2390
            if (n != parg->count) {
2391
                return -EIO;
2392
            }
2393
        }
2394
        break;
2395
    default:
2396
        return -ENOTSUP;
2397
    }
2398
    return 0;
2399
}
2400

    
2401
static void pp_close(CharDriverState *chr)
2402
{
2403
    ParallelCharDriver *drv = chr->opaque;
2404
    int fd = drv->fd;
2405

    
2406
    pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
2407
    ioctl(fd, PPRELEASE);
2408
    close(fd);
2409
    qemu_free(drv);
2410
}
2411

    
2412
static CharDriverState *qemu_chr_open_pp(const char *filename)
2413
{
2414
    CharDriverState *chr;
2415
    ParallelCharDriver *drv;
2416
    int fd;
2417

    
2418
    TFR(fd = open(filename, O_RDWR));
2419
    if (fd < 0)
2420
        return NULL;
2421

    
2422
    if (ioctl(fd, PPCLAIM) < 0) {
2423
        close(fd);
2424
        return NULL;
2425
    }
2426

    
2427
    drv = qemu_mallocz(sizeof(ParallelCharDriver));
2428
    if (!drv) {
2429
        close(fd);
2430
        return NULL;
2431
    }
2432
    drv->fd = fd;
2433
    drv->mode = IEEE1284_MODE_COMPAT;
2434

    
2435
    chr = qemu_mallocz(sizeof(CharDriverState));
2436
    if (!chr) {
2437
        qemu_free(drv);
2438
        close(fd);
2439
        return NULL;
2440
    }
2441
    chr->chr_write = null_chr_write;
2442
    chr->chr_ioctl = pp_ioctl;
2443
    chr->chr_close = pp_close;
2444
    chr->opaque = drv;
2445

    
2446
    qemu_chr_reset(chr);
2447

    
2448
    return chr;
2449
}
2450
#endif /* __linux__ */
2451

    
2452
#else /* _WIN32 */
2453

    
2454
typedef struct {
2455
    int max_size;
2456
    HANDLE hcom, hrecv, hsend;
2457
    OVERLAPPED orecv, osend;
2458
    BOOL fpipe;
2459
    DWORD len;
2460
} WinCharState;
2461

    
2462
#define NSENDBUF 2048
2463
#define NRECVBUF 2048
2464
#define MAXCONNECT 1
2465
#define NTIMEOUT 5000
2466

    
2467
static int win_chr_poll(void *opaque);
2468
static int win_chr_pipe_poll(void *opaque);
2469

    
2470
static void win_chr_close(CharDriverState *chr)
2471
{
2472
    WinCharState *s = chr->opaque;
2473

    
2474
    if (s->hsend) {
2475
        CloseHandle(s->hsend);
2476
        s->hsend = NULL;
2477
    }
2478
    if (s->hrecv) {
2479
        CloseHandle(s->hrecv);
2480
        s->hrecv = NULL;
2481
    }
2482
    if (s->hcom) {
2483
        CloseHandle(s->hcom);
2484
        s->hcom = NULL;
2485
    }
2486
    if (s->fpipe)
2487
        qemu_del_polling_cb(win_chr_pipe_poll, chr);
2488
    else
2489
        qemu_del_polling_cb(win_chr_poll, chr);
2490
}
2491

    
2492
static int win_chr_init(CharDriverState *chr, const char *filename)
2493
{
2494
    WinCharState *s = chr->opaque;
2495
    COMMCONFIG comcfg;
2496
    COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2497
    COMSTAT comstat;
2498
    DWORD size;
2499
    DWORD err;
2500

    
2501
    s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2502
    if (!s->hsend) {
2503
        fprintf(stderr, "Failed CreateEvent\n");
2504
        goto fail;
2505
    }
2506
    s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2507
    if (!s->hrecv) {
2508
        fprintf(stderr, "Failed CreateEvent\n");
2509
        goto fail;
2510
    }
2511

    
2512
    s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2513
                      OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
2514
    if (s->hcom == INVALID_HANDLE_VALUE) {
2515
        fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
2516
        s->hcom = NULL;
2517
        goto fail;
2518
    }
2519

    
2520
    if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
2521
        fprintf(stderr, "Failed SetupComm\n");
2522
        goto fail;
2523
    }
2524

    
2525
    ZeroMemory(&comcfg, sizeof(COMMCONFIG));
2526
    size = sizeof(COMMCONFIG);
2527
    GetDefaultCommConfig(filename, &comcfg, &size);
2528
    comcfg.dcb.DCBlength = sizeof(DCB);
2529
    CommConfigDialog(filename, NULL, &comcfg);
2530

    
2531
    if (!SetCommState(s->hcom, &comcfg.dcb)) {
2532
        fprintf(stderr, "Failed SetCommState\n");
2533
        goto fail;
2534
    }
2535

    
2536
    if (!SetCommMask(s->hcom, EV_ERR)) {
2537
        fprintf(stderr, "Failed SetCommMask\n");
2538
        goto fail;
2539
    }
2540

    
2541
    cto.ReadIntervalTimeout = MAXDWORD;
2542
    if (!SetCommTimeouts(s->hcom, &cto)) {
2543
        fprintf(stderr, "Failed SetCommTimeouts\n");
2544
        goto fail;
2545
    }
2546

    
2547
    if (!ClearCommError(s->hcom, &err, &comstat)) {
2548
        fprintf(stderr, "Failed ClearCommError\n");
2549
        goto fail;
2550
    }
2551
    qemu_add_polling_cb(win_chr_poll, chr);
2552
    return 0;
2553

    
2554
 fail:
2555
    win_chr_close(chr);
2556
    return -1;
2557
}
2558

    
2559
static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
2560
{
2561
    WinCharState *s = chr->opaque;
2562
    DWORD len, ret, size, err;
2563

    
2564
    len = len1;
2565
    ZeroMemory(&s->osend, sizeof(s->osend));
2566
    s->osend.hEvent = s->hsend;
2567
    while (len > 0) {
2568
        if (s->hsend)
2569
            ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
2570
        else
2571
            ret = WriteFile(s->hcom, buf, len, &size, NULL);
2572
        if (!ret) {
2573
            err = GetLastError();
2574
            if (err == ERROR_IO_PENDING) {
2575
                ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
2576
                if (ret) {
2577
                    buf += size;
2578
                    len -= size;
2579
                } else {
2580
                    break;
2581
                }
2582
            } else {
2583
                break;
2584
            }
2585
        } else {
2586
            buf += size;
2587
            len -= size;
2588
        }
2589
    }
2590
    return len1 - len;
2591
}
2592

    
2593
static int win_chr_read_poll(CharDriverState *chr)
2594
{
2595
    WinCharState *s = chr->opaque;
2596

    
2597
    s->max_size = qemu_chr_can_read(chr);
2598
    return s->max_size;
2599
}
2600

    
2601
static void win_chr_readfile(CharDriverState *chr)
2602
{
2603
    WinCharState *s = chr->opaque;
2604
    int ret, err;
2605
    uint8_t buf[1024];
2606
    DWORD size;
2607

    
2608
    ZeroMemory(&s->orecv, sizeof(s->orecv));
2609
    s->orecv.hEvent = s->hrecv;
2610
    ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
2611
    if (!ret) {
2612
        err = GetLastError();
2613
        if (err == ERROR_IO_PENDING) {
2614
            ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
2615
        }
2616
    }
2617

    
2618
    if (size > 0) {
2619
        qemu_chr_read(chr, buf, size);
2620
    }
2621
}
2622

    
2623
static void win_chr_read(CharDriverState *chr)
2624
{
2625
    WinCharState *s = chr->opaque;
2626

    
2627
    if (s->len > s->max_size)
2628
        s->len = s->max_size;
2629
    if (s->len == 0)
2630
        return;
2631

    
2632
    win_chr_readfile(chr);
2633
}
2634

    
2635
static int win_chr_poll(void *opaque)
2636
{
2637
    CharDriverState *chr = opaque;
2638
    WinCharState *s = chr->opaque;
2639
    COMSTAT status;
2640
    DWORD comerr;
2641

    
2642
    ClearCommError(s->hcom, &comerr, &status);
2643
    if (status.cbInQue > 0) {
2644
        s->len = status.cbInQue;
2645
        win_chr_read_poll(chr);
2646
        win_chr_read(chr);
2647
        return 1;
2648
    }
2649
    return 0;
2650
}
2651

    
2652
static CharDriverState *qemu_chr_open_win(const char *filename)
2653
{
2654
    CharDriverState *chr;
2655
    WinCharState *s;
2656

    
2657
    chr = qemu_mallocz(sizeof(CharDriverState));
2658
    if (!chr)
2659
        return NULL;
2660
    s = qemu_mallocz(sizeof(WinCharState));
2661
    if (!s) {
2662
        free(chr);
2663
        return NULL;
2664
    }
2665
    chr->opaque = s;
2666
    chr->chr_write = win_chr_write;
2667
    chr->chr_close = win_chr_close;
2668

    
2669
    if (win_chr_init(chr, filename) < 0) {
2670
        free(s);
2671
        free(chr);
2672
        return NULL;
2673
    }
2674
    qemu_chr_reset(chr);
2675
    return chr;
2676
}
2677

    
2678
static int win_chr_pipe_poll(void *opaque)
2679
{
2680
    CharDriverState *chr = opaque;
2681
    WinCharState *s = chr->opaque;
2682
    DWORD size;
2683

    
2684
    PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
2685
    if (size > 0) {
2686
        s->len = size;
2687
        win_chr_read_poll(chr);
2688
        win_chr_read(chr);
2689
        return 1;
2690
    }
2691
    return 0;
2692
}
2693

    
2694
static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
2695
{
2696
    WinCharState *s = chr->opaque;
2697
    OVERLAPPED ov;
2698
    int ret;
2699
    DWORD size;
2700
    char openname[256];
2701

    
2702
    s->fpipe = TRUE;
2703

    
2704
    s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2705
    if (!s->hsend) {
2706
        fprintf(stderr, "Failed CreateEvent\n");
2707
        goto fail;
2708
    }
2709
    s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2710
    if (!s->hrecv) {
2711
        fprintf(stderr, "Failed CreateEvent\n");
2712
        goto fail;
2713
    }
2714

    
2715
    snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
2716
    s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
2717
                              PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
2718
                              PIPE_WAIT,
2719
                              MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
2720
    if (s->hcom == INVALID_HANDLE_VALUE) {
2721
        fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
2722
        s->hcom = NULL;
2723
        goto fail;
2724
    }
2725

    
2726
    ZeroMemory(&ov, sizeof(ov));
2727
    ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
2728
    ret = ConnectNamedPipe(s->hcom, &ov);
2729
    if (ret) {
2730
        fprintf(stderr, "Failed ConnectNamedPipe\n");
2731
        goto fail;
2732
    }
2733

    
2734
    ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
2735
    if (!ret) {
2736
        fprintf(stderr, "Failed GetOverlappedResult\n");
2737
        if (ov.hEvent) {
2738
            CloseHandle(ov.hEvent);
2739
            ov.hEvent = NULL;
2740
        }
2741
        goto fail;
2742
    }
2743

    
2744
    if (ov.hEvent) {
2745
        CloseHandle(ov.hEvent);
2746
        ov.hEvent = NULL;
2747
    }
2748
    qemu_add_polling_cb(win_chr_pipe_poll, chr);
2749
    return 0;
2750

    
2751
 fail:
2752
    win_chr_close(chr);
2753
    return -1;
2754
}
2755

    
2756

    
2757
static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
2758
{
2759
    CharDriverState *chr;
2760
    WinCharState *s;
2761

    
2762
    chr = qemu_mallocz(sizeof(CharDriverState));
2763
    if (!chr)
2764
        return NULL;
2765
    s = qemu_mallocz(sizeof(WinCharState));
2766
    if (!s) {
2767
        free(chr);
2768
        return NULL;
2769
    }
2770
    chr->opaque = s;
2771
    chr->chr_write = win_chr_write;
2772
    chr->chr_close = win_chr_close;
2773

    
2774
    if (win_chr_pipe_init(chr, filename) < 0) {
2775
        free(s);
2776
        free(chr);
2777
        return NULL;
2778
    }
2779
    qemu_chr_reset(chr);
2780
    return chr;
2781
}
2782

    
2783
static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
2784
{
2785
    CharDriverState *chr;
2786
    WinCharState *s;
2787

    
2788
    chr = qemu_mallocz(sizeof(CharDriverState));
2789
    if (!chr)
2790
        return NULL;
2791
    s = qemu_mallocz(sizeof(WinCharState));
2792
    if (!s) {
2793
        free(chr);
2794
        return NULL;
2795
    }
2796
    s->hcom = fd_out;
2797
    chr->opaque = s;
2798
    chr->chr_write = win_chr_write;
2799
    qemu_chr_reset(chr);
2800
    return chr;
2801
}
2802

    
2803
static CharDriverState *qemu_chr_open_win_con(const char *filename)
2804
{
2805
    return qemu_chr_open_win_file(GetStdHandle(STD_OUTPUT_HANDLE));
2806
}
2807

    
2808
static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
2809
{
2810
    HANDLE fd_out;
2811

    
2812
    fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
2813
                        OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
2814
    if (fd_out == INVALID_HANDLE_VALUE)
2815
        return NULL;
2816

    
2817
    return qemu_chr_open_win_file(fd_out);
2818
}
2819
#endif /* !_WIN32 */
2820

    
2821
/***********************************************************/
2822
/* UDP Net console */
2823

    
2824
typedef struct {
2825
    int fd;
2826
    struct sockaddr_in daddr;
2827
    char buf[1024];
2828
    int bufcnt;
2829
    int bufptr;
2830
    int max_size;
2831
} NetCharDriver;
2832

    
2833
static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2834
{
2835
    NetCharDriver *s = chr->opaque;
2836

    
2837
    return sendto(s->fd, buf, len, 0,
2838
                  (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
2839
}
2840

    
2841
static int udp_chr_read_poll(void *opaque)
2842
{
2843
    CharDriverState *chr = opaque;
2844
    NetCharDriver *s = chr->opaque;
2845

    
2846
    s->max_size = qemu_chr_can_read(chr);
2847

    
2848
    /* If there were any stray characters in the queue process them
2849
     * first
2850
     */
2851
    while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2852
        qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2853
        s->bufptr++;
2854
        s->max_size = qemu_chr_can_read(chr);
2855
    }
2856
    return s->max_size;
2857
}
2858

    
2859
static void udp_chr_read(void *opaque)
2860
{
2861
    CharDriverState *chr = opaque;
2862
    NetCharDriver *s = chr->opaque;
2863

    
2864
    if (s->max_size == 0)
2865
        return;
2866
    s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
2867
    s->bufptr = s->bufcnt;
2868
    if (s->bufcnt <= 0)
2869
        return;
2870

    
2871
    s->bufptr = 0;
2872
    while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2873
        qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2874
        s->bufptr++;
2875
        s->max_size = qemu_chr_can_read(chr);
2876
    }
2877
}
2878

    
2879
static void udp_chr_update_read_handler(CharDriverState *chr)
2880
{
2881
    NetCharDriver *s = chr->opaque;
2882

    
2883
    if (s->fd >= 0) {
2884
        qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
2885
                             udp_chr_read, NULL, chr);
2886
    }
2887
}
2888

    
2889
int parse_host_port(struct sockaddr_in *saddr, const char *str);
2890
#ifndef _WIN32
2891
static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
2892
#endif
2893
int parse_host_src_port(struct sockaddr_in *haddr,
2894
                        struct sockaddr_in *saddr,
2895
                        const char *str);
2896

    
2897
static CharDriverState *qemu_chr_open_udp(const char *def)
2898
{
2899
    CharDriverState *chr = NULL;
2900
    NetCharDriver *s = NULL;
2901
    int fd = -1;
2902
    struct sockaddr_in saddr;
2903

    
2904
    chr = qemu_mallocz(sizeof(CharDriverState));
2905
    if (!chr)
2906
        goto return_err;
2907
    s = qemu_mallocz(sizeof(NetCharDriver));
2908
    if (!s)
2909
        goto return_err;
2910

    
2911
    fd = socket(PF_INET, SOCK_DGRAM, 0);
2912
    if (fd < 0) {
2913
        perror("socket(PF_INET, SOCK_DGRAM)");
2914
        goto return_err;
2915
    }
2916

    
2917
    if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
2918
        printf("Could not parse: %s\n", def);
2919
        goto return_err;
2920
    }
2921

    
2922
    if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
2923
    {
2924
        perror("bind");
2925
        goto return_err;
2926
    }
2927

    
2928
    s->fd = fd;
2929
    s->bufcnt = 0;
2930
    s->bufptr = 0;
2931
    chr->opaque = s;
2932
    chr->chr_write = udp_chr_write;
2933
    chr->chr_update_read_handler = udp_chr_update_read_handler;
2934
    return chr;
2935

    
2936
return_err:
2937
    if (chr)
2938
        free(chr);
2939
    if (s)
2940
        free(s);
2941
    if (fd >= 0)
2942
        closesocket(fd);
2943
    return NULL;
2944
}
2945

    
2946
/***********************************************************/
2947
/* TCP Net console */
2948

    
2949
typedef struct {
2950
    int fd, listen_fd;
2951
    int connected;
2952
    int max_size;
2953
    int do_telnetopt;
2954
    int do_nodelay;
2955
    int is_unix;
2956
} TCPCharDriver;
2957

    
2958
static void tcp_chr_accept(void *opaque);
2959

    
2960
static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2961
{
2962
    TCPCharDriver *s = chr->opaque;
2963
    if (s->connected) {
2964
        return send_all(s->fd, buf, len);
2965
    } else {
2966
        /* XXX: indicate an error ? */
2967
        return len;
2968
    }
2969
}
2970

    
2971
static int tcp_chr_read_poll(void *opaque)
2972
{
2973
    CharDriverState *chr = opaque;
2974
    TCPCharDriver *s = chr->opaque;
2975
    if (!s->connected)
2976
        return 0;
2977
    s->max_size = qemu_chr_can_read(chr);
2978
    return s->max_size;
2979
}
2980

    
2981
#define IAC 255
2982
#define IAC_BREAK 243
2983
static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
2984
                                      TCPCharDriver *s,
2985
                                      char *buf, int *size)
2986
{
2987
    /* Handle any telnet client's basic IAC options to satisfy char by
2988
     * char mode with no echo.  All IAC options will be removed from
2989
     * the buf and the do_telnetopt variable will be used to track the
2990
     * state of the width of the IAC information.
2991
     *
2992
     * IAC commands come in sets of 3 bytes with the exception of the
2993
     * "IAC BREAK" command and the double IAC.
2994
     */
2995

    
2996
    int i;
2997
    int j = 0;
2998

    
2999
    for (i = 0; i < *size; i++) {
3000
        if (s->do_telnetopt > 1) {
3001
            if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
3002
                /* Double IAC means send an IAC */
3003
                if (j != i)
3004
                    buf[j] = buf[i];
3005
                j++;
3006
                s->do_telnetopt = 1;
3007
            } else {
3008
                if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
3009
                    /* Handle IAC break commands by sending a serial break */
3010
                    qemu_chr_event(chr, CHR_EVENT_BREAK);
3011
                    s->do_telnetopt++;
3012
                }
3013
                s->do_telnetopt++;
3014
            }
3015
            if (s->do_telnetopt >= 4) {
3016
                s->do_telnetopt = 1;
3017
            }
3018
        } else {
3019
            if ((unsigned char)buf[i] == IAC) {
3020
                s->do_telnetopt = 2;
3021
            } else {
3022
                if (j != i)
3023
                    buf[j] = buf[i];
3024
                j++;
3025
            }
3026
        }
3027
    }
3028
    *size = j;
3029
}
3030

    
3031
static void tcp_chr_read(void *opaque)
3032
{
3033
    CharDriverState *chr = opaque;
3034
    TCPCharDriver *s = chr->opaque;
3035
    uint8_t buf[1024];
3036
    int len, size;
3037

    
3038
    if (!s->connected || s->max_size <= 0)
3039
        return;
3040
    len = sizeof(buf);
3041
    if (len > s->max_size)
3042
        len = s->max_size;
3043
    size = recv(s->fd, buf, len, 0);
3044
    if (size == 0) {
3045
        /* connection closed */
3046
        s->connected = 0;
3047
        if (s->listen_fd >= 0) {
3048
            qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3049
        }
3050
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3051
        closesocket(s->fd);
3052
        s->fd = -1;
3053
    } else if (size > 0) {
3054
        if (s->do_telnetopt)
3055
            tcp_chr_process_IAC_bytes(chr, s, buf, &size);
3056
        if (size > 0)
3057
            qemu_chr_read(chr, buf, size);
3058
    }
3059
}
3060

    
3061
static void tcp_chr_connect(void *opaque)
3062
{
3063
    CharDriverState *chr = opaque;
3064
    TCPCharDriver *s = chr->opaque;
3065

    
3066
    s->connected = 1;
3067
    qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
3068
                         tcp_chr_read, NULL, chr);
3069
    qemu_chr_reset(chr);
3070
}
3071

    
3072
#define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
3073
static void tcp_chr_telnet_init(int fd)
3074
{
3075
    char buf[3];
3076
    /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
3077
    IACSET(buf, 0xff, 0xfb, 0x01);  /* IAC WILL ECHO */
3078
    send(fd, (char *)buf, 3, 0);
3079
    IACSET(buf, 0xff, 0xfb, 0x03);  /* IAC WILL Suppress go ahead */
3080
    send(fd, (char *)buf, 3, 0);
3081
    IACSET(buf, 0xff, 0xfb, 0x00);  /* IAC WILL Binary */
3082
    send(fd, (char *)buf, 3, 0);
3083
    IACSET(buf, 0xff, 0xfd, 0x00);  /* IAC DO Binary */
3084
    send(fd, (char *)buf, 3, 0);
3085
}
3086

    
3087
static void socket_set_nodelay(int fd)
3088
{
3089
    int val = 1;
3090
    setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
3091
}
3092

    
3093
static void tcp_chr_accept(void *opaque)
3094
{
3095
    CharDriverState *chr = opaque;
3096
    TCPCharDriver *s = chr->opaque;
3097
    struct sockaddr_in saddr;
3098
#ifndef _WIN32
3099
    struct sockaddr_un uaddr;
3100
#endif
3101
    struct sockaddr *addr;
3102
    socklen_t len;
3103
    int fd;
3104

    
3105
    for(;;) {
3106
#ifndef _WIN32
3107
        if (s->is_unix) {
3108
            len = sizeof(uaddr);
3109
            addr = (struct sockaddr *)&uaddr;
3110
        } else
3111
#endif
3112
        {
3113
            len = sizeof(saddr);
3114
            addr = (struct sockaddr *)&saddr;
3115
        }
3116
        fd = accept(s->listen_fd, addr, &len);
3117
        if (fd < 0 && errno != EINTR) {
3118
            return;
3119
        } else if (fd >= 0) {
3120
            if (s->do_telnetopt)
3121
                tcp_chr_telnet_init(fd);
3122
            break;
3123
        }
3124
    }
3125
    socket_set_nonblock(fd);
3126
    if (s->do_nodelay)
3127
        socket_set_nodelay(fd);
3128
    s->fd = fd;
3129
    qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
3130
    tcp_chr_connect(chr);
3131
}
3132

    
3133
static void tcp_chr_close(CharDriverState *chr)
3134
{
3135
    TCPCharDriver *s = chr->opaque;
3136
    if (s->fd >= 0)
3137
        closesocket(s->fd);
3138
    if (s->listen_fd >= 0)
3139
        closesocket(s->listen_fd);
3140
    qemu_free(s);
3141
}
3142

    
3143
static CharDriverState *qemu_chr_open_tcp(const char *host_str,
3144
                                          int is_telnet,
3145
                                          int is_unix)
3146
{
3147
    CharDriverState *chr = NULL;
3148
    TCPCharDriver *s = NULL;
3149
    int fd = -1, ret, err, val;
3150
    int is_listen = 0;
3151
    int is_waitconnect = 1;
3152
    int do_nodelay = 0;
3153
    const char *ptr;
3154
    struct sockaddr_in saddr;
3155
#ifndef _WIN32
3156
    struct sockaddr_un uaddr;
3157
#endif
3158
    struct sockaddr *addr;
3159
    socklen_t addrlen;
3160

    
3161
#ifndef _WIN32
3162
    if (is_unix) {
3163
        addr = (struct sockaddr *)&uaddr;
3164
        addrlen = sizeof(uaddr);
3165
        if (parse_unix_path(&uaddr, host_str) < 0)
3166
            goto fail;
3167
    } else
3168
#endif
3169
    {
3170
        addr = (struct sockaddr *)&saddr;
3171
        addrlen = sizeof(saddr);
3172
        if (parse_host_port(&saddr, host_str) < 0)
3173
            goto fail;
3174
    }
3175

    
3176
    ptr = host_str;
3177
    while((ptr = strchr(ptr,','))) {
3178
        ptr++;
3179
        if (!strncmp(ptr,"server",6)) {
3180
            is_listen = 1;
3181
        } else if (!strncmp(ptr,"nowait",6)) {
3182
            is_waitconnect = 0;
3183
        } else if (!strncmp(ptr,"nodelay",6)) {
3184
            do_nodelay = 1;
3185
        } else {
3186
            printf("Unknown option: %s\n", ptr);
3187
            goto fail;
3188
        }
3189
    }
3190
    if (!is_listen)
3191
        is_waitconnect = 0;
3192

    
3193
    chr = qemu_mallocz(sizeof(CharDriverState));
3194
    if (!chr)
3195
        goto fail;
3196
    s = qemu_mallocz(sizeof(TCPCharDriver));
3197
    if (!s)
3198
        goto fail;
3199

    
3200
#ifndef _WIN32
3201
    if (is_unix)
3202
        fd = socket(PF_UNIX, SOCK_STREAM, 0);
3203
    else
3204
#endif
3205
        fd = socket(PF_INET, SOCK_STREAM, 0);
3206

    
3207
    if (fd < 0)
3208
        goto fail;
3209

    
3210
    if (!is_waitconnect)
3211
        socket_set_nonblock(fd);
3212

    
3213
    s->connected = 0;
3214
    s->fd = -1;
3215
    s->listen_fd = -1;
3216
    s->is_unix = is_unix;
3217
    s->do_nodelay = do_nodelay && !is_unix;
3218

    
3219
    chr->opaque = s;
3220
    chr->chr_write = tcp_chr_write;
3221
    chr->chr_close = tcp_chr_close;
3222

    
3223
    if (is_listen) {
3224
        /* allow fast reuse */
3225
#ifndef _WIN32
3226
        if (is_unix) {
3227
            char path[109];
3228
            strncpy(path, uaddr.sun_path, 108);
3229
            path[108] = 0;
3230
            unlink(path);
3231
        } else
3232
#endif
3233
        {
3234
            val = 1;
3235
            setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
3236
        }
3237

    
3238
        ret = bind(fd, addr, addrlen);
3239
        if (ret < 0)
3240
            goto fail;
3241

