Statistics
| Branch: | Revision:

root / vl.c @ 6ac0e82d

History | View | Annotate | Download (218.3 kB)

1
/*
2
 * QEMU System Emulator
3
 *
4
 * Copyright (c) 2003-2007 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25

    
26
#include <unistd.h>
27
#include <fcntl.h>
28
#include <signal.h>
29
#include <time.h>
30
#include <errno.h>
31
#include <sys/time.h>
32
#include <zlib.h>
33

    
34
#ifndef _WIN32
35
#include <sys/times.h>
36
#include <sys/wait.h>
37
#include <termios.h>
38
#include <sys/poll.h>
39
#include <sys/mman.h>
40
#include <sys/ioctl.h>
41
#include <sys/socket.h>
42
#include <netinet/in.h>
43
#include <dirent.h>
44
#include <netdb.h>
45
#include <sys/select.h>
46
#include <arpa/inet.h>
47
#ifdef _BSD
48
#include <sys/stat.h>
49
#ifndef __APPLE__
50
#include <libutil.h>
51
#endif
52
#elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
53
#include <freebsd/stdlib.h>
54
#else
55
#ifndef __sun__
56
#include <linux/if.h>
57
#include <linux/if_tun.h>
58
#include <pty.h>
59
#include <malloc.h>
60
#include <linux/rtc.h>
61

    
62
/* For the benefit of older linux systems which don't supply it,
63
   we use a local copy of hpet.h. */
64
/* #include <linux/hpet.h> */
65
#include "hpet.h"
66

    
67
#include <linux/ppdev.h>
68
#include <linux/parport.h>
69
#else
70
#include <sys/stat.h>
71
#include <sys/ethernet.h>
72
#include <sys/sockio.h>
73
#include <netinet/arp.h>
74
#include <netinet/in.h>
75
#include <netinet/in_systm.h>
76
#include <netinet/ip.h>
77
#include <netinet/ip_icmp.h> // must come after ip.h
78
#include <netinet/udp.h>
79
#include <netinet/tcp.h>
80
#include <net/if.h>
81
#include <syslog.h>
82
#include <stropts.h>
83
#endif
84
#endif
85
#else
86
#include <winsock2.h>
87
int inet_aton(const char *cp, struct in_addr *ia);
88
#endif
89

    
90
#if defined(CONFIG_SLIRP)
91
#include "libslirp.h"
92
#endif
93

    
94
#ifdef _WIN32
95
#include <malloc.h>
96
#include <sys/timeb.h>
97
#include <windows.h>
98
#define getopt_long_only getopt_long
99
#define memalign(align, size) malloc(size)
100
#endif
101

    
102
#include "qemu_socket.h"
103

    
104
#ifdef CONFIG_SDL
105
#ifdef __APPLE__
106
#include <SDL/SDL.h>
107
#endif
108
#endif /* CONFIG_SDL */
109

    
110
#ifdef CONFIG_COCOA
111
#undef main
112
#define main qemu_main
113
#endif /* CONFIG_COCOA */
114

    
115
#include "disas.h"
116

    
117
#include "exec-all.h"
118

    
119
#define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
120
#define DEFAULT_NETWORK_DOWN_SCRIPT "/etc/qemu-ifdown"
121
#ifdef __sun__
122
#define SMBD_COMMAND "/usr/sfw/sbin/smbd"
123
#else
124
#define SMBD_COMMAND "/usr/sbin/smbd"
125
#endif
126

    
127
//#define DEBUG_UNUSED_IOPORT
128
//#define DEBUG_IOPORT
129

    
130
#define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
131

    
132
#ifdef TARGET_PPC
133
#define DEFAULT_RAM_SIZE 144
134
#else
135
#define DEFAULT_RAM_SIZE 128
136
#endif
137
/* in ms */
138
#define GUI_REFRESH_INTERVAL 30
139

    
140
/* Max number of USB devices that can be specified on the commandline.  */
141
#define MAX_USB_CMDLINE 8
142

    
143
/* XXX: use a two level table to limit memory usage */
144
#define MAX_IOPORTS 65536
145

    
146
const char *bios_dir = CONFIG_QEMU_SHAREDIR;
147
const char *bios_name = NULL;
148
char phys_ram_file[1024];
149
void *ioport_opaque[MAX_IOPORTS];
150
IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
151
IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
152
/* Note: bs_table[MAX_DISKS] is a dummy block driver if none available
153
   to store the VM snapshots */
154
BlockDriverState *bs_table[MAX_DISKS + 1], *fd_table[MAX_FD];
155
BlockDriverState *pflash_table[MAX_PFLASH];
156
BlockDriverState *sd_bdrv;
157
BlockDriverState *mtd_bdrv;
158
/* point to the block driver where the snapshots are managed */
159
BlockDriverState *bs_snapshots;
160
int vga_ram_size;
161
static DisplayState display_state;
162
int nographic;
163
const char* keyboard_layout = NULL;
164
int64_t ticks_per_sec;
165
#if defined(TARGET_I386)
166
#define MAX_BOOT_DEVICES 3
167
#else
168
#define MAX_BOOT_DEVICES 1
169
#endif
170
static char boot_device[MAX_BOOT_DEVICES + 1];
171
int ram_size;
172
int pit_min_timer_count = 0;
173
int nb_nics;
174
NICInfo nd_table[MAX_NICS];
175
int vm_running;
176
int rtc_utc = 1;
177
int cirrus_vga_enabled = 1;
178
int vmsvga_enabled = 0;
179
#ifdef TARGET_SPARC
180
int graphic_width = 1024;
181
int graphic_height = 768;
182
int graphic_depth = 8;
183
#else
184
int graphic_width = 800;
185
int graphic_height = 600;
186
int graphic_depth = 15;
187
#endif
188
int full_screen = 0;
189
int no_frame = 0;
190
int no_quit = 0;
191
CharDriverState *serial_hds[MAX_SERIAL_PORTS];
192
CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
193
#ifdef TARGET_I386
194
int win2k_install_hack = 0;
195
#endif
196
int usb_enabled = 0;
197
static VLANState *first_vlan;
198
int smp_cpus = 1;
199
const char *vnc_display;
200
#if defined(TARGET_SPARC)
201
#define MAX_CPUS 16
202
#elif defined(TARGET_I386)
203
#define MAX_CPUS 255
204
#else
205
#define MAX_CPUS 1
206
#endif
207
int acpi_enabled = 1;
208
int fd_bootchk = 1;
209
int no_reboot = 0;
210
int cursor_hide = 1;
211
int graphic_rotate = 0;
212
int daemonize = 0;
213
const char *option_rom[MAX_OPTION_ROMS];
214
int nb_option_roms;
215
int semihosting_enabled = 0;
216
int autostart = 1;
217
#ifdef TARGET_ARM
218
int old_param = 0;
219
#endif
220
const char *qemu_name;
221
int alt_grab = 0;
222
#ifdef TARGET_SPARC
223
unsigned int nb_prom_envs = 0;
224
const char *prom_envs[MAX_PROM_ENVS];
225
#endif
226

    
227
#define TFR(expr) do { if ((expr) != -1) break; } while (errno == EINTR)
228

    
229
/***********************************************************/
230
/* x86 ISA bus support */
231

    
232
target_phys_addr_t isa_mem_base = 0;
233
PicState2 *isa_pic;
234

    
235
uint32_t default_ioport_readb(void *opaque, uint32_t address)
236
{
237
#ifdef DEBUG_UNUSED_IOPORT
238
    fprintf(stderr, "unused inb: port=0x%04x\n", address);
239
#endif
240
    return 0xff;
241
}
242

    
243
void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
244
{
245
#ifdef DEBUG_UNUSED_IOPORT
246
    fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
247
#endif
248
}
249

    
250
/* default is to make two byte accesses */
251
uint32_t default_ioport_readw(void *opaque, uint32_t address)
252
{
253
    uint32_t data;
254
    data = ioport_read_table[0][address](ioport_opaque[address], address);
255
    address = (address + 1) & (MAX_IOPORTS - 1);
256
    data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8;
257
    return data;
258
}
259

    
260
void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
261
{
262
    ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff);
263
    address = (address + 1) & (MAX_IOPORTS - 1);
264
    ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff);
265
}
266

    
267
uint32_t default_ioport_readl(void *opaque, uint32_t address)
268
{
269
#ifdef DEBUG_UNUSED_IOPORT
270
    fprintf(stderr, "unused inl: port=0x%04x\n", address);
271
#endif
272
    return 0xffffffff;
273
}
274

    
275
void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
276
{
277
#ifdef DEBUG_UNUSED_IOPORT
278
    fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
279
#endif
280
}
281

    
282
void init_ioports(void)
283
{
284
    int i;
285

    
286
    for(i = 0; i < MAX_IOPORTS; i++) {
287
        ioport_read_table[0][i] = default_ioport_readb;
288
        ioport_write_table[0][i] = default_ioport_writeb;
289
        ioport_read_table[1][i] = default_ioport_readw;
290
        ioport_write_table[1][i] = default_ioport_writew;
291
        ioport_read_table[2][i] = default_ioport_readl;
292
        ioport_write_table[2][i] = default_ioport_writel;
293
    }
294
}
295

    
296
/* size is the word size in byte */
297
int register_ioport_read(int start, int length, int size,
298
                         IOPortReadFunc *func, void *opaque)
299
{
300
    int i, bsize;
301

    
302
    if (size == 1) {
303
        bsize = 0;
304
    } else if (size == 2) {
305
        bsize = 1;
306
    } else if (size == 4) {
307
        bsize = 2;
308
    } else {
309
        hw_error("register_ioport_read: invalid size");
310
        return -1;
311
    }
312
    for(i = start; i < start + length; i += size) {
313
        ioport_read_table[bsize][i] = func;
314
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
315
            hw_error("register_ioport_read: invalid opaque");
316
        ioport_opaque[i] = opaque;
317
    }
318
    return 0;
319
}
320

    
321
/* size is the word size in byte */
322
int register_ioport_write(int start, int length, int size,
323
                          IOPortWriteFunc *func, void *opaque)
324
{
325
    int i, bsize;
326

    
327
    if (size == 1) {
328
        bsize = 0;
329
    } else if (size == 2) {
330
        bsize = 1;
331
    } else if (size == 4) {
332
        bsize = 2;
333
    } else {
334
        hw_error("register_ioport_write: invalid size");
335
        return -1;
336
    }
337
    for(i = start; i < start + length; i += size) {
338
        ioport_write_table[bsize][i] = func;
339
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
340
            hw_error("register_ioport_write: invalid opaque");
341
        ioport_opaque[i] = opaque;
342
    }
343
    return 0;
344
}
345

    
346
void isa_unassign_ioport(int start, int length)
347
{
348
    int i;
349

    
350
    for(i = start; i < start + length; i++) {
351
        ioport_read_table[0][i] = default_ioport_readb;
352
        ioport_read_table[1][i] = default_ioport_readw;
353
        ioport_read_table[2][i] = default_ioport_readl;
354

    
355
        ioport_write_table[0][i] = default_ioport_writeb;
356
        ioport_write_table[1][i] = default_ioport_writew;
357
        ioport_write_table[2][i] = default_ioport_writel;
358
    }
359
}
360

    
361
/***********************************************************/
362

    
363
void cpu_outb(CPUState *env, int addr, int val)
364
{
365
#ifdef DEBUG_IOPORT
366
    if (loglevel & CPU_LOG_IOPORT)
367
        fprintf(logfile, "outb: %04x %02x\n", addr, val);
368
#endif
369
    ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
370
#ifdef USE_KQEMU
371
    if (env)
372
        env->last_io_time = cpu_get_time_fast();
373
#endif
374
}
375

    
376
void cpu_outw(CPUState *env, int addr, int val)
377
{
378
#ifdef DEBUG_IOPORT
379
    if (loglevel & CPU_LOG_IOPORT)
380
        fprintf(logfile, "outw: %04x %04x\n", addr, val);
381
#endif
382
    ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
383
#ifdef USE_KQEMU
384
    if (env)
385
        env->last_io_time = cpu_get_time_fast();
386
#endif
387
}
388

    
389
void cpu_outl(CPUState *env, int addr, int val)
390
{
391
#ifdef DEBUG_IOPORT
392
    if (loglevel & CPU_LOG_IOPORT)
393
        fprintf(logfile, "outl: %04x %08x\n", addr, val);
394
#endif
395
    ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
396
#ifdef USE_KQEMU
397
    if (env)
398
        env->last_io_time = cpu_get_time_fast();
399
#endif
400
}
401

    
402
int cpu_inb(CPUState *env, int addr)
403
{
404
    int val;
405
    val = ioport_read_table[0][addr](ioport_opaque[addr], addr);
406
#ifdef DEBUG_IOPORT
407
    if (loglevel & CPU_LOG_IOPORT)
408
        fprintf(logfile, "inb : %04x %02x\n", addr, val);
409
#endif
410
#ifdef USE_KQEMU
411
    if (env)
412
        env->last_io_time = cpu_get_time_fast();
413
#endif
414
    return val;
415
}
416

    
417
int cpu_inw(CPUState *env, int addr)
418
{
419
    int val;
420
    val = ioport_read_table[1][addr](ioport_opaque[addr], addr);
421
#ifdef DEBUG_IOPORT
422
    if (loglevel & CPU_LOG_IOPORT)
423
        fprintf(logfile, "inw : %04x %04x\n", addr, val);
424
#endif
425
#ifdef USE_KQEMU
426
    if (env)
427
        env->last_io_time = cpu_get_time_fast();
428
#endif
429
    return val;
430
}
431

    
432
int cpu_inl(CPUState *env, int addr)
433
{
434
    int val;
435
    val = ioport_read_table[2][addr](ioport_opaque[addr], addr);
436
#ifdef DEBUG_IOPORT
437
    if (loglevel & CPU_LOG_IOPORT)
438
        fprintf(logfile, "inl : %04x %08x\n", addr, val);
439
#endif
440
#ifdef USE_KQEMU
441
    if (env)
442
        env->last_io_time = cpu_get_time_fast();
443
#endif
444
    return val;
445
}
446

    
447
/***********************************************************/
448
void hw_error(const char *fmt, ...)
449
{
450
    va_list ap;
451
    CPUState *env;
452

    
453
    va_start(ap, fmt);
454
    fprintf(stderr, "qemu: hardware error: ");
455
    vfprintf(stderr, fmt, ap);
456
    fprintf(stderr, "\n");
457
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
458
        fprintf(stderr, "CPU #%d:\n", env->cpu_index);
459
#ifdef TARGET_I386
460
        cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
461
#else
462
        cpu_dump_state(env, stderr, fprintf, 0);
463
#endif
464
    }
465
    va_end(ap);
466
    abort();
467
}
468

    
469
/***********************************************************/
470
/* keyboard/mouse */
471

    
472
static QEMUPutKBDEvent *qemu_put_kbd_event;
473
static void *qemu_put_kbd_event_opaque;
474
static QEMUPutMouseEntry *qemu_put_mouse_event_head;
475
static QEMUPutMouseEntry *qemu_put_mouse_event_current;
476

    
477
void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
478
{
479
    qemu_put_kbd_event_opaque = opaque;
480
    qemu_put_kbd_event = func;
481
}
482

    
483
QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
484
                                                void *opaque, int absolute,
485
                                                const char *name)
486
{
487
    QEMUPutMouseEntry *s, *cursor;
488

    
489
    s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
490
    if (!s)
491
        return NULL;
492

    
493
    s->qemu_put_mouse_event = func;
494
    s->qemu_put_mouse_event_opaque = opaque;
495
    s->qemu_put_mouse_event_absolute = absolute;
496
    s->qemu_put_mouse_event_name = qemu_strdup(name);
497
    s->next = NULL;
498

    
499
    if (!qemu_put_mouse_event_head) {
500
        qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
501
        return s;
502
    }
503

    
504
    cursor = qemu_put_mouse_event_head;
505
    while (cursor->next != NULL)
506
        cursor = cursor->next;
507

    
508
    cursor->next = s;
509
    qemu_put_mouse_event_current = s;
510

    
511
    return s;
512
}
513

    
514
void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
515
{
516
    QEMUPutMouseEntry *prev = NULL, *cursor;
517

    
518
    if (!qemu_put_mouse_event_head || entry == NULL)
519
        return;
520

    
521
    cursor = qemu_put_mouse_event_head;
522
    while (cursor != NULL && cursor != entry) {
523
        prev = cursor;
524
        cursor = cursor->next;
525
    }
526

    
527
    if (cursor == NULL) // does not exist or list empty
528
        return;
529
    else if (prev == NULL) { // entry is head
530
        qemu_put_mouse_event_head = cursor->next;
531
        if (qemu_put_mouse_event_current == entry)
532
            qemu_put_mouse_event_current = cursor->next;
533
        qemu_free(entry->qemu_put_mouse_event_name);
534
        qemu_free(entry);
535
        return;
536
    }
537

    
538
    prev->next = entry->next;
539

    
540
    if (qemu_put_mouse_event_current == entry)
541
        qemu_put_mouse_event_current = prev;
542

    
543
    qemu_free(entry->qemu_put_mouse_event_name);
544
    qemu_free(entry);
545
}
546

    
547
void kbd_put_keycode(int keycode)
548
{
549
    if (qemu_put_kbd_event) {
550
        qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
551
    }
552
}
553

    
554
void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
555
{
556
    QEMUPutMouseEvent *mouse_event;
557
    void *mouse_event_opaque;
558
    int width;
559

    
560
    if (!qemu_put_mouse_event_current) {
561
        return;
562
    }
563

    
564
    mouse_event =
565
        qemu_put_mouse_event_current->qemu_put_mouse_event;
566
    mouse_event_opaque =
567
        qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
568

    
569
    if (mouse_event) {
570
        if (graphic_rotate) {
571
            if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
572
                width = 0x7fff;
573
            else
574
                width = graphic_width;
575
            mouse_event(mouse_event_opaque,
576
                                 width - dy, dx, dz, buttons_state);
577
        } else
578
            mouse_event(mouse_event_opaque,
579
                                 dx, dy, dz, buttons_state);
580
    }
581
}
582

    
583
int kbd_mouse_is_absolute(void)
584
{
585
    if (!qemu_put_mouse_event_current)
586
        return 0;
587

    
588
    return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
589
}
590

    
591
void do_info_mice(void)
592
{
593
    QEMUPutMouseEntry *cursor;
594
    int index = 0;
595