    
3242
        ret = listen(fd, 0);
3243
        if (ret < 0)
3244
            goto fail;
3245

    
3246
        s->listen_fd = fd;
3247
        qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3248
        if (is_telnet)
3249
            s->do_telnetopt = 1;
3250
    } else {
3251
        for(;;) {
3252
            ret = connect(fd, addr, addrlen);
3253
            if (ret < 0) {
3254
                err = socket_error();
3255
                if (err == EINTR || err == EWOULDBLOCK) {
3256
                } else if (err == EINPROGRESS) {
3257
                    break;
3258
#ifdef _WIN32
3259
                } else if (err == WSAEALREADY) {
3260
                    break;
3261
#endif
3262
                } else {
3263
                    goto fail;
3264
                }
3265
            } else {
3266
                s->connected = 1;
3267
                break;
3268
            }
3269
        }
3270
        s->fd = fd;
3271
        socket_set_nodelay(fd);
3272
        if (s->connected)
3273
            tcp_chr_connect(chr);
3274
        else
3275
            qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
3276
    }
3277

    
3278
    if (is_listen && is_waitconnect) {
3279
        printf("QEMU waiting for connection on: %s\n", host_str);
3280
        tcp_chr_accept(chr);
3281
        socket_set_nonblock(s->listen_fd);
3282
    }
3283

    
3284
    return chr;
3285
 fail:
3286
    if (fd >= 0)
3287
        closesocket(fd);
3288
    qemu_free(s);
3289
    qemu_free(chr);
3290
    return NULL;
3291
}
3292

    
3293
CharDriverState *qemu_chr_open(const char *filename)
3294
{
3295
    const char *p;
3296

    
3297
    if (!strcmp(filename, "vc")) {
3298
        return text_console_init(&display_state, 0);
3299
    } else if (strstart(filename, "vc:", &p)) {
3300
        return text_console_init(&display_state, p);
3301
    } else if (!strcmp(filename, "null")) {
3302
        return qemu_chr_open_null();
3303
    } else
3304
    if (strstart(filename, "tcp:", &p)) {
3305
        return qemu_chr_open_tcp(p, 0, 0);
3306
    } else
3307
    if (strstart(filename, "telnet:", &p)) {
3308
        return qemu_chr_open_tcp(p, 1, 0);
3309
    } else
3310
    if (strstart(filename, "udp:", &p)) {
3311
        return qemu_chr_open_udp(p);
3312
    } else
3313
    if (strstart(filename, "mon:", &p)) {
3314
        CharDriverState *drv = qemu_chr_open(p);
3315
        if (drv) {
3316
            drv = qemu_chr_open_mux(drv);
3317
            monitor_init(drv, !nographic);
3318
            return drv;
3319
        }
3320
        printf("Unable to open driver: %s\n", p);
3321
        return 0;
3322
    } else
3323
#ifndef _WIN32
3324
    if (strstart(filename, "unix:", &p)) {
3325
        return qemu_chr_open_tcp(p, 0, 1);
3326
    } else if (strstart(filename, "file:", &p)) {
3327
        return qemu_chr_open_file_out(p);
3328
    } else if (strstart(filename, "pipe:", &p)) {
3329
        return qemu_chr_open_pipe(p);
3330
    } else if (!strcmp(filename, "pty")) {
3331
        return qemu_chr_open_pty();
3332
    } else if (!strcmp(filename, "stdio")) {
3333
        return qemu_chr_open_stdio();
3334
    } else
3335
#if defined(__linux__)
3336
    if (strstart(filename, "/dev/parport", NULL)) {
3337
        return qemu_chr_open_pp(filename);
3338
    } else
3339
#endif
3340
#if defined(__linux__) || defined(__sun__)
3341
    if (strstart(filename, "/dev/", NULL)) {
3342
        return qemu_chr_open_tty(filename);
3343
    } else
3344
#endif
3345
#else /* !_WIN32 */
3346
    if (strstart(filename, "COM", NULL)) {
3347
        return qemu_chr_open_win(filename);
3348
    } else
3349
    if (strstart(filename, "pipe:", &p)) {
3350
        return qemu_chr_open_win_pipe(p);
3351
    } else
3352
    if (strstart(filename, "con:", NULL)) {
3353
        return qemu_chr_open_win_con(filename);
3354
    } else
3355
    if (strstart(filename, "file:", &p)) {
3356
        return qemu_chr_open_win_file_out(p);
3357
    }
3358
#endif
3359
    {
3360
        return NULL;
3361
    }
3362
}
3363

    
3364
void qemu_chr_close(CharDriverState *chr)
3365
{
3366
    if (chr->chr_close)
3367
        chr->chr_close(chr);
3368
}
3369

    
3370
/***********************************************************/
3371
/* network device redirectors */
3372

    
3373
void hex_dump(FILE *f, const uint8_t *buf, int size)
3374
{
3375
    int len, i, j, c;
3376

    
3377
    for(i=0;i<size;i+=16) {
3378
        len = size - i;
3379
        if (len > 16)
3380
            len = 16;
3381
        fprintf(f, "%08x ", i);
3382
        for(j=0;j<16;j++) {
3383
            if (j < len)
3384
                fprintf(f, " %02x", buf[i+j]);
3385
            else
3386
                fprintf(f, "   ");
3387
        }
3388
        fprintf(f, " ");
3389
        for(j=0;j<len;j++) {
3390
            c = buf[i+j];
3391
            if (c < ' ' || c > '~')
3392
                c = '.';
3393
            fprintf(f, "%c", c);
3394
        }
3395
        fprintf(f, "\n");
3396
    }
3397
}
3398

    
3399
static int parse_macaddr(uint8_t *macaddr, const char *p)
3400
{
3401
    int i;
3402
    for(i = 0; i < 6; i++) {
3403
        macaddr[i] = strtol(p, (char **)&p, 16);
3404
        if (i == 5) {
3405
            if (*p != '\0')
3406
                return -1;
3407
        } else {
3408
            if (*p != ':')
3409
                return -1;
3410
            p++;
3411
        }
3412
    }
3413
    return 0;
3414
}
3415

    
3416
static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3417
{
3418
    const char *p, *p1;
3419
    int len;
3420
    p = *pp;
3421
    p1 = strchr(p, sep);
3422
    if (!p1)
3423
        return -1;
3424
    len = p1 - p;
3425
    p1++;
3426
    if (buf_size > 0) {
3427
        if (len > buf_size - 1)
3428
            len = buf_size - 1;
3429
        memcpy(buf, p, len);
3430
        buf[len] = '\0';
3431
    }
3432
    *pp = p1;
3433
    return 0;
3434
}
3435

    
3436
int parse_host_src_port(struct sockaddr_in *haddr,
3437
                        struct sockaddr_in *saddr,
3438
                        const char *input_str)
3439
{
3440
    char *str = strdup(input_str);
3441
    char *host_str = str;
3442
    char *src_str;
3443
    char *ptr;
3444

    
3445
    /*
3446
     * Chop off any extra arguments at the end of the string which
3447
     * would start with a comma, then fill in the src port information
3448
     * if it was provided else use the "any address" and "any port".
3449
     */
3450
    if ((ptr = strchr(str,',')))
3451
        *ptr = '\0';
3452

    
3453
    if ((src_str = strchr(input_str,'@'))) {
3454
        *src_str = '\0';
3455
        src_str++;
3456
    }
3457

    
3458
    if (parse_host_port(haddr, host_str) < 0)
3459
        goto fail;
3460

    
3461
    if (!src_str || *src_str == '\0')
3462
        src_str = ":0";
3463

    
3464
    if (parse_host_port(saddr, src_str) < 0)
3465
        goto fail;
3466

    
3467
    free(str);
3468
    return(0);
3469

    
3470
fail:
3471
    free(str);
3472
    return -1;
3473
}
3474

    
3475
int parse_host_port(struct sockaddr_in *saddr, const char *str)
3476
{
3477
    char buf[512];
3478
    struct hostent *he;
3479
    const char *p, *r;
3480
    int port;
3481

    
3482
    p = str;
3483
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3484
        return -1;
3485
    saddr->sin_family = AF_INET;
3486
    if (buf[0] == '\0') {
3487
        saddr->sin_addr.s_addr = 0;
3488
    } else {
3489
        if (isdigit(buf[0])) {
3490
            if (!inet_aton(buf, &saddr->sin_addr))
3491
                return -1;
3492
        } else {
3493
            if ((he = gethostbyname(buf)) == NULL)
3494
                return - 1;
3495
            saddr->sin_addr = *(struct in_addr *)he->h_addr;
3496
        }
3497
    }
3498
    port = strtol(p, (char **)&r, 0);
3499
    if (r == p)
3500
        return -1;
3501
    saddr->sin_port = htons(port);
3502
    return 0;
3503
}
3504

    
3505
#ifndef _WIN32
3506
static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
3507
{
3508
    const char *p;
3509
    int len;
3510

    
3511
    len = MIN(108, strlen(str));
3512
    p = strchr(str, ',');
3513
    if (p)
3514
        len = MIN(len, p - str);
3515

    
3516
    memset(uaddr, 0, sizeof(*uaddr));
3517

    
3518
    uaddr->sun_family = AF_UNIX;
3519
    memcpy(uaddr->sun_path, str, len);
3520

    
3521
    return 0;
3522
}
3523
#endif
3524

    
3525
/* find or alloc a new VLAN */
3526
VLANState *qemu_find_vlan(int id)
3527
{
3528
    VLANState **pvlan, *vlan;
3529
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
3530
        if (vlan->id == id)
3531
            return vlan;
3532
    }
3533
    vlan = qemu_mallocz(sizeof(VLANState));
3534
    if (!vlan)
3535
        return NULL;
3536
    vlan->id = id;
3537
    vlan->next = NULL;
3538
    pvlan = &first_vlan;
3539
    while (*pvlan != NULL)
3540
        pvlan = &(*pvlan)->next;
3541
    *pvlan = vlan;
3542
    return vlan;
3543
}
3544

    
3545
VLANClientState *qemu_new_vlan_client(VLANState *vlan,
3546
                                      IOReadHandler *fd_read,
3547
                                      IOCanRWHandler *fd_can_read,
3548
                                      void *opaque)
3549
{
3550
    VLANClientState *vc, **pvc;
3551
    vc = qemu_mallocz(sizeof(VLANClientState));
3552
    if (!vc)
3553
        return NULL;
3554
    vc->fd_read = fd_read;
3555
    vc->fd_can_read = fd_can_read;
3556
    vc->opaque = opaque;
3557
    vc->vlan = vlan;
3558

    
3559
    vc->next = NULL;
3560
    pvc = &vlan->first_client;
3561
    while (*pvc != NULL)
3562
        pvc = &(*pvc)->next;
3563
    *pvc = vc;
3564
    return vc;
3565
}
3566

    
3567
int qemu_can_send_packet(VLANClientState *vc1)
3568
{
3569
    VLANState *vlan = vc1->vlan;
3570
    VLANClientState *vc;
3571

    
3572
    for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3573
        if (vc != vc1) {
3574
            if (vc->fd_can_read && vc->fd_can_read(vc->opaque))
3575
                return 1;
3576
        }
3577
    }
3578
    return 0;
3579
}
3580

    
3581
void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
3582
{
3583
    VLANState *vlan = vc1->vlan;
3584
    VLANClientState *vc;
3585

    
3586
#if 0
3587
    printf("vlan %d send:\n", vlan->id);
3588
    hex_dump(stdout, buf, size);
3589
#endif
3590
    for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3591
        if (vc != vc1) {
3592
            vc->fd_read(vc->opaque, buf, size);
3593
        }
3594
    }
3595
}
3596

    
3597
#if defined(CONFIG_SLIRP)
3598

    
3599
/* slirp network adapter */
3600

    
3601
static int slirp_inited;
3602
static VLANClientState *slirp_vc;
3603

    
3604
int slirp_can_output(void)
3605
{
3606
    return !slirp_vc || qemu_can_send_packet(slirp_vc);
3607
}
3608

    
3609
void slirp_output(const uint8_t *pkt, int pkt_len)
3610
{
3611
#if 0
3612
    printf("slirp output:\n");
3613
    hex_dump(stdout, pkt, pkt_len);
3614
#endif
3615
    if (!slirp_vc)
3616
        return;
3617
    qemu_send_packet(slirp_vc, pkt, pkt_len);
3618
}
3619

    
3620
static void slirp_receive(void *opaque, const uint8_t *buf, int size)
3621
{
3622
#if 0
3623
    printf("slirp input:\n");
3624
    hex_dump(stdout, buf, size);
3625
#endif
3626
    slirp_input(buf, size);
3627
}
3628

    
3629
static int net_slirp_init(VLANState *vlan)
3630
{
3631
    if (!slirp_inited) {
3632
        slirp_inited = 1;
3633
        slirp_init();
3634
    }
3635
    slirp_vc = qemu_new_vlan_client(vlan,
3636
                                    slirp_receive, NULL, NULL);
3637
    snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
3638
    return 0;
3639
}
3640

    
3641
static void net_slirp_redir(const char *redir_str)
3642
{
3643
    int is_udp;
3644
    char buf[256], *r;
3645
    const char *p;
3646
    struct in_addr guest_addr;
3647
    int host_port, guest_port;
3648

    
3649
    if (!slirp_inited) {
3650
        slirp_inited = 1;
3651
        slirp_init();
3652
    }
3653

    
3654
    p = redir_str;
3655
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3656
        goto fail;
3657
    if (!strcmp(buf, "tcp")) {
3658
        is_udp = 0;
3659
    } else if (!strcmp(buf, "udp")) {
3660
        is_udp = 1;
3661
    } else {
3662
        goto fail;
3663
    }
3664

    
3665
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3666
        goto fail;
3667
    host_port = strtol(buf, &r, 0);
3668
    if (r == buf)
3669
        goto fail;
3670

    
3671
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3672
        goto fail;
3673
    if (buf[0] == '\0') {
3674
        pstrcpy(buf, sizeof(buf), "10.0.2.15");
3675
    }
3676
    if (!inet_aton(buf, &guest_addr))
3677
        goto fail;
3678

    
3679
    guest_port = strtol(p, &r, 0);
3680
    if (r == p)
3681
        goto fail;
3682

    
3683
    if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
3684
        fprintf(stderr, "qemu: could not set up redirection\n");
3685
        exit(1);
3686
    }
3687
    return;
3688
 fail:
3689
    fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
3690
    exit(1);
3691
}
3692

    
3693
#ifndef _WIN32
3694

    
3695
char smb_dir[1024];
3696

    
3697
static void smb_exit(void)
3698
{
3699
    DIR *d;
3700
    struct dirent *de;
3701
    char filename[1024];
3702

    
3703
    /* erase all the files in the directory */
3704
    d = opendir(smb_dir);
3705
    for(;;) {
3706
        de = readdir(d);
3707
        if (!de)
3708
            break;
3709
        if (strcmp(de->d_name, ".") != 0 &&
3710
            strcmp(de->d_name, "..") != 0) {
3711
            snprintf(filename, sizeof(filename), "%s/%s",
3712
                     smb_dir, de->d_name);
3713
            unlink(filename);
3714
        }
3715
    }
3716
    closedir(d);
3717
    rmdir(smb_dir);
3718
}
3719

    
3720
/* automatic user mode samba server configuration */
3721
void net_slirp_smb(const char *exported_dir)
3722
{
3723
    char smb_conf[1024];
3724
    char smb_cmdline[1024];
3725
    FILE *f;
3726

    
3727
    if (!slirp_inited) {
3728
        slirp_inited = 1;
3729
        slirp_init();
3730
    }
3731

    
3732
    /* XXX: better tmp dir construction */
3733
    snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
3734
    if (mkdir(smb_dir, 0700) < 0) {
3735
        fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
3736
        exit(1);
3737
    }
3738
    snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
3739

    
3740
    f = fopen(smb_conf, "w");
3741
    if (!f) {
3742
        fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
3743
        exit(1);
3744
    }
3745
    fprintf(f,
3746
            "[global]\n"
3747
            "private dir=%s\n"
3748
            "smb ports=0\n"
3749
            "socket address=127.0.0.1\n"
3750
            "pid directory=%s\n"
3751
            "lock directory=%s\n"
3752
            "log file=%s/log.smbd\n"
3753
            "smb passwd file=%s/smbpasswd\n"
3754
            "security = share\n"
3755
            "[qemu]\n"
3756
            "path=%s\n"
3757
            "read only=no\n"
3758
            "guest ok=yes\n",
3759
            smb_dir,
3760
            smb_dir,
3761
            smb_dir,
3762
            smb_dir,
3763
            smb_dir,
3764
            exported_dir
3765
            );
3766
    fclose(f);
3767
    atexit(smb_exit);
3768

    
3769
    snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
3770
             SMBD_COMMAND, smb_conf);
3771

    
3772
    slirp_add_exec(0, smb_cmdline, 4, 139);
3773
}
3774

    
3775
#endif /* !defined(_WIN32) */
3776
void do_info_slirp(void)
3777
{
3778
    slirp_stats();
3779
}
3780

    
3781
#endif /* CONFIG_SLIRP */
3782

    
3783
#if !defined(_WIN32)
3784

    
3785
typedef struct TAPState {
3786
    VLANClientState *vc;
3787
    int fd;
3788
    char down_script[1024];
3789
} TAPState;
3790

    
3791
static void tap_receive(void *opaque, const uint8_t *buf, int size)
3792
{
3793
    TAPState *s = opaque;
3794
    int ret;
3795
    for(;;) {
3796
        ret = write(s->fd, buf, size);
3797
        if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
3798
        } else {
3799
            break;
3800
        }
3801
    }
3802
}
3803

    
3804
static void tap_send(void *opaque)
3805
{
3806
    TAPState *s = opaque;
3807
    uint8_t buf[4096];
3808
    int size;
3809

    
3810
#ifdef __sun__
3811
    struct strbuf sbuf;
3812
    int f = 0;
3813
    sbuf.maxlen = sizeof(buf);
3814
    sbuf.buf = buf;
3815
    size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
3816
#else
3817
    size = read(s->fd, buf, sizeof(buf));
3818
#endif
3819
    if (size > 0) {
3820
        qemu_send_packet(s->vc, buf, size);
3821
    }
3822
}
3823

    
3824
/* fd support */
3825

    
3826
static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
3827
{
3828
    TAPState *s;
3829

    
3830
    s = qemu_mallocz(sizeof(TAPState));
3831
    if (!s)
3832
        return NULL;
3833
    s->fd = fd;
3834
    s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
3835
    qemu_set_fd_handler(s->fd, tap_send, NULL, s);
3836
    snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
3837
    return s;
3838
}
3839

    
3840
#if defined (_BSD) || defined (__FreeBSD_kernel__)
3841
static int tap_open(char *ifname, int ifname_size)
3842
{
3843
    int fd;
3844
    char *dev;
3845
    struct stat s;
3846

    
3847
    TFR(fd = open("/dev/tap", O_RDWR));
3848
    if (fd < 0) {
3849
        fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
3850
        return -1;
3851
    }
3852

    
3853
    fstat(fd, &s);
3854
    dev = devname(s.st_rdev, S_IFCHR);
3855
    pstrcpy(ifname, ifname_size, dev);
3856

    
3857
    fcntl(fd, F_SETFL, O_NONBLOCK);
3858
    return fd;
3859
}
3860
#elif defined(__sun__)
3861
#define TUNNEWPPA       (('T'<<16) | 0x0001)
3862
/*
3863
 * Allocate TAP device, returns opened fd.
3864
 * Stores dev name in the first arg(must be large enough).
3865
 */
3866
int tap_alloc(char *dev)
3867
{
3868
    int tap_fd, if_fd, ppa = -1;
3869
    static int ip_fd = 0;
3870
    char *ptr;
3871

    
3872
    static int arp_fd = 0;
3873
    int ip_muxid, arp_muxid;
3874
    struct strioctl  strioc_if, strioc_ppa;
3875
    int link_type = I_PLINK;;
3876
    struct lifreq ifr;
3877
    char actual_name[32] = "";
3878

    
3879
    memset(&ifr, 0x0, sizeof(ifr));
3880

    
3881
    if( *dev ){
3882
       ptr = dev;
3883
       while( *ptr && !isdigit((int)*ptr) ) ptr++;
3884
       ppa = atoi(ptr);
3885
    }
3886

    
3887
    /* Check if IP device was opened */
3888
    if( ip_fd )
3889
       close(ip_fd);
3890

    
3891
    TFR(ip_fd = open("/dev/udp", O_RDWR, 0));
3892
    if (ip_fd < 0) {
3893
       syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
3894
       return -1;
3895
    }
3896

    
3897
    TFR(tap_fd = open("/dev/tap", O_RDWR, 0));
3898
    if (tap_fd < 0) {
3899
       syslog(LOG_ERR, "Can't open /dev/tap");
3900
       return -1;
3901
    }
3902

    
3903
    /* Assign a new PPA and get its unit number. */
3904
    strioc_ppa.ic_cmd = TUNNEWPPA;
3905
    strioc_ppa.ic_timout = 0;
3906
    strioc_ppa.ic_len = sizeof(ppa);
3907
    strioc_ppa.ic_dp = (char *)&ppa;
3908
    if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
3909
       syslog (LOG_ERR, "Can't assign new interface");
3910

    
3911
    TFR(if_fd = open("/dev/tap", O_RDWR, 0));
3912
    if (if_fd < 0) {
3913
       syslog(LOG_ERR, "Can't open /dev/tap (2)");
3914
       return -1;
3915
    }
3916
    if(ioctl(if_fd, I_PUSH, "ip") < 0){
3917
       syslog(LOG_ERR, "Can't push IP module");
3918
       return -1;
3919
    }
3920

    
3921
    if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
3922
        syslog(LOG_ERR, "Can't get flags\n");
3923

    
3924
    snprintf (actual_name, 32, "tap%d", ppa);
3925
    strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3926

    
3927
    ifr.lifr_ppa = ppa;
3928
    /* Assign ppa according to the unit number returned by tun device */
3929

    
3930
    if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
3931
        syslog (LOG_ERR, "Can't set PPA %d", ppa);
3932
    if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
3933
        syslog (LOG_ERR, "Can't get flags\n");
3934
    /* Push arp module to if_fd */
3935
    if (ioctl (if_fd, I_PUSH, "arp") < 0)
3936
        syslog (LOG_ERR, "Can't push ARP module (2)");
3937

    
3938
    /* Push arp module to ip_fd */
3939
    if (ioctl (ip_fd, I_POP, NULL) < 0)
3940
        syslog (LOG_ERR, "I_POP failed\n");
3941
    if (ioctl (ip_fd, I_PUSH, "arp") < 0)
3942
        syslog (LOG_ERR, "Can't push ARP module (3)\n");
3943
    /* Open arp_fd */
3944
    TFR(arp_fd = open ("/dev/tap", O_RDWR, 0));
3945
    if (arp_fd < 0)
3946
       syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
3947

    
3948
    /* Set ifname to arp */
3949
    strioc_if.ic_cmd = SIOCSLIFNAME;
3950
    strioc_if.ic_timout = 0;
3951
    strioc_if.ic_len = sizeof(ifr);
3952
    strioc_if.ic_dp = (char *)&ifr;
3953
    if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
3954
        syslog (LOG_ERR, "Can't set ifname to arp\n");
3955
    }
3956

    
3957
    if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
3958
       syslog(LOG_ERR, "Can't link TAP device to IP");
3959
       return -1;
3960
    }
3961

    
3962
    if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
3963
        syslog (LOG_ERR, "Can't link TAP device to ARP");
3964

    
3965
    close (if_fd);
3966

    
3967
    memset(&ifr, 0x0, sizeof(ifr));
3968
    strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3969
    ifr.lifr_ip_muxid  = ip_muxid;
3970
    ifr.lifr_arp_muxid = arp_muxid;
3971

    
3972
    if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
3973
    {
3974
      ioctl (ip_fd, I_PUNLINK , arp_muxid);
3975
      ioctl (ip_fd, I_PUNLINK, ip_muxid);
3976
      syslog (LOG_ERR, "Can't set multiplexor id");
3977
    }
3978

    
3979
    sprintf(dev, "tap%d", ppa);
3980
    return tap_fd;
3981
}
3982

    
3983
static int tap_open(char *ifname, int ifname_size)
3984
{
3985
    char  dev[10]="";
3986
    int fd;
3987
    if( (fd = tap_alloc(dev)) < 0 ){
3988
       fprintf(stderr, "Cannot allocate TAP device\n");
3989
       return -1;
3990
    }
3991
    pstrcpy(ifname, ifname_size, dev);
3992
    fcntl(fd, F_SETFL, O_NONBLOCK);
3993
    return fd;
3994
}
3995
#else
3996
static int tap_open(char *ifname, int ifname_size)
3997
{
3998
    struct ifreq ifr;
3999
    int fd, ret;
4000

    
4001
    TFR(fd = open("/dev/net/tun", O_RDWR));
4002
    if (fd < 0) {
4003
        fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
4004
        return -1;
4005
    }
4006
    memset(&ifr, 0, sizeof(ifr));
4007
    ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
4008
    if (ifname[0] != '\0')
4009
        pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
4010
    else
4011
        pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
4012
    ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
4013
    if (ret != 0) {
4014
        fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
4015
        close(fd);
4016
        return -1;
4017
    }
4018
    pstrcpy(ifname, ifname_size, ifr.ifr_name);
4019
    fcntl(fd, F_SETFL, O_NONBLOCK);
4020
    return fd;
4021
}
4022
#endif
4023

    
4024
static int launch_script(const char *setup_script, const char *ifname, int fd)
4025
{
4026
    int pid, status;
4027
    char *args[3];
4028
    char **parg;
4029

    
4030
        /* try to launch network script */
4031
        pid = fork();
4032
        if (pid >= 0) {
4033
            if (pid == 0) {
4034
                int open_max = sysconf (_SC_OPEN_MAX), i;
4035
                for (i = 0; i < open_max; i++)
4036
                    if (i != STDIN_FILENO &&
4037
                        i != STDOUT_FILENO &&
4038
                        i != STDERR_FILENO &&
4039
                        i != fd)
4040
                        close(i);
4041

    
4042
                parg = args;
4043
                *parg++ = (char *)setup_script;
4044
                *parg++ = (char *)ifname;
4045
                *parg++ = NULL;
4046
                execv(setup_script, args);
4047
                _exit(1);
4048
            }
4049
            while (waitpid(pid, &status, 0) != pid);
4050
            if (!WIFEXITED(status) ||
4051
                WEXITSTATUS(status) != 0) {
4052
                fprintf(stderr, "%s: could not launch network script\n",
4053
                        setup_script);
4054
                return -1;
4055
            }
4056
        }
4057
    return 0;
4058
}
4059

    
4060
static int net_tap_init(VLANState *vlan, const char *ifname1,
4061
                        const char *setup_script, const char *down_script)
4062
{
4063
    TAPState *s;
4064
    int fd;
4065
    char ifname[128];
4066

    
4067
    if (ifname1 != NULL)
4068
        pstrcpy(ifname, sizeof(ifname), ifname1);
4069
    else
4070
        ifname[0] = '\0';
4071
    TFR(fd = tap_open(ifname, sizeof(ifname)));
4072
    if (fd < 0)
4073
        return -1;
4074

    
4075
    if (!setup_script || !strcmp(setup_script, "no"))
4076
        setup_script = "";
4077
    if (setup_script[0] != '\0') {
4078
        if (launch_script(setup_script, ifname, fd))
4079
            return -1;
4080
    }
4081
    s = net_tap_fd_init(vlan, fd);
4082
    if (!s)
4083
        return -1;
4084
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4085
             "tap: ifname=%s setup_script=%s", ifname, setup_script);
4086
    if (down_script && strcmp(down_script, "no"))
4087
        snprintf(s->down_script, sizeof(s->down_script), "%s", down_script);
4088
    return 0;
4089
}
4090

    
4091
#endif /* !_WIN32 */
4092

    
4093
/* network connection */
4094
typedef struct NetSocketState {
4095
    VLANClientState *vc;
4096
    int fd;
4097
    int state; /* 0 = getting length, 1 = getting data */
4098
    int index;
4099
    int packet_len;
4100
    uint8_t buf[4096];
4101
    struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
4102
} NetSocketState;
4103

    
4104
typedef struct NetSocketListenState {
4105
    VLANState *vlan;
4106
    int fd;
4107
} NetSocketListenState;
4108

    
4109
/* XXX: we consider we can send the whole packet without blocking */
4110
static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
4111
{
4112
    NetSocketState *s = opaque;
4113
    uint32_t len;
4114
    len = htonl(size);
4115

    
4116
    send_all(s->fd, (const uint8_t *)&len, sizeof(len));
4117
    send_all(s->fd, buf, size);
4118
}
4119

    
4120
static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
4121
{
4122
    NetSocketState *s = opaque;
4123
    sendto(s->fd, buf, size, 0,
4124
           (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
4125
}
4126

    
4127
static void net_socket_send(void *opaque)
4128
{
4129
    NetSocketState *s = opaque;
4130
    int l, size, err;
4131
    uint8_t buf1[4096];
4132
    const uint8_t *buf;
4133

    
4134
    size = recv(s->fd, buf1, sizeof(buf1), 0);
4135
    if (size < 0) {
4136
        err = socket_error();
4137
        if (err != EWOULDBLOCK)
4138
            goto eoc;
4139
    } else if (size == 0) {
4140
        /* end of connection */
4141
    eoc:
4142
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4143
        closesocket(s->fd);
4144
        return;
4145
    }
4146
    buf = buf1;
4147
    while (size > 0) {
4148
        /* reassemble a packet from the network */
4149
        switch(s->state) {
4150
        case 0:
4151
            l = 4 - s->index;
4152
            if (l > size)
4153
                l = size;
4154
            memcpy(s->buf + s->index, buf, l);
4155
            buf += l;
4156
            size -= l;
4157
            s->index += l;
4158
            if (s->index == 4) {
4159
                /* got length */
4160
                s->packet_len = ntohl(*(uint32_t *)s->buf);
4161
                s->index = 0;
4162
                s->state = 1;
4163
            }
4164
            break;
4165
        case 1:
4166
            l = s->packet_len - s->index;
4167
            if (l > size)
4168
                l = size;
4169
            memcpy(s->buf + s->index, buf, l);
4170
            s->index += l;
4171
            buf += l;
4172
            size -= l;
4173
            if (s->index >= s->packet_len) {
4174
                qemu_send_packet(s->vc, s->buf, s->packet_len);
4175
                s->index = 0;
4176
                s->state = 0;
4177
            }
4178
            break;
4179
        }
4180
    }
4181
}
4182

    
4183
static void net_socket_send_dgram(void *opaque)
4184
{
4185
    NetSocketState *s = opaque;
4186
    int size;
4187

    
4188
    size = recv(s->fd, s->buf, sizeof(s->buf), 0);
4189
    if (size < 0)
4190
        return;
4191
    if (size == 0) {
4192
        /* end of connection */
4193
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4194
        return;
4195
    }
4196
    qemu_send_packet(s->vc, s->buf, size);
4197
}
4198

    
4199
static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
4200
{
4201
    struct ip_mreq imr;
4202
    int fd;
4203
    int val, ret;
4204
    if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
4205
        fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
4206
                inet_ntoa(mcastaddr->sin_addr),
4207
                (int)ntohl(mcastaddr->sin_addr.s_addr));
4208
        return -1;
4209

    
4210
    }
4211
    fd = socket(PF_INET, SOCK_DGRAM, 0);
4212
    if (fd < 0) {
4213
        perror("socket(PF_INET, SOCK_DGRAM)");
4214
        return -1;
4215
    }
4216

    
4217
    val = 1;
4218
    ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
4219
                   (const char *)&val, sizeof(val));
4220
    if (ret < 0) {
4221
        perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
4222
        goto fail;
4223
    }
4224

    
4225
    ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
4226
    if (ret < 0) {
4227
        perror("bind");
4228
        goto fail;
4229
    }
4230

    
4231
    /* Add host to multicast group */
4232
    imr.imr_multiaddr = mcastaddr->sin_addr;
4233
    imr.imr_interface.s_addr = htonl(INADDR_ANY);
4234

    
4235
    ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
4236
                     (const char *)&imr, sizeof(struct ip_mreq));
4237
    if (ret < 0) {
4238
        perror("setsockopt(IP_ADD_MEMBERSHIP)");
4239
        goto fail;
4240
    }
4241

    
4242
    /* Force mcast msgs to loopback (eg. several QEMUs in same host */
4243
    val = 1;
4244
    ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
4245
                   (const char *)&val, sizeof(val));
4246
    if (ret < 0) {
4247
        perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
4248
        goto fail;
4249
    }
4250

    
4251
    socket_set_nonblock(fd);
4252
    return fd;
4253
fail:
4254
    if (fd >= 0)
4255
        closesocket(fd);
4256
    return -1;
4257
}
4258

    
4259
static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
4260
                                          int is_connected)
4261
{
4262
    struct sockaddr_in saddr;
4263
    int newfd;
4264
    socklen_t saddr_len;
4265
    NetSocketState *s;
4266

    
4267
    /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
4268
     * Because this may be "shared" socket from a "master" process, datagrams would be recv()
4269
     * by ONLY ONE process: we must "clone" this dgram socket --jjo
4270
     */
4271

    
4272
    if (is_connected) {
4273
        if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
4274
            /* must be bound */
4275
            if (saddr.sin_addr.s_addr==0) {
4276
                fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
4277
                        fd);
4278
                return NULL;
4279
            }
4280
            /* clone dgram socket */
4281
            newfd = net_socket_mcast_create(&saddr);
4282
            if (newfd < 0) {
4283
                /* error already reported by net_socket_mcast_create() */
4284
                close(fd);
4285
                return NULL;
4286
            }
4287
            /* clone newfd to fd, close newfd */
4288
            dup2(newfd, fd);
4289
            close(newfd);
4290

    
4291
        } else {
4292
            fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
4293
                    fd, strerror(errno));
4294
            return NULL;
4295
        }
4296
    }
4297

    
4298
    s = qemu_mallocz(sizeof(NetSocketState));
4299
    if (!s)
4300
        return NULL;
4301
    s->fd = fd;
4302

    
4303
    s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
4304
    qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
4305

    
4306
    /* mcast: save bound address as dst */
4307
    if (is_connected) s->dgram_dst=saddr;
4308

    
4309
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4310
            "socket: fd=%d (%s mcast=%s:%d)",
4311
            fd, is_connected? "cloned" : "",
4312
            inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4313
    return s;
4314
}
4315

    
4316
static void net_socket_connect(void *opaque)
4317
{
4318
    NetSocketState *s = opaque;
4319
    qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
4320
}
4321

    
4322
static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
4323
                                          int is_connected)
4324
{
4325
    NetSocketState *s;
4326
    s = qemu_mallocz(sizeof(NetSocketState));
4327
    if (!s)
4328
        return NULL;
4329
    s->fd = fd;
4330
    s->vc = qemu_new_vlan_client(vlan,
4331
                                 net_socket_receive, NULL, s);
4332
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4333
             "socket: fd=%d", fd);
4334
    if (is_connected) {
4335
        net_socket_connect(s);
4336
    } else {
4337
        qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
4338
    }
4339
    return s;
4340
}
4341

    
4342
static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
4343
                                          int is_connected)
4344
{
4345
    int so_type=-1, optlen=sizeof(so_type);
4346

    
4347
    if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type, &optlen)< 0) {
4348
        fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
4349
        return NULL;
4350
    }
4351
    switch(so_type) {
4352
    case SOCK_DGRAM:
4353
        return net_socket_fd_init_dgram(vlan, fd, is_connected);
4354
    case SOCK_STREAM:
4355
        return net_socket_fd_init_stream(vlan, fd, is_connected);
4356
    default:
4357
        /* who knows ... this could be a eg. a pty, do warn and continue as stream */
4358
        fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
4359
        return net_socket_fd_init_stream(vlan, fd, is_connected);
4360
    }
4361
    return NULL;
4362
}
4363

    
4364
static void net_socket_accept(void *opaque)
4365
{
4366
    NetSocketListenState *s = opaque;
4367
    NetSocketState *s1;
4368
    struct sockaddr_in saddr;
4369
    socklen_t len;
4370
    int fd;
4371

    
4372
    for(;;) {
4373
        len = sizeof(saddr);
4374
        fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
4375
        if (fd < 0 && errno != EINTR) {
4376
            return;
4377
        } else if (fd >= 0) {
4378
            break;
4379
        }
4380
    }
4381
    s1 = net_socket_fd_init(s->vlan, fd, 1);
4382
    if (!s1) {
4383
        closesocket(fd);
4384
    } else {
4385
        snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
4386
                 "socket: connection from %s:%d",
4387
                 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4388
    }
4389
}
4390

    
4391
static int net_socket_listen_init(VLANState *vlan, const char *host_str)
4392
{
4393
    NetSocketListenState *s;
4394
    int fd, val, ret;
4395
    struct sockaddr_in saddr;
4396

    
4397
    if (parse_host_port(&saddr, host_str) < 0)
4398
        return -1;
4399

    
4400
    s = qemu_mallocz(sizeof(NetSocketListenState));
4401
    if (!s)
4402
        return -1;
4403

    
4404
    fd = socket(PF_INET, SOCK_STREAM, 0);
4405
    if (fd < 0) {
4406
        perror("socket");
4407
        return -1;
4408
    }
4409
    socket_set_nonblock(fd);
4410

    
4411
    /* allow fast reuse */
4412
    val = 1;
4413
    setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
4414

    
4415
    ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4416
    if (ret < 0) {
4417
        perror("bind");
4418
        return -1;
4419
    }
4420
    ret = listen(fd, 0);
4421
    if (ret < 0) {
4422
        perror("listen");
4423
        return -1;
4424
    }
4425
    s->vlan = vlan;
4426
    s->fd = fd;
4427
    qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
4428
    return 0;
4429
}
4430

    
4431
static int net_socket_connect_init(VLANState *vlan, const char *host_str)
4432
{
4433
    NetSocketState *s;
4434
    int fd, connected, ret, err;
4435
    struct sockaddr_in saddr;
4436

    
4437
    if (parse_host_port(&saddr, host_str) < 0)
4438
        return -1;
4439

    
4440
    fd = socket(PF_INET, SOCK_STREAM, 0);
4441
    if (fd < 0) {
4442
        perror("socket");
4443
        return -1;
4444
    }
4445
    socket_set_nonblock(fd);
4446

    
4447
    connected = 0;
4448
    for(;;) {
4449
        ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4450
        if (ret < 0) {
4451
            err = socket_error();
4452
            if (err == EINTR || err == EWOULDBLOCK) {
4453
            } else if (err == EINPROGRESS) {
4454
                break;
4455
#ifdef _WIN32
4456
            } else if (err == WSAEALREADY) {
4457
                break;
4458
#endif
4459
            } else {
4460
                perror("connect");
4461
                closesocket(fd);
4462
                return -1;
4463
            }
4464
        } else {
4465
            connected = 1;
4466
            break;
4467
        }
4468
    }
4469
    s = net_socket_fd_init(vlan, fd, connected);
4470
    if (!s)
4471
        return -1;
4472
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4473
             "socket: connect to %s:%d",
4474
             inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4475
    return 0;
4476
}
4477

    
4478
static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
4479
{
4480
    NetSocketState *s;
4481
    int fd;
4482
    struct sockaddr_in saddr;
4483

    
4484
    if (parse_host_port(&saddr, host_str) < 0)
4485
        return -1;
4486

    
4487

    
4488
    fd = net_socket_mcast_create(&saddr);
4489
    if (fd < 0)
4490
        return -1;
4491

    
4492
    s = net_socket_fd_init(vlan, fd, 0);
4493
    if (!s)
4494
        return -1;
4495

    
4496
    s->dgram_dst = saddr;
4497

    
4498
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4499
             "socket: mcast=%s:%d",
4500
             inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4501
    return 0;
4502

    
4503
}
4504

    
4505
static int get_param_value(char *buf, int buf_size,
4506
                           const char *tag, const char *str)
4507
{
4508
    const char *p;
4509
    char *q;
4510
    char option[128];
4511

    
4512
    p = str;
4513
    for(;;) {
4514
        q = option;
4515
        while (*p != '\0' && *p != '=') {
4516
            if ((q - option) < sizeof(option) - 1)
4517
                *q++ = *p;
4518
            p++;
4519
        }
4520
        *q = '\0';
4521
        if (*p != '=')
4522
            break;
4523
        p++;
4524
        if (!strcmp(tag, option)) {
4525
            q = buf;
4526
            while (*p != '\0' && *p != ',') {
4527
                if ((q - buf) < buf_size - 1)
4528
                    *q++ = *p;
4529
                p++;
4530
            }
4531
            *q = '\0';
4532
            return q - buf;
4533
        } else {
4534
            while (*p != '\0' && *p != ',') {
4535
                p++;
4536
            }
4537
        }
4538
        if (*p != ',')
4539
            break;
4540
        p++;
4541
    }
4542
    return 0;
4543
}
4544

    
4545
static int net_client_init(const char *str)
4546
{
4547
    const char *p;
4548
    char *q;
4549
    char device[64];
4550
    char buf[1024];
4551
    int vlan_id, ret;
4552
    VLANState *vlan;
4553

    
4554
    p = str;
4555
    q = device;
4556
    while (*p != '\0' && *p != ',') {
4557
        if ((q - device) < sizeof(device) - 1)
4558
            *q++ = *p;
4559
        p++;
4560
    }
4561
    *q = '\0';
4562
    if (*p == ',')
4563
        p++;
4564
    vlan_id = 0;
4565
    if (get_param_value(buf, sizeof(buf), "vlan", p)) {
4566
        vlan_id = strtol(buf, NULL, 0);
4567
    }
4568
    vlan = qemu_find_vlan(vlan_id);
4569
    if (!vlan) {
4570
        fprintf(stderr, "Could not create vlan %d\n", vlan_id);
4571
        return -1;
4572
    }
4573
    if (!strcmp(device, "nic")) {
4574
        NICInfo *nd;
4575
        uint8_t *macaddr;
4576

    
4577
        if (nb_nics >= MAX_NICS) {
4578
            fprintf(stderr, "Too Many NICs\n");
4579
            return -1;
4580
        }
4581
        nd = &nd_table[nb_nics];
4582
        macaddr = nd->macaddr;
4583
        macaddr[0] = 0x52;
4584
        macaddr[1] = 0x54;
4585
        macaddr[2] = 0x00;
4586
        macaddr[3] = 0x12;
4587
        macaddr[4] = 0x34;
4588
        macaddr[5] = 0x56 + nb_nics;
4589

    
4590
        if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
4591
            if (parse_macaddr(macaddr, buf) < 0) {
4592
                fprintf(stderr, "invalid syntax for ethernet address\n");
4593
                return -1;
4594
            }
4595
        }
4596
        if (get_param_value(buf, sizeof(buf), "model", p)) {
4597
            nd->model = strdup(buf);
4598
        }
4599
        nd->vlan = vlan;
4600
        nb_nics++;
4601
        vlan->nb_guest_devs++;
4602
        ret = 0;
4603
    } else
4604
    if (!strcmp(device, "none")) {
4605
        /* does nothing. It is needed to signal that no network cards
4606
           are wanted */
4607
        ret = 0;
4608
    } else
4609
#ifdef CONFIG_SLIRP
4610
    if (!strcmp(device, "user")) {
4611
        if (get_param_value(buf, sizeof(buf), "hostname", p)) {
4612
            pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
4613
        }
4614
        vlan->nb_host_devs++;
4615
        ret = net_slirp_init(vlan);
4616
    } else
4617
#endif
4618
#ifdef _WIN32
4619
    if (!strcmp(device, "tap")) {
4620
        char ifname[64];
4621
        if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4622
            fprintf(stderr, "tap: no interface name\n");
4623
            return -1;
4624
        }
4625
        vlan->nb_host_devs++;
4626
        ret = tap_win32_init(vlan, ifname);
4627
    } else
4628
#else
4629
    if (!strcmp(device, "tap")) {
4630
        char ifname[64];
4631
        char setup_script[1024], down_script[1024];
4632
        int fd;
4633
        vlan->nb_host_devs++;
4634
        if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4635
            fd = strtol(buf, NULL, 0);
4636
            ret = -1;
4637
            if (net_tap_fd_init(vlan, fd))
4638
                ret = 0;
4639
        } else {
4640
            if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4641
                ifname[0] = '\0';
4642
            }
4643
            if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
4644
                pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
4645
            }
4646
            if (get_param_value(down_script, sizeof(down_script), "downscript", p) == 0) {
4647
                pstrcpy(down_script, sizeof(down_script), DEFAULT_NETWORK_DOWN_SCRIPT);
4648
            }
4649
            ret = net_tap_init(vlan, ifname, setup_script, down_script);
4650
        }
4651
    } else
4652
#endif
4653
    if (!strcmp(device, "socket")) {
4654
        if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4655
            int fd;
4656
            fd = strtol(buf, NULL, 0);
4657
            ret = -1;
4658
            if (net_socket_fd_init(vlan, fd, 1))
4659
                ret = 0;
4660
        } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
4661
            ret = net_socket_listen_init(vlan, buf);
4662
        } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
4663
            ret = net_socket_connect_init(vlan, buf);
4664
        } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
4665
            ret = net_socket_mcast_init(vlan, buf);
4666
        } else {
4667
            fprintf(stderr, "Unknown socket options: %s\n", p);
4668
            return -1;
4669
        }
4670
        vlan->nb_host_devs++;
4671
    } else
4672
    {
4673
        fprintf(stderr, "Unknown network device: %s\n", device);
4674
        return -1;
4675
    }
4676
    if (ret < 0) {
4677
        fprintf(stderr, "Could not initialize device '%s'\n", device);
4678
    }
4679

    
4680
    return ret;
4681
}
4682

    
4683
void do_info_network(void)
4684
{
4685
    VLANState *vlan;
4686
    VLANClientState *vc;
4687

    
4688
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
4689
        term_printf("VLAN %d devices:\n", vlan->id);
4690
        for(vc = vlan->first_client; vc != NULL; vc = vc->next)
4691
            term_printf("  %s\n", vc->info_str);
4692
    }
4693
}
4694

    
4695
/***********************************************************/
4696
/* USB devices */
4697

    
4698
static USBPort *used_usb_ports;
4699
static USBPort *free_usb_ports;
4700

    
4701
/* ??? Maybe change this to register a hub to keep track of the topology.  */
4702
void qemu_register_usb_port(USBPort *port, void *opaque, int index,
4703
                            usb_attachfn attach)
4704
{
4705
    port->opaque = opaque;
4706
    port->index = index;
4707
    port->attach = attach;
4708
    port->next = free_usb_ports;
4709
    free_usb_ports = port;
4710
}
4711

    
4712
static int usb_device_add(const char *devname)
4713
{
4714
    const char *p;
4715
    USBDevice *dev;
4716
    USBPort *port;
4717

    
4718
    if (!free_usb_ports)
4719
        return -1;
4720

    
4721
    if (strstart(devname, "host:", &p)) {
4722
        dev = usb_host_device_open(p);
4723
    } else if (!strcmp(devname, "mouse")) {
4724
        dev = usb_mouse_init();
4725
    } else if (!strcmp(devname, "tablet")) {
4726
        dev = usb_tablet_init();
4727
    } else if (!strcmp(devname, "keyboard")) {
4728
        dev = usb_keyboard_init();
4729
    } else if (strstart(devname, "disk:", &p)) {
4730
        dev = usb_msd_init(p);
4731
    } else if (!strcmp(devname, "wacom-tablet")) {
4732
        dev = usb_wacom_init();
4733
    } else {
4734
        return -1;
4735
    }
4736
    if (!dev)
4737
        return -1;
4738

    
4739
    /* Find a USB port to add the device to.  */
4740
    port = free_usb_ports;
4741
    if (!port->next) {
4742
        USBDevice *hub;
4743

    
4744
        /* Create a new hub and chain it on.  */
4745
        free_usb_ports = NULL;
4746
        port->next = used_usb_ports;
4747
        used_usb_ports = port;
4748

    
4749
        hub = usb_hub_init(VM_USB_HUB_SIZE);
4750
        usb_attach(port, hub);
4751
        port = free_usb_ports;
4752
    }
4753

    
4754
    free_usb_ports = port->next;
4755
    port->next = used_usb_ports;
4756
    used_usb_ports = port;
4757
    usb_attach(port, dev);
4758
    return 0;
4759
}
4760

    
4761
static int usb_device_del(const char *devname)
4762
{
4763
    USBPort *port;
4764
    USBPort **lastp;
4765
    USBDevice *dev;
4766
    int bus_num, addr;
4767
    const char *p;
4768

    
4769
    if (!used_usb_ports)
4770
        return -1;
4771

    
4772
    p = strchr(devname, '.');
4773
    if (!p)
4774
        return -1;
4775
    bus_num = strtoul(devname, NULL, 0);
4776
    addr = strtoul(p + 1, NULL, 0);
4777
    if (bus_num != 0)
4778
        return -1;
4779

    
4780
    lastp = &used_usb_ports;
4781
    port = used_usb_ports;
4782
    while (port && port->dev->addr != addr) {
4783
        lastp = &port->next;
4784
        port = port->next;
4785
    }
4786

    
4787
    if (!port)
4788
        return -1;
4789

    
4790
    dev = port->dev;
4791
    *lastp = port->next;
4792
    usb_attach(port, NULL);
4793
    dev->handle_destroy(dev);
4794
    port->next = free_usb_ports;
4795
    free_usb_ports = port;
4796
    return 0;
4797
}
4798

    
4799
void do_usb_add(const char *devname)
4800
{
4801
    int ret;
4802
    ret = usb_device_add(devname);
4803
    if (ret < 0)
4804
        term_printf("Could not add USB device '%s'\n", devname);
4805
}
4806

    
4807
void do_usb_del(const char *devname)
4808
{
4809
    int ret;
4810
    ret = usb_device_del(devname);
4811
    if (ret < 0)
4812
        term_printf("Could not remove USB device '%s'\n", devname);
4813
}
4814

    
4815
void usb_info(void)
4816
{
4817
    USBDevice *dev;
4818
    USBPort *port;
4819
    const char *speed_str;
4820

    
4821
    if (!usb_enabled) {
4822
        term_printf("USB support not enabled\n");
4823
        return;
4824
    }
4825

    
4826
    for (port = used_usb_ports; port; port = port->next) {
4827
        dev = port->dev;
4828
        if (!dev)
4829
            continue;
4830
        switch(dev->speed) {
4831
        case USB_SPEED_LOW:
4832
            speed_str = "1.5";
4833
            break;
4834
        case USB_SPEED_FULL:
4835
            speed_str = "12";
4836
            break;
4837
        case USB_SPEED_HIGH:
4838
            speed_str = "480";
4839
            break;
4840
        default:
4841
            speed_str = "?";
4842
            break;
4843
        }
4844
        term_printf("  Device %d.%d, Speed %s Mb/s, Product %s\n",
4845
                    0, dev->addr, speed_str, dev->devname);
4846
    }
4847
}
4848

    
4849
/***********************************************************/
4850
/* PCMCIA/Cardbus */
4851

    
4852
static struct pcmcia_socket_entry_s {
4853
    struct pcmcia_socket_s *socket;
4854
    struct pcmcia_socket_entry_s *next;
4855
} *pcmcia_sockets = 0;
4856

    
4857
void pcmcia_socket_register(struct pcmcia_socket_s *socket)
4858
{
4859
    struct pcmcia_socket_entry_s *entry;
4860

    
4861
    entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
4862
    entry->socket = socket;
4863
    entry->next = pcmcia_sockets;
4864
    pcmcia_sockets = entry;
4865
}
4866

    
4867
void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
4868
{
4869
    struct pcmcia_socket_entry_s *entry, **ptr;
4870

    
4871
    ptr = &pcmcia_sockets;
4872
    for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
4873
        if (entry->socket == socket) {
4874
            *ptr = entry->next;
4875
            qemu_free(entry);
4876
        }
4877
}
4878

    
4879
void pcmcia_info(void)
4880
{
4881
    struct pcmcia_socket_entry_s *iter;
4882
    if (!pcmcia_sockets)
4883
        term_printf("No PCMCIA sockets\n");
4884

    
4885
    for (iter = pcmcia_sockets; iter; iter = iter->next)
4886
        term_printf("%s: %s\n", iter->socket->slot_string,
4887
                    iter->socket->attached ? iter->socket->card_string :
4888
                    "Empty");
4889
}
4890

    
4891
/***********************************************************/
4892
/* dumb display */
4893

    
4894
static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
4895
{
4896
}
4897

    
4898
static void dumb_resize(DisplayState *ds, int w, int h)
4899
{
4900
}
4901

    
4902
static void dumb_refresh(DisplayState *ds)
4903
{
4904
#if defined(CONFIG_SDL)
4905
    vga_hw_update();
4906
#endif
4907
}
4908

    
4909
static void dumb_display_init(DisplayState *ds)
4910
{
4911
    ds->data = NULL;
4912
    ds->linesize = 0;
4913
    ds->depth = 0;
4914
    ds->dpy_update = dumb_update;
4915
    ds->dpy_resize = dumb_resize;
4916
    ds->dpy_refresh = dumb_refresh;
4917
}
4918

    
4919
/***********************************************************/
4920
/* I/O handling */
4921

    
4922
#define MAX_IO_HANDLERS 64
4923

    
4924
typedef struct IOHandlerRecord {
4925
    int fd;
4926
    IOCanRWHandler *fd_read_poll;
4927
    IOHandler *fd_read;
4928
    IOHandler *fd_write;
4929
    int deleted;
4930
    void *opaque;
4931
    /* temporary data */
4932
    struct pollfd *ufd;
4933
    struct IOHandlerRecord *next;
4934
} IOHandlerRecord;
4935