    
596
    if (!qemu_put_mouse_event_head) {
597
        term_printf("No mouse devices connected\n");
598
        return;
599
    }
600

    
601
    term_printf("Mouse devices available:\n");
602
    cursor = qemu_put_mouse_event_head;
603
    while (cursor != NULL) {
604
        term_printf("%c Mouse #%d: %s\n",
605
                    (cursor == qemu_put_mouse_event_current ? '*' : ' '),
606
                    index, cursor->qemu_put_mouse_event_name);
607
        index++;
608
        cursor = cursor->next;
609
    }
610
}
611

    
612
void do_mouse_set(int index)
613
{
614
    QEMUPutMouseEntry *cursor;
615
    int i = 0;
616

    
617
    if (!qemu_put_mouse_event_head) {
618
        term_printf("No mouse devices connected\n");
619
        return;
620
    }
621

    
622
    cursor = qemu_put_mouse_event_head;
623
    while (cursor != NULL && index != i) {
624
        i++;
625
        cursor = cursor->next;
626
    }
627

    
628
    if (cursor != NULL)
629
        qemu_put_mouse_event_current = cursor;
630
    else
631
        term_printf("Mouse at given index not found\n");
632
}
633

    
634
/* compute with 96 bit intermediate result: (a*b)/c */
635
uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
636
{
637
    union {
638
        uint64_t ll;
639
        struct {
640
#ifdef WORDS_BIGENDIAN
641
            uint32_t high, low;
642
#else
643
            uint32_t low, high;
644
#endif
645
        } l;
646
    } u, res;
647
    uint64_t rl, rh;
648

    
649
    u.ll = a;
650
    rl = (uint64_t)u.l.low * (uint64_t)b;
651
    rh = (uint64_t)u.l.high * (uint64_t)b;
652
    rh += (rl >> 32);
653
    res.l.high = rh / c;
654
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
655
    return res.ll;
656
}
657

    
658
/***********************************************************/
659
/* real time host monotonic timer */
660

    
661
#define QEMU_TIMER_BASE 1000000000LL
662

    
663
#ifdef WIN32
664

    
665
static int64_t clock_freq;
666

    
667
static void init_get_clock(void)
668
{
669
    LARGE_INTEGER freq;
670
    int ret;
671
    ret = QueryPerformanceFrequency(&freq);
672
    if (ret == 0) {
673
        fprintf(stderr, "Could not calibrate ticks\n");
674
        exit(1);
675
    }
676
    clock_freq = freq.QuadPart;
677
}
678

    
679
static int64_t get_clock(void)
680
{
681
    LARGE_INTEGER ti;
682
    QueryPerformanceCounter(&ti);
683
    return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
684
}
685

    
686
#else
687

    
688
static int use_rt_clock;
689

    
690
static void init_get_clock(void)
691
{
692
    use_rt_clock = 0;
693
#if defined(__linux__)
694
    {
695
        struct timespec ts;
696
        if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
697
            use_rt_clock = 1;
698
        }
699
    }
700
#endif
701
}
702

    
703
static int64_t get_clock(void)
704
{
705
#if defined(__linux__)
706
    if (use_rt_clock) {
707
        struct timespec ts;
708
        clock_gettime(CLOCK_MONOTONIC, &ts);
709
        return ts.tv_sec * 1000000000LL + ts.tv_nsec;
710
    } else
711
#endif
712
    {
713
        /* XXX: using gettimeofday leads to problems if the date
714
           changes, so it should be avoided. */
715
        struct timeval tv;
716
        gettimeofday(&tv, NULL);
717
        return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
718
    }
719
}
720

    
721
#endif
722

    
723
/***********************************************************/
724
/* guest cycle counter */
725

    
726
static int64_t cpu_ticks_prev;
727
static int64_t cpu_ticks_offset;
728
static int64_t cpu_clock_offset;
729
static int cpu_ticks_enabled;
730

    
731
/* return the host CPU cycle counter and handle stop/restart */
732
int64_t cpu_get_ticks(void)
733
{
734
    if (!cpu_ticks_enabled) {
735
        return cpu_ticks_offset;
736
    } else {
737
        int64_t ticks;
738
        ticks = cpu_get_real_ticks();
739
        if (cpu_ticks_prev > ticks) {
740
            /* Note: non increasing ticks may happen if the host uses
741
               software suspend */
742
            cpu_ticks_offset += cpu_ticks_prev - ticks;
743
        }
744
        cpu_ticks_prev = ticks;
745
        return ticks + cpu_ticks_offset;
746
    }
747
}
748

    
749
/* return the host CPU monotonic timer and handle stop/restart */
750
static int64_t cpu_get_clock(void)
751
{
752
    int64_t ti;
753
    if (!cpu_ticks_enabled) {
754
        return cpu_clock_offset;
755
    } else {
756
        ti = get_clock();
757
        return ti + cpu_clock_offset;
758
    }
759
}
760

    
761
/* enable cpu_get_ticks() */
762
void cpu_enable_ticks(void)
763
{
764
    if (!cpu_ticks_enabled) {
765
        cpu_ticks_offset -= cpu_get_real_ticks();
766
        cpu_clock_offset -= get_clock();
767
        cpu_ticks_enabled = 1;
768
    }
769
}
770

    
771
/* disable cpu_get_ticks() : the clock is stopped. You must not call
772
   cpu_get_ticks() after that.  */
773
void cpu_disable_ticks(void)
774
{
775
    if (cpu_ticks_enabled) {
776
        cpu_ticks_offset = cpu_get_ticks();
777
        cpu_clock_offset = cpu_get_clock();
778
        cpu_ticks_enabled = 0;
779
    }
780
}
781

    
782
/***********************************************************/
783
/* timers */
784

    
785
#define QEMU_TIMER_REALTIME 0
786
#define QEMU_TIMER_VIRTUAL  1
787

    
788
struct QEMUClock {
789
    int type;
790
    /* XXX: add frequency */
791
};
792

    
793
struct QEMUTimer {
794
    QEMUClock *clock;
795
    int64_t expire_time;
796
    QEMUTimerCB *cb;
797
    void *opaque;
798
    struct QEMUTimer *next;
799
};
800

    
801
struct qemu_alarm_timer {
802
    char const *name;
803
    unsigned int flags;
804

    
805
    int (*start)(struct qemu_alarm_timer *t);
806
    void (*stop)(struct qemu_alarm_timer *t);
807
    void (*rearm)(struct qemu_alarm_timer *t);
808
    void *priv;
809
};
810

    
811
#define ALARM_FLAG_DYNTICKS  0x1
812

    
813
static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
814
{
815
    return t->flags & ALARM_FLAG_DYNTICKS;
816
}
817

    
818
static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
819
{
820
    if (!alarm_has_dynticks(t))
821
        return;
822

    
823
    t->rearm(t);
824
}
825

    
826
/* TODO: MIN_TIMER_REARM_US should be optimized */
827
#define MIN_TIMER_REARM_US 250
828

    
829
static struct qemu_alarm_timer *alarm_timer;
830

    
831
#ifdef _WIN32
832

    
833
struct qemu_alarm_win32 {
834
    MMRESULT timerId;
835
    HANDLE host_alarm;
836
    unsigned int period;
837
} alarm_win32_data = {0, NULL, -1};
838

    
839
static int win32_start_timer(struct qemu_alarm_timer *t);
840
static void win32_stop_timer(struct qemu_alarm_timer *t);
841
static void win32_rearm_timer(struct qemu_alarm_timer *t);
842

    
843
#else
844

    
845
static int unix_start_timer(struct qemu_alarm_timer *t);
846
static void unix_stop_timer(struct qemu_alarm_timer *t);
847

    
848
#ifdef __linux__
849

    
850
static int dynticks_start_timer(struct qemu_alarm_timer *t);
851
static void dynticks_stop_timer(struct qemu_alarm_timer *t);
852
static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
853

    
854
static int hpet_start_timer(struct qemu_alarm_timer *t);
855
static void hpet_stop_timer(struct qemu_alarm_timer *t);
856

    
857
static int rtc_start_timer(struct qemu_alarm_timer *t);
858
static void rtc_stop_timer(struct qemu_alarm_timer *t);
859

    
860
#endif /* __linux__ */
861

    
862
#endif /* _WIN32 */
863

    
864
static struct qemu_alarm_timer alarm_timers[] = {
865
#ifndef _WIN32
866
#ifdef __linux__
867
    {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
868
     dynticks_stop_timer, dynticks_rearm_timer, NULL},
869
    /* HPET - if available - is preferred */
870
    {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
871
    /* ...otherwise try RTC */
872
    {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
873
#endif
874
    {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
875
#else
876
    {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
877
     win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
878
    {"win32", 0, win32_start_timer,
879
     win32_stop_timer, NULL, &alarm_win32_data},
880
#endif
881
    {NULL, }
882
};
883

    
884
static void show_available_alarms()
885
{
886
    int i;
887

    
888
    printf("Available alarm timers, in order of precedence:\n");
889
    for (i = 0; alarm_timers[i].name; i++)
890
        printf("%s\n", alarm_timers[i].name);
891
}
892

    
893
static void configure_alarms(char const *opt)
894
{
895
    int i;
896
    int cur = 0;
897
    int count = (sizeof(alarm_timers) / sizeof(*alarm_timers)) - 1;
898
    char *arg;
899
    char *name;
900

    
901
    if (!strcmp(opt, "help")) {
902
        show_available_alarms();
903
        exit(0);
904
    }
905

    
906
    arg = strdup(opt);
907

    
908
    /* Reorder the array */
909
    name = strtok(arg, ",");
910
    while (name) {
911
        struct qemu_alarm_timer tmp;
912

    
913
        for (i = 0; i < count && alarm_timers[i].name; i++) {
914
            if (!strcmp(alarm_timers[i].name, name))
915
                break;
916
        }
917

    
918
        if (i == count) {
919
            fprintf(stderr, "Unknown clock %s\n", name);
920
            goto next;
921
        }
922

    
923
        if (i < cur)
924
            /* Ignore */
925
            goto next;
926

    
927
        /* Swap */
928
        tmp = alarm_timers[i];
929
        alarm_timers[i] = alarm_timers[cur];
930
        alarm_timers[cur] = tmp;
931

    
932
        cur++;
933
next:
934
        name = strtok(NULL, ",");
935
    }
936

    
937
    free(arg);
938

    
939
    if (cur) {
940
        /* Disable remaining timers */
941
        for (i = cur; i < count; i++)
942
            alarm_timers[i].name = NULL;
943
    }
944

    
945
    /* debug */
946
    show_available_alarms();
947
}
948

    
949
QEMUClock *rt_clock;
950
QEMUClock *vm_clock;
951

    
952
static QEMUTimer *active_timers[2];
953

    
954
QEMUClock *qemu_new_clock(int type)
955
{
956
    QEMUClock *clock;
957
    clock = qemu_mallocz(sizeof(QEMUClock));
958
    if (!clock)
959
        return NULL;
960
    clock->type = type;
961
    return clock;
962
}
963

    
964
QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
965
{
966
    QEMUTimer *ts;
967

    
968
    ts = qemu_mallocz(sizeof(QEMUTimer));
969
    ts->clock = clock;
970
    ts->cb = cb;
971
    ts->opaque = opaque;
972
    return ts;
973
}
974

    
975
void qemu_free_timer(QEMUTimer *ts)
976
{
977
    qemu_free(ts);
978
}
979

    
980
/* stop a timer, but do not dealloc it */
981
void qemu_del_timer(QEMUTimer *ts)
982
{
983
    QEMUTimer **pt, *t;
984

    
985
    /* NOTE: this code must be signal safe because
986
       qemu_timer_expired() can be called from a signal. */
987
    pt = &active_timers[ts->clock->type];
988
    for(;;) {
989
        t = *pt;
990
        if (!t)
991
            break;
992
        if (t == ts) {
993
            *pt = t->next;
994
            break;
995
        }
996
        pt = &t->next;
997
    }
998
}
999

    
1000
/* modify the current timer so that it will be fired when current_time
1001
   >= expire_time. The corresponding callback will be called. */
1002
void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1003
{
1004
    QEMUTimer **pt, *t;
1005

    
1006
    qemu_del_timer(ts);
1007

    
1008
    /* add the timer in the sorted list */
1009
    /* NOTE: this code must be signal safe because
1010
       qemu_timer_expired() can be called from a signal. */
1011
    pt = &active_timers[ts->clock->type];
1012
    for(;;) {
1013
        t = *pt;
1014
        if (!t)
1015
            break;
1016
        if (t->expire_time > expire_time)
1017
            break;
1018
        pt = &t->next;
1019
    }
1020
    ts->expire_time = expire_time;
1021
    ts->next = *pt;
1022
    *pt = ts;
1023
}
1024

    
1025
int qemu_timer_pending(QEMUTimer *ts)
1026
{
1027
    QEMUTimer *t;
1028
    for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1029
        if (t == ts)
1030
            return 1;
1031
    }
1032
    return 0;
1033
}
1034

    
1035
static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1036
{
1037
    if (!timer_head)
1038
        return 0;
1039
    return (timer_head->expire_time <= current_time);
1040
}
1041

    
1042
static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1043
{
1044
    QEMUTimer *ts;
1045

    
1046
    for(;;) {
1047
        ts = *ptimer_head;
1048
        if (!ts || ts->expire_time > current_time)
1049
            break;
1050
        /* remove timer from the list before calling the callback */
1051
        *ptimer_head = ts->next;
1052
        ts->next = NULL;
1053

    
1054
        /* run the callback (the timer list can be modified) */
1055
        ts->cb(ts->opaque);
1056
    }
1057
    qemu_rearm_alarm_timer(alarm_timer);
1058
}
1059

    
1060
int64_t qemu_get_clock(QEMUClock *clock)
1061
{
1062
    switch(clock->type) {
1063
    case QEMU_TIMER_REALTIME:
1064
        return get_clock() / 1000000;
1065
    default:
1066
    case QEMU_TIMER_VIRTUAL:
1067
        return cpu_get_clock();
1068
    }
1069
}
1070

    
1071
static void init_timers(void)
1072
{
1073
    init_get_clock();
1074
    ticks_per_sec = QEMU_TIMER_BASE;
1075
    rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1076
    vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1077
}
1078

    
1079
/* save a timer */
1080
void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1081
{
1082
    uint64_t expire_time;
1083

    
1084
    if (qemu_timer_pending(ts)) {
1085
        expire_time = ts->expire_time;
1086
    } else {
1087
        expire_time = -1;
1088
    }
1089
    qemu_put_be64(f, expire_time);
1090
}
1091

    
1092
void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1093
{
1094
    uint64_t expire_time;
1095

    
1096
    expire_time = qemu_get_be64(f);
1097
    if (expire_time != -1) {
1098
        qemu_mod_timer(ts, expire_time);
1099
    } else {
1100
        qemu_del_timer(ts);
1101
    }
1102
}
1103

    
1104
static void timer_save(QEMUFile *f, void *opaque)
1105
{
1106
    if (cpu_ticks_enabled) {
1107
        hw_error("cannot save state if virtual timers are running");
1108
    }
1109
    qemu_put_be64s(f, &cpu_ticks_offset);
1110
    qemu_put_be64s(f, &ticks_per_sec);
1111
    qemu_put_be64s(f, &cpu_clock_offset);
1112
}
1113

    
1114
static int timer_load(QEMUFile *f, void *opaque, int version_id)
1115
{
1116
    if (version_id != 1 && version_id != 2)
1117
        return -EINVAL;
1118
    if (cpu_ticks_enabled) {
1119
        return -EINVAL;
1120
    }
1121
    qemu_get_be64s(f, &cpu_ticks_offset);
1122
    qemu_get_be64s(f, &ticks_per_sec);
1123
    if (version_id == 2) {
1124
        qemu_get_be64s(f, &cpu_clock_offset);
1125
    }
1126
    return 0;
1127
}
1128

    
1129
#ifdef _WIN32
1130
void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1131
                                 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1132
#else
1133
static void host_alarm_handler(int host_signum)
1134
#endif
1135
{
1136
#if 0
1137
#define DISP_FREQ 1000
1138
    {
1139
        static int64_t delta_min = INT64_MAX;
1140
        static int64_t delta_max, delta_cum, last_clock, delta, ti;
1141
        static int count;
1142
        ti = qemu_get_clock(vm_clock);
1143
        if (last_clock != 0) {
1144
            delta = ti - last_clock;
1145
            if (delta < delta_min)
1146
                delta_min = delta;
1147
            if (delta > delta_max)
1148
                delta_max = delta;
1149
            delta_cum += delta;
1150
            if (++count == DISP_FREQ) {
1151
                printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1152
                       muldiv64(delta_min, 1000000, ticks_per_sec),
1153
                       muldiv64(delta_max, 1000000, ticks_per_sec),
1154
                       muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1155
                       (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1156
                count = 0;
1157
                delta_min = INT64_MAX;
1158
                delta_max = 0;
1159
                delta_cum = 0;
1160
            }
1161
        }
1162
        last_clock = ti;
1163
    }
1164
#endif
1165
    if (alarm_has_dynticks(alarm_timer) ||
1166
        qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1167
                           qemu_get_clock(vm_clock)) ||
1168
        qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1169
                           qemu_get_clock(rt_clock))) {
1170
#ifdef _WIN32
1171
        struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1172
        SetEvent(data->host_alarm);
1173
#endif
1174
        CPUState *env = cpu_single_env;
1175
        if (env) {
1176
            /* stop the currently executing cpu because a timer occured */
1177
            cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1178
#ifdef USE_KQEMU
1179
            if (env->kqemu_enabled) {
1180
                kqemu_cpu_interrupt(env);
1181
            }
1182
#endif
1183
        }
1184
    }
1185
}
1186

    
1187
static uint64_t qemu_next_deadline(void)
1188
{
1189
    int64_t nearest_delta_us = INT64_MAX;
1190
    int64_t vmdelta_us;
1191

    
1192
    if (active_timers[QEMU_TIMER_REALTIME])
1193
        nearest_delta_us = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1194
                            qemu_get_clock(rt_clock))*1000;
1195

    
1196
    if (active_timers[QEMU_TIMER_VIRTUAL]) {
1197
        /* round up */
1198
        vmdelta_us = (active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1199
                      qemu_get_clock(vm_clock)+999)/1000;
1200
        if (vmdelta_us < nearest_delta_us)
1201
            nearest_delta_us = vmdelta_us;
1202
    }
1203

    
1204
    /* Avoid arming the timer to negative, zero, or too low values */
1205
    if (nearest_delta_us <= MIN_TIMER_REARM_US)
1206
        nearest_delta_us = MIN_TIMER_REARM_US;
1207

    
1208
    return nearest_delta_us;
1209
}
1210

    
1211
#ifndef _WIN32
1212

    
1213
#if defined(__linux__)
1214

    
1215
#define RTC_FREQ 1024
1216

    
1217
static void enable_sigio_timer(int fd)
1218
{
1219
    struct sigaction act;
1220

    
1221
    /* timer signal */
1222
    sigfillset(&act.sa_mask);
1223
    act.sa_flags = 0;
1224
#if defined (TARGET_I386) && defined(USE_CODE_COPY)
1225
    act.sa_flags |= SA_ONSTACK;
1226
#endif
1227
    act.sa_handler = host_alarm_handler;
1228

    
1229
    sigaction(SIGIO, &act, NULL);
1230
    fcntl(fd, F_SETFL, O_ASYNC);
1231
    fcntl(fd, F_SETOWN, getpid());
1232
}
1233

    
1234
static int hpet_start_timer(struct qemu_alarm_timer *t)
1235
{
1236
    struct hpet_info info;
1237
    int r, fd;
1238

    
1239
    fd = open("/dev/hpet", O_RDONLY);
1240
    if (fd < 0)
1241
        return -1;
1242

    
1243
    /* Set frequency */
1244
    r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1245
    if (r < 0) {
1246
        fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1247
                "error, but for better emulation accuracy type:\n"
1248
                "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1249
        goto fail;
1250
    }
1251

    
1252
    /* Check capabilities */
1253
    r = ioctl(fd, HPET_INFO, &info);
1254
    if (r < 0)
1255
        goto fail;
1256

    
1257
    /* Enable periodic mode */
1258
    r = ioctl(fd, HPET_EPI, 0);
1259
    if (info.hi_flags && (r < 0))
1260
        goto fail;
1261

    
1262
    /* Enable interrupt */
1263
    r = ioctl(fd, HPET_IE_ON, 0);
1264
    if (r < 0)
1265
        goto fail;
1266

    
1267
    enable_sigio_timer(fd);
1268
    t->priv = (void *)(long)fd;
1269

    
1270
    return 0;
1271
fail:
1272
    close(fd);
1273
    return -1;
1274
}
1275

    
1276
static void hpet_stop_timer(struct qemu_alarm_timer *t)
1277
{
1278
    int fd = (long)t->priv;
1279

    
1280
    close(fd);
1281
}
1282

    
1283
static int rtc_start_timer(struct qemu_alarm_timer *t)
1284
{
1285
    int rtc_fd;
1286

    
1287
    TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1288
    if (rtc_fd < 0)
1289
        return -1;
1290
    if (ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1291
        fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1292
                "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1293
                "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1294
        goto fail;
1295
    }
1296
    if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1297
    fail:
1298
        close(rtc_fd);
1299
        return -1;
1300
    }
1301

    
1302
    enable_sigio_timer(rtc_fd);
1303

    
1304
    t->priv = (void *)(long)rtc_fd;
1305

    
1306
    return 0;
1307
}
1308

    
1309
static void rtc_stop_timer(struct qemu_alarm_timer *t)
1310
{
1311
    int rtc_fd = (long)t->priv;
1312

    
1313
    close(rtc_fd);
1314
}
1315

    
1316
static int dynticks_start_timer(struct qemu_alarm_timer *t)
1317
{
1318
    struct sigevent ev;
1319
    timer_t host_timer;
1320
    struct sigaction act;
1321

    
1322
    sigfillset(&act.sa_mask);
1323
    act.sa_flags = 0;
1324
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
1325
    act.sa_flags |= SA_ONSTACK;
1326
#endif
1327
    act.sa_handler = host_alarm_handler;
1328

    
1329
    sigaction(SIGALRM, &act, NULL);
1330

    
1331
    ev.sigev_value.sival_int = 0;
1332
    ev.sigev_notify = SIGEV_SIGNAL;
1333
    ev.sigev_signo = SIGALRM;
1334

    
1335
    if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1336
        perror("timer_create");
1337

    
1338
        /* disable dynticks */
1339
        fprintf(stderr, "Dynamic Ticks disabled\n");
1340

    
1341
        return -1;
1342
    }
1343

    
1344
    t->priv = (void *)host_timer;
1345

    
1346
    return 0;
1347
}
1348

    
1349
static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1350
{
1351
    timer_t host_timer = (timer_t)t->priv;
1352

    
1353
    timer_delete(host_timer);
1354
}
1355

    
1356
static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1357
{
1358
    timer_t host_timer = (timer_t)t->priv;
1359
    struct itimerspec timeout;
1360
    int64_t nearest_delta_us = INT64_MAX;
1361
    int64_t current_us;
1362

    
1363
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1364
                !active_timers[QEMU_TIMER_VIRTUAL])
1365
            return;
1366

    
1367
    nearest_delta_us = qemu_next_deadline();
1368

    
1369
    /* check whether a timer is already running */
1370
    if (timer_gettime(host_timer, &timeout)) {
1371
        perror("gettime");
1372
        fprintf(stderr, "Internal timer error: aborting\n");
1373
        exit(1);
1374
    }
1375
    current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1376
    if (current_us && current_us <= nearest_delta_us)
1377
        return;
1378

    
1379
    timeout.it_interval.tv_sec = 0;
1380
    timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1381
    timeout.it_value.tv_sec =  nearest_delta_us / 1000000;
1382
    timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1383
    if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1384
        perror("settime");
1385
        fprintf(stderr, "Internal timer error: aborting\n");
1386
        exit(1);
1387
    }
1388
}
1389

    
1390
#endif /* defined(__linux__) */
1391

    
1392
static int unix_start_timer(struct qemu_alarm_timer *t)
1393
{
1394
    struct sigaction act;
1395
    struct itimerval itv;
1396
    int err;
1397

    
1398
    /* timer signal */
1399
    sigfillset(&act.sa_mask);
1400
    act.sa_flags = 0;
1401
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
1402
    act.sa_flags |= SA_ONSTACK;
1403
#endif
1404
    act.sa_handler = host_alarm_handler;
1405

    
1406
    sigaction(SIGALRM, &act, NULL);
1407

    
1408
    itv.it_interval.tv_sec = 0;
1409
    /* for i386 kernel 2.6 to get 1 ms */
1410
    itv.it_interval.tv_usec = 999;
1411
    itv.it_value.tv_sec = 0;
1412
    itv.it_value.tv_usec = 10 * 1000;
1413

    
1414
    err = setitimer(ITIMER_REAL, &itv, NULL);
1415
    if (err)
1416
        return -1;
1417

    
1418
    return 0;
1419
}
1420

    
1421
static void unix_stop_timer(struct qemu_alarm_timer *t)
1422
{
1423
    struct itimerval itv;
1424

    
1425
    memset(&itv, 0, sizeof(itv));
1426
    setitimer(ITIMER_REAL, &itv, NULL);
1427
}
1428

    
1429
#endif /* !defined(_WIN32) */
1430

    
1431
#ifdef _WIN32
1432

    
1433
static int win32_start_timer(struct qemu_alarm_timer *t)
1434
{
1435
    TIMECAPS tc;
1436
    struct qemu_alarm_win32 *data = t->priv;
1437
    UINT flags;
1438

    
1439
    data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1440
    if (!data->host_alarm) {
1441
        perror("Failed CreateEvent");
1442
        return -1;
1443
    }
1444

    
1445
    memset(&tc, 0, sizeof(tc));
1446
    timeGetDevCaps(&tc, sizeof(tc));
1447

    
1448
    if (data->period < tc.wPeriodMin)
1449
        data->period = tc.wPeriodMin;
1450

    
1451
    timeBeginPeriod(data->period);
1452

    
1453
    flags = TIME_CALLBACK_FUNCTION;
1454
    if (alarm_has_dynticks(t))
1455
        flags |= TIME_ONESHOT;
1456
    else
1457
        flags |= TIME_PERIODIC;
1458

    
1459
    data->timerId = timeSetEvent(1,         // interval (ms)
1460
                        data->period,       // resolution
1461
                        host_alarm_handler, // function
1462
                        (DWORD)t,           // parameter
1463
                        flags);
1464

    
1465
    if (!data->timerId) {
1466
        perror("Failed to initialize win32 alarm timer");
1467

    
1468
        timeEndPeriod(data->period);
1469
        CloseHandle(data->host_alarm);
1470
        return -1;
1471
    }
1472

    
1473
    qemu_add_wait_object(data->host_alarm, NULL, NULL);
1474

    
1475
    return 0;
1476
}
1477

    
1478
static void win32_stop_timer(struct qemu_alarm_timer *t)
1479
{
1480
    struct qemu_alarm_win32 *data = t->priv;
1481

    
1482
    timeKillEvent(data->timerId);
1483
    timeEndPeriod(data->period);
1484

    
1485
    CloseHandle(data->host_alarm);
1486
}
1487

    
1488
static void win32_rearm_timer(struct qemu_alarm_timer *t)
1489
{
1490
    struct qemu_alarm_win32 *data = t->priv;
1491
    uint64_t nearest_delta_us;
1492

    
1493
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1494
                !active_timers[QEMU_TIMER_VIRTUAL])
1495
            return;
1496

    
1497
    nearest_delta_us = qemu_next_deadline();
1498
    nearest_delta_us /= 1000;
1499

    
1500
    timeKillEvent(data->timerId);
1501

    
1502
    data->timerId = timeSetEvent(1,
1503
                        data->period,
1504
                        host_alarm_handler,
1505
                        (DWORD)t,
1506
                        TIME_ONESHOT | TIME_PERIODIC);
1507

    
1508
    if (!data->timerId) {
1509
        perror("Failed to re-arm win32 alarm timer");
1510

    
1511
        timeEndPeriod(data->period);
1512
        CloseHandle(data->host_alarm);
1513
        exit(1);
1514
    }
1515
}
1516

    
1517
#endif /* _WIN32 */
1518

    
1519
static void init_timer_alarm(void)
1520
{
1521
    struct qemu_alarm_timer *t;
1522
    int i, err = -1;
1523

    
1524
    for (i = 0; alarm_timers[i].name; i++) {
1525
        t = &alarm_timers[i];
1526

    
1527
        err = t->start(t);
1528
        if (!err)
1529
            break;
1530
    }
1531

    
1532
    if (err) {
1533
        fprintf(stderr, "Unable to find any suitable alarm timer.\n");
1534
        fprintf(stderr, "Terminating\n");
1535
        exit(1);
1536
    }
1537

    
1538
    alarm_timer = t;
1539
}
1540

    
1541
void quit_timers(void)
1542
{
1543
    alarm_timer->stop(alarm_timer);
1544
    alarm_timer = NULL;
1545
}
1546

    
1547
/***********************************************************/
1548
/* character device */
1549

    
1550
static void qemu_chr_event(CharDriverState *s, int event)
1551
{
1552
    if (!s->chr_event)
1553
        return;
1554
    s->chr_event(s->handler_opaque, event);
1555
}
1556

    
1557
static void qemu_chr_reset_bh(void *opaque)
1558
{
1559
    CharDriverState *s = opaque;
1560
    qemu_chr_event(s, CHR_EVENT_RESET);
1561
    qemu_bh_delete(s->bh);
1562
    s->bh = NULL;
1563
}
1564

    
1565
void qemu_chr_reset(CharDriverState *s)
1566
{
1567
    if (s->bh == NULL) {
1568
        s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1569
        qemu_bh_schedule(s->bh);
1570
    }
1571
}
1572

    
1573
int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1574
{
1575
    return s->chr_write(s, buf, len);
1576
}
1577

    
1578
int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1579
{
1580
    if (!s->chr_ioctl)
1581
        return -ENOTSUP;
1582
    return s->chr_ioctl(s, cmd, arg);
1583
}
1584

    
1585
int qemu_chr_can_read(CharDriverState *s)
1586
{
1587
    if (!s->chr_can_read)
1588
        return 0;
1589
    return s->chr_can_read(s->handler_opaque);
1590
}
1591

    
1592
void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1593
{
1594
    s->chr_read(s->handler_opaque, buf, len);
1595
}
1596

    
1597

    
1598
void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1599
{
1600
    char buf[4096];
1601
    va_list ap;
1602
    va_start(ap, fmt);
1603
    vsnprintf(buf, sizeof(buf), fmt, ap);
1604
    qemu_chr_write(s, buf, strlen(buf));
1605
    va_end(ap);
1606
}
1607

    
1608
void qemu_chr_send_event(CharDriverState *s, int event)
1609
{
1610
    if (s->chr_send_event)
1611
        s->chr_send_event(s, event);
1612
}
1613

    
1614
void qemu_chr_add_handlers(CharDriverState *s,
1615
                           IOCanRWHandler *fd_can_read,
1616
                           IOReadHandler *fd_read,
1617
                           IOEventHandler *fd_event,
1618
                           void *opaque)
1619
{
1620
    s->chr_can_read = fd_can_read;
1621
    s->chr_read = fd_read;
1622
    s->chr_event = fd_event;
1623
    s->handler_opaque = opaque;
1624
    if (s->chr_update_read_handler)
1625
        s->chr_update_read_handler(s);
1626
}
1627

    
1628
static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1629
{
1630
    return len;
1631
}
1632

    
1633
static CharDriverState *qemu_chr_open_null(void)
1634
{
1635
    CharDriverState *chr;
1636

    
1637
    chr = qemu_mallocz(sizeof(CharDriverState));
1638
    if (!chr)
1639
        return NULL;
1640
    chr->chr_write = null_chr_write;
1641
    return chr;
1642
}
1643

    
1644
/* MUX driver for serial I/O splitting */
1645
static int term_timestamps;
1646
static int64_t term_timestamps_start;
1647
#define MAX_MUX 4
1648
typedef struct {
1649
    IOCanRWHandler *chr_can_read[MAX_MUX];
1650
    IOReadHandler *chr_read[MAX_MUX];
1651
    IOEventHandler *chr_event[MAX_MUX];
1652
    void *ext_opaque[MAX_MUX];
1653
    CharDriverState *drv;
1654
    int mux_cnt;
1655
    int term_got_escape;
1656
    int max_size;
1657
} MuxDriver;
1658

    
1659

    
1660
static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1661
{
1662
    MuxDriver *d = chr->opaque;
1663
    int ret;
1664
    if (!term_timestamps) {
1665
        ret = d->drv->chr_write(d->drv, buf, len);
1666
    } else {
1667
        int i;
1668

    
1669
        ret = 0;
1670
        for(i = 0; i < len; i++) {
1671
            ret += d->drv->chr_write(d->drv, buf+i, 1);
1672
            if (buf[i] == '\n') {
1673
                char buf1[64];
1674
                int64_t ti;
1675
                int secs;
1676

    
1677
                ti = get_clock();
1678
                if (term_timestamps_start == -1)
1679
                    term_timestamps_start = ti;
1680
                ti -= term_timestamps_start;
1681
                secs = ti / 1000000000;
1682
                snprintf(buf1, sizeof(buf1),
1683
                         "[%02d:%02d:%02d.%03d] ",
1684
                         secs / 3600,
1685
                         (secs / 60) % 60,
1686
                         secs % 60,
1687
                         (int)((ti / 1000000) % 1000));
1688
                d->drv->chr_write(d->drv, buf1, strlen(buf1));
1689
            }
1690
        }
1691
    }
1692
    return ret;
1693
}
1694

    
1695
static char *mux_help[] = {
1696
    "% h    print this help\n\r",
1697
    "% x    exit emulator\n\r",
1698
    "% s    save disk data back to file (if -snapshot)\n\r",
1699
    "% t    toggle console timestamps\n\r"
1700
    "% b    send break (magic sysrq)\n\r",
1701
    "% c    switch between console and monitor\n\r",
1702
    "% %  sends %\n\r",
1703
    NULL
1704
};
1705

    
1706
static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1707
static void mux_print_help(CharDriverState *chr)
1708
{
1709
    int i, j;
1710
    char ebuf[15] = "Escape-Char";
1711
    char cbuf[50] = "\n\r";
1712

    
1713
    if (term_escape_char > 0 && term_escape_char < 26) {
1714
        sprintf(cbuf,"\n\r");
1715
        sprintf(ebuf,"C-%c", term_escape_char - 1 + 'a');
1716
    } else {
1717
        sprintf(cbuf,"\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r", term_escape_char);
1718
    }
1719
    chr->chr_write(chr, cbuf, strlen(cbuf));
1720
    for (i = 0; mux_help[i] != NULL; i++) {
1721
        for (j=0; mux_help[i][j] != '\0'; j++) {
1722
            if (mux_help[i][j] == '%')
1723
                chr->chr_write(chr, ebuf, strlen(ebuf));
1724
            else
1725
                chr->chr_write(chr, &mux_help[i][j], 1);
1726
        }
1727
    }
1728
}
1729

    
1730
static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1731
{
1732
    if (d->term_got_escape) {
1733
        d->term_got_escape = 0;
1734
        if (ch == term_escape_char)
1735
            goto send_char;
1736
        switch(ch) {
1737
        case '?':
1738
        case 'h':
1739
            mux_print_help(chr);
1740
            break;
1741
        case 'x':
1742
            {
1743
                 char *term =  "QEMU: Terminated\n\r";
1744
                 chr->chr_write(chr,term,strlen(term));
1745
                 exit(0);
1746
                 break;
1747
            }
1748
        case 's':
1749
            {
1750
                int i;
1751
                for (i = 0; i < MAX_DISKS; i++) {
1752
                    if (bs_table[i])
1753
                        bdrv_commit(bs_table[i]);
1754
                }
1755
                if (mtd_bdrv)
1756
                    bdrv_commit(mtd_bdrv);
1757
            }
1758
            break;
1759
        case 'b':
1760
            qemu_chr_event(chr, CHR_EVENT_BREAK);
1761
            break;
1762
        case 'c':
1763
            /* Switch to the next registered device */
1764
            chr->focus++;
1765
            if (chr->focus >= d->mux_cnt)
1766
                chr->focus = 0;
1767
            break;
1768
       case 't':
1769
           term_timestamps = !term_timestamps;
1770
           term_timestamps_start = -1;
1771
           break;
1772
        }
1773
    } else if (ch == term_escape_char) {
1774
        d->term_got_escape = 1;
1775
    } else {
1776
    send_char:
1777
        return 1;
1778
    }
1779
    return 0;
1780
}
1781