    
4936
static IOHandlerRecord *first_io_handler;
4937

    
4938
/* XXX: fd_read_poll should be suppressed, but an API change is
4939
   necessary in the character devices to suppress fd_can_read(). */
4940
int qemu_set_fd_handler2(int fd,
4941
                         IOCanRWHandler *fd_read_poll,
4942
                         IOHandler *fd_read,
4943
                         IOHandler *fd_write,
4944
                         void *opaque)
4945
{
4946
    IOHandlerRecord **pioh, *ioh;
4947

    
4948
    if (!fd_read && !fd_write) {
4949
        pioh = &first_io_handler;
4950
        for(;;) {
4951
            ioh = *pioh;
4952
            if (ioh == NULL)
4953
                break;
4954
            if (ioh->fd == fd) {
4955
                ioh->deleted = 1;
4956
                break;
4957
            }
4958
            pioh = &ioh->next;
4959
        }
4960
    } else {
4961
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4962
            if (ioh->fd == fd)
4963
                goto found;
4964
        }
4965
        ioh = qemu_mallocz(sizeof(IOHandlerRecord));
4966
        if (!ioh)
4967
            return -1;
4968
        ioh->next = first_io_handler;
4969
        first_io_handler = ioh;
4970
    found:
4971
        ioh->fd = fd;
4972
        ioh->fd_read_poll = fd_read_poll;
4973
        ioh->fd_read = fd_read;
4974
        ioh->fd_write = fd_write;
4975
        ioh->opaque = opaque;
4976
        ioh->deleted = 0;
4977
    }
4978
    return 0;
4979
}
4980

    
4981
int qemu_set_fd_handler(int fd,
4982
                        IOHandler *fd_read,
4983
                        IOHandler *fd_write,
4984
                        void *opaque)
4985
{
4986
    return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
4987
}
4988

    
4989
/***********************************************************/
4990
/* Polling handling */
4991

    
4992
typedef struct PollingEntry {
4993
    PollingFunc *func;
4994
    void *opaque;
4995
    struct PollingEntry *next;
4996
} PollingEntry;
4997

    
4998
static PollingEntry *first_polling_entry;
4999

    
5000
int qemu_add_polling_cb(PollingFunc *func, void *opaque)
5001
{
5002
    PollingEntry **ppe, *pe;
5003
    pe = qemu_mallocz(sizeof(PollingEntry));
5004
    if (!pe)
5005
        return -1;
5006
    pe->func = func;
5007
    pe->opaque = opaque;
5008
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
5009
    *ppe = pe;
5010
    return 0;
5011
}
5012

    
5013
void qemu_del_polling_cb(PollingFunc *func, void *opaque)
5014
{
5015
    PollingEntry **ppe, *pe;
5016
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
5017
        pe = *ppe;
5018
        if (pe->func == func && pe->opaque == opaque) {
5019
            *ppe = pe->next;
5020
            qemu_free(pe);
5021
            break;
5022
        }
5023
    }
5024
}
5025

    
5026
#ifdef _WIN32
5027
/***********************************************************/
5028
/* Wait objects support */
5029
typedef struct WaitObjects {
5030
    int num;
5031
    HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
5032
    WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
5033
    void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
5034
} WaitObjects;
5035

    
5036
static WaitObjects wait_objects = {0};
5037

    
5038
int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5039
{
5040
    WaitObjects *w = &wait_objects;
5041

    
5042
    if (w->num >= MAXIMUM_WAIT_OBJECTS)
5043
        return -1;
5044
    w->events[w->num] = handle;
5045
    w->func[w->num] = func;
5046
    w->opaque[w->num] = opaque;
5047
    w->num++;
5048
    return 0;
5049
}
5050

    
5051
void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5052
{
5053
    int i, found;
5054
    WaitObjects *w = &wait_objects;
5055

    
5056
    found = 0;
5057
    for (i = 0; i < w->num; i++) {
5058
        if (w->events[i] == handle)
5059
            found = 1;
5060
        if (found) {
5061
            w->events[i] = w->events[i + 1];
5062
            w->func[i] = w->func[i + 1];
5063
            w->opaque[i] = w->opaque[i + 1];
5064
        }
5065
    }
5066
    if (found)
5067
        w->num--;
5068
}
5069
#endif
5070

    
5071
/***********************************************************/
5072
/* savevm/loadvm support */
5073

    
5074
#define IO_BUF_SIZE 32768
5075

    
5076
struct QEMUFile {
5077
    FILE *outfile;
5078
    BlockDriverState *bs;
5079
    int is_file;
5080
    int is_writable;
5081
    int64_t base_offset;
5082
    int64_t buf_offset; /* start of buffer when writing, end of buffer
5083
                           when reading */
5084
    int buf_index;
5085
    int buf_size; /* 0 when writing */
5086
    uint8_t buf[IO_BUF_SIZE];
5087
};
5088

    
5089
QEMUFile *qemu_fopen(const char *filename, const char *mode)
5090
{
5091
    QEMUFile *f;
5092

    
5093
    f = qemu_mallocz(sizeof(QEMUFile));
5094
    if (!f)
5095
        return NULL;
5096
    if (!strcmp(mode, "wb")) {
5097
        f->is_writable = 1;
5098
    } else if (!strcmp(mode, "rb")) {
5099
        f->is_writable = 0;
5100
    } else {
5101
        goto fail;
5102
    }
5103
    f->outfile = fopen(filename, mode);
5104
    if (!f->outfile)
5105
        goto fail;
5106
    f->is_file = 1;
5107
    return f;
5108
 fail:
5109
    if (f->outfile)
5110
        fclose(f->outfile);
5111
    qemu_free(f);
5112
    return NULL;
5113
}
5114

    
5115
QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
5116
{
5117
    QEMUFile *f;
5118

    
5119
    f = qemu_mallocz(sizeof(QEMUFile));
5120
    if (!f)
5121
        return NULL;
5122
    f->is_file = 0;
5123
    f->bs = bs;
5124
    f->is_writable = is_writable;
5125
    f->base_offset = offset;
5126
    return f;
5127
}
5128

    
5129
void qemu_fflush(QEMUFile *f)
5130
{
5131
    if (!f->is_writable)
5132
        return;
5133
    if (f->buf_index > 0) {
5134
        if (f->is_file) {
5135
            fseek(f->outfile, f->buf_offset, SEEK_SET);
5136
            fwrite(f->buf, 1, f->buf_index, f->outfile);
5137
        } else {
5138
            bdrv_pwrite(f->bs, f->base_offset + f->buf_offset,
5139
                        f->buf, f->buf_index);
5140
        }
5141
        f->buf_offset += f->buf_index;
5142
        f->buf_index = 0;
5143
    }
5144
}
5145

    
5146
static void qemu_fill_buffer(QEMUFile *f)
5147
{
5148
    int len;
5149

    
5150
    if (f->is_writable)
5151
        return;
5152
    if (f->is_file) {
5153
        fseek(f->outfile, f->buf_offset, SEEK_SET);
5154
        len = fread(f->buf, 1, IO_BUF_SIZE, f->outfile);
5155
        if (len < 0)
5156
            len = 0;
5157
    } else {
5158
        len = bdrv_pread(f->bs, f->base_offset + f->buf_offset,
5159
                         f->buf, IO_BUF_SIZE);
5160
        if (len < 0)
5161
            len = 0;
5162
    }
5163
    f->buf_index = 0;
5164
    f->buf_size = len;
5165
    f->buf_offset += len;
5166
}
5167

    
5168
void qemu_fclose(QEMUFile *f)
5169
{
5170
    if (f->is_writable)
5171
        qemu_fflush(f);
5172
    if (f->is_file) {
5173
        fclose(f->outfile);
5174
    }
5175
    qemu_free(f);
5176
}
5177

    
5178
void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
5179
{
5180
    int l;
5181
    while (size > 0) {
5182
        l = IO_BUF_SIZE - f->buf_index;
5183
        if (l > size)
5184
            l = size;
5185
        memcpy(f->buf + f->buf_index, buf, l);
5186
        f->buf_index += l;
5187
        buf += l;
5188
        size -= l;
5189
        if (f->buf_index >= IO_BUF_SIZE)
5190
            qemu_fflush(f);
5191
    }
5192
}
5193

    
5194
void qemu_put_byte(QEMUFile *f, int v)
5195
{
5196
    f->buf[f->buf_index++] = v;
5197
    if (f->buf_index >= IO_BUF_SIZE)
5198
        qemu_fflush(f);
5199
}
5200

    
5201
int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
5202
{
5203
    int size, l;
5204

    
5205
    size = size1;
5206
    while (size > 0) {
5207
        l = f->buf_size - f->buf_index;
5208
        if (l == 0) {
5209
            qemu_fill_buffer(f);
5210
            l = f->buf_size - f->buf_index;
5211
            if (l == 0)
5212
                break;
5213
        }
5214
        if (l > size)
5215
            l = size;
5216
        memcpy(buf, f->buf + f->buf_index, l);
5217
        f->buf_index += l;
5218
        buf += l;
5219
        size -= l;
5220
    }
5221
    return size1 - size;
5222
}
5223

    
5224
int qemu_get_byte(QEMUFile *f)
5225
{
5226
    if (f->buf_index >= f->buf_size) {
5227
        qemu_fill_buffer(f);
5228
        if (f->buf_index >= f->buf_size)
5229
            return 0;
5230
    }
5231
    return f->buf[f->buf_index++];
5232
}
5233

    
5234
int64_t qemu_ftell(QEMUFile *f)
5235
{
5236
    return f->buf_offset - f->buf_size + f->buf_index;
5237
}
5238

    
5239
int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
5240
{
5241
    if (whence == SEEK_SET) {
5242
        /* nothing to do */
5243
    } else if (whence == SEEK_CUR) {
5244
        pos += qemu_ftell(f);
5245
    } else {
5246
        /* SEEK_END not supported */
5247
        return -1;
5248
    }
5249
    if (f->is_writable) {
5250
        qemu_fflush(f);
5251
        f->buf_offset = pos;
5252
    } else {
5253
        f->buf_offset = pos;
5254
        f->buf_index = 0;
5255
        f->buf_size = 0;
5256
    }
5257
    return pos;
5258
}
5259

    
5260
void qemu_put_be16(QEMUFile *f, unsigned int v)
5261
{
5262
    qemu_put_byte(f, v >> 8);
5263
    qemu_put_byte(f, v);
5264
}
5265

    
5266
void qemu_put_be32(QEMUFile *f, unsigned int v)
5267
{
5268
    qemu_put_byte(f, v >> 24);
5269
    qemu_put_byte(f, v >> 16);
5270
    qemu_put_byte(f, v >> 8);
5271
    qemu_put_byte(f, v);
5272
}
5273

    
5274
void qemu_put_be64(QEMUFile *f, uint64_t v)
5275
{
5276
    qemu_put_be32(f, v >> 32);
5277
    qemu_put_be32(f, v);
5278
}
5279

    
5280
unsigned int qemu_get_be16(QEMUFile *f)
5281
{
5282
    unsigned int v;
5283
    v = qemu_get_byte(f) << 8;
5284
    v |= qemu_get_byte(f);
5285
    return v;
5286
}
5287

    
5288
unsigned int qemu_get_be32(QEMUFile *f)
5289
{
5290
    unsigned int v;
5291
    v = qemu_get_byte(f) << 24;
5292
    v |= qemu_get_byte(f) << 16;
5293
    v |= qemu_get_byte(f) << 8;
5294
    v |= qemu_get_byte(f);
5295
    return v;
5296
}
5297

    
5298
uint64_t qemu_get_be64(QEMUFile *f)
5299
{
5300
    uint64_t v;
5301
    v = (uint64_t)qemu_get_be32(f) << 32;
5302
    v |= qemu_get_be32(f);
5303
    return v;
5304
}
5305

    
5306
typedef struct SaveStateEntry {
5307
    char idstr[256];
5308
    int instance_id;
5309
    int version_id;
5310
    SaveStateHandler *save_state;
5311
    LoadStateHandler *load_state;
5312
    void *opaque;
5313
    struct SaveStateEntry *next;
5314
} SaveStateEntry;
5315

    
5316
static SaveStateEntry *first_se;
5317

    
5318
int register_savevm(const char *idstr,
5319
                    int instance_id,
5320
                    int version_id,
5321
                    SaveStateHandler *save_state,
5322
                    LoadStateHandler *load_state,
5323
                    void *opaque)
5324
{
5325
    SaveStateEntry *se, **pse;
5326

    
5327
    se = qemu_malloc(sizeof(SaveStateEntry));
5328
    if (!se)
5329
        return -1;
5330
    pstrcpy(se->idstr, sizeof(se->idstr), idstr);
5331
    se->instance_id = instance_id;
5332
    se->version_id = version_id;
5333
    se->save_state = save_state;
5334
    se->load_state = load_state;
5335
    se->opaque = opaque;
5336
    se->next = NULL;
5337

    
5338
    /* add at the end of list */
5339
    pse = &first_se;
5340
    while (*pse != NULL)
5341
        pse = &(*pse)->next;
5342
    *pse = se;
5343
    return 0;
5344
}
5345

    
5346
#define QEMU_VM_FILE_MAGIC   0x5145564d
5347
#define QEMU_VM_FILE_VERSION 0x00000002
5348

    
5349
int qemu_savevm_state(QEMUFile *f)
5350
{
5351
    SaveStateEntry *se;
5352
    int len, ret;
5353
    int64_t cur_pos, len_pos, total_len_pos;
5354

    
5355
    qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
5356
    qemu_put_be32(f, QEMU_VM_FILE_VERSION);
5357
    total_len_pos = qemu_ftell(f);
5358
    qemu_put_be64(f, 0); /* total size */
5359

    
5360
    for(se = first_se; se != NULL; se = se->next) {
5361
        /* ID string */
5362
        len = strlen(se->idstr);
5363
        qemu_put_byte(f, len);
5364
        qemu_put_buffer(f, se->idstr, len);
5365

    
5366
        qemu_put_be32(f, se->instance_id);
5367
        qemu_put_be32(f, se->version_id);
5368

    
5369
        /* record size: filled later */
5370
        len_pos = qemu_ftell(f);
5371
        qemu_put_be32(f, 0);
5372

    
5373
        se->save_state(f, se->opaque);
5374

    
5375
        /* fill record size */
5376
        cur_pos = qemu_ftell(f);
5377
        len = cur_pos - len_pos - 4;
5378
        qemu_fseek(f, len_pos, SEEK_SET);
5379
        qemu_put_be32(f, len);
5380
        qemu_fseek(f, cur_pos, SEEK_SET);
5381
    }
5382
    cur_pos = qemu_ftell(f);
5383
    qemu_fseek(f, total_len_pos, SEEK_SET);
5384
    qemu_put_be64(f, cur_pos - total_len_pos - 8);
5385
    qemu_fseek(f, cur_pos, SEEK_SET);
5386

    
5387
    ret = 0;
5388
    return ret;
5389
}
5390

    
5391
static SaveStateEntry *find_se(const char *idstr, int instance_id)
5392
{
5393
    SaveStateEntry *se;
5394

    
5395
    for(se = first_se; se != NULL; se = se->next) {
5396
        if (!strcmp(se->idstr, idstr) &&
5397
            instance_id == se->instance_id)
5398
            return se;
5399
    }
5400
    return NULL;
5401
}
5402

    
5403
int qemu_loadvm_state(QEMUFile *f)
5404
{
5405
    SaveStateEntry *se;
5406
    int len, ret, instance_id, record_len, version_id;
5407
    int64_t total_len, end_pos, cur_pos;
5408
    unsigned int v;
5409
    char idstr[256];
5410

    
5411
    v = qemu_get_be32(f);
5412
    if (v != QEMU_VM_FILE_MAGIC)
5413
        goto fail;
5414
    v = qemu_get_be32(f);
5415
    if (v != QEMU_VM_FILE_VERSION) {
5416
    fail:
5417
        ret = -1;
5418
        goto the_end;
5419
    }
5420
    total_len = qemu_get_be64(f);
5421
    end_pos = total_len + qemu_ftell(f);
5422
    for(;;) {
5423
        if (qemu_ftell(f) >= end_pos)
5424
            break;
5425
        len = qemu_get_byte(f);
5426
        qemu_get_buffer(f, idstr, len);
5427
        idstr[len] = '\0';
5428
        instance_id = qemu_get_be32(f);
5429
        version_id = qemu_get_be32(f);
5430
        record_len = qemu_get_be32(f);
5431
#if 0
5432
        printf("idstr=%s instance=0x%x version=%d len=%d\n",
5433
               idstr, instance_id, version_id, record_len);
5434
#endif
5435
        cur_pos = qemu_ftell(f);
5436
        se = find_se(idstr, instance_id);
5437
        if (!se) {
5438
            fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
5439
                    instance_id, idstr);
5440
        } else {
5441
            ret = se->load_state(f, se->opaque, version_id);
5442
            if (ret < 0) {
5443
                fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
5444
                        instance_id, idstr);
5445
            }
5446
        }
5447
        /* always seek to exact end of record */
5448
        qemu_fseek(f, cur_pos + record_len, SEEK_SET);
5449
    }
5450
    ret = 0;
5451
 the_end:
5452
    return ret;
5453
}
5454

    
5455
/* device can contain snapshots */
5456
static int bdrv_can_snapshot(BlockDriverState *bs)
5457
{
5458
    return (bs &&
5459
            !bdrv_is_removable(bs) &&
5460
            !bdrv_is_read_only(bs));
5461
}
5462

    
5463
/* device must be snapshots in order to have a reliable snapshot */
5464
static int bdrv_has_snapshot(BlockDriverState *bs)
5465
{
5466
    return (bs &&
5467
            !bdrv_is_removable(bs) &&
5468
            !bdrv_is_read_only(bs));
5469
}
5470

    
5471
static BlockDriverState *get_bs_snapshots(void)
5472
{
5473
    BlockDriverState *bs;
5474
    int i;
5475

    
5476
    if (bs_snapshots)
5477
        return bs_snapshots;
5478
    for(i = 0; i <= MAX_DISKS; i++) {
5479
        bs = bs_table[i];
5480
        if (bdrv_can_snapshot(bs))
5481
            goto ok;
5482
    }
5483
    return NULL;
5484
 ok:
5485
    bs_snapshots = bs;
5486
    return bs;
5487
}
5488

    
5489
static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
5490
                              const char *name)
5491
{
5492
    QEMUSnapshotInfo *sn_tab, *sn;
5493
    int nb_sns, i, ret;
5494

    
5495
    ret = -ENOENT;
5496
    nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5497
    if (nb_sns < 0)
5498
        return ret;
5499
    for(i = 0; i < nb_sns; i++) {
5500
        sn = &sn_tab[i];
5501
        if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
5502
            *sn_info = *sn;
5503
            ret = 0;
5504
            break;
5505
        }
5506
    }
5507
    qemu_free(sn_tab);
5508
    return ret;
5509
}
5510

    
5511
void do_savevm(const char *name)
5512
{
5513
    BlockDriverState *bs, *bs1;
5514
    QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
5515
    int must_delete, ret, i;
5516
    BlockDriverInfo bdi1, *bdi = &bdi1;
5517
    QEMUFile *f;
5518
    int saved_vm_running;
5519
#ifdef _WIN32
5520
    struct _timeb tb;
5521
#else
5522
    struct timeval tv;
5523
#endif
5524

    
5525
    bs = get_bs_snapshots();
5526
    if (!bs) {
5527
        term_printf("No block device can accept snapshots\n");
5528
        return;
5529
    }
5530

    
5531
    /* ??? Should this occur after vm_stop?  */
5532
    qemu_aio_flush();
5533

    
5534
    saved_vm_running = vm_running;
5535
    vm_stop(0);
5536

    
5537
    must_delete = 0;
5538
    if (name) {
5539
        ret = bdrv_snapshot_find(bs, old_sn, name);
5540
        if (ret >= 0) {
5541
            must_delete = 1;
5542
        }
5543
    }
5544
    memset(sn, 0, sizeof(*sn));
5545
    if (must_delete) {
5546
        pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
5547
        pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
5548
    } else {
5549
        if (name)
5550
            pstrcpy(sn->name, sizeof(sn->name), name);
5551
    }
5552

    
5553
    /* fill auxiliary fields */
5554
#ifdef _WIN32
5555
    _ftime(&tb);
5556
    sn->date_sec = tb.time;
5557
    sn->date_nsec = tb.millitm * 1000000;
5558
#else
5559
    gettimeofday(&tv, NULL);
5560
    sn->date_sec = tv.tv_sec;
5561
    sn->date_nsec = tv.tv_usec * 1000;
5562
#endif
5563
    sn->vm_clock_nsec = qemu_get_clock(vm_clock);
5564

    
5565
    if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5566
        term_printf("Device %s does not support VM state snapshots\n",
5567
                    bdrv_get_device_name(bs));
5568
        goto the_end;
5569
    }
5570

    
5571
    /* save the VM state */
5572
    f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
5573
    if (!f) {
5574
        term_printf("Could not open VM state file\n");
5575
        goto the_end;
5576
    }
5577
    ret = qemu_savevm_state(f);
5578
    sn->vm_state_size = qemu_ftell(f);
5579
    qemu_fclose(f);
5580
    if (ret < 0) {
5581
        term_printf("Error %d while writing VM\n", ret);
5582
        goto the_end;
5583
    }
5584

    
5585
    /* create the snapshots */
5586

    
5587
    for(i = 0; i < MAX_DISKS; i++) {
5588
        bs1 = bs_table[i];
5589
        if (bdrv_has_snapshot(bs1)) {
5590
            if (must_delete) {
5591
                ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
5592
                if (ret < 0) {
5593
                    term_printf("Error while deleting snapshot on '%s'\n",
5594
                                bdrv_get_device_name(bs1));
5595
                }
5596
            }
5597
            ret = bdrv_snapshot_create(bs1, sn);
5598
            if (ret < 0) {
5599
                term_printf("Error while creating snapshot on '%s'\n",
5600
                            bdrv_get_device_name(bs1));
5601
            }
5602
        }
5603
    }
5604

    
5605
 the_end:
5606
    if (saved_vm_running)
5607
        vm_start();
5608
}
5609

    
5610
void do_loadvm(const char *name)
5611
{
5612
    BlockDriverState *bs, *bs1;
5613
    BlockDriverInfo bdi1, *bdi = &bdi1;
5614
    QEMUFile *f;
5615
    int i, ret;
5616
    int saved_vm_running;
5617

    
5618
    bs = get_bs_snapshots();
5619
    if (!bs) {
5620
        term_printf("No block device supports snapshots\n");
5621
        return;
5622
    }
5623

    
5624
    /* Flush all IO requests so they don't interfere with the new state.  */
5625
    qemu_aio_flush();
5626

    
5627
    saved_vm_running = vm_running;
5628
    vm_stop(0);
5629

    
5630
    for(i = 0; i <= MAX_DISKS; i++) {
5631
        bs1 = bs_table[i];
5632
        if (bdrv_has_snapshot(bs1)) {
5633
            ret = bdrv_snapshot_goto(bs1, name);
5634
            if (ret < 0) {
5635
                if (bs != bs1)
5636
                    term_printf("Warning: ");
5637
                switch(ret) {
5638
                case -ENOTSUP:
5639
                    term_printf("Snapshots not supported on device '%s'\n",
5640
                                bdrv_get_device_name(bs1));
5641
                    break;
5642
                case -ENOENT:
5643
                    term_printf("Could not find snapshot '%s' on device '%s'\n",
5644
                                name, bdrv_get_device_name(bs1));
5645
                    break;
5646
                default:
5647
                    term_printf("Error %d while activating snapshot on '%s'\n",
5648
                                ret, bdrv_get_device_name(bs1));
5649
                    break;
5650
                }
5651
                /* fatal on snapshot block device */
5652
                if (bs == bs1)
5653
                    goto the_end;
5654
            }
5655
        }
5656
    }
5657

    
5658
    if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5659
        term_printf("Device %s does not support VM state snapshots\n",
5660
                    bdrv_get_device_name(bs));
5661
        return;
5662
    }
5663

    
5664
    /* restore the VM state */
5665
    f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
5666
    if (!f) {
5667
        term_printf("Could not open VM state file\n");
5668
        goto the_end;
5669
    }
5670
    ret = qemu_loadvm_state(f);
5671
    qemu_fclose(f);
5672
    if (ret < 0) {
5673
        term_printf("Error %d while loading VM state\n", ret);
5674
    }
5675
 the_end:
5676
    if (saved_vm_running)
5677
        vm_start();
5678
}
5679

    
5680
void do_delvm(const char *name)
5681
{
5682
    BlockDriverState *bs, *bs1;
5683
    int i, ret;
5684

    
5685
    bs = get_bs_snapshots();
5686
    if (!bs) {
5687
        term_printf("No block device supports snapshots\n");
5688
        return;
5689
    }
5690

    
5691
    for(i = 0; i <= MAX_DISKS; i++) {
5692
        bs1 = bs_table[i];
5693
        if (bdrv_has_snapshot(bs1)) {
5694
            ret = bdrv_snapshot_delete(bs1, name);
5695
            if (ret < 0) {
5696
                if (ret == -ENOTSUP)
5697
                    term_printf("Snapshots not supported on device '%s'\n",
5698
                                bdrv_get_device_name(bs1));
5699
                else
5700
                    term_printf("Error %d while deleting snapshot on '%s'\n",
5701
                                ret, bdrv_get_device_name(bs1));
5702
            }
5703
        }
5704
    }
5705
}
5706

    
5707
void do_info_snapshots(void)
5708
{
5709
    BlockDriverState *bs, *bs1;
5710
    QEMUSnapshotInfo *sn_tab, *sn;
5711
    int nb_sns, i;
5712
    char buf[256];
5713

    
5714
    bs = get_bs_snapshots();
5715
    if (!bs) {
5716
        term_printf("No available block device supports snapshots\n");
5717
        return;
5718
    }
5719
    term_printf("Snapshot devices:");
5720
    for(i = 0; i <= MAX_DISKS; i++) {
5721
        bs1 = bs_table[i];
5722
        if (bdrv_has_snapshot(bs1)) {
5723
            if (bs == bs1)
5724
                term_printf(" %s", bdrv_get_device_name(bs1));
5725
        }
5726
    }
5727
    term_printf("\n");
5728

    
5729
    nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5730
    if (nb_sns < 0) {
5731
        term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
5732
        return;
5733
    }
5734
    term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
5735
    term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
5736
    for(i = 0; i < nb_sns; i++) {
5737
        sn = &sn_tab[i];
5738
        term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
5739
    }
5740
    qemu_free(sn_tab);
5741
}
5742

    
5743
/***********************************************************/
5744
/* cpu save/restore */
5745

    
5746
#if defined(TARGET_I386)
5747

    
5748
static void cpu_put_seg(QEMUFile *f, SegmentCache *dt)
5749
{
5750
    qemu_put_be32(f, dt->selector);
5751
    qemu_put_betl(f, dt->base);
5752
    qemu_put_be32(f, dt->limit);
5753
    qemu_put_be32(f, dt->flags);
5754
}
5755