    
1782
static int mux_chr_can_read(void *opaque)
1783
{
1784
    CharDriverState *chr = opaque;
1785
    MuxDriver *d = chr->opaque;
1786
    if (d->chr_can_read[chr->focus])
1787
       return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
1788
    return 0;
1789
}
1790

    
1791
static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
1792
{
1793
    CharDriverState *chr = opaque;
1794
    MuxDriver *d = chr->opaque;
1795
    int i;
1796
    for(i = 0; i < size; i++)
1797
        if (mux_proc_byte(chr, d, buf[i]))
1798
            d->chr_read[chr->focus](d->ext_opaque[chr->focus], &buf[i], 1);
1799
}
1800

    
1801
static void mux_chr_event(void *opaque, int event)
1802
{
1803
    CharDriverState *chr = opaque;
1804
    MuxDriver *d = chr->opaque;
1805
    int i;
1806

    
1807
    /* Send the event to all registered listeners */
1808
    for (i = 0; i < d->mux_cnt; i++)
1809
        if (d->chr_event[i])
1810
            d->chr_event[i](d->ext_opaque[i], event);
1811
}
1812

    
1813
static void mux_chr_update_read_handler(CharDriverState *chr)
1814
{
1815
    MuxDriver *d = chr->opaque;
1816

    
1817
    if (d->mux_cnt >= MAX_MUX) {
1818
        fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
1819
        return;
1820
    }
1821
    d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
1822
    d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
1823
    d->chr_read[d->mux_cnt] = chr->chr_read;
1824
    d->chr_event[d->mux_cnt] = chr->chr_event;
1825
    /* Fix up the real driver with mux routines */
1826
    if (d->mux_cnt == 0) {
1827
        qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
1828
                              mux_chr_event, chr);
1829
    }
1830
    chr->focus = d->mux_cnt;
1831
    d->mux_cnt++;
1832
}
1833

    
1834
CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
1835
{
1836
    CharDriverState *chr;
1837
    MuxDriver *d;
1838

    
1839
    chr = qemu_mallocz(sizeof(CharDriverState));
1840
    if (!chr)
1841
        return NULL;
1842
    d = qemu_mallocz(sizeof(MuxDriver));
1843
    if (!d) {
1844
        free(chr);
1845
        return NULL;
1846
    }
1847

    
1848
    chr->opaque = d;
1849
    d->drv = drv;
1850
    chr->focus = -1;
1851
    chr->chr_write = mux_chr_write;
1852
    chr->chr_update_read_handler = mux_chr_update_read_handler;
1853
    return chr;
1854
}
1855

    
1856

    
1857
#ifdef _WIN32
1858

    
1859
static void socket_cleanup(void)
1860
{
1861
    WSACleanup();
1862
}
1863

    
1864
static int socket_init(void)
1865
{
1866
    WSADATA Data;
1867
    int ret, err;
1868

    
1869
    ret = WSAStartup(MAKEWORD(2,2), &Data);
1870
    if (ret != 0) {
1871
        err = WSAGetLastError();
1872
        fprintf(stderr, "WSAStartup: %d\n", err);
1873
        return -1;
1874
    }
1875
    atexit(socket_cleanup);
1876
    return 0;
1877
}
1878

    
1879
static int send_all(int fd, const uint8_t *buf, int len1)
1880
{
1881
    int ret, len;
1882

    
1883
    len = len1;
1884
    while (len > 0) {
1885
        ret = send(fd, buf, len, 0);
1886
        if (ret < 0) {
1887
            int errno;
1888
            errno = WSAGetLastError();
1889
            if (errno != WSAEWOULDBLOCK) {
1890
                return -1;
1891
            }
1892
        } else if (ret == 0) {
1893
            break;
1894
        } else {
1895
            buf += ret;
1896
            len -= ret;
1897
        }
1898
    }
1899
    return len1 - len;
1900
}
1901

    
1902
void socket_set_nonblock(int fd)
1903
{
1904
    unsigned long opt = 1;
1905
    ioctlsocket(fd, FIONBIO, &opt);
1906
}
1907

    
1908
#else
1909

    
1910
static int unix_write(int fd, const uint8_t *buf, int len1)
1911
{
1912
    int ret, len;
1913

    
1914
    len = len1;
1915
    while (len > 0) {
1916
        ret = write(fd, buf, len);
1917
        if (ret < 0) {
1918
            if (errno != EINTR && errno != EAGAIN)
1919
                return -1;
1920
        } else if (ret == 0) {
1921
            break;
1922
        } else {
1923
            buf += ret;
1924
            len -= ret;
1925
        }
1926
    }
1927
    return len1 - len;
1928
}
1929

    
1930
static inline int send_all(int fd, const uint8_t *buf, int len1)
1931
{
1932
    return unix_write(fd, buf, len1);
1933
}
1934

    
1935
void socket_set_nonblock(int fd)
1936
{
1937
    fcntl(fd, F_SETFL, O_NONBLOCK);
1938
}
1939
#endif /* !_WIN32 */
1940

    
1941
#ifndef _WIN32
1942

    
1943
typedef struct {
1944
    int fd_in, fd_out;
1945
    int max_size;
1946
} FDCharDriver;
1947

    
1948
#define STDIO_MAX_CLIENTS 1
1949
static int stdio_nb_clients = 0;
1950

    
1951
static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1952
{
1953
    FDCharDriver *s = chr->opaque;
1954
    return unix_write(s->fd_out, buf, len);
1955
}
1956

    
1957
static int fd_chr_read_poll(void *opaque)
1958
{
1959
    CharDriverState *chr = opaque;
1960
    FDCharDriver *s = chr->opaque;
1961

    
1962
    s->max_size = qemu_chr_can_read(chr);
1963
    return s->max_size;
1964
}
1965

    
1966
static void fd_chr_read(void *opaque)
1967
{
1968
    CharDriverState *chr = opaque;
1969
    FDCharDriver *s = chr->opaque;
1970
    int size, len;
1971
    uint8_t buf[1024];
1972

    
1973
    len = sizeof(buf);
1974
    if (len > s->max_size)
1975
        len = s->max_size;
1976
    if (len == 0)
1977
        return;
1978
    size = read(s->fd_in, buf, len);
1979
    if (size == 0) {
1980
        /* FD has been closed. Remove it from the active list.  */
1981
        qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
1982
        return;
1983
    }
1984
    if (size > 0) {
1985
        qemu_chr_read(chr, buf, size);
1986
    }
1987
}
1988

    
1989
static void fd_chr_update_read_handler(CharDriverState *chr)
1990
{
1991
    FDCharDriver *s = chr->opaque;
1992

    
1993
    if (s->fd_in >= 0) {
1994
        if (nographic && s->fd_in == 0) {
1995
        } else {
1996
            qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
1997
                                 fd_chr_read, NULL, chr);
1998
        }
1999
    }
2000
}
2001

    
2002
/* open a character device to a unix fd */
2003
static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
2004
{
2005
    CharDriverState *chr;
2006
    FDCharDriver *s;
2007

    
2008
    chr = qemu_mallocz(sizeof(CharDriverState));
2009
    if (!chr)
2010
        return NULL;
2011
    s = qemu_mallocz(sizeof(FDCharDriver));
2012
    if (!s) {
2013
        free(chr);
2014
        return NULL;
2015
    }
2016
    s->fd_in = fd_in;
2017
    s->fd_out = fd_out;
2018
    chr->opaque = s;
2019
    chr->chr_write = fd_chr_write;
2020
    chr->chr_update_read_handler = fd_chr_update_read_handler;
2021

    
2022
    qemu_chr_reset(chr);
2023

    
2024
    return chr;
2025
}
2026

    
2027
static CharDriverState *qemu_chr_open_file_out(const char *file_out)
2028
{
2029
    int fd_out;
2030

    
2031
    TFR(fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666));
2032
    if (fd_out < 0)
2033
        return NULL;
2034
    return qemu_chr_open_fd(-1, fd_out);
2035
}
2036

    
2037
static CharDriverState *qemu_chr_open_pipe(const char *filename)
2038
{
2039
    int fd_in, fd_out;
2040
    char filename_in[256], filename_out[256];
2041

    
2042
    snprintf(filename_in, 256, "%s.in", filename);
2043
    snprintf(filename_out, 256, "%s.out", filename);
2044
    TFR(fd_in = open(filename_in, O_RDWR | O_BINARY));
2045
    TFR(fd_out = open(filename_out, O_RDWR | O_BINARY));
2046
    if (fd_in < 0 || fd_out < 0) {
2047
        if (fd_in >= 0)
2048
            close(fd_in);
2049
        if (fd_out >= 0)
2050
            close(fd_out);
2051
        TFR(fd_in = fd_out = open(filename, O_RDWR | O_BINARY));
2052
        if (fd_in < 0)
2053
            return NULL;
2054
    }
2055
    return qemu_chr_open_fd(fd_in, fd_out);
2056
}
2057

    
2058

    
2059
/* for STDIO, we handle the case where several clients use it
2060
   (nographic mode) */
2061

    
2062
#define TERM_FIFO_MAX_SIZE 1
2063

    
2064
static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
2065
static int term_fifo_size;
2066

    
2067
static int stdio_read_poll(void *opaque)
2068
{
2069
    CharDriverState *chr = opaque;
2070

    
2071
    /* try to flush the queue if needed */
2072
    if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
2073
        qemu_chr_read(chr, term_fifo, 1);
2074
        term_fifo_size = 0;
2075
    }
2076
    /* see if we can absorb more chars */
2077
    if (term_fifo_size == 0)
2078
        return 1;
2079
    else
2080
        return 0;
2081
}
2082

    
2083
static void stdio_read(void *opaque)
2084
{
2085
    int size;
2086
    uint8_t buf[1];
2087
    CharDriverState *chr = opaque;
2088

    
2089
    size = read(0, buf, 1);
2090
    if (size == 0) {
2091
        /* stdin has been closed. Remove it from the active list.  */
2092
        qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2093
        return;
2094
    }
2095
    if (size > 0) {
2096
        if (qemu_chr_can_read(chr) > 0) {
2097
            qemu_chr_read(chr, buf, 1);
2098
        } else if (term_fifo_size == 0) {
2099
            term_fifo[term_fifo_size++] = buf[0];
2100
        }
2101
    }
2102
}
2103

    
2104
/* init terminal so that we can grab keys */
2105
static struct termios oldtty;
2106
static int old_fd0_flags;
2107

    
2108
static void term_exit(void)
2109
{
2110
    tcsetattr (0, TCSANOW, &oldtty);
2111
    fcntl(0, F_SETFL, old_fd0_flags);
2112
}
2113

    
2114
static void term_init(void)
2115
{
2116
    struct termios tty;
2117

    
2118
    tcgetattr (0, &tty);
2119
    oldtty = tty;
2120
    old_fd0_flags = fcntl(0, F_GETFL);
2121

    
2122
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2123
                          |INLCR|IGNCR|ICRNL|IXON);
2124
    tty.c_oflag |= OPOST;
2125
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
2126
    /* if graphical mode, we allow Ctrl-C handling */
2127
    if (nographic)
2128
        tty.c_lflag &= ~ISIG;
2129
    tty.c_cflag &= ~(CSIZE|PARENB);
2130
    tty.c_cflag |= CS8;
2131
    tty.c_cc[VMIN] = 1;
2132
    tty.c_cc[VTIME] = 0;
2133

    
2134
    tcsetattr (0, TCSANOW, &tty);
2135

    
2136
    atexit(term_exit);
2137

    
2138
    fcntl(0, F_SETFL, O_NONBLOCK);
2139
}
2140

    
2141
static CharDriverState *qemu_chr_open_stdio(void)
2142
{
2143
    CharDriverState *chr;
2144

    
2145
    if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
2146
        return NULL;
2147
    chr = qemu_chr_open_fd(0, 1);
2148
    qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
2149
    stdio_nb_clients++;
2150
    term_init();
2151

    
2152
    return chr;
2153
}
2154

    
2155
#if defined(__linux__) || defined(__sun__)
2156
static CharDriverState *qemu_chr_open_pty(void)
2157
{
2158
    struct termios tty;
2159
    char slave_name[1024];
2160
    int master_fd, slave_fd;
2161

    
2162
#if defined(__linux__)
2163
    /* Not satisfying */
2164
    if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) {
2165
        return NULL;
2166
    }
2167
#endif
2168

    
2169
    /* Disabling local echo and line-buffered output */
2170
    tcgetattr (master_fd, &tty);
2171
    tty.c_lflag &= ~(ECHO|ICANON|ISIG);
2172
    tty.c_cc[VMIN] = 1;
2173
    tty.c_cc[VTIME] = 0;
2174
    tcsetattr (master_fd, TCSAFLUSH, &tty);
2175

    
2176
    fprintf(stderr, "char device redirected to %s\n", slave_name);
2177
    return qemu_chr_open_fd(master_fd, master_fd);
2178
}
2179

    
2180
static void tty_serial_init(int fd, int speed,
2181
                            int parity, int data_bits, int stop_bits)
2182
{
2183
    struct termios tty;
2184
    speed_t spd;
2185

    
2186
#if 0
2187
    printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
2188
           speed, parity, data_bits, stop_bits);
2189
#endif
2190
    tcgetattr (fd, &tty);
2191

    
2192
    switch(speed) {
2193
    case 50:
2194
        spd = B50;
2195
        break;
2196
    case 75:
2197
        spd = B75;
2198
        break;
2199
    case 300:
2200
        spd = B300;
2201
        break;
2202
    case 600:
2203
        spd = B600;
2204
        break;
2205
    case 1200:
2206
        spd = B1200;
2207
        break;
2208
    case 2400:
2209
        spd = B2400;
2210
        break;
2211
    case 4800:
2212
        spd = B4800;
2213
        break;
2214
    case 9600:
2215
        spd = B9600;
2216
        break;
2217
    case 19200:
2218
        spd = B19200;
2219
        break;
2220
    case 38400:
2221
        spd = B38400;
2222
        break;
2223
    case 57600:
2224
        spd = B57600;
2225
        break;
2226
    default:
2227
    case 115200:
2228
        spd = B115200;
2229
        break;
2230
    }
2231

    
2232
    cfsetispeed(&tty, spd);
2233
    cfsetospeed(&tty, spd);
2234

    
2235
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2236
                          |INLCR|IGNCR|ICRNL|IXON);
2237
    tty.c_oflag |= OPOST;
2238
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
2239
    tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
2240
    switch(data_bits) {
2241
    default:
2242
    case 8:
2243
        tty.c_cflag |= CS8;
2244
        break;
2245
    case 7:
2246
        tty.c_cflag |= CS7;
2247
        break;
2248
    case 6:
2249
        tty.c_cflag |= CS6;
2250
        break;
2251
    case 5:
2252
        tty.c_cflag |= CS5;
2253
        break;
2254
    }
2255
    switch(parity) {
2256
    default:
2257
    case 'N':
2258
        break;
2259
    case 'E':
2260
        tty.c_cflag |= PARENB;
2261
        break;
2262
    case 'O':
2263
        tty.c_cflag |= PARENB | PARODD;
2264
        break;
2265
    }
2266
    if (stop_bits == 2)
2267
        tty.c_cflag |= CSTOPB;
2268

    
2269
    tcsetattr (fd, TCSANOW, &tty);
2270
}
2271

    
2272
static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
2273
{
2274
    FDCharDriver *s = chr->opaque;
2275

    
2276
    switch(cmd) {
2277
    case CHR_IOCTL_SERIAL_SET_PARAMS:
2278
        {
2279
            QEMUSerialSetParams *ssp = arg;
2280
            tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
2281
                            ssp->data_bits, ssp->stop_bits);
2282
        }
2283
        break;
2284
    case CHR_IOCTL_SERIAL_SET_BREAK:
2285
        {
2286
            int enable = *(int *)arg;
2287
            if (enable)
2288
                tcsendbreak(s->fd_in, 1);
2289
        }
2290
        break;
2291
    default:
2292
        return -ENOTSUP;
2293
    }
2294
    return 0;
2295
}
2296

    
2297
static CharDriverState *qemu_chr_open_tty(const char *filename)
2298
{
2299
    CharDriverState *chr;
2300
    int fd;
2301

    
2302
    TFR(fd = open(filename, O_RDWR | O_NONBLOCK));
2303
    fcntl(fd, F_SETFL, O_NONBLOCK);
2304
    tty_serial_init(fd, 115200, 'N', 8, 1);
2305
    chr = qemu_chr_open_fd(fd, fd);
2306
    if (!chr) {
2307
        close(fd);
2308
        return NULL;
2309
    }
2310
    chr->chr_ioctl = tty_serial_ioctl;
2311
    qemu_chr_reset(chr);
2312
    return chr;
2313
}
2314
#else  /* ! __linux__ && ! __sun__ */
2315
static CharDriverState *qemu_chr_open_pty(void)
2316
{
2317
    return NULL;
2318
}
2319
#endif /* __linux__ || __sun__ */
2320

    
2321
#if defined(__linux__)
2322
typedef struct {
2323
    int fd;
2324
    int mode;
2325
} ParallelCharDriver;
2326

    
2327
static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
2328
{
2329
    if (s->mode != mode) {
2330
        int m = mode;
2331
        if (ioctl(s->fd, PPSETMODE, &m) < 0)
2332
            return 0;
2333
        s->mode = mode;
2334
    }
2335
    return 1;
2336
}
2337

    
2338
static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
2339
{
2340
    ParallelCharDriver *drv = chr->opaque;
2341
    int fd = drv->fd;
2342
    uint8_t b;
2343

    
2344
    switch(cmd) {
2345
    case CHR_IOCTL_PP_READ_DATA:
2346
        if (ioctl(fd, PPRDATA, &b) < 0)
2347
            return -ENOTSUP;
2348
        *(uint8_t *)arg = b;
2349
        break;
2350
    case CHR_IOCTL_PP_WRITE_DATA:
2351
        b = *(uint8_t *)arg;
2352
        if (ioctl(fd, PPWDATA, &b) < 0)
2353
            return -ENOTSUP;
2354
        break;
2355
    case CHR_IOCTL_PP_READ_CONTROL:
2356
        if (ioctl(fd, PPRCONTROL, &b) < 0)
2357
            return -ENOTSUP;
2358
        /* Linux gives only the lowest bits, and no way to know data
2359
           direction! For better compatibility set the fixed upper
2360
           bits. */
2361
        *(uint8_t *)arg = b | 0xc0;
2362
        break;
2363
    case CHR_IOCTL_PP_WRITE_CONTROL:
2364
        b = *(uint8_t *)arg;
2365
        if (ioctl(fd, PPWCONTROL, &b) < 0)
2366
            return -ENOTSUP;
2367
        break;
2368
    case CHR_IOCTL_PP_READ_STATUS:
2369
        if (ioctl(fd, PPRSTATUS, &b) < 0)
2370
            return -ENOTSUP;
2371
        *(uint8_t *)arg = b;
2372
        break;
2373
    case CHR_IOCTL_PP_EPP_READ_ADDR:
2374
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2375
            struct ParallelIOArg *parg = arg;
2376
            int n = read(fd, parg->buffer, parg->count);
2377
            if (n != parg->count) {
2378
                return -EIO;
2379
            }
2380
        }
2381
        break;
2382
    case CHR_IOCTL_PP_EPP_READ:
2383
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2384
            struct ParallelIOArg *parg = arg;
2385
            int n = read(fd, parg->buffer, parg->count);
2386
            if (n != parg->count) {
2387
                return -EIO;
2388
            }
2389
        }
2390
        break;
2391
    case CHR_IOCTL_PP_EPP_WRITE_ADDR:
2392
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2393
            struct ParallelIOArg *parg = arg;
2394
            int n = write(fd, parg->buffer, parg->count);
2395
            if (n != parg->count) {
2396
                return -EIO;
2397
            }
2398
        }
2399
        break;
2400
    case CHR_IOCTL_PP_EPP_WRITE:
2401
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2402
            struct ParallelIOArg *parg = arg;
2403
            int n = write(fd, parg->buffer, parg->count);
2404
            if (n != parg->count) {
2405
                return -EIO;
2406
            }
2407
        }
2408
        break;
2409
    default:
2410
        return -ENOTSUP;
2411
    }
2412
    return 0;
2413
}
2414

    
2415
static void pp_close(CharDriverState *chr)
2416
{
2417
    ParallelCharDriver *drv = chr->opaque;
2418
    int fd = drv->fd;
2419

    
2420
    pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
2421
    ioctl(fd, PPRELEASE);
2422
    close(fd);
2423
    qemu_free(drv);
2424
}
2425

    
2426
static CharDriverState *qemu_chr_open_pp(const char *filename)
2427
{
2428
    CharDriverState *chr;
2429
    ParallelCharDriver *drv;
2430
    int fd;
2431

    
2432
    TFR(fd = open(filename, O_RDWR));
2433
    if (fd < 0)
2434
        return NULL;
2435

    
2436
    if (ioctl(fd, PPCLAIM) < 0) {
2437
        close(fd);
2438
        return NULL;
2439
    }
2440

    
2441
    drv = qemu_mallocz(sizeof(ParallelCharDriver));
2442
    if (!drv) {
2443
        close(fd);
2444
        return NULL;
2445
    }
2446
    drv->fd = fd;
2447
    drv->mode = IEEE1284_MODE_COMPAT;
2448

    
2449
    chr = qemu_mallocz(sizeof(CharDriverState));
2450
    if (!chr) {
2451
        qemu_free(drv);
2452
        close(fd);
2453
        return NULL;
2454
    }
2455
    chr->chr_write = null_chr_write;
2456
    chr->chr_ioctl = pp_ioctl;
2457
    chr->chr_close = pp_close;
2458
    chr->opaque = drv;
2459

    
2460
    qemu_chr_reset(chr);
2461

    
2462
    return chr;
2463
}
2464
#endif /* __linux__ */
2465

    
2466
#else /* _WIN32 */
2467

    
2468
typedef struct {
2469
    int max_size;
2470
    HANDLE hcom, hrecv, hsend;
2471
    OVERLAPPED orecv, osend;
2472
    BOOL fpipe;
2473
    DWORD len;
2474
} WinCharState;
2475

    
2476
#define NSENDBUF 2048
2477
#define NRECVBUF 2048
2478
#define MAXCONNECT 1
2479
#define NTIMEOUT 5000
2480

    
2481
static int win_chr_poll(void *opaque);
2482
static int win_chr_pipe_poll(void *opaque);
2483

    
2484
static void win_chr_close(CharDriverState *chr)
2485
{
2486
    WinCharState *s = chr->opaque;
2487

    
2488
    if (s->hsend) {
2489
        CloseHandle(s->hsend);
2490
        s->hsend = NULL;
2491
    }
2492
    if (s->hrecv) {
2493
        CloseHandle(s->hrecv);
2494
        s->hrecv = NULL;
2495
    }
2496
    if (s->hcom) {
2497
        CloseHandle(s->hcom);
2498
        s->hcom = NULL;
2499
    }
2500
    if (s->fpipe)
2501
        qemu_del_polling_cb(win_chr_pipe_poll, chr);
2502
    else
2503
        qemu_del_polling_cb(win_chr_poll, chr);
2504
}
2505

    
2506
static int win_chr_init(CharDriverState *chr, const char *filename)
2507
{
2508
    WinCharState *s = chr->opaque;
2509
    COMMCONFIG comcfg;
2510
    COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2511
    COMSTAT comstat;
2512
    DWORD size;
2513
    DWORD err;
2514

    
2515
    s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2516
    if (!s->hsend) {
2517
        fprintf(stderr, "Failed CreateEvent\n");
2518
        goto fail;
2519
    }
2520
    s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2521
    if (!s->hrecv) {
2522
        fprintf(stderr, "Failed CreateEvent\n");
2523
        goto fail;
2524
    }
2525

    
2526
    s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2527
                      OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
2528
    if (s->hcom == INVALID_HANDLE_VALUE) {
2529
        fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
2530
        s->hcom = NULL;
2531
        goto fail;
2532
    }
2533

    
2534
    if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
2535
        fprintf(stderr, "Failed SetupComm\n");
2536
        goto fail;
2537
    }
2538

    
2539
    ZeroMemory(&comcfg, sizeof(COMMCONFIG));
2540
    size = sizeof(COMMCONFIG);
2541
    GetDefaultCommConfig(filename, &comcfg, &size);
2542
    comcfg.dcb.DCBlength = sizeof(DCB);
2543
    CommConfigDialog(filename, NULL, &comcfg);
2544

    
2545
    if (!SetCommState(s->hcom, &comcfg.dcb)) {
2546
        fprintf(stderr, "Failed SetCommState\n");
2547
        goto fail;
2548
    }
2549

    
2550
    if (!SetCommMask(s->hcom, EV_ERR)) {
2551
        fprintf(stderr, "Failed SetCommMask\n");
2552
        goto fail;
2553
    }
2554

    
2555
    cto.ReadIntervalTimeout = MAXDWORD;
2556
    if (!SetCommTimeouts(s->hcom, &cto)) {
2557
        fprintf(stderr, "Failed SetCommTimeouts\n");
2558
        goto fail;
2559
    }
2560

    
2561
    if (!ClearCommError(s->hcom, &err, &comstat)) {
2562
        fprintf(stderr, "Failed ClearCommError\n");
2563
        goto fail;
2564
    }
2565
    qemu_add_polling_cb(win_chr_poll, chr);
2566
    return 0;
2567

    
2568
 fail:
2569
    win_chr_close(chr);
2570
    return -1;
2571
}
2572

    
2573
static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
2574
{
2575
    WinCharState *s = chr->opaque;
2576
    DWORD len, ret, size, err;
2577

    
2578
    len = len1;
2579
    ZeroMemory(&s->osend, sizeof(s->osend));
2580
    s->osend.hEvent = s->hsend;
2581
    while (len > 0) {
2582
        if (s->hsend)
2583
            ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
2584
        else
2585
            ret = WriteFile(s->hcom, buf, len, &size, NULL);
2586
        if (!ret) {
2587
            err = GetLastError();
2588
            if (err == ERROR_IO_PENDING) {
2589
                ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
2590
                if (ret) {
2591
                    buf += size;
2592
                    len -= size;
2593
                } else {
2594
                    break;
2595
                }
2596
            } else {
2597
                break;
2598
            }
2599
        } else {
2600
            buf += size;
2601
            len -= size;
2602
        }
2603
    }
2604
    return len1 - len;
2605
}
2606

    
2607
static int win_chr_read_poll(CharDriverState *chr)
2608
{
2609
    WinCharState *s = chr->opaque;
2610

    
2611
    s->max_size = qemu_chr_can_read(chr);
2612
    return s->max_size;
2613
}
2614

    
2615
static void win_chr_readfile(CharDriverState *chr)
2616
{
2617
    WinCharState *s = chr->opaque;
2618
    int ret, err;
2619
    uint8_t buf[1024];
2620
    DWORD size;
2621

    
2622
    ZeroMemory(&s->orecv, sizeof(s->orecv));
2623
    s->orecv.hEvent = s->hrecv;
2624
    ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
2625
    if (!ret) {
2626
        err = GetLastError();
2627
        if (err == ERROR_IO_PENDING) {
2628
            ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
2629
        }
2630
    }
2631

    
2632
    if (size > 0) {
2633
        qemu_chr_read(chr, buf, size);
2634
    }
2635
}
2636

    
2637
static void win_chr_read(CharDriverState *chr)
2638
{
2639
    WinCharState *s = chr->opaque;
2640

    
2641
    if (s->len > s->max_size)
2642
        s->len = s->max_size;
2643
    if (s->len == 0)
2644
        return;
2645

    
2646
    win_chr_readfile(chr);
2647
}
2648

    
2649
static int win_chr_poll(void *opaque)
2650
{
2651
    CharDriverState *chr = opaque;
2652
    WinCharState *s = chr->opaque;
2653
    COMSTAT status;
2654
    DWORD comerr;
2655

    
2656
    ClearCommError(s->hcom, &comerr, &status);
2657
    if (status.cbInQue > 0) {
2658
        s->len = status.cbInQue;
2659
        win_chr_read_poll(chr);
2660
        win_chr_read(chr);
2661
        return 1;
2662
    }
2663
    return 0;
2664
}
2665

    
2666
static CharDriverState *qemu_chr_open_win(const char *filename)
2667
{
2668
    CharDriverState *chr;
2669
    WinCharState *s;
2670

    
2671
    chr = qemu_mallocz(sizeof(CharDriverState));
2672
    if (!chr)
2673
        return NULL;
2674
    s = qemu_mallocz(sizeof(WinCharState));
2675
    if (!s) {
2676
        free(chr);
2677
        return NULL;
2678
    }
2679
    chr->opaque = s;
2680
    chr->chr_write = win_chr_write;
2681
    chr->chr_close = win_chr_close;
2682

    
2683
    if (win_chr_init(chr, filename) < 0) {
2684
        free(s);
2685
        free(chr);
2686
        return NULL;
2687
    }
2688
    qemu_chr_reset(chr);
2689
    return chr;
2690
}
2691

    
2692
static int win_chr_pipe_poll(void *opaque)
2693
{
2694
    CharDriverState *chr = opaque;
2695
    WinCharState *s = chr->opaque;
2696
    DWORD size;
2697

    
2698
    PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
2699
    if (size > 0) {
2700
        s->len = size;
2701
        win_chr_read_poll(chr);
2702
        win_chr_read(chr);
2703
        return 1;
2704
    }
2705
    return 0;
2706
}
2707

    
2708
static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
2709
{
2710
    WinCharState *s = chr->opaque;
2711
    OVERLAPPED ov;
2712
    int ret;
2713
    DWORD size;
2714
    char openname[256];
2715

    
2716
    s->fpipe = TRUE;
2717

    
2718
    s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2719
    if (!s->hsend) {
2720
        fprintf(stderr, "Failed CreateEvent\n");
2721
        goto fail;
2722
    }
2723
    s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2724
    if (!s->hrecv) {
2725
        fprintf(stderr, "Failed CreateEvent\n");
2726
        goto fail;
2727
    }
2728

    
2729
    snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
2730
    s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
2731
                              PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
2732
                              PIPE_WAIT,
2733
                              MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
2734
    if (s->hcom == INVALID_HANDLE_VALUE) {
2735
        fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
2736
        s->hcom = NULL;
2737
        goto fail;
2738
    }
2739

    
2740
    ZeroMemory(&ov, sizeof(ov));
2741
    ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
2742
    ret = ConnectNamedPipe(s->hcom, &ov);
2743
    if (ret) {
2744
        fprintf(stderr, "Failed ConnectNamedPipe\n");
2745
        goto fail;
2746
    }
2747

    
2748
    ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
2749
    if (!ret) {
2750
        fprintf(stderr, "Failed GetOverlappedResult\n");
2751
        if (ov.hEvent) {
2752
            CloseHandle(ov.hEvent);
2753
            ov.hEvent = NULL;
2754
        }
2755
        goto fail;
2756
    }
2757

    
2758
    if (ov.hEvent) {
2759
        CloseHandle(ov.hEvent);
2760
        ov.hEvent = NULL;
2761
    }
2762
    qemu_add_polling_cb(win_chr_pipe_poll, chr);
2763
    return 0;
2764

    
2765
 fail:
2766
    win_chr_close(chr);
2767
    return -1;
2768
}
2769

    
2770

    
2771
static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
2772
{
2773
    CharDriverState *chr;
2774
    WinCharState *s;
2775

    
2776
    chr = qemu_mallocz(sizeof(CharDriverState));
2777
    if (!chr)
2778
        return NULL;
2779
    s = qemu_mallocz(sizeof(WinCharState));
2780
    if (!s) {
2781
        free(chr);
2782
        return NULL;
2783
    }
2784
    chr->opaque = s;
2785
    chr->chr_write = win_chr_write;
2786
    chr->chr_close = win_chr_close;
2787

    
2788
    if (win_chr_pipe_init(chr, filename) < 0) {
2789
        free(s);
2790
        free(chr);
2791
        return NULL;
2792
    }
2793
    qemu_chr_reset(chr);
2794
    return chr;
2795
}
2796

    
2797
static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
2798
{
2799
    CharDriverState *chr;
2800
    WinCharState *s;
2801

    
2802
    chr = qemu_mallocz(sizeof(CharDriverState));
2803
    if (!chr)
2804
        return NULL;
2805
    s = qemu_mallocz(sizeof(WinCharState));
2806
    if (!s) {
2807
        free(chr);
2808
        return NULL;
2809
    }
2810
    s->hcom = fd_out;
2811
    chr->opaque = s;
2812
    chr->chr_write = win_chr_write;
2813
    qemu_chr_reset(chr);
2814
    return chr;
2815
}
2816

    
2817
static CharDriverState *qemu_chr_open_win_con(const char *filename)
2818
{
2819
    return qemu_chr_open_win_file(GetStdHandle(STD_OUTPUT_HANDLE));
2820
}
2821

    
2822
static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
2823
{
2824
    HANDLE fd_out;
2825

    
2826
    fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
2827
                        OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
2828
    if (fd_out == INVALID_HANDLE_VALUE)
2829
        return NULL;
2830

    
2831
    return qemu_chr_open_win_file(fd_out);
2832
}
2833
#endif /* !_WIN32 */
2834

    
2835
/***********************************************************/
2836
/* UDP Net console */
2837

    
2838
typedef struct {
2839
    int fd;
2840
    struct sockaddr_in daddr;
2841
    char buf[1024];
2842
    int bufcnt;
2843
    int bufptr;
2844
    int max_size;
2845
} NetCharDriver;
2846

    
2847
static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2848
{
2849
    NetCharDriver *s = chr->opaque;
2850

    
2851
    return sendto(s->fd, buf, len, 0,
2852
                  (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
2853
}
2854

    
2855
static int udp_chr_read_poll(void *opaque)
2856
{
2857
    CharDriverState *chr = opaque;
2858
    NetCharDriver *s = chr->opaque;
2859

    
2860
    s->max_size = qemu_chr_can_read(chr);
2861

    
2862
    /* If there were any stray characters in the queue process them
2863
     * first
2864
     */
2865
    while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2866
        qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2867
        s->bufptr++;
2868
        s->max_size = qemu_chr_can_read(chr);
2869
    }
2870
    return s->max_size;
2871
}
2872

    
2873
static void udp_chr_read(void *opaque)
2874
{
2875
    CharDriverState *chr = opaque;
2876
    NetCharDriver *s = chr->opaque;
2877

    
2878
    if (s->max_size == 0)
2879
        return;
2880
    s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
2881
    s->bufptr = s->bufcnt;
2882
    if (s->bufcnt <= 0)
2883
        return;
2884

    
2885
    s->bufptr = 0;
2886
    while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2887
        qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2888
        s->bufptr++;
2889
        s->max_size = qemu_chr_can_read(chr);
2890
    }
2891
}
2892

    
2893
static void udp_chr_update_read_handler(CharDriverState *chr)
2894
{
2895
    NetCharDriver *s = chr->opaque;
2896

    
2897
    if (s->fd >= 0) {
2898
        qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
2899
                             udp_chr_read, NULL, chr);
2900
    }
2901
}
2902

    
2903
int parse_host_port(struct sockaddr_in *saddr, const char *str);
2904
#ifndef _WIN32
2905
static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
2906
#endif
2907
int parse_host_src_port(struct sockaddr_in *haddr,
2908
                        struct sockaddr_in *saddr,
2909
                        const char *str);
2910

    
2911
static CharDriverState *qemu_chr_open_udp(const char *def)
2912
{
2913
    CharDriverState *chr = NULL;
2914
    NetCharDriver *s = NULL;
2915
    int fd = -1;
2916
    struct sockaddr_in saddr;
2917

    
2918
    chr = qemu_mallocz(sizeof(CharDriverState));
2919
    if (!chr)
2920
        goto return_err;
2921
    s = qemu_mallocz(sizeof(NetCharDriver));
2922
    if (!s)
2923
        goto return_err;
2924

    
2925
    fd = socket(PF_INET, SOCK_DGRAM, 0);
2926
    if (fd < 0) {
2927
        perror("socket(PF_INET, SOCK_DGRAM)");
2928
        goto return_err;
2929
    }
2930

    
2931
    if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
2932
        printf("Could not parse: %s\n", def);
2933
        goto return_err;
2934
    }
2935

    
2936
    if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
2937
    {
2938
        perror("bind");
2939
        goto return_err;
2940
    }
2941

    
2942
    s->fd = fd;
2943
    s->bufcnt = 0;
2944
    s->bufptr = 0;
2945
    chr->opaque = s;
2946
    chr->chr_write = udp_chr_write;
2947
    chr->chr_update_read_handler = udp_chr_update_read_handler;
2948
    return chr;
2949