    
5756
static void cpu_get_seg(QEMUFile *f, SegmentCache *dt)
5757
{
5758
    dt->selector = qemu_get_be32(f);
5759
    dt->base = qemu_get_betl(f);
5760
    dt->limit = qemu_get_be32(f);
5761
    dt->flags = qemu_get_be32(f);
5762
}
5763

    
5764
void cpu_save(QEMUFile *f, void *opaque)
5765
{
5766
    CPUState *env = opaque;
5767
    uint16_t fptag, fpus, fpuc, fpregs_format;
5768
    uint32_t hflags;
5769
    int i;
5770

    
5771
    for(i = 0; i < CPU_NB_REGS; i++)
5772
        qemu_put_betls(f, &env->regs[i]);
5773
    qemu_put_betls(f, &env->eip);
5774
    qemu_put_betls(f, &env->eflags);
5775
    hflags = env->hflags; /* XXX: suppress most of the redundant hflags */
5776
    qemu_put_be32s(f, &hflags);
5777

    
5778
    /* FPU */
5779
    fpuc = env->fpuc;
5780
    fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
5781
    fptag = 0;
5782
    for(i = 0; i < 8; i++) {
5783
        fptag |= ((!env->fptags[i]) << i);
5784
    }
5785

    
5786
    qemu_put_be16s(f, &fpuc);
5787
    qemu_put_be16s(f, &fpus);
5788
    qemu_put_be16s(f, &fptag);
5789

    
5790
#ifdef USE_X86LDOUBLE
5791
    fpregs_format = 0;
5792
#else
5793
    fpregs_format = 1;
5794
#endif
5795
    qemu_put_be16s(f, &fpregs_format);
5796

    
5797
    for(i = 0; i < 8; i++) {
5798
#ifdef USE_X86LDOUBLE
5799
        {
5800
            uint64_t mant;
5801
            uint16_t exp;
5802
            /* we save the real CPU data (in case of MMX usage only 'mant'
5803
               contains the MMX register */
5804
            cpu_get_fp80(&mant, &exp, env->fpregs[i].d);
5805
            qemu_put_be64(f, mant);
5806
            qemu_put_be16(f, exp);
5807
        }
5808
#else
5809
        /* if we use doubles for float emulation, we save the doubles to
5810
           avoid losing information in case of MMX usage. It can give
5811
           problems if the image is restored on a CPU where long
5812
           doubles are used instead. */
5813
        qemu_put_be64(f, env->fpregs[i].mmx.MMX_Q(0));
5814
#endif
5815
    }
5816

    
5817
    for(i = 0; i < 6; i++)
5818
        cpu_put_seg(f, &env->segs[i]);
5819
    cpu_put_seg(f, &env->ldt);
5820
    cpu_put_seg(f, &env->tr);
5821
    cpu_put_seg(f, &env->gdt);
5822
    cpu_put_seg(f, &env->idt);
5823

    
5824
    qemu_put_be32s(f, &env->sysenter_cs);
5825
    qemu_put_be32s(f, &env->sysenter_esp);
5826
    qemu_put_be32s(f, &env->sysenter_eip);
5827

    
5828
    qemu_put_betls(f, &env->cr[0]);
5829
    qemu_put_betls(f, &env->cr[2]);
5830
    qemu_put_betls(f, &env->cr[3]);
5831
    qemu_put_betls(f, &env->cr[4]);
5832

    
5833
    for(i = 0; i < 8; i++)
5834
        qemu_put_betls(f, &env->dr[i]);
5835

    
5836
    /* MMU */
5837
    qemu_put_be32s(f, &env->a20_mask);
5838

    
5839
    /* XMM */
5840
    qemu_put_be32s(f, &env->mxcsr);
5841
    for(i = 0; i < CPU_NB_REGS; i++) {
5842
        qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5843
        qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5844
    }
5845

    
5846
#ifdef TARGET_X86_64
5847
    qemu_put_be64s(f, &env->efer);
5848
    qemu_put_be64s(f, &env->star);
5849
    qemu_put_be64s(f, &env->lstar);
5850
    qemu_put_be64s(f, &env->cstar);
5851
    qemu_put_be64s(f, &env->fmask);
5852
    qemu_put_be64s(f, &env->kernelgsbase);
5853
#endif
5854
    qemu_put_be32s(f, &env->smbase);
5855
}
5856

    
5857
#ifdef USE_X86LDOUBLE
5858
/* XXX: add that in a FPU generic layer */
5859
union x86_longdouble {
5860
    uint64_t mant;
5861
    uint16_t exp;
5862
};
5863

    
5864
#define MANTD1(fp)        (fp & ((1LL << 52) - 1))
5865
#define EXPBIAS1 1023
5866
#define EXPD1(fp)        ((fp >> 52) & 0x7FF)
5867
#define SIGND1(fp)        ((fp >> 32) & 0x80000000)
5868

    
5869
static void fp64_to_fp80(union x86_longdouble *p, uint64_t temp)
5870
{
5871
    int e;
5872
    /* mantissa */
5873
    p->mant = (MANTD1(temp) << 11) | (1LL << 63);
5874
    /* exponent + sign */
5875
    e = EXPD1(temp) - EXPBIAS1 + 16383;
5876
    e |= SIGND1(temp) >> 16;
5877
    p->exp = e;
5878
}
5879
#endif
5880

    
5881
int cpu_load(QEMUFile *f, void *opaque, int version_id)
5882
{
5883
    CPUState *env = opaque;
5884
    int i, guess_mmx;
5885
    uint32_t hflags;
5886
    uint16_t fpus, fpuc, fptag, fpregs_format;
5887

    
5888
    if (version_id != 3 && version_id != 4)
5889
        return -EINVAL;
5890
    for(i = 0; i < CPU_NB_REGS; i++)
5891
        qemu_get_betls(f, &env->regs[i]);
5892
    qemu_get_betls(f, &env->eip);
5893
    qemu_get_betls(f, &env->eflags);
5894
    qemu_get_be32s(f, &hflags);
5895

    
5896
    qemu_get_be16s(f, &fpuc);
5897
    qemu_get_be16s(f, &fpus);
5898
    qemu_get_be16s(f, &fptag);
5899
    qemu_get_be16s(f, &fpregs_format);
5900

    
5901
    /* NOTE: we cannot always restore the FPU state if the image come
5902
       from a host with a different 'USE_X86LDOUBLE' define. We guess
5903
       if we are in an MMX state to restore correctly in that case. */
5904
    guess_mmx = ((fptag == 0xff) && (fpus & 0x3800) == 0);
5905
    for(i = 0; i < 8; i++) {
5906
        uint64_t mant;
5907
        uint16_t exp;
5908

    
5909
        switch(fpregs_format) {
5910
        case 0:
5911
            mant = qemu_get_be64(f);
5912
            exp = qemu_get_be16(f);
5913
#ifdef USE_X86LDOUBLE
5914
            env->fpregs[i].d = cpu_set_fp80(mant, exp);
5915
#else
5916
            /* difficult case */
5917
            if (guess_mmx)
5918
                env->fpregs[i].mmx.MMX_Q(0) = mant;
5919
            else
5920
                env->fpregs[i].d = cpu_set_fp80(mant, exp);
5921
#endif
5922
            break;
5923
        case 1:
5924
            mant = qemu_get_be64(f);
5925
#ifdef USE_X86LDOUBLE
5926
            {
5927
                union x86_longdouble *p;
5928
                /* difficult case */
5929
                p = (void *)&env->fpregs[i];
5930
                if (guess_mmx) {
5931
                    p->mant = mant;
5932
                    p->exp = 0xffff;
5933
                } else {
5934
                    fp64_to_fp80(p, mant);
5935
                }
5936
            }
5937
#else
5938
            env->fpregs[i].mmx.MMX_Q(0) = mant;
5939
#endif
5940
            break;
5941
        default:
5942
            return -EINVAL;
5943
        }
5944
    }
5945

    
5946
    env->fpuc = fpuc;
5947
    /* XXX: restore FPU round state */
5948
    env->fpstt = (fpus >> 11) & 7;
5949
    env->fpus = fpus & ~0x3800;
5950
    fptag ^= 0xff;
5951
    for(i = 0; i < 8; i++) {
5952
        env->fptags[i] = (fptag >> i) & 1;
5953
    }
5954

    
5955
    for(i = 0; i < 6; i++)
5956
        cpu_get_seg(f, &env->segs[i]);
5957
    cpu_get_seg(f, &env->ldt);
5958
    cpu_get_seg(f, &env->tr);
5959
    cpu_get_seg(f, &env->gdt);
5960
    cpu_get_seg(f, &env->idt);
5961

    
5962
    qemu_get_be32s(f, &env->sysenter_cs);
5963
    qemu_get_be32s(f, &env->sysenter_esp);
5964
    qemu_get_be32s(f, &env->sysenter_eip);
5965

    
5966
    qemu_get_betls(f, &env->cr[0]);
5967
    qemu_get_betls(f, &env->cr[2]);
5968
    qemu_get_betls(f, &env->cr[3]);
5969
    qemu_get_betls(f, &env->cr[4]);
5970

    
5971
    for(i = 0; i < 8; i++)
5972
        qemu_get_betls(f, &env->dr[i]);
5973

    
5974
    /* MMU */
5975
    qemu_get_be32s(f, &env->a20_mask);
5976

    
5977
    qemu_get_be32s(f, &env->mxcsr);
5978
    for(i = 0; i < CPU_NB_REGS; i++) {
5979
        qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5980
        qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5981
    }
5982

    
5983
#ifdef TARGET_X86_64
5984
    qemu_get_be64s(f, &env->efer);
5985
    qemu_get_be64s(f, &env->star);
5986
    qemu_get_be64s(f, &env->lstar);
5987
    qemu_get_be64s(f, &env->cstar);
5988
    qemu_get_be64s(f, &env->fmask);
5989
    qemu_get_be64s(f, &env->kernelgsbase);
5990
#endif
5991
    if (version_id >= 4)
5992
        qemu_get_be32s(f, &env->smbase);
5993

    
5994
    /* XXX: compute hflags from scratch, except for CPL and IIF */
5995
    env->hflags = hflags;
5996
    tlb_flush(env, 1);
5997
    return 0;
5998
}
5999

    
6000
#elif defined(TARGET_PPC)
6001
void cpu_save(QEMUFile *f, void *opaque)
6002
{
6003
}
6004

    
6005
int cpu_load(QEMUFile *f, void *opaque, int version_id)
6006
{
6007
    return 0;
6008
}
6009

    
6010
#elif defined(TARGET_MIPS)
6011
void cpu_save(QEMUFile *f, void *opaque)
6012
{
6013
}
6014

    
6015
int cpu_load(QEMUFile *f, void *opaque, int version_id)
6016
{
6017
    return 0;
6018
}
6019

    
6020
#elif defined(TARGET_SPARC)
6021
void cpu_save(QEMUFile *f, void *opaque)
6022
{
6023
    CPUState *env = opaque;
6024
    int i;
6025
    uint32_t tmp;
6026

    
6027
    for(i = 0; i < 8; i++)
6028
        qemu_put_betls(f, &env->gregs[i]);
6029
    for(i = 0; i < NWINDOWS * 16; i++)
6030
        qemu_put_betls(f, &env->regbase[i]);
6031

    
6032
    /* FPU */
6033
    for(i = 0; i < TARGET_FPREGS; i++) {
6034
        union {
6035
            float32 f;
6036
            uint32_t i;
6037
        } u;
6038
        u.f = env->fpr[i];
6039
        qemu_put_be32(f, u.i);
6040
    }
6041

    
6042
    qemu_put_betls(f, &env->pc);
6043
    qemu_put_betls(f, &env->npc);
6044
    qemu_put_betls(f, &env->y);
6045
    tmp = GET_PSR(env);
6046
    qemu_put_be32(f, tmp);
6047
    qemu_put_betls(f, &env->fsr);
6048
    qemu_put_betls(f, &env->tbr);
6049
#ifndef TARGET_SPARC64
6050
    qemu_put_be32s(f, &env->wim);
6051
    /* MMU */
6052
    for(i = 0; i < 16; i++)
6053
        qemu_put_be32s(f, &env->mmuregs[i]);
6054
#endif
6055
}
6056

    
6057
int cpu_load(QEMUFile *f, void *opaque, int version_id)
6058
{
6059
    CPUState *env = opaque;
6060
    int i;
6061
    uint32_t tmp;
6062

    
6063
    for(i = 0; i < 8; i++)
6064
        qemu_get_betls(f, &env->gregs[i]);
6065
    for(i = 0; i < NWINDOWS * 16; i++)
6066
        qemu_get_betls(f, &env->regbase[i]);
6067

    
6068
    /* FPU */
6069
    for(i = 0; i < TARGET_FPREGS; i++) {
6070
        union {
6071
            float32 f;
6072
            uint32_t i;
6073
        } u;
6074
        u.i = qemu_get_be32(f);
6075
        env->fpr[i] = u.f;
6076
    }
6077

    
6078
    qemu_get_betls(f, &env->pc);
6079
    qemu_get_betls(f, &env->npc);
6080
    qemu_get_betls(f, &env->y);
6081
    tmp = qemu_get_be32(f);
6082
    env->cwp = 0; /* needed to ensure that the wrapping registers are
6083
                     correctly updated */
6084
    PUT_PSR(env, tmp);
6085
    qemu_get_betls(f, &env->fsr);
6086
    qemu_get_betls(f, &env->tbr);
6087
#ifndef TARGET_SPARC64
6088
    qemu_get_be32s(f, &env->wim);
6089
    /* MMU */
6090
    for(i = 0; i < 16; i++)
6091
        qemu_get_be32s(f, &env->mmuregs[i]);
6092
#endif
6093
    tlb_flush(env, 1);
6094
    return 0;
6095
}
6096

    
6097
#elif defined(TARGET_ARM)
6098

    
6099
void cpu_save(QEMUFile *f, void *opaque)
6100
{
6101
    int i;
6102
    CPUARMState *env = (CPUARMState *)opaque;
6103

    
6104
    for (i = 0; i < 16; i++) {
6105
        qemu_put_be32(f, env->regs[i]);
6106
    }
6107
    qemu_put_be32(f, cpsr_read(env));
6108
    qemu_put_be32(f, env->spsr);
6109
    for (i = 0; i < 6; i++) {
6110
        qemu_put_be32(f, env->banked_spsr[i]);
6111
        qemu_put_be32(f, env->banked_r13[i]);
6112
        qemu_put_be32(f, env->banked_r14[i]);
6113
    }
6114
    for (i = 0; i < 5; i++) {
6115
        qemu_put_be32(f, env->usr_regs[i]);
6116
        qemu_put_be32(f, env->fiq_regs[i]);
6117
    }
6118
    qemu_put_be32(f, env->cp15.c0_cpuid);
6119
    qemu_put_be32(f, env->cp15.c0_cachetype);
6120
    qemu_put_be32(f, env->cp15.c1_sys);
6121
    qemu_put_be32(f, env->cp15.c1_coproc);
6122
    qemu_put_be32(f, env->cp15.c1_xscaleauxcr);
6123
    qemu_put_be32(f, env->cp15.c2_base0);
6124
    qemu_put_be32(f, env->cp15.c2_base1);
6125
    qemu_put_be32(f, env->cp15.c2_mask);
6126
    qemu_put_be32(f, env->cp15.c2_data);
6127
    qemu_put_be32(f, env->cp15.c2_insn);
6128
    qemu_put_be32(f, env->cp15.c3);
6129
    qemu_put_be32(f, env->cp15.c5_insn);
6130
    qemu_put_be32(f, env->cp15.c5_data);
6131
    for (i = 0; i < 8; i++) {
6132
        qemu_put_be32(f, env->cp15.c6_region[i]);
6133
    }
6134
    qemu_put_be32(f, env->cp15.c6_insn);
6135
    qemu_put_be32(f, env->cp15.c6_data);
6136
    qemu_put_be32(f, env->cp15.c9_insn);
6137
    qemu_put_be32(f, env->cp15.c9_data);
6138
    qemu_put_be32(f, env->cp15.c13_fcse);
6139
    qemu_put_be32(f, env->cp15.c13_context);
6140
    qemu_put_be32(f, env->cp15.c13_tls1);
6141
    qemu_put_be32(f, env->cp15.c13_tls2);
6142
    qemu_put_be32(f, env->cp15.c13_tls3);
6143
    qemu_put_be32(f, env->cp15.c15_cpar);
6144

    
6145
    qemu_put_be32(f, env->features);
6146

    
6147
    if (arm_feature(env, ARM_FEATURE_VFP)) {
6148
        for (i = 0;  i < 16; i++) {
6149
            CPU_DoubleU u;
6150
            u.d = env->vfp.regs[i];
6151
            qemu_put_be32(f, u.l.upper);
6152
            qemu_put_be32(f, u.l.lower);
6153
        }
6154
        for (i = 0; i < 16; i++) {
6155
            qemu_put_be32(f, env->vfp.xregs[i]);
6156
        }
6157

    
6158
        /* TODO: Should use proper FPSCR access functions.  */
6159
        qemu_put_be32(f, env->vfp.vec_len);
6160
        qemu_put_be32(f, env->vfp.vec_stride);
6161

    
6162
        if (arm_feature(env, ARM_FEATURE_VFP3)) {
6163
            for (i = 16;  i < 32; i++) {
6164
                CPU_DoubleU u;
6165
                u.d = env->vfp.regs[i];
6166
                qemu_put_be32(f, u.l.upper);
6167
                qemu_put_be32(f, u.l.lower);
6168
            }
6169
        }
6170
    }
6171

    
6172
    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6173
        for (i = 0; i < 16; i++) {
6174
            qemu_put_be64(f, env->iwmmxt.regs[i]);
6175
        }
6176
        for (i = 0; i < 16; i++) {
6177
            qemu_put_be32(f, env->iwmmxt.cregs[i]);
6178
        }
6179
    }
6180

    
6181
    if (arm_feature(env, ARM_FEATURE_M)) {
6182
        qemu_put_be32(f, env->v7m.other_sp);
6183
        qemu_put_be32(f, env->v7m.vecbase);
6184
        qemu_put_be32(f, env->v7m.basepri);
6185
        qemu_put_be32(f, env->v7m.control);
6186
        qemu_put_be32(f, env->v7m.current_sp);
6187
        qemu_put_be32(f, env->v7m.exception);
6188
    }
6189
}
6190

    
6191
int cpu_load(QEMUFile *f, void *opaque, int version_id)
6192
{
6193
    CPUARMState *env = (CPUARMState *)opaque;
6194
    int i;
6195

    
6196
    if (version_id != ARM_CPU_SAVE_VERSION)
6197
        return -EINVAL;
6198

    
6199
    for (i = 0; i < 16; i++) {
6200
        env->regs[i] = qemu_get_be32(f);
6201
    }
6202
    cpsr_write(env, qemu_get_be32(f), 0xffffffff);
6203
    env->spsr = qemu_get_be32(f);
6204
    for (i = 0; i < 6; i++) {
6205
        env->banked_spsr[i] = qemu_get_be32(f);
6206
        env->banked_r13[i] = qemu_get_be32(f);
6207
        env->banked_r14[i] = qemu_get_be32(f);
6208
    }
6209
    for (i = 0; i < 5; i++) {
6210
        env->usr_regs[i] = qemu_get_be32(f);
6211
        env->fiq_regs[i] = qemu_get_be32(f);
6212
    }
6213
    env->cp15.c0_cpuid = qemu_get_be32(f);
6214
    env->cp15.c0_cachetype = qemu_get_be32(f);
6215
    env->cp15.c1_sys = qemu_get_be32(f);
6216
    env->cp15.c1_coproc = qemu_get_be32(f);
6217
    env->cp15.c1_xscaleauxcr = qemu_get_be32(f);
6218
    env->cp15.c2_base0 = qemu_get_be32(f);
6219
    env->cp15.c2_base1 = qemu_get_be32(f);
6220
    env->cp15.c2_mask = qemu_get_be32(f);
6221
    env->cp15.c2_data = qemu_get_be32(f);
6222
    env->cp15.c2_insn = qemu_get_be32(f);
6223
    env->cp15.c3 = qemu_get_be32(f);
6224
    env->cp15.c5_insn = qemu_get_be32(f);
6225
    env->cp15.c5_data = qemu_get_be32(f);
6226
    for (i = 0; i < 8; i++) {
6227
        env->cp15.c6_region[i] = qemu_get_be32(f);
6228
    }
6229
    env->cp15.c6_insn = qemu_get_be32(f);
6230
    env->cp15.c6_data = qemu_get_be32(f);
6231
    env->cp15.c9_insn = qemu_get_be32(f);
6232
    env->cp15.c9_data = qemu_get_be32(f);
6233
    env->cp15.c13_fcse = qemu_get_be32(f);
6234
    env->cp15.c13_context = qemu_get_be32(f);
6235
    env->cp15.c13_tls1 = qemu_get_be32(f);
6236
    env->cp15.c13_tls2 = qemu_get_be32(f);
6237
    env->cp15.c13_tls3 = qemu_get_be32(f);
6238
    env->cp15.c15_cpar = qemu_get_be32(f);
6239

    
6240
    env->features = qemu_get_be32(f);
6241

    
6242
    if (arm_feature(env, ARM_FEATURE_VFP)) {
6243
        for (i = 0;  i < 16; i++) {
6244
            CPU_DoubleU u;
6245
            u.l.upper = qemu_get_be32(f);
6246
            u.l.lower = qemu_get_be32(f);
6247
            env->vfp.regs[i] = u.d;
6248
        }
6249
        for (i = 0; i < 16; i++) {
6250
            env->vfp.xregs[i] = qemu_get_be32(f);
6251
        }
6252

    
6253
        /* TODO: Should use proper FPSCR access functions.  */
6254
        env->vfp.vec_len = qemu_get_be32(f);
6255
        env->vfp.vec_stride = qemu_get_be32(f);
6256

    
6257
        if (arm_feature(env, ARM_FEATURE_VFP3)) {
6258
            for (i = 0;  i < 16; i++) {
6259
                CPU_DoubleU u;
6260
                u.l.upper = qemu_get_be32(f);
6261
                u.l.lower = qemu_get_be32(f);
6262
                env->vfp.regs[i] = u.d;
6263
            }
6264
        }
6265
    }
6266

    
6267
    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6268
        for (i = 0; i < 16; i++) {
6269
            env->iwmmxt.regs[i] = qemu_get_be64(f);
6270
        }
6271
        for (i = 0; i < 16; i++) {
6272
            env->iwmmxt.cregs[i] = qemu_get_be32(f);
6273
        }
6274
    }
6275

    
6276
    if (arm_feature(env, ARM_FEATURE_M)) {
6277
        env->v7m.other_sp = qemu_get_be32(f);
6278
        env->v7m.vecbase = qemu_get_be32(f);
6279
        env->v7m.basepri = qemu_get_be32(f);
6280
        env->v7m.control = qemu_get_be32(f);
6281
        env->v7m.current_sp = qemu_get_be32(f);
6282
        env->v7m.exception = qemu_get_be32(f);
6283
    }
6284

    
6285
    return 0;
6286
}
6287

    
6288
#else
6289

    
6290
#warning No CPU save/restore functions
6291

    
6292
#endif
6293

    
6294
/***********************************************************/
6295
/* ram save/restore */
6296

    
6297
static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
6298
{
6299
    int v;
6300

    
6301
    v = qemu_get_byte(f);
6302
    switch(v) {
6303
    case 0:
6304
        if (qemu_get_buffer(f, buf, len) != len)
6305
            return -EIO;
6306
        break;
6307
    case 1:
6308
        v = qemu_get_byte(f);
6309
        memset(buf, v, len);
6310
        break;
6311
    default:
6312
        return -EINVAL;
6313
    }
6314
    return 0;
6315
}
6316

    
6317
static int ram_load_v1(QEMUFile *f, void *opaque)
6318
{
6319
    int i, ret;
6320

    
6321
    if (qemu_get_be32(f) != phys_ram_size)
6322
        return -EINVAL;
6323
    for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
6324
        ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
6325
        if (ret)
6326
            return ret;
6327
    }
6328
    return 0;
6329
}
6330

    
6331
#define BDRV_HASH_BLOCK_SIZE 1024
6332
#define IOBUF_SIZE 4096
6333
#define RAM_CBLOCK_MAGIC 0xfabe
6334

    
6335
typedef struct RamCompressState {
6336
    z_stream zstream;
6337
    QEMUFile *f;
6338
    uint8_t buf[IOBUF_SIZE];
6339
} RamCompressState;
6340

    
6341
static int ram_compress_open(RamCompressState *s, QEMUFile *f)
6342
{
6343
    int ret;
6344
    memset(s, 0, sizeof(*s));
6345
    s->f = f;
6346
    ret = deflateInit2(&s->zstream, 1,
6347
                       Z_DEFLATED, 15,
6348
                       9, Z_DEFAULT_STRATEGY);
6349
    if (ret != Z_OK)
6350
        return -1;
6351
    s->zstream.avail_out = IOBUF_SIZE;
6352
    s->zstream.next_out = s->buf;
6353
    return 0;
6354
}
6355

    
6356
static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len)
6357
{
6358
    qemu_put_be16(s->f, RAM_CBLOCK_MAGIC);
6359
    qemu_put_be16(s->f, len);
6360
    qemu_put_buffer(s->f, buf, len);
6361
}
6362

    
6363
static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len)
6364
{
6365
    int ret;
6366

    
6367
    s->zstream.avail_in = len;
6368
    s->zstream.next_in = (uint8_t *)buf;
6369
    while (s->zstream.avail_in > 0) {
6370
        ret = deflate(&s->zstream, Z_NO_FLUSH);
6371
        if (ret != Z_OK)
6372
            return -1;
6373
        if (s->zstream.avail_out == 0) {
6374
            ram_put_cblock(s, s->buf, IOBUF_SIZE);
6375
            s->zstream.avail_out = IOBUF_SIZE;
6376
            s->zstream.next_out = s->buf;
6377
        }
6378
    }
6379
    return 0;
6380
}
6381

    
6382
static void ram_compress_close(RamCompressState *s)
6383
{
6384
    int len, ret;
6385

    
6386
    /* compress last bytes */
6387
    for(;;) {
6388
        ret = deflate(&s->zstream, Z_FINISH);
6389
        if (ret == Z_OK || ret == Z_STREAM_END) {
6390
            len = IOBUF_SIZE - s->zstream.avail_out;
6391
            if (len > 0) {
6392
                ram_put_cblock(s, s->buf, len);
6393
            }
6394
            s->zstream.avail_out = IOBUF_SIZE;
6395
            s->zstream.next_out = s->buf;
6396
            if (ret == Z_STREAM_END)
6397
                break;
6398
        } else {
6399
            goto fail;
6400
        }
6401
    }
6402
fail:
6403
    deflateEnd(&s->zstream);
6404
}
6405