    
2950
return_err:
2951
    if (chr)
2952
        free(chr);
2953
    if (s)
2954
        free(s);
2955
    if (fd >= 0)
2956
        closesocket(fd);
2957
    return NULL;
2958
}
2959

    
2960
/***********************************************************/
2961
/* TCP Net console */
2962

    
2963
typedef struct {
2964
    int fd, listen_fd;
2965
    int connected;
2966
    int max_size;
2967
    int do_telnetopt;
2968
    int do_nodelay;
2969
    int is_unix;
2970
} TCPCharDriver;
2971

    
2972
static void tcp_chr_accept(void *opaque);
2973

    
2974
static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2975
{
2976
    TCPCharDriver *s = chr->opaque;
2977
    if (s->connected) {
2978
        return send_all(s->fd, buf, len);
2979
    } else {
2980
        /* XXX: indicate an error ? */
2981
        return len;
2982
    }
2983
}
2984

    
2985
static int tcp_chr_read_poll(void *opaque)
2986
{
2987
    CharDriverState *chr = opaque;
2988
    TCPCharDriver *s = chr->opaque;
2989
    if (!s->connected)
2990
        return 0;
2991
    s->max_size = qemu_chr_can_read(chr);
2992
    return s->max_size;
2993
}
2994

    
2995
#define IAC 255
2996
#define IAC_BREAK 243
2997
static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
2998
                                      TCPCharDriver *s,
2999
                                      char *buf, int *size)
3000
{
3001
    /* Handle any telnet client's basic IAC options to satisfy char by
3002
     * char mode with no echo.  All IAC options will be removed from
3003
     * the buf and the do_telnetopt variable will be used to track the
3004
     * state of the width of the IAC information.
3005
     *
3006
     * IAC commands come in sets of 3 bytes with the exception of the
3007
     * "IAC BREAK" command and the double IAC.
3008
     */
3009

    
3010
    int i;
3011
    int j = 0;
3012

    
3013
    for (i = 0; i < *size; i++) {
3014
        if (s->do_telnetopt > 1) {
3015
            if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
3016
                /* Double IAC means send an IAC */
3017
                if (j != i)
3018
                    buf[j] = buf[i];
3019
                j++;
3020
                s->do_telnetopt = 1;
3021
            } else {
3022
                if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
3023
                    /* Handle IAC break commands by sending a serial break */
3024
                    qemu_chr_event(chr, CHR_EVENT_BREAK);
3025
                    s->do_telnetopt++;
3026
                }
3027
                s->do_telnetopt++;
3028
            }
3029
            if (s->do_telnetopt >= 4) {
3030
                s->do_telnetopt = 1;
3031
            }
3032
        } else {
3033
            if ((unsigned char)buf[i] == IAC) {
3034
                s->do_telnetopt = 2;
3035
            } else {
3036
                if (j != i)
3037
                    buf[j] = buf[i];
3038
                j++;
3039
            }
3040
        }
3041
    }
3042
    *size = j;
3043
}
3044

    
3045
static void tcp_chr_read(void *opaque)
3046
{
3047
    CharDriverState *chr = opaque;
3048
    TCPCharDriver *s = chr->opaque;
3049
    uint8_t buf[1024];
3050
    int len, size;
3051

    
3052
    if (!s->connected || s->max_size <= 0)
3053
        return;
3054
    len = sizeof(buf);
3055
    if (len > s->max_size)
3056
        len = s->max_size;
3057
    size = recv(s->fd, buf, len, 0);
3058
    if (size == 0) {
3059
        /* connection closed */
3060
        s->connected = 0;
3061
        if (s->listen_fd >= 0) {
3062
            qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3063
        }
3064
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3065
        closesocket(s->fd);
3066
        s->fd = -1;
3067
    } else if (size > 0) {
3068
        if (s->do_telnetopt)
3069
            tcp_chr_process_IAC_bytes(chr, s, buf, &size);
3070
        if (size > 0)
3071
            qemu_chr_read(chr, buf, size);
3072
    }
3073
}
3074

    
3075
static void tcp_chr_connect(void *opaque)
3076
{
3077
    CharDriverState *chr = opaque;
3078
    TCPCharDriver *s = chr->opaque;
3079

    
3080
    s->connected = 1;
3081
    qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
3082
                         tcp_chr_read, NULL, chr);
3083
    qemu_chr_reset(chr);
3084
}
3085

    
3086
#define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
3087
static void tcp_chr_telnet_init(int fd)
3088
{
3089
    char buf[3];
3090
    /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
3091
    IACSET(buf, 0xff, 0xfb, 0x01);  /* IAC WILL ECHO */
3092
    send(fd, (char *)buf, 3, 0);
3093
    IACSET(buf, 0xff, 0xfb, 0x03);  /* IAC WILL Suppress go ahead */
3094
    send(fd, (char *)buf, 3, 0);
3095
    IACSET(buf, 0xff, 0xfb, 0x00);  /* IAC WILL Binary */
3096
    send(fd, (char *)buf, 3, 0);
3097
    IACSET(buf, 0xff, 0xfd, 0x00);  /* IAC DO Binary */
3098
    send(fd, (char *)buf, 3, 0);
3099
}
3100

    
3101
static void socket_set_nodelay(int fd)
3102
{
3103
    int val = 1;
3104
    setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
3105
}
3106

    
3107
static void tcp_chr_accept(void *opaque)
3108
{
3109
    CharDriverState *chr = opaque;
3110
    TCPCharDriver *s = chr->opaque;
3111
    struct sockaddr_in saddr;
3112
#ifndef _WIN32
3113
    struct sockaddr_un uaddr;
3114
#endif
3115
    struct sockaddr *addr;
3116
    socklen_t len;
3117
    int fd;
3118

    
3119
    for(;;) {
3120
#ifndef _WIN32
3121
        if (s->is_unix) {
3122
            len = sizeof(uaddr);
3123
            addr = (struct sockaddr *)&uaddr;
3124
        } else
3125
#endif
3126
        {
3127
            len = sizeof(saddr);
3128
            addr = (struct sockaddr *)&saddr;
3129
        }
3130
        fd = accept(s->listen_fd, addr, &len);
3131
        if (fd < 0 && errno != EINTR) {
3132
            return;
3133
        } else if (fd >= 0) {
3134
            if (s->do_telnetopt)
3135
                tcp_chr_telnet_init(fd);
3136
            break;
3137
        }
3138
    }
3139
    socket_set_nonblock(fd);
3140
    if (s->do_nodelay)
3141
        socket_set_nodelay(fd);
3142
    s->fd = fd;
3143
    qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
3144
    tcp_chr_connect(chr);
3145
}
3146

    
3147
static void tcp_chr_close(CharDriverState *chr)
3148
{
3149
    TCPCharDriver *s = chr->opaque;
3150
    if (s->fd >= 0)
3151
        closesocket(s->fd);
3152
    if (s->listen_fd >= 0)
3153
        closesocket(s->listen_fd);
3154
    qemu_free(s);
3155
}
3156

    
3157
static CharDriverState *qemu_chr_open_tcp(const char *host_str,
3158
                                          int is_telnet,
3159
                                          int is_unix)
3160
{
3161
    CharDriverState *chr = NULL;
3162
    TCPCharDriver *s = NULL;
3163
    int fd = -1, ret, err, val;
3164
    int is_listen = 0;
3165
    int is_waitconnect = 1;
3166
    int do_nodelay = 0;
3167
    const char *ptr;
3168
    struct sockaddr_in saddr;
3169
#ifndef _WIN32
3170
    struct sockaddr_un uaddr;
3171
#endif
3172
    struct sockaddr *addr;
3173
    socklen_t addrlen;
3174

    
3175
#ifndef _WIN32
3176
    if (is_unix) {
3177
        addr = (struct sockaddr *)&uaddr;
3178
        addrlen = sizeof(uaddr);
3179
        if (parse_unix_path(&uaddr, host_str) < 0)
3180
            goto fail;
3181
    } else
3182
#endif
3183
    {
3184
        addr = (struct sockaddr *)&saddr;
3185
        addrlen = sizeof(saddr);
3186
        if (parse_host_port(&saddr, host_str) < 0)
3187
            goto fail;
3188
    }
3189

    
3190
    ptr = host_str;
3191
    while((ptr = strchr(ptr,','))) {
3192
        ptr++;
3193
        if (!strncmp(ptr,"server",6)) {
3194
            is_listen = 1;
3195
        } else if (!strncmp(ptr,"nowait",6)) {
3196
            is_waitconnect = 0;
3197
        } else if (!strncmp(ptr,"nodelay",6)) {
3198
            do_nodelay = 1;
3199
        } else {
3200
            printf("Unknown option: %s\n", ptr);
3201
            goto fail;
3202
        }
3203
    }
3204
    if (!is_listen)
3205
        is_waitconnect = 0;
3206

    
3207
    chr = qemu_mallocz(sizeof(CharDriverState));
3208
    if (!chr)
3209
        goto fail;
3210
    s = qemu_mallocz(sizeof(TCPCharDriver));
3211
    if (!s)
3212
        goto fail;
3213

    
3214
#ifndef _WIN32
3215
    if (is_unix)
3216
        fd = socket(PF_UNIX, SOCK_STREAM, 0);
3217
    else
3218
#endif
3219
        fd = socket(PF_INET, SOCK_STREAM, 0);
3220

    
3221
    if (fd < 0)
3222
        goto fail;
3223

    
3224
    if (!is_waitconnect)
3225
        socket_set_nonblock(fd);
3226

    
3227
    s->connected = 0;
3228
    s->fd = -1;
3229
    s->listen_fd = -1;
3230
    s->is_unix = is_unix;
3231
    s->do_nodelay = do_nodelay && !is_unix;
3232

    
3233
    chr->opaque = s;
3234
    chr->chr_write = tcp_chr_write;
3235
    chr->chr_close = tcp_chr_close;
3236

    
3237
    if (is_listen) {
3238
        /* allow fast reuse */
3239
#ifndef _WIN32
3240
        if (is_unix) {
3241
            char path[109];
3242
            strncpy(path, uaddr.sun_path, 108);
3243
            path[108] = 0;
3244
            unlink(path);
3245
        } else
3246
#endif
3247
        {
3248
            val = 1;
3249
            setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
3250
        }
3251

    
3252
        ret = bind(fd, addr, addrlen);
3253
        if (ret < 0)
3254
            goto fail;
3255

    
3256
        ret = listen(fd, 0);
3257
        if (ret < 0)
3258
            goto fail;
3259

    
3260
        s->listen_fd = fd;
3261
        qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3262
        if (is_telnet)
3263
            s->do_telnetopt = 1;
3264
    } else {
3265
        for(;;) {
3266
            ret = connect(fd, addr, addrlen);
3267
            if (ret < 0) {
3268
                err = socket_error();
3269
                if (err == EINTR || err == EWOULDBLOCK) {
3270
                } else if (err == EINPROGRESS) {
3271
                    break;
3272
#ifdef _WIN32
3273
                } else if (err == WSAEALREADY) {
3274
                    break;
3275
#endif
3276
                } else {
3277
                    goto fail;
3278
                }
3279
            } else {
3280
                s->connected = 1;
3281
                break;
3282
            }
3283
        }
3284
        s->fd = fd;
3285
        socket_set_nodelay(fd);
3286
        if (s->connected)
3287
            tcp_chr_connect(chr);
3288
        else
3289
            qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
3290
    }
3291

    
3292
    if (is_listen && is_waitconnect) {
3293
        printf("QEMU waiting for connection on: %s\n", host_str);
3294
        tcp_chr_accept(chr);
3295
        socket_set_nonblock(s->listen_fd);
3296
    }
3297

    
3298
    return chr;
3299
 fail:
3300
    if (fd >= 0)
3301
        closesocket(fd);
3302
    qemu_free(s);
3303
    qemu_free(chr);
3304
    return NULL;
3305
}
3306

    
3307
CharDriverState *qemu_chr_open(const char *filename)
3308
{
3309
    const char *p;
3310

    
3311
    if (!strcmp(filename, "vc")) {
3312
        return text_console_init(&display_state, 0);
3313
    } else if (strstart(filename, "vc:", &p)) {
3314
        return text_console_init(&display_state, p);
3315
    } else if (!strcmp(filename, "null")) {
3316
        return qemu_chr_open_null();
3317
    } else
3318
    if (strstart(filename, "tcp:", &p)) {
3319
        return qemu_chr_open_tcp(p, 0, 0);
3320
    } else
3321
    if (strstart(filename, "telnet:", &p)) {
3322
        return qemu_chr_open_tcp(p, 1, 0);
3323
    } else
3324
    if (strstart(filename, "udp:", &p)) {
3325
        return qemu_chr_open_udp(p);
3326
    } else
3327
    if (strstart(filename, "mon:", &p)) {
3328
        CharDriverState *drv = qemu_chr_open(p);
3329
        if (drv) {
3330
            drv = qemu_chr_open_mux(drv);
3331
            monitor_init(drv, !nographic);
3332
            return drv;
3333
        }
3334
        printf("Unable to open driver: %s\n", p);
3335
        return 0;
3336
    } else
3337
#ifndef _WIN32
3338
    if (strstart(filename, "unix:", &p)) {
3339
        return qemu_chr_open_tcp(p, 0, 1);
3340
    } else if (strstart(filename, "file:", &p)) {
3341
        return qemu_chr_open_file_out(p);
3342
    } else if (strstart(filename, "pipe:", &p)) {
3343
        return qemu_chr_open_pipe(p);
3344
    } else if (!strcmp(filename, "pty")) {
3345
        return qemu_chr_open_pty();
3346
    } else if (!strcmp(filename, "stdio")) {
3347
        return qemu_chr_open_stdio();
3348
    } else
3349
#if defined(__linux__)
3350
    if (strstart(filename, "/dev/parport", NULL)) {
3351
        return qemu_chr_open_pp(filename);
3352
    } else
3353
#endif
3354
#if defined(__linux__) || defined(__sun__)
3355
    if (strstart(filename, "/dev/", NULL)) {
3356
        return qemu_chr_open_tty(filename);
3357
    } else
3358
#endif
3359
#else /* !_WIN32 */
3360
    if (strstart(filename, "COM", NULL)) {
3361
        return qemu_chr_open_win(filename);
3362
    } else
3363
    if (strstart(filename, "pipe:", &p)) {
3364
        return qemu_chr_open_win_pipe(p);
3365
    } else
3366
    if (strstart(filename, "con:", NULL)) {
3367
        return qemu_chr_open_win_con(filename);
3368
    } else
3369
    if (strstart(filename, "file:", &p)) {
3370
        return qemu_chr_open_win_file_out(p);
3371
    }
3372
#endif
3373
    {
3374
        return NULL;
3375
    }
3376
}
3377

    
3378
void qemu_chr_close(CharDriverState *chr)
3379
{
3380
    if (chr->chr_close)
3381
        chr->chr_close(chr);
3382
}
3383

    
3384
/***********************************************************/
3385
/* network device redirectors */
3386

    
3387
void hex_dump(FILE *f, const uint8_t *buf, int size)
3388
{
3389
    int len, i, j, c;
3390

    
3391
    for(i=0;i<size;i+=16) {
3392
        len = size - i;
3393
        if (len > 16)
3394
            len = 16;
3395
        fprintf(f, "%08x ", i);
3396
        for(j=0;j<16;j++) {
3397
            if (j < len)
3398
                fprintf(f, " %02x", buf[i+j]);
3399
            else
3400
                fprintf(f, "   ");
3401
        }
3402
        fprintf(f, " ");
3403
        for(j=0;j<len;j++) {
3404
            c = buf[i+j];
3405
            if (c < ' ' || c > '~')
3406
                c = '.';
3407
            fprintf(f, "%c", c);
3408
        }
3409
        fprintf(f, "\n");
3410
    }
3411
}
3412

    
3413
static int parse_macaddr(uint8_t *macaddr, const char *p)
3414
{
3415
    int i;
3416
    for(i = 0; i < 6; i++) {
3417
        macaddr[i] = strtol(p, (char **)&p, 16);
3418
        if (i == 5) {
3419
            if (*p != '\0')
3420
                return -1;
3421
        } else {
3422
            if (*p != ':')
3423
                return -1;
3424
            p++;
3425
        }
3426
    }
3427
    return 0;
3428
}
3429

    
3430
static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3431
{
3432
    const char *p, *p1;
3433
    int len;
3434
    p = *pp;
3435
    p1 = strchr(p, sep);
3436
    if (!p1)
3437
        return -1;
3438
    len = p1 - p;
3439
    p1++;
3440
    if (buf_size > 0) {
3441
        if (len > buf_size - 1)
3442
            len = buf_size - 1;
3443
        memcpy(buf, p, len);
3444
        buf[len] = '\0';
3445
    }
3446
    *pp = p1;
3447
    return 0;
3448
}
3449

    
3450
int parse_host_src_port(struct sockaddr_in *haddr,
3451
                        struct sockaddr_in *saddr,
3452
                        const char *input_str)
3453
{
3454
    char *str = strdup(input_str);
3455
    char *host_str = str;
3456
    char *src_str;
3457
    char *ptr;
3458

    
3459
    /*
3460
     * Chop off any extra arguments at the end of the string which
3461
     * would start with a comma, then fill in the src port information
3462
     * if it was provided else use the "any address" and "any port".
3463
     */
3464
    if ((ptr = strchr(str,',')))
3465
        *ptr = '\0';
3466

    
3467
    if ((src_str = strchr(input_str,'@'))) {
3468
        *src_str = '\0';
3469
        src_str++;
3470
    }
3471

    
3472
    if (parse_host_port(haddr, host_str) < 0)
3473
        goto fail;
3474

    
3475
    if (!src_str || *src_str == '\0')
3476
        src_str = ":0";
3477

    
3478
    if (parse_host_port(saddr, src_str) < 0)
3479
        goto fail;
3480

    
3481
    free(str);
3482
    return(0);
3483

    
3484
fail:
3485
    free(str);
3486
    return -1;
3487
}
3488

    
3489
int parse_host_port(struct sockaddr_in *saddr, const char *str)
3490
{
3491
    char buf[512];
3492
    struct hostent *he;
3493
    const char *p, *r;
3494
    int port;
3495

    
3496
    p = str;
3497
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3498
        return -1;
3499
    saddr->sin_family = AF_INET;
3500
    if (buf[0] == '\0') {
3501
        saddr->sin_addr.s_addr = 0;
3502
    } else {
3503
        if (isdigit(buf[0])) {
3504
            if (!inet_aton(buf, &saddr->sin_addr))
3505
                return -1;
3506
        } else {
3507
            if ((he = gethostbyname(buf)) == NULL)
3508
                return - 1;
3509
            saddr->sin_addr = *(struct in_addr *)he->h_addr;
3510
        }
3511
    }
3512
    port = strtol(p, (char **)&r, 0);
3513
    if (r == p)
3514
        return -1;
3515
    saddr->sin_port = htons(port);
3516
    return 0;
3517
}
3518

    
3519
#ifndef _WIN32
3520
static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
3521
{
3522
    const char *p;
3523
    int len;
3524

    
3525
    len = MIN(108, strlen(str));
3526
    p = strchr(str, ',');
3527
    if (p)
3528
        len = MIN(len, p - str);
3529

    
3530
    memset(uaddr, 0, sizeof(*uaddr));
3531

    
3532
    uaddr->sun_family = AF_UNIX;
3533
    memcpy(uaddr->sun_path, str, len);
3534

    
3535
    return 0;
3536
}
3537
#endif
3538

    
3539
/* find or alloc a new VLAN */
3540
VLANState *qemu_find_vlan(int id)
3541
{
3542
    VLANState **pvlan, *vlan;
3543
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
3544
        if (vlan->id == id)
3545
            return vlan;
3546
    }
3547
    vlan = qemu_mallocz(sizeof(VLANState));
3548
    if (!vlan)
3549
        return NULL;
3550
    vlan->id = id;
3551
    vlan->next = NULL;
3552
    pvlan = &first_vlan;
3553
    while (*pvlan != NULL)
3554
        pvlan = &(*pvlan)->next;
3555
    *pvlan = vlan;
3556
    return vlan;
3557
}
3558

    
3559
VLANClientState *qemu_new_vlan_client(VLANState *vlan,
3560
                                      IOReadHandler *fd_read,
3561
                                      IOCanRWHandler *fd_can_read,
3562
                                      void *opaque)
3563
{
3564
    VLANClientState *vc, **pvc;
3565
    vc = qemu_mallocz(sizeof(VLANClientState));
3566
    if (!vc)
3567
        return NULL;
3568
    vc->fd_read = fd_read;
3569
    vc->fd_can_read = fd_can_read;
3570
    vc->opaque = opaque;
3571
    vc->vlan = vlan;
3572

    
3573
    vc->next = NULL;
3574
    pvc = &vlan->first_client;
3575
    while (*pvc != NULL)
3576
        pvc = &(*pvc)->next;
3577
    *pvc = vc;
3578
    return vc;
3579
}
3580

    
3581
int qemu_can_send_packet(VLANClientState *vc1)
3582
{
3583
    VLANState *vlan = vc1->vlan;
3584
    VLANClientState *vc;
3585

    
3586
    for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3587
        if (vc != vc1) {
3588
            if (vc->fd_can_read && vc->fd_can_read(vc->opaque))
3589
                return 1;
3590
        }
3591
    }
3592
    return 0;
3593
}
3594

    
3595
void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
3596
{
3597
    VLANState *vlan = vc1->vlan;
3598
    VLANClientState *vc;
3599

    
3600
#if 0
3601
    printf("vlan %d send:\n", vlan->id);
3602
    hex_dump(stdout, buf, size);
3603
#endif
3604
    for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3605
        if (vc != vc1) {
3606
            vc->fd_read(vc->opaque, buf, size);
3607
        }
3608
    }
3609
}
3610

    
3611
#if defined(CONFIG_SLIRP)
3612

    
3613
/* slirp network adapter */
3614

    
3615
static int slirp_inited;
3616
static VLANClientState *slirp_vc;
3617

    
3618
int slirp_can_output(void)
3619
{
3620
    return !slirp_vc || qemu_can_send_packet(slirp_vc);
3621
}
3622

    
3623
void slirp_output(const uint8_t *pkt, int pkt_len)
3624
{
3625
#if 0
3626
    printf("slirp output:\n");
3627
    hex_dump(stdout, pkt, pkt_len);
3628
#endif
3629
    if (!slirp_vc)
3630
        return;
3631
    qemu_send_packet(slirp_vc, pkt, pkt_len);
3632
}
3633

    
3634
static void slirp_receive(void *opaque, const uint8_t *buf, int size)
3635
{
3636
#if 0
3637
    printf("slirp input:\n");
3638
    hex_dump(stdout, buf, size);
3639
#endif
3640
    slirp_input(buf, size);
3641
}
3642

    
3643
static int net_slirp_init(VLANState *vlan)
3644
{
3645
    if (!slirp_inited) {
3646
        slirp_inited = 1;
3647
        slirp_init();
3648
    }
3649
    slirp_vc = qemu_new_vlan_client(vlan,
3650
                                    slirp_receive, NULL, NULL);
3651
    snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
3652
    return 0;
3653
}
3654

    
3655
static void net_slirp_redir(const char *redir_str)
3656
{
3657
    int is_udp;
3658
    char buf[256], *r;
3659
    const char *p;
3660
    struct in_addr guest_addr;
3661
    int host_port, guest_port;
3662

    
3663
    if (!slirp_inited) {
3664
        slirp_inited = 1;
3665
        slirp_init();
3666
    }
3667

    
3668
    p = redir_str;
3669
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3670
        goto fail;
3671
    if (!strcmp(buf, "tcp")) {
3672
        is_udp = 0;
3673
    } else if (!strcmp(buf, "udp")) {
3674
        is_udp = 1;
3675
    } else {
3676
        goto fail;
3677
    }
3678

    
3679
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3680
        goto fail;
3681
    host_port = strtol(buf, &r, 0);
3682
    if (r == buf)
3683
        goto fail;
3684

    
3685
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3686
        goto fail;
3687
    if (buf[0] == '\0') {
3688
        pstrcpy(buf, sizeof(buf), "10.0.2.15");
3689
    }
3690
    if (!inet_aton(buf, &guest_addr))
3691
        goto fail;
3692

    
3693
    guest_port = strtol(p, &r, 0);
3694
    if (r == p)
3695
        goto fail;
3696

    
3697
    if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
3698
        fprintf(stderr, "qemu: could not set up redirection\n");
3699
        exit(1);
3700
    }
3701
    return;
3702
 fail:
3703
    fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
3704
    exit(1);
3705
}
3706

    
3707
#ifndef _WIN32
3708

    
3709
char smb_dir[1024];
3710

    
3711
static void smb_exit(void)
3712
{
3713
    DIR *d;
3714
    struct dirent *de;
3715
    char filename[1024];
3716

    
3717
    /* erase all the files in the directory */
3718
    d = opendir(smb_dir);
3719
    for(;;) {
3720
        de = readdir(d);
3721
        if (!de)
3722
            break;
3723
        if (strcmp(de->d_name, ".") != 0 &&
3724
            strcmp(de->d_name, "..") != 0) {
3725
            snprintf(filename, sizeof(filename), "%s/%s",
3726
                     smb_dir, de->d_name);
3727
            unlink(filename);
3728
        }
3729
    }
3730
    closedir(d);
3731
    rmdir(smb_dir);
3732
}
3733

    
3734
/* automatic user mode samba server configuration */
3735
void net_slirp_smb(const char *exported_dir)
3736
{
3737
    char smb_conf[1024];
3738
    char smb_cmdline[1024];
3739
    FILE *f;
3740

    
3741
    if (!slirp_inited) {
3742
        slirp_inited = 1;
3743
        slirp_init();
3744
    }
3745

    
3746
    /* XXX: better tmp dir construction */
3747
    snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
3748
    if (mkdir(smb_dir, 0700) < 0) {
3749
        fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
3750
        exit(1);
3751
    }
3752
    snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
3753

    
3754
    f = fopen(smb_conf, "w");
3755
    if (!f) {
3756
        fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
3757
        exit(1);
3758
    }
3759
    fprintf(f,
3760
            "[global]\n"
3761
            "private dir=%s\n"
3762
            "smb ports=0\n"
3763
            "socket address=127.0.0.1\n"
3764
            "pid directory=%s\n"
3765
            "lock directory=%s\n"
3766
            "log file=%s/log.smbd\n"
3767
            "smb passwd file=%s/smbpasswd\n"
3768
            "security = share\n"
3769
            "[qemu]\n"
3770
            "path=%s\n"
3771
            "read only=no\n"
3772
            "guest ok=yes\n",
3773
            smb_dir,
3774
            smb_dir,
3775
            smb_dir,
3776
            smb_dir,
3777
            smb_dir,
3778
            exported_dir
3779
            );
3780
    fclose(f);
3781
    atexit(smb_exit);
3782

    
3783
    snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
3784
             SMBD_COMMAND, smb_conf);
3785

    
3786
    slirp_add_exec(0, smb_cmdline, 4, 139);
3787
}
3788

    
3789
#endif /* !defined(_WIN32) */
3790
void do_info_slirp(void)
3791
{
3792
    slirp_stats();
3793
}
3794

    
3795
#endif /* CONFIG_SLIRP */
3796

    
3797
#if !defined(_WIN32)
3798

    
3799
typedef struct TAPState {
3800
    VLANClientState *vc;
3801
    int fd;
3802
    char down_script[1024];
3803
} TAPState;
3804

    
3805
static void tap_receive(void *opaque, const uint8_t *buf, int size)
3806
{
3807
    TAPState *s = opaque;
3808
    int ret;
3809
    for(;;) {
3810
        ret = write(s->fd, buf, size);
3811
        if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
3812
        } else {
3813
            break;
3814
        }
3815
    }
3816
}
3817

    
3818
static void tap_send(void *opaque)
3819
{
3820
    TAPState *s = opaque;
3821
    uint8_t buf[4096];
3822
    int size;
3823

    
3824
#ifdef __sun__
3825
    struct strbuf sbuf;
3826
    int f = 0;
3827
    sbuf.maxlen = sizeof(buf);
3828
    sbuf.buf = buf;
3829
    size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
3830
#else
3831
    size = read(s->fd, buf, sizeof(buf));
3832
#endif
3833
    if (size > 0) {
3834
        qemu_send_packet(s->vc, buf, size);
3835
    }
3836
}
3837

    
3838
/* fd support */
3839

    
3840
static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
3841
{
3842
    TAPState *s;
3843

    
3844
    s = qemu_mallocz(sizeof(TAPState));
3845
    if (!s)
3846
        return NULL;
3847
    s->fd = fd;
3848
    s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
3849
    qemu_set_fd_handler(s->fd, tap_send, NULL, s);
3850
    snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
3851
    return s;
3852
}
3853

    
3854
#if defined (_BSD) || defined (__FreeBSD_kernel__)
3855
static int tap_open(char *ifname, int ifname_size)
3856
{
3857
    int fd;
3858
    char *dev;
3859
    struct stat s;
3860

    
3861
    TFR(fd = open("/dev/tap", O_RDWR));
3862
    if (fd < 0) {
3863
        fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
3864
        return -1;
3865
    }
3866

    
3867
    fstat(fd, &s);
3868
    dev = devname(s.st_rdev, S_IFCHR);
3869
    pstrcpy(ifname, ifname_size, dev);
3870

    
3871
    fcntl(fd, F_SETFL, O_NONBLOCK);
3872
    return fd;
3873
}
3874
#elif defined(__sun__)
3875
#define TUNNEWPPA       (('T'<<16) | 0x0001)
3876
/*
3877
 * Allocate TAP device, returns opened fd.
3878
 * Stores dev name in the first arg(must be large enough).
3879
 */
3880
int tap_alloc(char *dev)
3881
{
3882
    int tap_fd, if_fd, ppa = -1;
3883
    static int ip_fd = 0;
3884
    char *ptr;
3885

    
3886
    static int arp_fd = 0;
3887
    int ip_muxid, arp_muxid;
3888
    struct strioctl  strioc_if, strioc_ppa;
3889
    int link_type = I_PLINK;;
3890
    struct lifreq ifr;
3891
    char actual_name[32] = "";
3892

    
3893
    memset(&ifr, 0x0, sizeof(ifr));
3894

    
3895
    if( *dev ){
3896
       ptr = dev;
3897
       while( *ptr && !isdigit((int)*ptr) ) ptr++;
3898
       ppa = atoi(ptr);
3899
    }
3900

    
3901
    /* Check if IP device was opened */
3902
    if( ip_fd )
3903
       close(ip_fd);
3904

    
3905
    TFR(ip_fd = open("/dev/udp", O_RDWR, 0));
3906
    if (ip_fd < 0) {
3907
       syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
3908
       return -1;
3909
    }
3910

    
3911
    TFR(tap_fd = open("/dev/tap", O_RDWR, 0));
3912
    if (tap_fd < 0) {
3913
       syslog(LOG_ERR, "Can't open /dev/tap");
3914
       return -1;
3915
    }
3916

    
3917
    /* Assign a new PPA and get its unit number. */
3918
    strioc_ppa.ic_cmd = TUNNEWPPA;
3919
    strioc_ppa.ic_timout = 0;
3920
    strioc_ppa.ic_len = sizeof(ppa);
3921
    strioc_ppa.ic_dp = (char *)&ppa;
3922
    if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
3923
       syslog (LOG_ERR, "Can't assign new interface");
3924

    
3925
    TFR(if_fd = open("/dev/tap", O_RDWR, 0));
3926
    if (if_fd < 0) {
3927
       syslog(LOG_ERR, "Can't open /dev/tap (2)");
3928
       return -1;
3929
    }
3930
    if(ioctl(if_fd, I_PUSH, "ip") < 0){
3931
       syslog(LOG_ERR, "Can't push IP module");
3932
       return -1;
3933
    }
3934

    
3935
    if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
3936
        syslog(LOG_ERR, "Can't get flags\n");
3937

    
3938
    snprintf (actual_name, 32, "tap%d", ppa);
3939
    strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3940

    
3941
    ifr.lifr_ppa = ppa;
3942
    /* Assign ppa according to the unit number returned by tun device */
3943

    
3944
    if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
3945
        syslog (LOG_ERR, "Can't set PPA %d", ppa);
3946
    if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
3947
        syslog (LOG_ERR, "Can't get flags\n");
3948
    /* Push arp module to if_fd */
3949
    if (ioctl (if_fd, I_PUSH, "arp") < 0)
3950
        syslog (LOG_ERR, "Can't push ARP module (2)");
3951

    
3952
    /* Push arp module to ip_fd */
3953
    if (ioctl (ip_fd, I_POP, NULL) < 0)
3954
        syslog (LOG_ERR, "I_POP failed\n");
3955
    if (ioctl (ip_fd, I_PUSH, "arp") < 0)
3956
        syslog (LOG_ERR, "Can't push ARP module (3)\n");
3957
    /* Open arp_fd */
3958
    TFR(arp_fd = open ("/dev/tap", O_RDWR, 0));
3959
    if (arp_fd < 0)
3960
       syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
3961

    
3962
    /* Set ifname to arp */
3963
    strioc_if.ic_cmd = SIOCSLIFNAME;
3964
    strioc_if.ic_timout = 0;
3965
    strioc_if.ic_len = sizeof(ifr);
3966
    strioc_if.ic_dp = (char *)&ifr;
3967
    if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
3968
        syslog (LOG_ERR, "Can't set ifname to arp\n");
3969
    }
3970

    
3971
    if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
3972
       syslog(LOG_ERR, "Can't link TAP device to IP");
3973
       return -1;
3974
    }
3975

    
3976
    if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
3977
        syslog (LOG_ERR, "Can't link TAP device to ARP");
3978

    
3979
    close (if_fd);
3980

    
3981
    memset(&ifr, 0x0, sizeof(ifr));
3982
    strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3983
    ifr.lifr_ip_muxid  = ip_muxid;
3984
    ifr.lifr_arp_muxid = arp_muxid;
3985

    
3986
    if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
3987
    {
3988
      ioctl (ip_fd, I_PUNLINK , arp_muxid);
3989
      ioctl (ip_fd, I_PUNLINK, ip_muxid);
3990
      syslog (LOG_ERR, "Can't set multiplexor id");
3991
    }
3992

    
3993
    sprintf(dev, "tap%d", ppa);
3994
    return tap_fd;
3995
}
3996

    
3997
static int tap_open(char *ifname, int ifname_size)
3998
{
3999
    char  dev[10]="";
4000
    int fd;
4001
    if( (fd = tap_alloc(dev)) < 0 ){
4002
       fprintf(stderr, "Cannot allocate TAP device\n");
4003
       return -1;
4004
    }
4005
    pstrcpy(ifname, ifname_size, dev);
4006
    fcntl(fd, F_SETFL, O_NONBLOCK);
4007
    return fd;
4008
}
4009
#else
4010
static int tap_open(char *ifname, int ifname_size)
4011
{
4012
    struct ifreq ifr;
4013
    int fd, ret;
4014

    
4015
    TFR(fd = open("/dev/net/tun", O_RDWR));
4016
    if (fd < 0) {
4017
        fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
4018
        return -1;
4019
    }
4020
    memset(&ifr, 0, sizeof(ifr));
4021
    ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
4022
    if (ifname[0] != '\0')
4023
        pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
4024
    else
4025
        pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
4026
    ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
4027
    if (ret != 0) {
4028
        fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
4029
        close(fd);
4030
        return -1;
4031
    }
4032
    pstrcpy(ifname, ifname_size, ifr.ifr_name);
4033
    fcntl(fd, F_SETFL, O_NONBLOCK);
4034
    return fd;
4035
}
4036
#endif
4037

    
4038
static int launch_script(const char *setup_script, const char *ifname, int fd)
4039
{
4040
    int pid, status;
4041
    char *args[3];
4042
    char **parg;
4043

    
4044
        /* try to launch network script */
4045
        pid = fork();
4046
        if (pid >= 0) {
4047
            if (pid == 0) {
4048
                int open_max = sysconf (_SC_OPEN_MAX), i;
4049
                for (i = 0; i < open_max; i++)
4050
                    if (i != STDIN_FILENO &&
4051
                        i != STDOUT_FILENO &&
4052
                        i != STDERR_FILENO &&
4053
                        i != fd)
4054
                        close(i);
4055