    
6406
typedef struct RamDecompressState {
6407
    z_stream zstream;
6408
    QEMUFile *f;
6409
    uint8_t buf[IOBUF_SIZE];
6410
} RamDecompressState;
6411

    
6412
static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
6413
{
6414
    int ret;
6415
    memset(s, 0, sizeof(*s));
6416
    s->f = f;
6417
    ret = inflateInit(&s->zstream);
6418
    if (ret != Z_OK)
6419
        return -1;
6420
    return 0;
6421
}
6422

    
6423
static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
6424
{
6425
    int ret, clen;
6426

    
6427
    s->zstream.avail_out = len;
6428
    s->zstream.next_out = buf;
6429
    while (s->zstream.avail_out > 0) {
6430
        if (s->zstream.avail_in == 0) {
6431
            if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
6432
                return -1;
6433
            clen = qemu_get_be16(s->f);
6434
            if (clen > IOBUF_SIZE)
6435
                return -1;
6436
            qemu_get_buffer(s->f, s->buf, clen);
6437
            s->zstream.avail_in = clen;
6438
            s->zstream.next_in = s->buf;
6439
        }
6440
        ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
6441
        if (ret != Z_OK && ret != Z_STREAM_END) {
6442
            return -1;
6443
        }
6444
    }
6445
    return 0;
6446
}
6447

    
6448
static void ram_decompress_close(RamDecompressState *s)
6449
{
6450
    inflateEnd(&s->zstream);
6451
}
6452

    
6453
static void ram_save(QEMUFile *f, void *opaque)
6454
{
6455
    int i;
6456
    RamCompressState s1, *s = &s1;
6457
    uint8_t buf[10];
6458

    
6459
    qemu_put_be32(f, phys_ram_size);
6460
    if (ram_compress_open(s, f) < 0)
6461
        return;
6462
    for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6463
#if 0
6464
        if (tight_savevm_enabled) {
6465
            int64_t sector_num;
6466
            int j;
6467

6468
            /* find if the memory block is available on a virtual
6469
               block device */
6470
            sector_num = -1;
6471
            for(j = 0; j < MAX_DISKS; j++) {
6472
                if (bs_table[j]) {
6473
                    sector_num = bdrv_hash_find(bs_table[j],
6474
                                                phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
6475
                    if (sector_num >= 0)
6476
                        break;
6477
                }
6478
            }
6479
            if (j == MAX_DISKS)
6480
                goto normal_compress;
6481
            buf[0] = 1;
6482
            buf[1] = j;
6483
            cpu_to_be64wu((uint64_t *)(buf + 2), sector_num);
6484
            ram_compress_buf(s, buf, 10);
6485
        } else
6486
#endif
6487
        {
6488
            //        normal_compress:
6489
            buf[0] = 0;
6490
            ram_compress_buf(s, buf, 1);
6491
            ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
6492
        }
6493
    }
6494
    ram_compress_close(s);
6495
}
6496

    
6497
static int ram_load(QEMUFile *f, void *opaque, int version_id)
6498
{
6499
    RamDecompressState s1, *s = &s1;
6500
    uint8_t buf[10];
6501
    int i;
6502

    
6503
    if (version_id == 1)
6504
        return ram_load_v1(f, opaque);
6505
    if (version_id != 2)
6506
        return -EINVAL;
6507
    if (qemu_get_be32(f) != phys_ram_size)
6508
        return -EINVAL;
6509
    if (ram_decompress_open(s, f) < 0)
6510
        return -EINVAL;
6511
    for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6512
        if (ram_decompress_buf(s, buf, 1) < 0) {
6513
            fprintf(stderr, "Error while reading ram block header\n");
6514
            goto error;
6515
        }
6516
        if (buf[0] == 0) {
6517
            if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
6518
                fprintf(stderr, "Error while reading ram block address=0x%08x", i);
6519
                goto error;
6520
            }
6521
        } else
6522
#if 0
6523
        if (buf[0] == 1) {
6524
            int bs_index;
6525
            int64_t sector_num;
6526

6527
            ram_decompress_buf(s, buf + 1, 9);
6528
            bs_index = buf[1];
6529
            sector_num = be64_to_cpupu((const uint64_t *)(buf + 2));
6530
            if (bs_index >= MAX_DISKS || bs_table[bs_index] == NULL) {
6531
                fprintf(stderr, "Invalid block device index %d\n", bs_index);
6532
                goto error;
6533
            }
6534
            if (bdrv_read(bs_table[bs_index], sector_num, phys_ram_base + i,
6535
                          BDRV_HASH_BLOCK_SIZE / 512) < 0) {
6536
                fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n",
6537
                        bs_index, sector_num);
6538
                goto error;
6539
            }
6540
        } else
6541
#endif
6542
        {
6543
        error:
6544
            printf("Error block header\n");
6545
            return -EINVAL;
6546
        }
6547
    }
6548
    ram_decompress_close(s);
6549
    return 0;
6550
}
6551

    
6552
/***********************************************************/
6553
/* bottom halves (can be seen as timers which expire ASAP) */
6554

    
6555
struct QEMUBH {
6556
    QEMUBHFunc *cb;
6557
    void *opaque;
6558
    int scheduled;
6559
    QEMUBH *next;
6560
};
6561

    
6562
static QEMUBH *first_bh = NULL;
6563

    
6564
QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
6565
{
6566
    QEMUBH *bh;
6567
    bh = qemu_mallocz(sizeof(QEMUBH));
6568
    if (!bh)
6569
        return NULL;
6570
    bh->cb = cb;
6571
    bh->opaque = opaque;
6572
    return bh;
6573
}
6574

    
6575
int qemu_bh_poll(void)
6576
{
6577
    QEMUBH *bh, **pbh;
6578
    int ret;
6579

    
6580
    ret = 0;
6581
    for(;;) {
6582
        pbh = &first_bh;
6583
        bh = *pbh;
6584
        if (!bh)
6585
            break;
6586
        ret = 1;
6587
        *pbh = bh->next;
6588
        bh->scheduled = 0;
6589
        bh->cb(bh->opaque);
6590
    }
6591
    return ret;
6592
}
6593

    
6594
void qemu_bh_schedule(QEMUBH *bh)
6595
{
6596
    CPUState *env = cpu_single_env;
6597
    if (bh->scheduled)
6598
        return;
6599
    bh->scheduled = 1;
6600
    bh->next = first_bh;
6601
    first_bh = bh;
6602

    
6603
    /* stop the currently executing CPU to execute the BH ASAP */
6604
    if (env) {
6605
        cpu_interrupt(env, CPU_INTERRUPT_EXIT);
6606
    }
6607
}
6608

    
6609
void qemu_bh_cancel(QEMUBH *bh)
6610
{
6611
    QEMUBH **pbh;
6612
    if (bh->scheduled) {
6613
        pbh = &first_bh;
6614
        while (*pbh != bh)
6615
            pbh = &(*pbh)->next;
6616
        *pbh = bh->next;
6617
        bh->scheduled = 0;
6618
    }
6619
}
6620

    
6621
void qemu_bh_delete(QEMUBH *bh)
6622
{
6623
    qemu_bh_cancel(bh);
6624
    qemu_free(bh);
6625
}
6626

    
6627
/***********************************************************/
6628
/* machine registration */
6629

    
6630
QEMUMachine *first_machine = NULL;
6631

    
6632
int qemu_register_machine(QEMUMachine *m)
6633
{
6634
    QEMUMachine **pm;
6635
    pm = &first_machine;
6636
    while (*pm != NULL)
6637
        pm = &(*pm)->next;
6638
    m->next = NULL;
6639
    *pm = m;
6640
    return 0;
6641
}
6642

    
6643
QEMUMachine *find_machine(const char *name)
6644
{
6645
    QEMUMachine *m;
6646

    
6647
    for(m = first_machine; m != NULL; m = m->next) {
6648
        if (!strcmp(m->name, name))
6649
            return m;
6650
    }
6651
    return NULL;
6652
}
6653

    
6654
/***********************************************************/
6655
/* main execution loop */
6656

    
6657
void gui_update(void *opaque)
6658
{
6659
    DisplayState *ds = opaque;
6660
    ds->dpy_refresh(ds);
6661
    qemu_mod_timer(ds->gui_timer, GUI_REFRESH_INTERVAL + qemu_get_clock(rt_clock));
6662
}
6663

    
6664
struct vm_change_state_entry {
6665
    VMChangeStateHandler *cb;
6666
    void *opaque;
6667
    LIST_ENTRY (vm_change_state_entry) entries;
6668
};
6669

    
6670
static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
6671

    
6672
VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
6673
                                                     void *opaque)
6674
{
6675
    VMChangeStateEntry *e;
6676

    
6677
    e = qemu_mallocz(sizeof (*e));
6678
    if (!e)
6679
        return NULL;
6680

    
6681
    e->cb = cb;
6682
    e->opaque = opaque;
6683
    LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
6684
    return e;
6685
}
6686

    
6687
void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
6688
{
6689
    LIST_REMOVE (e, entries);
6690
    qemu_free (e);
6691
}
6692

    
6693
static void vm_state_notify(int running)
6694
{
6695
    VMChangeStateEntry *e;
6696

    
6697
    for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
6698
        e->cb(e->opaque, running);
6699
    }
6700
}
6701

    
6702
/* XXX: support several handlers */
6703
static VMStopHandler *vm_stop_cb;
6704
static void *vm_stop_opaque;
6705

    
6706
int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
6707
{
6708
    vm_stop_cb = cb;
6709
    vm_stop_opaque = opaque;
6710
    return 0;
6711
}
6712

    
6713
void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
6714
{
6715
    vm_stop_cb = NULL;
6716
}
6717

    
6718
void vm_start(void)
6719
{
6720
    if (!vm_running) {
6721
        cpu_enable_ticks();
6722
        vm_running = 1;
6723
        vm_state_notify(1);
6724
        qemu_rearm_alarm_timer(alarm_timer);
6725
    }
6726
}
6727

    
6728
void vm_stop(int reason)
6729
{
6730
    if (vm_running) {
6731
        cpu_disable_ticks();
6732
        vm_running = 0;
6733
        if (reason != 0) {
6734
            if (vm_stop_cb) {
6735
                vm_stop_cb(vm_stop_opaque, reason);
6736
            }
6737
        }
6738
        vm_state_notify(0);
6739
    }
6740
}
6741

    
6742
/* reset/shutdown handler */
6743

    
6744
typedef struct QEMUResetEntry {
6745
    QEMUResetHandler *func;
6746
    void *opaque;
6747
    struct QEMUResetEntry *next;
6748
} QEMUResetEntry;
6749

    
6750
static QEMUResetEntry *first_reset_entry;
6751
static int reset_requested;
6752
static int shutdown_requested;
6753
static int powerdown_requested;
6754

    
6755
void qemu_register_reset(QEMUResetHandler *func, void *opaque)
6756
{
6757
    QEMUResetEntry **pre, *re;
6758

    
6759
    pre = &first_reset_entry;
6760
    while (*pre != NULL)
6761
        pre = &(*pre)->next;
6762
    re = qemu_mallocz(sizeof(QEMUResetEntry));
6763
    re->func = func;
6764
    re->opaque = opaque;
6765
    re->next = NULL;
6766
    *pre = re;
6767
}
6768

    
6769
static void qemu_system_reset(void)
6770
{
6771
    QEMUResetEntry *re;
6772

    
6773
    /* reset all devices */
6774
    for(re = first_reset_entry; re != NULL; re = re->next) {
6775
        re->func(re->opaque);
6776
    }
6777
}
6778

    
6779
void qemu_system_reset_request(void)
6780
{
6781
    if (no_reboot) {
6782
        shutdown_requested = 1;
6783
    } else {
6784
        reset_requested = 1;
6785
    }
6786
    if (cpu_single_env)
6787
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6788
}
6789

    
6790
void qemu_system_shutdown_request(void)
6791
{
6792
    shutdown_requested = 1;
6793
    if (cpu_single_env)
6794
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6795
}
6796

    
6797
void qemu_system_powerdown_request(void)
6798
{
6799
    powerdown_requested = 1;
6800
    if (cpu_single_env)
6801
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6802
}
6803

    
6804
void main_loop_wait(int timeout)
6805
{
6806
    IOHandlerRecord *ioh;
6807
    fd_set rfds, wfds, xfds;
6808
    int ret, nfds;
6809
#ifdef _WIN32
6810
    int ret2, i;
6811
#endif
6812
    struct timeval tv;
6813
    PollingEntry *pe;
6814

    
6815

    
6816
    /* XXX: need to suppress polling by better using win32 events */
6817
    ret = 0;
6818
    for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
6819
        ret |= pe->func(pe->opaque);
6820
    }
6821
#ifdef _WIN32
6822
    if (ret == 0) {
6823
        int err;
6824
        WaitObjects *w = &wait_objects;
6825

    
6826
        ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
6827
        if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
6828
            if (w->func[ret - WAIT_OBJECT_0])
6829
                w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
6830

    
6831
            /* Check for additional signaled events */
6832
            for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
6833

    
6834
                /* Check if event is signaled */
6835
                ret2 = WaitForSingleObject(w->events[i], 0);
6836
                if(ret2 == WAIT_OBJECT_0) {
6837
                    if (w->func[i])
6838
                        w->func[i](w->opaque[i]);
6839
                } else if (ret2 == WAIT_TIMEOUT) {
6840
                } else {
6841
                    err = GetLastError();
6842
                    fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
6843
                }
6844
            }
6845
        } else if (ret == WAIT_TIMEOUT) {
6846
        } else {
6847
            err = GetLastError();
6848
            fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
6849
        }
6850
    }
6851
#endif
6852
    /* poll any events */
6853
    /* XXX: separate device handlers from system ones */
6854
    nfds = -1;
6855
    FD_ZERO(&rfds);
6856
    FD_ZERO(&wfds);
6857
    FD_ZERO(&xfds);
6858
    for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6859
        if (ioh->deleted)
6860
            continue;
6861
        if (ioh->fd_read &&
6862
            (!ioh->fd_read_poll ||
6863
             ioh->fd_read_poll(ioh->opaque) != 0)) {
6864
            FD_SET(ioh->fd, &rfds);
6865
            if (ioh->fd > nfds)
6866
                nfds = ioh->fd;
6867
        }
6868
        if (ioh->fd_write) {
6869
            FD_SET(ioh->fd, &wfds);
6870
            if (ioh->fd > nfds)
6871
                nfds = ioh->fd;
6872
        }
6873
    }
6874

    
6875
    tv.tv_sec = 0;
6876
#ifdef _WIN32
6877
    tv.tv_usec = 0;
6878
#else
6879
    tv.tv_usec = timeout * 1000;
6880
#endif
6881
#if defined(CONFIG_SLIRP)
6882
    if (slirp_inited) {
6883
        slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
6884
    }
6885
#endif
6886
    ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
6887
    if (ret > 0) {
6888
        IOHandlerRecord **pioh;
6889

    
6890
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6891
            if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
6892
                ioh->fd_read(ioh->opaque);
6893
            }
6894
            if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
6895
                ioh->fd_write(ioh->opaque);
6896
            }
6897
        }
6898

    
6899
        /* remove deleted IO handlers */
6900
        pioh = &first_io_handler;
6901
        while (*pioh) {
6902
            ioh = *pioh;
6903
            if (ioh->deleted) {
6904
                *pioh = ioh->next;
6905
                qemu_free(ioh);
6906
            } else
6907
                pioh = &ioh->next;
6908
        }
6909
    }
6910
#if defined(CONFIG_SLIRP)
6911
    if (slirp_inited) {
6912
        if (ret < 0) {
6913
            FD_ZERO(&rfds);
6914
            FD_ZERO(&wfds);
6915
            FD_ZERO(&xfds);
6916
        }
6917
        slirp_select_poll(&rfds, &wfds, &xfds);
6918
    }
6919
#endif
6920
    qemu_aio_poll();
6921

    
6922
    if (vm_running) {
6923
        qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
6924
                        qemu_get_clock(vm_clock));
6925
        /* run dma transfers, if any */
6926
        DMA_run();
6927
    }
6928

    
6929
    /* real time timers */
6930
    qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
6931
                    qemu_get_clock(rt_clock));
6932

    
6933
    /* Check bottom-halves last in case any of the earlier events triggered
6934
       them.  */
6935
    qemu_bh_poll();
6936

    
6937
}
6938

    
6939
static CPUState *cur_cpu;
6940

    
6941
int main_loop(void)
6942
{
6943
    int ret, timeout;
6944
#ifdef CONFIG_PROFILER
6945
    int64_t ti;
6946
#endif
6947
    CPUState *env;
6948

    
6949
    cur_cpu = first_cpu;
6950
    for(;;) {
6951
        if (vm_running) {
6952

    
6953
            env = cur_cpu;
6954
            for(;;) {
6955
                /* get next cpu */
6956
                env = env->next_cpu;
6957
                if (!env)
6958
                    env = first_cpu;
6959
#ifdef CONFIG_PROFILER
6960
                ti = profile_getclock();
6961
#endif
6962
                ret = cpu_exec(env);
6963
#ifdef CONFIG_PROFILER
6964
                qemu_time += profile_getclock() - ti;
6965
#endif
6966
                if (ret == EXCP_HLT) {
6967
                    /* Give the next CPU a chance to run.  */
6968
                    cur_cpu = env;
6969
                    continue;
6970
                }
6971
                if (ret != EXCP_HALTED)
6972
                    break;
6973
                /* all CPUs are halted ? */
6974
                if (env == cur_cpu)
6975
                    break;
6976
            }
6977
            cur_cpu = env;
6978

    
6979
            if (shutdown_requested) {
6980
                ret = EXCP_INTERRUPT;
6981
                break;
6982
            }
6983
            if (reset_requested) {
6984
                reset_requested = 0;
6985
                qemu_system_reset();
6986
                ret = EXCP_INTERRUPT;
6987
            }
6988
            if (powerdown_requested) {
6989
                powerdown_requested = 0;
6990
                qemu_system_powerdown();
6991
                ret = EXCP_INTERRUPT;
6992
            }
6993
            if (ret == EXCP_DEBUG) {
6994
                vm_stop(EXCP_DEBUG);
6995
            }
6996
            /* If all cpus are halted then wait until the next IRQ */
6997
            /* XXX: use timeout computed from timers */
6998
            if (ret == EXCP_HALTED)
6999
                timeout = 10;
7000
            else
7001
                timeout = 0;
7002
        } else {
7003
            timeout = 10;
7004
        }
7005
#ifdef CONFIG_PROFILER
7006
        ti = profile_getclock();
7007
#endif
7008
        main_loop_wait(timeout);
7009
#ifdef CONFIG_PROFILER
7010
        dev_time += profile_getclock() - ti;
7011
#endif
7012
    }
7013
    cpu_disable_ticks();
7014
    return ret;
7015
}
7016

    
7017
static void help(int exitcode)
7018
{
7019
    printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2007 Fabrice Bellard\n"
7020
           "usage: %s [options] [disk_image]\n"
7021
           "\n"
7022
           "'disk_image' is a raw hard image image for IDE hard disk 0\n"
7023
           "\n"
7024
           "Standard options:\n"
7025
           "-M machine      select emulated machine (-M ? for list)\n"
7026
           "-cpu cpu        select CPU (-cpu ? for list)\n"
7027
           "-fda/-fdb file  use 'file' as floppy disk 0/1 image\n"
7028
           "-hda/-hdb file  use 'file' as IDE hard disk 0/1 image\n"
7029
           "-hdc/-hdd file  use 'file' as IDE hard disk 2/3 image\n"
7030
           "-cdrom file     use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
7031
           "-mtdblock file  use 'file' as on-board Flash memory image\n"
7032
           "-sd file        use 'file' as SecureDigital card image\n"
7033
           "-pflash file    use 'file' as a parallel flash image\n"
7034
           "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
7035
           "-snapshot       write to temporary files instead of disk image files\n"
7036
#ifdef CONFIG_SDL
7037
           "-no-frame       open SDL window without a frame and window decorations\n"
7038
           "-alt-grab       use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
7039
           "-no-quit        disable SDL window close capability\n"
7040
#endif
7041
#ifdef TARGET_I386
7042
           "-no-fd-bootchk  disable boot signature checking for floppy disks\n"
7043
#endif
7044
           "-m megs         set virtual RAM size to megs MB [default=%d]\n"
7045
           "-smp n          set the number of CPUs to 'n' [default=1]\n"
7046
           "-nographic      disable graphical output and redirect serial I/Os to console\n"
7047
           "-portrait       rotate graphical output 90 deg left (only PXA LCD)\n"
7048
#ifndef _WIN32
7049
           "-k language     use keyboard layout (for example \"fr\" for French)\n"
7050
#endif
7051
#ifdef HAS_AUDIO
7052
           "-audio-help     print list of audio drivers and their options\n"
7053
           "-soundhw c1,... enable audio support\n"
7054
           "                and only specified sound cards (comma separated list)\n"
7055
           "                use -soundhw ? to get the list of supported cards\n"
7056
           "                use -soundhw all to enable all of them\n"
7057
#endif
7058
           "-localtime      set the real time clock to local time [default=utc]\n"
7059
           "-full-screen    start in full screen\n"
7060
#ifdef TARGET_I386
7061
           "-win2k-hack     use it when installing Windows 2000 to avoid a disk full bug\n"
7062
#endif
7063
           "-usb            enable the USB driver (will be the default soon)\n"
7064
           "-usbdevice name add the host or guest USB device 'name'\n"
7065
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
7066
           "-g WxH[xDEPTH]  Set the initial graphical resolution and depth\n"
7067
#endif
7068
           "-name string    set the name of the guest\n"
7069
           "\n"
7070
           "Network options:\n"
7071
           "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
7072
           "                create a new Network Interface Card and connect it to VLAN 'n'\n"
7073
#ifdef CONFIG_SLIRP
7074
           "-net user[,vlan=n][,hostname=host]\n"
7075
           "                connect the user mode network stack to VLAN 'n' and send\n"
7076
           "                hostname 'host' to DHCP clients\n"
7077
#endif
7078
#ifdef _WIN32
7079
           "-net tap[,vlan=n],ifname=name\n"
7080
           "                connect the host TAP network interface to VLAN 'n'\n"
7081
#else
7082
           "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
7083
           "                connect the host TAP network interface to VLAN 'n' and use the\n"
7084
           "                network scripts 'file' (default=%s)\n"
7085
           "                and 'dfile' (default=%s);\n"
7086
           "                use '[down]script=no' to disable script execution;\n"
7087
           "                use 'fd=h' to connect to an already opened TAP interface\n"
7088
#endif
7089
           "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
7090
           "                connect the vlan 'n' to another VLAN using a socket connection\n"
7091
           "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
7092
           "                connect the vlan 'n' to multicast maddr and port\n"
7093
           "-net none       use it alone to have zero network devices; if no -net option\n"
7094
           "                is provided, the default is '-net nic -net user'\n"
7095
           "\n"
7096
#ifdef CONFIG_SLIRP
7097
           "-tftp dir       allow tftp access to files in dir [-net user]\n"
7098
           "-bootp file     advertise file in BOOTP replies\n"
7099
#ifndef _WIN32
7100
           "-smb dir        allow SMB access to files in 'dir' [-net user]\n"
7101
#endif
7102
           "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
7103
           "                redirect TCP or UDP connections from host to guest [-net user]\n"
7104
#endif
7105
           "\n"
7106
           "Linux boot specific:\n"
7107
           "-kernel bzImage use 'bzImage' as kernel image\n"
7108
           "-append cmdline use 'cmdline' as kernel command line\n"
7109
           "-initrd file    use 'file' as initial ram disk\n"
7110
           "\n"
7111
           "Debug/Expert options:\n"
7112
           "-monitor dev    redirect the monitor to char device 'dev'\n"
7113
           "-serial dev     redirect the serial port to char device 'dev'\n"
7114
           "-parallel dev   redirect the parallel port to char device 'dev'\n"
7115
           "-pidfile file   Write PID to 'file'\n"
7116
           "-S              freeze CPU at startup (use 'c' to start execution)\n"
7117
           "-s              wait gdb connection to port\n"
7118
           "-p port         set gdb connection port [default=%s]\n"
7119
           "-d item1,...    output log to %s (use -d ? for a list of log items)\n"
7120
           "-hdachs c,h,s[,t]  force hard disk 0 physical geometry and the optional BIOS\n"
7121
           "                translation (t=none or lba) (usually qemu can guess them)\n"
7122
           "-L path         set the directory for the BIOS, VGA BIOS and keymaps\n"
7123
#ifdef USE_KQEMU
7124
           "-kernel-kqemu   enable KQEMU full virtualization (default is user mode only)\n"
7125
           "-no-kqemu       disable KQEMU kernel module usage\n"
7126
#endif
7127
#ifdef TARGET_I386
7128
           "-std-vga        simulate a standard VGA card with VESA Bochs Extensions\n"
7129
           "                (default is CL-GD5446 PCI VGA)\n"
7130
           "-no-acpi        disable ACPI\n"
7131
#endif
7132
           "-no-reboot      exit instead of rebooting\n"
7133
           "-loadvm file    start right away with a saved state (loadvm in monitor)\n"
7134
           "-vnc display    start a VNC server on display\n"
7135
#ifndef _WIN32
7136
           "-daemonize      daemonize QEMU after initializing\n"
7137
#endif
7138
           "-option-rom rom load a file, rom, into the option ROM space\n"
7139
#ifdef TARGET_SPARC
7140
           "-prom-env variable=value  set OpenBIOS nvram variables\n"
7141
#endif
7142
           "-clock          force the use of the given methods for timer alarm.\n"
7143
           "                To see what timers are available use -clock help\n"
7144
           "\n"
7145
           "During emulation, the following keys are useful:\n"
7146
           "ctrl-alt-f      toggle full screen\n"
7147
           "ctrl-alt-n      switch to virtual console 'n'\n"
7148
           "ctrl-alt        toggle mouse and keyboard grab\n"
7149
           "\n"
7150
           "When using -nographic, press 'ctrl-a h' to get some help.\n"
7151
           ,
7152
           "qemu",
7153
           DEFAULT_RAM_SIZE,
7154
#ifndef _WIN32
7155
           DEFAULT_NETWORK_SCRIPT,
7156
           DEFAULT_NETWORK_DOWN_SCRIPT,
7157
#endif
7158
           DEFAULT_GDBSTUB_PORT,
7159
           "/tmp/qemu.log");
7160
    exit(exitcode);
7161
}
7162

    
7163
#define HAS_ARG 0x0001
7164

    
7165
enum {
7166
    QEMU_OPTION_h,
7167

    
7168
    QEMU_OPTION_M,
7169
    QEMU_OPTION_cpu,
7170
    QEMU_OPTION_fda,
7171
    QEMU_OPTION_fdb,
7172
    QEMU_OPTION_hda,
7173
    QEMU_OPTION_hdb,
7174
    QEMU_OPTION_hdc,
7175
    QEMU_OPTION_hdd,
7176
    QEMU_OPTION_cdrom,
7177
    QEMU_OPTION_mtdblock,
7178
    QEMU_OPTION_sd,
7179
    QEMU_OPTION_pflash,
7180
    QEMU_OPTION_boot,
7181
    QEMU_OPTION_snapshot,
7182
#ifdef TARGET_I386
7183
    QEMU_OPTION_no_fd_bootchk,
7184
#endif
7185
    QEMU_OPTION_m,
7186
    QEMU_OPTION_nographic,
7187
    QEMU_OPTION_portrait,
7188
#ifdef HAS_AUDIO
7189
    QEMU_OPTION_audio_help,
7190
    QEMU_OPTION_soundhw,
7191
#endif
7192

    
7193
    QEMU_OPTION_net,
7194
    QEMU_OPTION_tftp,
7195
    QEMU_OPTION_bootp,
7196
    QEMU_OPTION_smb,
7197
    QEMU_OPTION_redir,
7198

    
7199
    QEMU_OPTION_kernel,
7200
    QEMU_OPTION_append,
7201
    QEMU_OPTION_initrd,
7202

    
7203
    QEMU_OPTION_S,
7204
    QEMU_OPTION_s,
7205
    QEMU_OPTION_p,
7206
    QEMU_OPTION_d,
7207
    QEMU_OPTION_hdachs,
7208
    QEMU_OPTION_L,
7209
    QEMU_OPTION_bios,
7210
    QEMU_OPTION_no_code_copy,
7211
    QEMU_OPTION_k,
7212
    QEMU_OPTION_localtime,
7213
    QEMU_OPTION_cirrusvga,
7214
    QEMU_OPTION_vmsvga,
7215
    QEMU_OPTION_g,
7216
    QEMU_OPTION_std_vga,
7217
    QEMU_OPTION_echr,
7218
    QEMU_OPTION_monitor,
7219
    QEMU_OPTION_serial,
7220
    QEMU_OPTION_parallel,
7221
    QEMU_OPTION_loadvm,
7222
    QEMU_OPTION_full_screen,
7223
    QEMU_OPTION_no_frame,
7224
    QEMU_OPTION_alt_grab,
7225
    QEMU_OPTION_no_quit,
7226
    QEMU_OPTION_pidfile,
7227
    QEMU_OPTION_no_kqemu,
7228
    QEMU_OPTION_kernel_kqemu,
7229
    QEMU_OPTION_win2k_hack,
7230
    QEMU_OPTION_usb,
7231
    QEMU_OPTION_usbdevice,
7232
    QEMU_OPTION_smp,
7233
    QEMU_OPTION_vnc,
7234
    QEMU_OPTION_no_acpi,
7235
    QEMU_OPTION_no_reboot,
7236
    QEMU_OPTION_show_cursor,
7237
    QEMU_OPTION_daemonize,
7238
    QEMU_OPTION_option_rom,
7239
    QEMU_OPTION_semihosting,
7240
    QEMU_OPTION_name,
7241
    QEMU_OPTION_prom_env,
7242
    QEMU_OPTION_old_param,
7243
    QEMU_OPTION_clock,
7244
    QEMU_OPTION_startdate,
7245
};
7246

    
7247
typedef struct QEMUOption {
7248
    const char *name;
7249
    int flags;
7250
    int index;
7251
} QEMUOption;
7252

    
7253
const QEMUOption qemu_options[] = {
7254
    { "h", 0, QEMU_OPTION_h },
7255
    { "help", 0, QEMU_OPTION_h },
7256

    
7257
    { "M", HAS_ARG, QEMU_OPTION_M },
7258
    { "cpu", HAS_ARG, QEMU_OPTION_cpu },
7259
    { "fda", HAS_ARG, QEMU_OPTION_fda },
7260
    { "fdb", HAS_ARG, QEMU_OPTION_fdb },
7261
    { "hda", HAS_ARG, QEMU_OPTION_hda },
7262
    { "hdb", HAS_ARG, QEMU_OPTION_hdb },
7263
    { "hdc", HAS_ARG, QEMU_OPTION_hdc },
7264
    { "hdd", HAS_ARG, QEMU_OPTION_hdd },
7265
    { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
7266
    { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
7267
    { "sd", HAS_ARG, QEMU_OPTION_sd },
7268
    { "pflash", HAS_ARG, QEMU_OPTION_pflash },
7269
    { "boot", HAS_ARG, QEMU_OPTION_boot },
7270
    { "snapshot", 0, QEMU_OPTION_snapshot },
7271
#ifdef TARGET_I386
7272
    { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
7273
#endif
7274
    { "m", HAS_ARG, QEMU_OPTION_m },
7275
    { "nographic", 0, QEMU_OPTION_nographic },
7276
    { "portrait", 0, QEMU_OPTION_portrait },
7277
    { "k", HAS_ARG, QEMU_OPTION_k },
7278
#ifdef HAS_AUDIO
7279
    { "audio-help", 0, QEMU_OPTION_audio_help },
7280
    { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
7281
#endif
7282

    
7283
    { "net", HAS_ARG, QEMU_OPTION_net},
7284
#ifdef CONFIG_SLIRP
7285
    { "tftp", HAS_ARG, QEMU_OPTION_tftp },
7286
    { "bootp", HAS_ARG, QEMU_OPTION_bootp },
7287
#ifndef _WIN32
7288
    { "smb", HAS_ARG, QEMU_OPTION_smb },
7289
#endif
7290
    { "redir", HAS_ARG, QEMU_OPTION_redir },
7291
#endif
7292

    
7293
    { "kernel", HAS_ARG, QEMU_OPTION_kernel },
7294
    { "append", HAS_ARG, QEMU_OPTION_append },
7295
    { "initrd", HAS_ARG, QEMU_OPTION_initrd },
7296

    
7297
    { "S", 0, QEMU_OPTION_S },
7298
    { "s", 0, QEMU_OPTION_s },
7299
    { "p", HAS_ARG, QEMU_OPTION_p },
7300
    { "d", HAS_ARG, QEMU_OPTION_d },
7301
    { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
7302
    { "L", HAS_ARG, QEMU_OPTION_L },
7303
    { "bios", HAS_ARG, QEMU_OPTION_bios },
7304
    { "no-code-copy", 0, QEMU_OPTION_no_code_copy },
7305
#ifdef USE_KQEMU
7306
    { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
7307
    { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
7308
#endif
7309
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
7310
    { "g", 1, QEMU_OPTION_g },
7311
#endif
7312
    { "localtime", 0, QEMU_OPTION_localtime },
7313
    { "std-vga", 0, QEMU_OPTION_std_vga },
7314
    { "echr", HAS_ARG, QEMU_OPTION_echr },
7315
    { "monitor", HAS_ARG, QEMU_OPTION_monitor },
7316
    { "serial", HAS_ARG, QEMU_OPTION_serial },
7317
    { "parallel", HAS_ARG, QEMU_OPTION_parallel },
7318
    { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
7319
    { "full-screen", 0, QEMU_OPTION_full_screen },
7320
#ifdef CONFIG_SDL
7321
    { "no-frame", 0, QEMU_OPTION_no_frame },
7322
    { "alt-grab", 0, QEMU_OPTION_alt_grab },
7323
    { "no-quit", 0, QEMU_OPTION_no_quit },
7324
#endif
7325
    { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
7326
    { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
7327
    { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
7328
    { "smp", HAS_ARG, QEMU_OPTION_smp },
7329
    { "vnc", HAS_ARG, QEMU_OPTION_vnc },
7330

    
7331
    /* temporary options */
7332
    { "usb", 0, QEMU_OPTION_usb },
7333
    { "cirrusvga", 0, QEMU_OPTION_cirrusvga },
7334
    { "vmwarevga", 0, QEMU_OPTION_vmsvga },
7335
    { "no-acpi", 0, QEMU_OPTION_no_acpi },
7336
    { "no-reboot", 0, QEMU_OPTION_no_reboot },
7337
    { "show-cursor", 0, QEMU_OPTION_show_cursor },
7338
    { "daemonize", 0, QEMU_OPTION_daemonize },
7339
    { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
7340
#if defined(TARGET_ARM) || defined(TARGET_M68K)
7341
    { "semihosting", 0, QEMU_OPTION_semihosting },
7342
#endif
7343
    { "name", HAS_ARG, QEMU_OPTION_name },
7344
#if defined(TARGET_SPARC)
7345
    { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
7346
#endif
7347
#if defined(TARGET_ARM)
7348
    { "old-param", 0, QEMU_OPTION_old_param },
7349
#endif
7350
    { "clock", HAS_ARG, QEMU_OPTION_clock },
7351
    { "startdate", HAS_ARG, QEMU_OPTION_startdate },
7352
    { NULL },
7353
};
7354

    
7355
/* password input */
7356

    
7357
int qemu_key_check(BlockDriverState *bs, const char *name)
7358
{
7359
    char password[256];
7360
    int i;
7361

    
7362
    if (!bdrv_is_encrypted(bs))
7363
        return 0;
7364

    
7365
    term_printf("%s is encrypted.\n", name);
7366
    for(i = 0; i < 3; i++) {
7367
        monitor_readline("Password: ", 1, password, sizeof(password));
7368
        if (bdrv_set_key(bs, password) == 0)
7369
            return 0;
7370
        term_printf("invalid password\n");
7371
    }
7372
    return -EPERM;
7373
}
7374

    
7375
static BlockDriverState *get_bdrv(int index)
7376
{
7377
    BlockDriverState *bs;
7378

    
7379
    if (index < 4) {
7380
        bs = bs_table[index];
7381
    } else if (index < 6) {
7382
        bs = fd_table[index - 4];
7383
    } else {
7384
        bs = NULL;
7385
    }
7386
    return bs;
7387
}
7388

    
7389
static void read_passwords(void)
7390
{
7391
    BlockDriverState *bs;
7392
    int i;
7393

    
7394
    for(i = 0; i < 6; i++) {
7395
        bs = get_bdrv(i);
7396
        if (bs)
7397
            qemu_key_check(bs, bdrv_get_device_name(bs));
7398
    }
7399
}
7400

    
7401
/* XXX: currently we cannot use simultaneously different CPUs */
7402
void register_machines(void)
7403
{
7404
#if defined(TARGET_I386)
7405
    qemu_register_machine(&pc_machine);
7406
    qemu_register_machine(&isapc_machine);
7407
#elif defined(TARGET_PPC)
7408
    qemu_register_machine(&heathrow_machine);
7409
    qemu_register_machine(&core99_machine);
7410
    qemu_register_machine(&prep_machine);
7411
    qemu_register_machine(&ref405ep_machine);
7412
    qemu_register_machine(&taihu_machine);
7413
#elif defined(TARGET_MIPS)
7414
    qemu_register_machine(&mips_machine);
7415
    qemu_register_machine(&mips_malta_machine);
7416
    qemu_register_machine(&mips_pica61_machine);
7417
    qemu_register_machine(&mips_mipssim_machine);
7418
#elif defined(TARGET_SPARC)
7419
#ifdef TARGET_SPARC64
7420
    qemu_register_machine(&sun4u_machine);
7421
#else
7422
    qemu_register_machine(&ss5_machine);
7423
    qemu_register_machine(&ss10_machine);
7424
    qemu_register_machine(&ss600mp_machine);
7425
#endif
7426
#elif defined(TARGET_ARM)
7427
    qemu_register_machine(&integratorcp_machine);
7428
    qemu_register_machine(&versatilepb_machine);
7429
    qemu_register_machine(&versatileab_machine);
7430
    qemu_register_machine(&realview_machine);
7431
    qemu_register_machine(&akitapda_machine);
7432
    qemu_register_machine(&spitzpda_machine);
7433
    qemu_register_machine(&borzoipda_machine);
7434
    qemu_register_machine(&terrierpda_machine);
7435
    qemu_register_machine(&palmte_machine);
7436
    qemu_register_machine(&lm3s811evb_machine);
7437
    qemu_register_machine(&lm3s6965evb_machine);
7438
#elif defined(TARGET_SH4)
7439
    qemu_register_machine(&shix_machine);
7440
    qemu_register_machine(&r2d_machine);
7441
#elif defined(TARGET_ALPHA)
7442
    /* XXX: TODO */
7443
#elif defined(TARGET_M68K)
7444
    qemu_register_machine(&mcf5208evb_machine);
7445
    qemu_register_machine(&an5206_machine);
7446
    qemu_register_machine(&dummy_m68k_machine);
7447
#elif defined(TARGET_CRIS)
7448
    qemu_register_machine(&bareetraxfs_machine);
7449
#else
7450
#error unsupported CPU
7451
#endif
7452
}
7453

    
7454
#ifdef HAS_AUDIO
7455
struct soundhw soundhw[] = {
7456
#ifdef HAS_AUDIO_CHOICE
7457
#ifdef TARGET_I386
7458
    {
7459
        "pcspk",
7460
        "PC speaker",
7461
        0,
7462
        1,
7463
        { .init_isa = pcspk_audio_init }
7464
    },
7465
#endif
7466
    {
7467
        "sb16",
7468
        "Creative Sound Blaster 16",
7469
        0,
7470
        1,
7471
        { .init_isa = SB16_init }
7472
    },
7473

    
7474
#ifdef CONFIG_ADLIB
7475
    {
7476
        "adlib",
7477
#ifdef HAS_YMF262
7478
        "Yamaha YMF262 (OPL3)",
7479
#else
7480
        "Yamaha YM3812 (OPL2)",
7481
#endif
7482
        0,
7483
        1,
7484
        { .init_isa = Adlib_init }
7485
    },
7486
#endif
7487

    
7488
#ifdef CONFIG_GUS
7489
    {
7490
        "gus",
7491
        "Gravis Ultrasound GF1",
7492
        0,
7493
        1,
7494
        { .init_isa = GUS_init }
7495
    },
7496
#endif
7497

    
7498
    {
7499
        "es1370",
7500
        "ENSONIQ AudioPCI ES1370",
7501
        0,
7502
        0,
7503
        { .init_pci = es1370_init }
7504
    },
7505
#endif
7506

    
7507
    { NULL, NULL, 0, 0, { NULL } }
7508
};
7509

    
7510
static void select_soundhw (const char *optarg)
7511
{
7512
    struct soundhw *c;
7513

    
7514
    if (*optarg == '?') {
7515
    show_valid_cards:
7516

    
7517
        printf ("Valid sound card names (comma separated):\n");
7518
        for (c = soundhw; c->name; ++c) {
7519
            printf ("%-11s %s\n", c->name, c->descr);
7520
        }
7521
        printf ("\n-soundhw all will enable all of the above\n");
7522
        exit (*optarg != '?');
7523
    }
7524
    else {
7525
        size_t l;
7526
        const char *p;
7527
        char *e;
7528
        int bad_card = 0;
7529

    
7530
        if (!strcmp (optarg, "all")) {
7531
            for (c = soundhw; c->name; ++c) {
7532
                c->enabled = 1;
7533
            }
7534
            return;
7535
        }
7536

    
7537
        p = optarg;
7538
        while (*p) {
7539
            e = strchr (p, ',');
7540
            l = !e ? strlen (p) : (size_t) (e - p);
7541

    
7542
            for (c = soundhw; c->name; ++c) {
7543
                if (!strncmp (c->name, p, l)) {
7544
                    c->enabled = 1;
7545
                    break;
7546
                }
7547
            }
7548

    
7549
            if (!c->name) {
7550
                if (l > 80) {
7551
                    fprintf (stderr,
7552
                             "Unknown sound card name (too big to show)\n");
7553
                }
7554
                else {
7555
                    fprintf (stderr, "Unknown sound card name `%.*s'\n",
7556
                             (int) l, p);
7557
                }
7558
                bad_card = 1;
7559
            }
7560
            p += l + (e != NULL);
7561
        }
7562

    
7563
        if (bad_card)
7564
            goto show_valid_cards;
7565
    }
7566
}
7567
#endif
7568

    
7569
#ifdef _WIN32
7570
static BOOL WINAPI qemu_ctrl_handler(DWORD type)
7571
{
7572
    exit(STATUS_CONTROL_C_EXIT);
7573
    return TRUE;
7574
}
7575
#endif
7576

    
7577
#define MAX_NET_CLIENTS 32
7578

    
7579
int main(int argc, char **argv)
7580
{
7581
#ifdef CONFIG_GDBSTUB
7582
    int use_gdbstub;
7583
    const char *gdbstub_port;
7584
#endif
7585
    uint32_t boot_devices_bitmap = 0;
7586
    int i, cdrom_index, pflash_index;
7587
    int snapshot, linux_boot, net_boot;
7588
    const char *initrd_filename;
7589
    const char *hd_filename[MAX_DISKS], *fd_filename[MAX_FD];
7590
    const char *pflash_filename[MAX_PFLASH];
7591
    const char *sd_filename;
7592
    const char *mtd_filename;
7593
    const char *kernel_filename, *kernel_cmdline;
7594
    const char *boot_devices = "";
7595
    DisplayState *ds = &display_state;
7596
    int cyls, heads, secs, translation;
7597
    char net_clients[MAX_NET_CLIENTS][256];
7598
    int nb_net_clients;
7599
    int optind;
7600
    const char *r, *optarg;
7601
    CharDriverState *monitor_hd;
7602
    char monitor_device[128];
7603
    char serial_devices[MAX_SERIAL_PORTS][128];
7604
    int serial_device_index;
7605
    char parallel_devices[MAX_PARALLEL_PORTS][128];
7606
    int parallel_device_index;
7607
    const char *loadvm = NULL;
7608
    QEMUMachine *machine;
7609
    const char *cpu_model;
7610
    char usb_devices[MAX_USB_CMDLINE][128];
7611
    int usb_devices_index;
7612
    int fds[2];
7613
    const char *pid_file = NULL;
7614
    VLANState *vlan;
7615

    
7616
    LIST_INIT (&vm_change_state_head);
7617
#ifndef _WIN32
7618
    {
7619
        struct sigaction act;
7620
        sigfillset(&act.sa_mask);
7621
        act.sa_flags = 0;
7622
        act.sa_handler = SIG_IGN;
7623
        sigaction(SIGPIPE, &act, NULL);
7624
    }
7625
#else
7626
    SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
7627
    /* Note: cpu_interrupt() is currently not SMP safe, so we force
7628
       QEMU to run on a single CPU */
7629
    {
7630
        HANDLE h;
7631
        DWORD mask, smask;
7632
        int i;
7633
        h = GetCurrentProcess();
7634
        if (GetProcessAffinityMask(h, &mask, &smask)) {
7635
            for(i = 0; i < 32; i++) {
7636
                if (mask & (1 << i))
7637
                    break;
7638
            }
7639
            if (i != 32) {
7640
                mask = 1 << i;
7641
                SetProcessAffinityMask(h, mask);
7642
            }
7643
        }
7644
    }
7645
#endif
7646

    
7647
    register_machines();
7648
    machine = first_machine;
7649
    cpu_model = NULL;
7650
    initrd_filename = NULL;
7651
    for(i = 0; i < MAX_FD; i++)
7652
        fd_filename[i] = NULL;
7653
    for(i = 0; i < MAX_DISKS; i++)
7654
        hd_filename[i] = NULL;
7655
    for(i = 0; i < MAX_PFLASH; i++)
7656
        pflash_filename[i] = NULL;
7657
    pflash_index = 0;
7658
    sd_filename = NULL;
7659
    mtd_filename = NULL;
7660
    ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
7661
    vga_ram_size = VGA_RAM_SIZE;
7662
#ifdef CONFIG_GDBSTUB
7663
    use_gdbstub = 0;
7664
    gdbstub_port = DEFAULT_GDBSTUB_PORT;
7665
#endif
7666
    snapshot = 0;
7667
    nographic = 0;
7668
    kernel_filename = NULL;
7669
    kernel_cmdline = "";
7670
#ifdef TARGET_PPC
7671
    cdrom_index = 1;
7672
#else
7673
    cdrom_index = 2;
7674
#endif
7675
    cyls = heads = secs = 0;
7676
    translation = BIOS_ATA_TRANSLATION_AUTO;
7677
    pstrcpy(monitor_device, sizeof(monitor_device), "vc");
7678

    
7679
    pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "vc");
7680
    for(i = 1; i < MAX_SERIAL_PORTS; i++)
7681
        serial_devices[i][0] = '\0';
7682
    serial_device_index = 0;
7683

    
7684
    pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "vc");
7685
    for(i = 1; i < MAX_PARALLEL_PORTS; i++)
7686
        parallel_devices[i][0] = '\0';
7687
    parallel_device_index = 0;
7688

    
7689
    usb_devices_index = 0;
7690

    
7691
    nb_net_clients = 0;
7692

    
7693
    nb_nics = 0;
7694
    /* default mac address of the first network interface */
7695

    
7696
    optind = 1;
7697
    for(;;) {
7698
        if (optind >= argc)
7699
            break;
7700
        r = argv[optind];
7701
        if (r[0] != '-') {
7702
            hd_filename[0] = argv[optind++];
7703
        } else {
7704
            const QEMUOption *popt;
7705

    
7706
            optind++;
7707
            /* Treat --foo the same as -foo.  */
7708
            if (r[1] == '-')
7709
                r++;
7710
            popt = qemu_options;
7711
            for(;;) {
7712
                if (!popt->name) {
7713
                    fprintf(stderr, "%s: invalid option -- '%s'\n",
7714
                            argv[0], r);
7715
                    exit(1);
7716
                }
7717
                if (!strcmp(popt->name, r + 1))
7718
                    break;
7719
                popt++;
7720
            }
7721
            if (popt->flags & HAS_ARG) {
7722
                if (optind >= argc) {
7723
                    fprintf(stderr, "%s: option '%s' requires an argument\n",
7724
                            argv[0], r);
7725
                    exit(1);
7726
                }
7727
                optarg = argv[optind++];
7728
            } else {
7729
                optarg = NULL;
7730
            }
7731

    
7732
            switch(popt->index) {
7733
            case QEMU_OPTION_M:
7734
                machine = find_machine(optarg);
7735
                if (!machine) {
7736
                    QEMUMachine *m;
7737
                    printf("Supported machines are:\n");
7738
                    for(m = first_machine; m != NULL; m = m->next) {
7739
                        printf("%-10s %s%s\n",
7740
                               m->name, m->desc,
7741
                               m == first_machine ? " (default)" : "");
7742
                    }
7743
                    exit(*optarg != '?');
7744
                }
7745
                break;
7746
            case QEMU_OPTION_cpu:
7747
                /* hw initialization will check this */
7748
                if (*optarg == '?') {
7749
/* XXX: implement xxx_cpu_list for targets that still miss it */
7750
#if defined(cpu_list)
7751
                    cpu_list(stdout, &fprintf);
7752
#endif
7753
                    exit(0);
7754
                } else {
7755
                    cpu_model = optarg;
7756
                }
7757
                break;
7758
            case QEMU_OPTION_initrd:
7759
                initrd_filename = optarg;
7760
                break;
7761
            case QEMU_OPTION_hda:
7762
            case QEMU_OPTION_hdb:
7763
            case QEMU_OPTION_hdc:
7764
            case QEMU_OPTION_hdd:
7765
                {
7766
                    int hd_index;
7767
                    hd_index = popt->index - QEMU_OPTION_hda;
7768
                    hd_filename[hd_index] = optarg;
7769
                    if (hd_index == cdrom_index)
7770
                        cdrom_index = -1;
7771
                }
7772
                break;
7773
            case QEMU_OPTION_mtdblock:
7774
                mtd_filename = optarg;
7775
                break;
7776
            case QEMU_OPTION_sd:
7777
                sd_filename = optarg;
7778
                break;
7779
            case QEMU_OPTION_pflash:
7780
                if (pflash_index >= MAX_PFLASH) {
7781
                    fprintf(stderr, "qemu: too many parallel flash images\n");
7782
                    exit(1);
7783
                }
7784
                pflash_filename[pflash_index++] = optarg;
7785
                break;
7786
            case QEMU_OPTION_snapshot:
7787
                snapshot = 1;
7788
                break;
7789
            case QEMU_OPTION_hdachs:
7790
                {
7791
                    const char *p;
7792
                    p = optarg;
7793
                    cyls = strtol(p, (char **)&p, 0);
7794
                    if (cyls < 1 || cyls > 16383)
7795
                        goto chs_fail;
7796
                    if (*p != ',')
7797
                        goto chs_fail;
7798
                    p++;
7799
                    heads = strtol(p, (char **)&p, 0);
7800
                    if (heads < 1 || heads > 16)
7801
                        goto chs_fail;
7802
                    if (*p != ',')
7803
                        goto chs_fail;
7804
                    p++;
7805
                    secs = strtol(p, (char **)&p, 0);
7806
                    if (secs < 1 || secs > 63)
7807
                        goto chs_fail;
7808
                    if (*p == ',') {
7809
                        p++;
7810
                        if (!strcmp(p, "none"))
7811
                            translation = BIOS_ATA_TRANSLATION_NONE;
7812
                        else if (!strcmp(p, "lba"))
7813
                            translation = BIOS_ATA_TRANSLATION_LBA;
7814
                        else if (!strcmp(p, "auto"))
7815
                            translation = BIOS_ATA_TRANSLATION_AUTO;
7816
                        else
7817
                            goto chs_fail;
7818
                    } else if (*p != '\0') {
7819
                    chs_fail:
7820
                        fprintf(stderr, "qemu: invalid physical CHS format\n");
7821
                        exit(1);
7822
                    }
7823
                }
7824
                break;
7825
            case QEMU_OPTION_nographic:
7826
                pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "stdio");
7827
                pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "null");
7828
                pstrcpy(monitor_device, sizeof(monitor_device), "stdio");
7829
                nographic = 1;
7830
                break;
7831
            case QEMU_OPTION_portrait:
7832
                graphic_rotate = 1;
7833
                break;
7834
            case QEMU_OPTION_kernel:
7835
                kernel_filename = optarg;
7836
                break;
7837
            case QEMU_OPTION_append:
7838
                kernel_cmdline = optarg;
7839
                break;
7840
            case QEMU_OPTION_cdrom:
7841
                if (cdrom_index >= 0) {
7842
                    hd_filename[cdrom_index] = optarg;
7843
                }
7844
                break;
7845
            case QEMU_OPTION_boot:
7846
                boot_devices = optarg;
7847
                /* We just do some generic consistency checks */
7848
                {
7849
                    /* Could easily be extended to 64 devices if needed */
7850
                    const unsigned char *p;
7851
                    
7852
                    boot_devices_bitmap = 0;
7853
                    for (p = boot_devices; *p != '\0'; p++) {
7854
                        /* Allowed boot devices are:
7855
                         * a b     : floppy disk drives
7856
                         * c ... f : IDE disk drives
7857
                         * g ... m : machine implementation dependant drives
7858
                         * n ... p : network devices
7859
                         * It's up to each machine implementation to check
7860
                         * if the given boot devices match the actual hardware
7861
                         * implementation and firmware features.
7862
                         */
7863
                        if (*p < 'a' || *p > 'q') {
7864
                            fprintf(stderr, "Invalid boot device '%c'\n", *p);
7865
                            exit(1);
7866
                        }
7867
                        if (boot_devices_bitmap & (1 << (*p - 'a'))) {
7868
                            fprintf(stderr,
7869
                                    "Boot device '%c' was given twice\n",*p);
7870
                            exit(1);
7871
                        }
7872
                        boot_devices_bitmap |= 1 << (*p - 'a');
7873
                    }
7874
                }
7875
                break;
7876
            case QEMU_OPTION_fda:
7877
                fd_filename[0] = optarg;
7878
                break;
7879
            case QEMU_OPTION_fdb:
7880
                fd_filename[1] = optarg;
7881
                break;
7882
#ifdef TARGET_I386
7883
            case QEMU_OPTION_no_fd_bootchk:
7884
                fd_bootchk = 0;
7885
                break;
7886
#endif
7887
            case QEMU_OPTION_no_code_copy:
7888
                code_copy_enabled = 0;
7889
                break;
7890
            case QEMU_OPTION_net:
7891
                if (nb_net_clients >= MAX_NET_CLIENTS) {
7892
                    fprintf(stderr, "qemu: too many network clients\n");
7893
                    exit(1);
7894
                }
7895
                pstrcpy(net_clients[nb_net_clients],
7896
                        sizeof(net_clients[0]),
7897
                        optarg);
7898
                nb_net_clients++;
7899
                break;
7900
#ifdef CONFIG_SLIRP
7901
            case QEMU_OPTION_tftp:
7902
                tftp_prefix = optarg;
7903
                break;
7904
            case QEMU_OPTION_bootp:
7905
                bootp_filename = optarg;
7906
                break;
7907
#ifndef _WIN32
7908
            case QEMU_OPTION_smb:
7909
                net_slirp_smb(optarg);
7910
                break;
7911
#endif
7912
            case QEMU_OPTION_redir:
7913
                net_slirp_redir(optarg);
7914
                break;
7915
#endif
7916
#ifdef HAS_AUDIO
7917
            case QEMU_OPTION_audio_help:
7918
                AUD_help ();
7919
                exit (0);
7920
                break;
7921
            case QEMU_OPTION_soundhw:
7922
                select_soundhw (optarg);
7923
                break;
7924
#endif
7925
            case QEMU_OPTION_h:
7926
                help(0);
7927
                break;
7928
            case QEMU_OPTION_m:
7929
                ram_size = atoi(optarg) * 1024 * 1024;
7930
                if (ram_size <= 0)
7931
                    help(1);
7932
                if (ram_size > PHYS_RAM_MAX_SIZE) {
7933
                    fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
7934
                            PHYS_RAM_MAX_SIZE / (1024 * 1024));
7935
                    exit(1);
7936
                }
7937
                break;
7938
            case QEMU_OPTION_d:
7939
                {
7940
                    int mask;
7941
                    CPULogItem *item;
7942

    
7943
                    mask = cpu_str_to_log_mask(optarg);
7944
                    if (!mask) {
7945
                        printf("Log items (comma separated):\n");
7946
                    for(item = cpu_log_items; item->mask != 0; item++) {
7947
                        printf("%-10s %s\n", item->name, item->help);
7948
                    }
7949
                    exit(1);
7950
                    }
7951
                    cpu_set_log(mask);
7952
                }
7953
                break;
7954
#ifdef CONFIG_GDBSTUB
7955
            case QEMU_OPTION_s:
7956
                use_gdbstub = 1;
7957
                break;
7958
            case QEMU_OPTION_p:
7959
                gdbstub_port = optarg;
7960
                break;
7961
#endif
7962
            case QEMU_OPTION_L:
7963
                bios_dir = optarg;
7964
                break;
7965
            case QEMU_OPTION_bios:
7966
                bios_name = optarg;
7967
                break;
7968
            case QEMU_OPTION_S:
7969
                autostart = 0;
7970
                break;
7971
            case QEMU_OPTION_k:
7972
                keyboard_layout = optarg;
7973
                break;
7974
            case QEMU_OPTION_localtime:
7975
                rtc_utc = 0;
7976
                break;
7977
            case QEMU_OPTION_cirrusvga:
7978
                cirrus_vga_enabled = 1;
7979
                vmsvga_enabled = 0;
7980
                break;
7981
            case QEMU_OPTION_vmsvga:
7982
                cirrus_vga_enabled = 0;
7983
                vmsvga_enabled = 1;
7984
                break;
7985
            case QEMU_OPTION_std_vga:
7986
                cirrus_vga_enabled = 0;
7987
                vmsvga_enabled = 0;
7988
                break;
7989
            case QEMU_OPTION_g:
7990
                {
7991
                    const char *p;
7992
                    int w, h, depth;
7993
                    p = optarg;
7994
                    w = strtol(p, (char **)&p, 10);
7995
                    if (w <= 0) {
7996
                    graphic_error:
7997
                        fprintf(stderr, "qemu: invalid resolution or depth\n");
7998
                        exit(1);
7999
                    }
8000
                    if (*p != 'x')
8001
                        goto graphic_error;
8002
                    p++;
8003
                    h = strtol(p, (char **)&p, 10);
8004
                    if (h <= 0)
8005
                        goto graphic_error;
8006
                    if (*p == 'x') {
8007
                        p++;
8008
                        depth = strtol(p, (char **)&p, 10);
8009
                        if (depth != 8 && depth != 15 && depth != 16 &&
8010
                            depth != 24 && depth != 32)
8011
                            goto graphic_error;
8012
                    } else if (*p == '\0') {
8013
                        depth = graphic_depth;
8014
                    } else {
8015
                        goto graphic_error;
8016
                    }
8017

    
8018
                    graphic_width = w;
8019
                    graphic_height = h;
8020
                    graphic_depth = depth;
8021
                }
8022
                break;
8023
            case QEMU_OPTION_echr:
8024
                {
8025
                    char *r;
8026
                    term_escape_char = strtol(optarg, &r, 0);
8027
                    if (r == optarg)
8028
                        printf("Bad argument to echr\n");
8029
                    break;
8030
                }
8031
            case QEMU_OPTION_monitor:
8032
                pstrcpy(monitor_device, sizeof(monitor_device), optarg);
8033
                break;
8034
            case QEMU_OPTION_serial:
8035
                if (serial_device_index >= MAX_SERIAL_PORTS) {
8036
                    fprintf(stderr, "qemu: too many serial ports\n");
8037
                    exit(1);
8038
                }
8039
                pstrcpy(serial_devices[serial_device_index],
8040
                        sizeof(serial_devices[0]), optarg);
8041
                serial_device_index++;
8042
                break;
8043
            case QEMU_OPTION_parallel:
8044
                if (parallel_device_index >= MAX_PARALLEL_PORTS) {
8045
                    fprintf(stderr, "qemu: too many parallel ports\n");
8046
                    exit(1);
8047
                }
8048
                pstrcpy(parallel_devices[parallel_device_index],
8049
                        sizeof(parallel_devices[0]), optarg);
8050
                parallel_device_index++;
8051
                break;
8052
            case QEMU_OPTION_loadvm:
8053
                loadvm = optarg;
8054
                break;
8055
            case QEMU_OPTION_full_screen:
8056
                full_screen = 1;
8057
                break;
8058
#ifdef CONFIG_SDL
8059
            case QEMU_OPTION_no_frame:
8060
                no_frame = 1;
8061
                break;
8062
            case QEMU_OPTION_alt_grab:
8063
                alt_grab = 1;
8064
                break;
8065
            case QEMU_OPTION_no_quit:
8066
                no_quit = 1;
8067
                break;
8068
#endif
8069
            case QEMU_OPTION_pidfile:
8070
                pid_file = optarg;
8071
                break;
8072
#ifdef TARGET_I386
8073
            case QEMU_OPTION_win2k_hack:
8074
                win2k_install_hack = 1;
8075
                break;
8076
#endif
8077
#ifdef USE_KQEMU
8078
            case QEMU_OPTION_no_kqemu:
8079
                kqemu_allowed = 0;
8080
                break;
8081
            case QEMU_OPTION_kernel_kqemu:
8082
                kqemu_allowed = 2;
8083
                break;
8084
#endif
8085
            case QEMU_OPTION_usb:
8086
                usb_enabled = 1;
8087
                break;
8088
            case QEMU_OPTION_usbdevice:
8089
                usb_enabled = 1;
8090
                if (usb_devices_index >= MAX_USB_CMDLINE) {
8091
                    fprintf(stderr, "Too many USB devices\n");
8092
                    exit(1);
8093
                }
8094
                pstrcpy(usb_devices[usb_devices_index],
8095
                        sizeof(usb_devices[usb_devices_index]),
8096
                        optarg);
8097
                usb_devices_index++;
8098
                break;
8099
            case QEMU_OPTION_smp:
8100
                smp_cpus = atoi(optarg);
8101
                if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
8102
                    fprintf(stderr, "Invalid number of CPUs\n");
8103
                    exit(1);
8104
                }
8105
                break;
8106
            case QEMU_OPTION_vnc:
8107
                vnc_display = optarg;
8108
                break;
8109
            case QEMU_OPTION_no_acpi:
8110
                acpi_enabled = 0;
8111
                break;
8112
            case QEMU_OPTION_no_reboot:
8113
                no_reboot = 1;
8114
                break;
8115
            case QEMU_OPTION_show_cursor:
8116
                cursor_hide = 0;
8117
                break;
8118
            case QEMU_OPTION_daemonize:
8119
                daemonize = 1;
8120
                break;
8121
            case QEMU_OPTION_option_rom:
8122
                if (nb_option_roms >= MAX_OPTION_ROMS) {
8123
                    fprintf(stderr, "Too many option ROMs\n");
8124
                    exit(1);
8125
                }
8126
                option_rom[nb_option_roms] = optarg;
8127
                nb_option_roms++;
8128
                break;
8129
            case QEMU_OPTION_semihosting:
8130
                semihosting_enabled = 1;
8131
                break;
8132
            case QEMU_OPTION_name:
8133
                qemu_name = optarg;
8134
                break;
8135
#ifdef TARGET_SPARC
8136
            case QEMU_OPTION_prom_env:
8137
                if (nb_prom_envs >= MAX_PROM_ENVS) {
8138
                    fprintf(stderr, "Too many prom variables\n");
8139
                    exit(1);
8140
                }
8141
                prom_envs[nb_prom_envs] = optarg;
8142
                nb_prom_envs++;
8143
                break;
8144
#endif
8145
#ifdef TARGET_ARM
8146
            case QEMU_OPTION_old_param:
8147
                old_param = 1;
8148
#endif
8149
            case QEMU_OPTION_clock:
8150
                configure_alarms(optarg);
8151
                break;
8152
            case QEMU_OPTION_startdate:
8153
                {
8154
                    struct tm tm;
8155
                    if (!strcmp(optarg, "now")) {
8156
                        rtc_start_date = -1;
8157
                    } else {
8158
                        if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
8159
                               &tm.tm_year,
8160
                               &tm.tm_mon,
8161
                               &tm.tm_mday,
8162
                               &tm.tm_hour,
8163
                               &tm.tm_min,
8164
                               &tm.tm_sec) == 6) {
8165
                            /* OK */
8166
                        } else if (sscanf(optarg, "%d-%d-%d",
8167
                                          &tm.tm_year,
8168
                                          &tm.tm_mon,
8169
                                          &tm.tm_mday) == 3) {
8170
                            tm.tm_hour = 0;
8171
                            tm.tm_min = 0;
8172
                            tm.tm_sec = 0;
8173
                        } else {
8174
                            goto date_fail;
8175
                        }
8176
                        tm.tm_year -= 1900;
8177
                        tm.tm_mon--;
8178
                        rtc_start_date = mktimegm(&tm);
8179
                        if (rtc_start_date == -1) {
8180
                        date_fail:
8181
                            fprintf(stderr, "Invalid date format. Valid format are:\n"
8182
                                    "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
8183
                            exit(1);
8184
                        }
8185
                    }
8186
                }
8187
                break;
8188
            }
8189
        }
8190
    }
8191

    
8192
#ifndef _WIN32
8193
    if (daemonize && !nographic && vnc_display == NULL) {
8194
        fprintf(stderr, "Can only daemonize if using -nographic or -vnc\n");
8195
        daemonize = 0;
8196
    }
8197

    
8198
    if (daemonize) {
8199
        pid_t pid;
8200

    
8201
        if (pipe(fds) == -1)
8202
            exit(1);
8203

    
8204
        pid = fork();
8205
        if (pid > 0) {
8206
            uint8_t status;
8207
            ssize_t len;
8208

    
8209
            close(fds[1]);
8210

    
8211
        again:
8212
            len = read(fds[0], &status, 1);
8213
            if (len == -1 && (errno == EINTR))
8214
                goto again;
8215

    
8216
            if (len != 1)
8217
                exit(1);
8218
            else if (status == 1) {
8219
                fprintf(stderr, "Could not acquire pidfile\n");
8220
                exit(1);
8221
            } else
8222
                exit(0);
8223
        } else if (pid < 0)
8224
            exit(1);
8225

    
8226
        setsid();
8227

    
8228
        pid = fork();
8229
        if (pid > 0)
8230
            exit(0);
8231
        else if (pid < 0)
8232
            exit(1);
8233

    
8234
        umask(027);
8235
        chdir("/");
8236

    
8237
        signal(SIGTSTP, SIG_IGN);
8238
        signal(SIGTTOU, SIG_IGN);
8239
        signal(SIGTTIN, SIG_IGN);
8240
    }
8241
#endif
8242

    
8243
    if (pid_file && qemu_create_pidfile(pid_file) != 0) {
8244
        if (daemonize) {
8245
            uint8_t status = 1;
8246
            write(fds[1], &status, 1);
8247
        } else
8248
            fprintf(stderr, "Could not acquire pid file\n");
8249
        exit(1);
8250
    }
8251

    
8252
#ifdef USE_KQEMU
8253
    if (smp_cpus > 1)
8254
        kqemu_allowed = 0;
8255
#endif
8256
    linux_boot = (kernel_filename != NULL);
8257
    net_boot = (boot_devices_bitmap >> ('n' - 'a')) && 0xF;
8258
    
8259
    /* XXX: this should not be: some embedded targets just have flash */
8260
    if (!linux_boot && net_boot == 0 &&
8261
        hd_filename[0] == '\0' &&
8262
        (cdrom_index >= 0 && hd_filename[cdrom_index] == '\0') &&
8263
        fd_filename[0] == '\0')
8264
        help(1);
8265

    
8266
    /* boot to floppy or the default cd if no hard disk defined yet */
8267
    if (!boot_devices[0]) {
8268
        if (hd_filename[0] != '\0')
8269
            boot_devices = "c";
8270
        else if (fd_filename[0] != '\0')
8271
            boot_devices = "a";
8272
        else
8273
            boot_devices = "d";
8274
    }
8275
    setvbuf(stdout, NULL, _IOLBF, 0);
8276

    
8277
    init_timers();
8278
    init_timer_alarm();
8279
    qemu_aio_init();
8280

    
8281
#ifdef _WIN32
8282
    socket_init();
8283
#endif
8284

    
8285
    /* init network clients */
8286
    if (nb_net_clients == 0) {
8287
        /* if no clients, we use a default config */
8288
        pstrcpy(net_clients[0], sizeof(net_clients[0]),
8289
                "nic");
8290
        pstrcpy(net_clients[1], sizeof(net_clients[0]),
8291
                "user");
8292
        nb_net_clients = 2;
8293
    }
8294

    
8295
    for(i = 0;i < nb_net_clients; i++) {
8296
        if (net_client_init(net_clients[i]) < 0)
8297
            exit(1);
8298
    }
8299
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
8300
        if (vlan->nb_guest_devs == 0 && vlan->nb_host_devs == 0)
8301
            continue;
8302
        if (vlan->nb_guest_devs == 0) {
8303
            fprintf(stderr, "Invalid vlan (%d) with no nics\n", vlan->id);
8304
            exit(1);
8305
        }
8306
        if (vlan->nb_host_devs == 0)
8307
            fprintf(stderr,
8308
                    "Warning: vlan %d is not connected to host network\n",
8309
                    vlan->id);
8310
    }
8311

    
8312
#ifdef TARGET_I386
8313
    /* XXX: this should be moved in the PC machine instanciation code */
8314
    if (net_boot != 0) {
8315
        int netroms = 0;
8316
        for (i = 0; i < nb_nics && i < 4; i++) {
8317
            const char *model = nd_table[i].model;
8318
            char buf[1024];
8319
            if (net_boot & (1 << i)) {
8320
                if (model == NULL)
8321
                    model = "ne2k_pci";
8322
                snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
8323
                if (get_image_size(buf) > 0) {
8324
                    if (nb_option_roms >= MAX_OPTION_ROMS) {
8325
                        fprintf(stderr, "Too many option ROMs\n");
8326
                        exit(1);
8327
                    }
8328
                    option_rom[nb_option_roms] = strdup(buf);
8329
                    nb_option_roms++;
8330
                    netroms++;
8331
                }
8332
            }
8333
        }
8334
        if (netroms == 0) {
8335
            fprintf(stderr, "No valid PXE rom found for network device\n");
8336
            exit(1);
8337
        }
8338
    }
8339
#endif
8340

    
8341
    /* init the memory */
8342
    phys_ram_size = ram_size + vga_ram_size + MAX_BIOS_SIZE;
8343

    
8344
    phys_ram_base = qemu_vmalloc(phys_ram_size);
8345
    if (!phys_ram_base) {
8346
        fprintf(stderr, "Could not allocate physical memory\n");
8347
        exit(1);
8348
    }
8349

    
8350
    /* we always create the cdrom drive, even if no disk is there */
8351
    bdrv_init();
8352
    if (cdrom_index >= 0) {
8353
        bs_table[cdrom_index] = bdrv_new("cdrom");
8354
        bdrv_set_type_hint(bs_table[cdrom_index], BDRV_TYPE_CDROM);
8355
    }
8356

    
8357
    /* open the virtual block devices */
8358
    for(i = 0; i < MAX_DISKS; i++) {
8359
        if (hd_filename[i]) {
8360
            if (!bs_table[i]) {
8361
                char buf[64];
8362
                snprintf(buf, sizeof(buf), "hd%c", i + 'a');
8363
                bs_table[i] = bdrv_new(buf);
8364
            }
8365
            if (bdrv_open(bs_table[i], hd_filename[i], snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8366
                fprintf(stderr, "qemu: could not open hard disk image '%s'\n",
8367
                        hd_filename[i]);
8368
                exit(1);
8369
            }
8370
            if (i == 0 && cyls != 0) {
8371
                bdrv_set_geometry_hint(bs_table[i], cyls, heads, secs);
8372
                bdrv_set_translation_hint(bs_table[i], translation);
8373
            }
8374
        }
8375
    }
8376

    
8377
    /* we always create at least one floppy disk */
8378
    fd_table[0] = bdrv_new("fda");
8379
    bdrv_set_type_hint(fd_table[0], BDRV_TYPE_FLOPPY);
8380

    
8381
    for(i = 0; i < MAX_FD; i++) {
8382
        if (fd_filename[i]) {
8383
            if (!fd_table[i]) {
8384
                char buf[64];
8385
                snprintf(buf, sizeof(buf), "fd%c", i + 'a');
8386
                fd_table[i] = bdrv_new(buf);
8387
                bdrv_set_type_hint(fd_table[i], BDRV_TYPE_FLOPPY);
8388
            }
8389
            if (fd_filename[i][0] != '\0') {
8390
                if (bdrv_open(fd_table[i], fd_filename[i],
8391
                              snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8392
                    fprintf(stderr, "qemu: could not open floppy disk image '%s'\n",
8393
                            fd_filename[i]);
8394
                    exit(1);
8395
                }
8396
            }
8397
        }
8398
    }
8399

    
8400
    /* Open the virtual parallel flash block devices */
8401
    for(i = 0; i < MAX_PFLASH; i++) {
8402
        if (pflash_filename[i]) {
8403
            if (!pflash_table[i]) {
8404
                char buf[64];
8405
                snprintf(buf, sizeof(buf), "fl%c", i + 'a');
8406
                pflash_table[i] = bdrv_new(buf);
8407
            }
8408
            if (bdrv_open(pflash_table[i], pflash_filename[i],
8409
                          snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8410
                fprintf(stderr, "qemu: could not open flash image '%s'\n",
8411
                        pflash_filename[i]);
8412
                exit(1);
8413
            }
8414
        }
8415
    }
8416

    
8417
    sd_bdrv = bdrv_new ("sd");
8418
    /* FIXME: This isn't really a floppy, but it's a reasonable
8419
       approximation.  */
8420
    bdrv_set_type_hint(sd_bdrv, BDRV_TYPE_FLOPPY);
8421
    if (sd_filename) {
8422
        if (bdrv_open(sd_bdrv, sd_filename,
8423
                      snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8424
            fprintf(stderr, "qemu: could not open SD card image %s\n",
8425
                    sd_filename);
8426
        } else
8427
            qemu_key_check(sd_bdrv, sd_filename);
8428
    }
8429

    
8430
    if (mtd_filename) {
8431
        mtd_bdrv = bdrv_new ("mtd");
8432
        if (bdrv_open(mtd_bdrv, mtd_filename,
8433
                      snapshot ? BDRV_O_SNAPSHOT : 0) < 0 ||
8434
            qemu_key_check(mtd_bdrv, mtd_filename)) {
8435
            fprintf(stderr, "qemu: could not open Flash image %s\n",
8436
                    mtd_filename);
8437
            bdrv_delete(mtd_bdrv);
8438
            mtd_bdrv = 0;
8439
        }
8440
    }
8441

    
8442
    register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
8443
    register_savevm("ram", 0, 2, ram_save, ram_load, NULL);
8444

    
8445
    init_ioports();
8446

    
8447
    /* terminal init */
8448
    memset(&display_state, 0, sizeof(display_state));
8449
    if (nographic) {
8450
        /* nearly nothing to do */
8451
        dumb_display_init(ds);
8452
    } else if (vnc_display != NULL) {
8453
        vnc_display_init(ds);
8454
        if (vnc_display_open(ds, vnc_display) < 0)
8455
            exit(1);
8456
    } else {
8457
#if defined(CONFIG_SDL)
8458
        sdl_display_init(ds, full_screen, no_frame);
8459
#elif defined(CONFIG_COCOA)
8460
        cocoa_display_init(ds, full_screen);
8461
#endif
8462
    }
8463

    
8464
    /* Maintain compatibility with multiple stdio monitors */
8465
    if (!strcmp(monitor_device,"stdio")) {
8466
        for (i = 0; i < MAX_SERIAL_PORTS; i++) {
8467
            if (!strcmp(serial_devices[i],"mon:stdio")) {
8468
                monitor_device[0] = '\0';
8469
                break;
8470
            } else if (!strcmp(serial_devices[i],"stdio")) {
8471
                monitor_device[0] = '\0';
8472
                pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "mon:stdio");
8473
                break;
8474
            }
8475
        }
8476
    }
8477
    if (monitor_device[0] != '\0') {
8478
        monitor_hd = qemu_chr_open(monitor_device);
8479
        if (!monitor_hd) {
8480
            fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
8481
            exit(1);
8482
        }
8483
        monitor_init(monitor_hd, !nographic);
8484
    }
8485

    
8486
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
8487
        const char *devname = serial_devices[i];
8488
        if (devname[0] != '\0' && strcmp(devname, "none")) {
8489
            serial_hds[i] = qemu_chr_open(devname);
8490
            if (!serial_hds[i]) {
8491
                fprintf(stderr, "qemu: could not open serial device '%s'\n",
8492
                        devname);
8493
                exit(1);
8494
            }
8495
            if (strstart(devname, "vc", 0))
8496
                qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
8497
        }
8498
    }
8499

    
8500
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
8501
        const char *devname = parallel_devices[i];
8502
        if (devname[0] != '\0' && strcmp(devname, "none")) {
8503
            parallel_hds[i] = qemu_chr_open(devname);
8504
            if (!parallel_hds[i]) {
8505
                fprintf(stderr, "qemu: could not open parallel device '%s'\n",
8506
                        devname);
8507
                exit(1);
8508
            }
8509
            if (strstart(devname, "vc", 0))
8510
                qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
8511
        }
8512
    }
8513

    
8514
    machine->init(ram_size, vga_ram_size, boot_devices,
8515
                  ds, fd_filename, snapshot,
8516
                  kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
8517

    
8518
    /* init USB devices */
8519
    if (usb_enabled) {
8520
        for(i = 0; i < usb_devices_index; i++) {
8521
            if (usb_device_add(usb_devices[i]) < 0) {
8522
                fprintf(stderr, "Warning: could not add USB device %s\n",
8523
                        usb_devices[i]);
8524
            }
8525
        }
8526
    }
8527

    
8528
    if (display_state.dpy_refresh) {
8529
        display_state.gui_timer = qemu_new_timer(rt_clock, gui_update, &display_state);
8530
        qemu_mod_timer(display_state.gui_timer, qemu_get_clock(rt_clock));
8531
    }
8532

    
8533
#ifdef CONFIG_GDBSTUB
8534
    if (use_gdbstub) {
8535
        /* XXX: use standard host:port notation and modify options
8536
           accordingly. */
8537
        if (gdbserver_start(gdbstub_port) < 0) {
8538
            fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
8539
                    gdbstub_port);
8540
            exit(1);
8541
        }
8542
    }
8543
#endif
8544

    
8545
    if (loadvm)
8546
        do_loadvm(loadvm);
8547

    
8548
    {
8549
        /* XXX: simplify init */
8550
        read_passwords();
8551
        if (autostart) {
8552
            vm_start();
8553
        }
8554
    }
8555

    
8556
    if (daemonize) {
8557
        uint8_t status = 0;
8558
        ssize_t len;
8559
        int fd;
8560

    
8561
    again1:
8562
        len = write(fds[1], &status, 1);
8563
        if (len == -1 && (errno == EINTR))
8564
            goto again1;
8565

    
8566
        if (len != 1)
8567
            exit(1);
8568

    
8569
        TFR(fd = open("/dev/null", O_RDWR));
8570
        if (fd == -1)
8571
            exit(1);
8572

    
8573
        dup2(fd, 0);
8574
        dup2(fd, 1);
8575
        dup2(fd, 2);
8576

    
8577
        close(fd);
8578
    }
8579

    
8580
    main_loop();
8581
    quit_timers();
8582

    
8583
#if !defined(_WIN32)
8584
    /* close network clients */
8585
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
8586
        VLANClientState *vc;
8587

    
8588
        for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
8589
            if (vc->fd_read == tap_receive) {
8590
                char ifname[64];
8591
                TAPState *s = vc->opaque;
8592

    
8593
                if (sscanf(vc->info_str, "tap: ifname=%63s ", ifname) == 1 &&
8594
                    s->down_script[0])
8595
                    launch_script(s->down_script, ifname, s->fd);
8596
            }
8597
    }
8598
    }
8599
#endif
8600
    return 0;
8601
}