    
4056
                parg = args;
4057
                *parg++ = (char *)setup_script;
4058
                *parg++ = (char *)ifname;
4059
                *parg++ = NULL;
4060
                execv(setup_script, args);
4061
                _exit(1);
4062
            }
4063
            while (waitpid(pid, &status, 0) != pid);
4064
            if (!WIFEXITED(status) ||
4065
                WEXITSTATUS(status) != 0) {
4066
                fprintf(stderr, "%s: could not launch network script\n",
4067
                        setup_script);
4068
                return -1;
4069
            }
4070
        }
4071
    return 0;
4072
}
4073

    
4074
static int net_tap_init(VLANState *vlan, const char *ifname1,
4075
                        const char *setup_script, const char *down_script)
4076
{
4077
    TAPState *s;
4078
    int fd;
4079
    char ifname[128];
4080

    
4081
    if (ifname1 != NULL)
4082
        pstrcpy(ifname, sizeof(ifname), ifname1);
4083
    else
4084
        ifname[0] = '\0';
4085
    TFR(fd = tap_open(ifname, sizeof(ifname)));
4086
    if (fd < 0)
4087
        return -1;
4088

    
4089
    if (!setup_script || !strcmp(setup_script, "no"))
4090
        setup_script = "";
4091
    if (setup_script[0] != '\0') {
4092
        if (launch_script(setup_script, ifname, fd))
4093
            return -1;
4094
    }
4095
    s = net_tap_fd_init(vlan, fd);
4096
    if (!s)
4097
        return -1;
4098
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4099
             "tap: ifname=%s setup_script=%s", ifname, setup_script);
4100
    if (down_script && strcmp(down_script, "no"))
4101
        snprintf(s->down_script, sizeof(s->down_script), "%s", down_script);
4102
    return 0;
4103
}
4104

    
4105
#endif /* !_WIN32 */
4106

    
4107
/* network connection */
4108
typedef struct NetSocketState {
4109
    VLANClientState *vc;
4110
    int fd;
4111
    int state; /* 0 = getting length, 1 = getting data */
4112
    int index;
4113
    int packet_len;
4114
    uint8_t buf[4096];
4115
    struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
4116
} NetSocketState;
4117

    
4118
typedef struct NetSocketListenState {
4119
    VLANState *vlan;
4120
    int fd;
4121
} NetSocketListenState;
4122

    
4123
/* XXX: we consider we can send the whole packet without blocking */
4124
static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
4125
{
4126
    NetSocketState *s = opaque;
4127
    uint32_t len;
4128
    len = htonl(size);
4129

    
4130
    send_all(s->fd, (const uint8_t *)&len, sizeof(len));
4131
    send_all(s->fd, buf, size);
4132
}
4133

    
4134
static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
4135
{
4136
    NetSocketState *s = opaque;
4137
    sendto(s->fd, buf, size, 0,
4138
           (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
4139
}
4140

    
4141
static void net_socket_send(void *opaque)
4142
{
4143
    NetSocketState *s = opaque;
4144
    int l, size, err;
4145
    uint8_t buf1[4096];
4146
    const uint8_t *buf;
4147

    
4148
    size = recv(s->fd, buf1, sizeof(buf1), 0);
4149
    if (size < 0) {
4150
        err = socket_error();
4151
        if (err != EWOULDBLOCK)
4152
            goto eoc;
4153
    } else if (size == 0) {
4154
        /* end of connection */
4155
    eoc:
4156
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4157
        closesocket(s->fd);
4158
        return;
4159
    }
4160
    buf = buf1;
4161
    while (size > 0) {
4162
        /* reassemble a packet from the network */
4163
        switch(s->state) {
4164
        case 0:
4165
            l = 4 - s->index;
4166
            if (l > size)
4167
                l = size;
4168
            memcpy(s->buf + s->index, buf, l);
4169
            buf += l;
4170
            size -= l;
4171
            s->index += l;
4172
            if (s->index == 4) {
4173
                /* got length */
4174
                s->packet_len = ntohl(*(uint32_t *)s->buf);
4175
                s->index = 0;
4176
                s->state = 1;
4177
            }
4178
            break;
4179
        case 1:
4180
            l = s->packet_len - s->index;
4181
            if (l > size)
4182
                l = size;
4183
            memcpy(s->buf + s->index, buf, l);
4184
            s->index += l;
4185
            buf += l;
4186
            size -= l;
4187
            if (s->index >= s->packet_len) {
4188
                qemu_send_packet(s->vc, s->buf, s->packet_len);
4189
                s->index = 0;
4190
                s->state = 0;
4191
            }
4192
            break;
4193
        }
4194
    }
4195
}
4196

    
4197
static void net_socket_send_dgram(void *opaque)
4198
{
4199
    NetSocketState *s = opaque;
4200
    int size;
4201

    
4202
    size = recv(s->fd, s->buf, sizeof(s->buf), 0);
4203
    if (size < 0)
4204
        return;
4205
    if (size == 0) {
4206
        /* end of connection */
4207
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4208
        return;
4209
    }
4210
    qemu_send_packet(s->vc, s->buf, size);
4211
}
4212

    
4213
static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
4214
{
4215
    struct ip_mreq imr;
4216
    int fd;
4217
    int val, ret;
4218
    if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
4219
        fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
4220
                inet_ntoa(mcastaddr->sin_addr),
4221
                (int)ntohl(mcastaddr->sin_addr.s_addr));
4222
        return -1;
4223

    
4224
    }
4225
    fd = socket(PF_INET, SOCK_DGRAM, 0);
4226
    if (fd < 0) {
4227
        perror("socket(PF_INET, SOCK_DGRAM)");
4228
        return -1;
4229
    }
4230

    
4231
    val = 1;
4232
    ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
4233
                   (const char *)&val, sizeof(val));
4234
    if (ret < 0) {
4235
        perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
4236
        goto fail;
4237
    }
4238

    
4239
    ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
4240
    if (ret < 0) {
4241
        perror("bind");
4242
        goto fail;
4243
    }
4244

    
4245
    /* Add host to multicast group */
4246
    imr.imr_multiaddr = mcastaddr->sin_addr;
4247
    imr.imr_interface.s_addr = htonl(INADDR_ANY);
4248

    
4249
    ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
4250
                     (const char *)&imr, sizeof(struct ip_mreq));
4251
    if (ret < 0) {
4252
        perror("setsockopt(IP_ADD_MEMBERSHIP)");
4253
        goto fail;
4254
    }
4255

    
4256
    /* Force mcast msgs to loopback (eg. several QEMUs in same host */
4257
    val = 1;
4258
    ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
4259
                   (const char *)&val, sizeof(val));
4260
    if (ret < 0) {
4261
        perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
4262
        goto fail;
4263
    }
4264

    
4265
    socket_set_nonblock(fd);
4266
    return fd;
4267
fail:
4268
    if (fd >= 0)
4269
        closesocket(fd);
4270
    return -1;
4271
}
4272

    
4273
static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
4274
                                          int is_connected)
4275
{
4276
    struct sockaddr_in saddr;
4277
    int newfd;
4278
    socklen_t saddr_len;
4279
    NetSocketState *s;
4280

    
4281
    /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
4282
     * Because this may be "shared" socket from a "master" process, datagrams would be recv()
4283
     * by ONLY ONE process: we must "clone" this dgram socket --jjo
4284
     */
4285

    
4286
    if (is_connected) {
4287
        if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
4288
            /* must be bound */
4289
            if (saddr.sin_addr.s_addr==0) {
4290
                fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
4291
                        fd);
4292
                return NULL;
4293
            }
4294
            /* clone dgram socket */
4295
            newfd = net_socket_mcast_create(&saddr);
4296
            if (newfd < 0) {
4297
                /* error already reported by net_socket_mcast_create() */
4298
                close(fd);
4299
                return NULL;
4300
            }
4301
            /* clone newfd to fd, close newfd */
4302
            dup2(newfd, fd);
4303
            close(newfd);
4304

    
4305
        } else {
4306
            fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
4307
                    fd, strerror(errno));
4308
            return NULL;
4309
        }
4310
    }
4311

    
4312
    s = qemu_mallocz(sizeof(NetSocketState));
4313
    if (!s)
4314
        return NULL;
4315
    s->fd = fd;
4316

    
4317
    s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
4318
    qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
4319

    
4320
    /* mcast: save bound address as dst */
4321
    if (is_connected) s->dgram_dst=saddr;
4322

    
4323
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4324
            "socket: fd=%d (%s mcast=%s:%d)",
4325
            fd, is_connected? "cloned" : "",
4326
            inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4327
    return s;
4328
}
4329

    
4330
static void net_socket_connect(void *opaque)
4331
{
4332
    NetSocketState *s = opaque;
4333
    qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
4334
}
4335

    
4336
static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
4337
                                          int is_connected)
4338
{
4339
    NetSocketState *s;
4340
    s = qemu_mallocz(sizeof(NetSocketState));
4341
    if (!s)
4342
        return NULL;
4343
    s->fd = fd;
4344
    s->vc = qemu_new_vlan_client(vlan,
4345
                                 net_socket_receive, NULL, s);
4346
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4347
             "socket: fd=%d", fd);
4348
    if (is_connected) {
4349
        net_socket_connect(s);
4350
    } else {
4351
        qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
4352
    }
4353
    return s;
4354
}
4355

    
4356
static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
4357
                                          int is_connected)
4358
{
4359
    int so_type=-1, optlen=sizeof(so_type);
4360

    
4361
    if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type, &optlen)< 0) {
4362
        fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
4363
        return NULL;
4364
    }
4365
    switch(so_type) {
4366
    case SOCK_DGRAM:
4367
        return net_socket_fd_init_dgram(vlan, fd, is_connected);
4368
    case SOCK_STREAM:
4369
        return net_socket_fd_init_stream(vlan, fd, is_connected);
4370
    default:
4371
        /* who knows ... this could be a eg. a pty, do warn and continue as stream */
4372
        fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
4373
        return net_socket_fd_init_stream(vlan, fd, is_connected);
4374
    }
4375
    return NULL;
4376
}
4377

    
4378
static void net_socket_accept(void *opaque)
4379
{
4380
    NetSocketListenState *s = opaque;
4381
    NetSocketState *s1;
4382
    struct sockaddr_in saddr;
4383
    socklen_t len;
4384
    int fd;
4385

    
4386
    for(;;) {
4387
        len = sizeof(saddr);
4388
        fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
4389
        if (fd < 0 && errno != EINTR) {
4390
            return;
4391
        } else if (fd >= 0) {
4392
            break;
4393
        }
4394
    }
4395
    s1 = net_socket_fd_init(s->vlan, fd, 1);
4396
    if (!s1) {
4397
        closesocket(fd);
4398
    } else {
4399
        snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
4400
                 "socket: connection from %s:%d",
4401
                 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4402
    }
4403
}
4404

    
4405
static int net_socket_listen_init(VLANState *vlan, const char *host_str)
4406
{
4407
    NetSocketListenState *s;
4408
    int fd, val, ret;
4409
    struct sockaddr_in saddr;
4410

    
4411
    if (parse_host_port(&saddr, host_str) < 0)
4412
        return -1;
4413

    
4414
    s = qemu_mallocz(sizeof(NetSocketListenState));
4415
    if (!s)
4416
        return -1;
4417

    
4418
    fd = socket(PF_INET, SOCK_STREAM, 0);
4419
    if (fd < 0) {
4420
        perror("socket");
4421
        return -1;
4422
    }
4423
    socket_set_nonblock(fd);
4424

    
4425
    /* allow fast reuse */
4426
    val = 1;
4427
    setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
4428

    
4429
    ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4430
    if (ret < 0) {
4431
        perror("bind");
4432
        return -1;
4433
    }
4434
    ret = listen(fd, 0);
4435
    if (ret < 0) {
4436
        perror("listen");
4437
        return -1;
4438
    }
4439
    s->vlan = vlan;
4440
    s->fd = fd;
4441
    qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
4442
    return 0;
4443
}
4444

    
4445
static int net_socket_connect_init(VLANState *vlan, const char *host_str)
4446
{
4447
    NetSocketState *s;
4448
    int fd, connected, ret, err;
4449
    struct sockaddr_in saddr;
4450

    
4451
    if (parse_host_port(&saddr, host_str) < 0)
4452
        return -1;
4453

    
4454
    fd = socket(PF_INET, SOCK_STREAM, 0);
4455
    if (fd < 0) {
4456
        perror("socket");
4457
        return -1;
4458
    }
4459
    socket_set_nonblock(fd);
4460

    
4461
    connected = 0;
4462
    for(;;) {
4463
        ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4464
        if (ret < 0) {
4465
            err = socket_error();
4466
            if (err == EINTR || err == EWOULDBLOCK) {
4467
            } else if (err == EINPROGRESS) {
4468
                break;
4469
#ifdef _WIN32
4470
            } else if (err == WSAEALREADY) {
4471
                break;
4472
#endif
4473
            } else {
4474
                perror("connect");
4475
                closesocket(fd);
4476
                return -1;
4477
            }
4478
        } else {
4479
            connected = 1;
4480
            break;
4481
        }
4482
    }
4483
    s = net_socket_fd_init(vlan, fd, connected);
4484
    if (!s)
4485
        return -1;
4486
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4487
             "socket: connect to %s:%d",
4488
             inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4489
    return 0;
4490
}
4491

    
4492
static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
4493
{
4494
    NetSocketState *s;
4495
    int fd;
4496
    struct sockaddr_in saddr;
4497

    
4498
    if (parse_host_port(&saddr, host_str) < 0)
4499
        return -1;
4500

    
4501

    
4502
    fd = net_socket_mcast_create(&saddr);
4503
    if (fd < 0)
4504
        return -1;
4505

    
4506
    s = net_socket_fd_init(vlan, fd, 0);
4507
    if (!s)
4508
        return -1;
4509

    
4510
    s->dgram_dst = saddr;
4511

    
4512
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4513
             "socket: mcast=%s:%d",
4514
             inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4515
    return 0;
4516

    
4517
}
4518

    
4519
static int get_param_value(char *buf, int buf_size,
4520
                           const char *tag, const char *str)
4521
{
4522
    const char *p;
4523
    char *q;
4524
    char option[128];
4525

    
4526
    p = str;
4527
    for(;;) {
4528
        q = option;
4529
        while (*p != '\0' && *p != '=') {
4530
            if ((q - option) < sizeof(option) - 1)
4531
                *q++ = *p;
4532
            p++;
4533
        }
4534
        *q = '\0';
4535
        if (*p != '=')
4536
            break;
4537
        p++;
4538
        if (!strcmp(tag, option)) {
4539
            q = buf;
4540
            while (*p != '\0' && *p != ',') {
4541
                if ((q - buf) < buf_size - 1)
4542
                    *q++ = *p;
4543
                p++;
4544
            }
4545
            *q = '\0';
4546
            return q - buf;
4547
        } else {
4548
            while (*p != '\0' && *p != ',') {
4549
                p++;
4550
            }
4551
        }
4552
        if (*p != ',')
4553
            break;
4554
        p++;
4555
    }
4556
    return 0;
4557
}
4558

    
4559
static int net_client_init(const char *str)
4560
{
4561
    const char *p;
4562
    char *q;
4563
    char device[64];
4564
    char buf[1024];
4565
    int vlan_id, ret;
4566
    VLANState *vlan;
4567

    
4568
    p = str;
4569
    q = device;
4570
    while (*p != '\0' && *p != ',') {
4571
        if ((q - device) < sizeof(device) - 1)
4572
            *q++ = *p;
4573
        p++;
4574
    }
4575
    *q = '\0';
4576
    if (*p == ',')
4577
        p++;
4578
    vlan_id = 0;
4579
    if (get_param_value(buf, sizeof(buf), "vlan", p)) {
4580
        vlan_id = strtol(buf, NULL, 0);
4581
    }
4582
    vlan = qemu_find_vlan(vlan_id);
4583
    if (!vlan) {
4584
        fprintf(stderr, "Could not create vlan %d\n", vlan_id);
4585
        return -1;
4586
    }
4587
    if (!strcmp(device, "nic")) {
4588
        NICInfo *nd;
4589
        uint8_t *macaddr;
4590

    
4591
        if (nb_nics >= MAX_NICS) {
4592
            fprintf(stderr, "Too Many NICs\n");
4593
            return -1;
4594
        }
4595
        nd = &nd_table[nb_nics];
4596
        macaddr = nd->macaddr;
4597
        macaddr[0] = 0x52;
4598
        macaddr[1] = 0x54;
4599
        macaddr[2] = 0x00;
4600
        macaddr[3] = 0x12;
4601
        macaddr[4] = 0x34;
4602
        macaddr[5] = 0x56 + nb_nics;
4603

    
4604
        if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
4605
            if (parse_macaddr(macaddr, buf) < 0) {
4606
                fprintf(stderr, "invalid syntax for ethernet address\n");
4607
                return -1;
4608
            }
4609
        }
4610
        if (get_param_value(buf, sizeof(buf), "model", p)) {
4611
            nd->model = strdup(buf);
4612
        }
4613
        nd->vlan = vlan;
4614
        nb_nics++;
4615
        vlan->nb_guest_devs++;
4616
        ret = 0;
4617
    } else
4618
    if (!strcmp(device, "none")) {
4619
        /* does nothing. It is needed to signal that no network cards
4620
           are wanted */
4621
        ret = 0;
4622
    } else
4623
#ifdef CONFIG_SLIRP
4624
    if (!strcmp(device, "user")) {
4625
        if (get_param_value(buf, sizeof(buf), "hostname", p)) {
4626
            pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
4627
        }
4628
        vlan->nb_host_devs++;
4629
        ret = net_slirp_init(vlan);
4630
    } else
4631
#endif
4632
#ifdef _WIN32
4633
    if (!strcmp(device, "tap")) {
4634
        char ifname[64];
4635
        if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4636
            fprintf(stderr, "tap: no interface name\n");
4637
            return -1;
4638
        }
4639
        vlan->nb_host_devs++;
4640
        ret = tap_win32_init(vlan, ifname);
4641
    } else
4642
#else
4643
    if (!strcmp(device, "tap")) {
4644
        char ifname[64];
4645
        char setup_script[1024], down_script[1024];
4646
        int fd;
4647
        vlan->nb_host_devs++;
4648
        if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4649
            fd = strtol(buf, NULL, 0);
4650
            ret = -1;
4651
            if (net_tap_fd_init(vlan, fd))
4652
                ret = 0;
4653
        } else {
4654
            if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4655
                ifname[0] = '\0';
4656
            }
4657
            if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
4658
                pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
4659
            }
4660
            if (get_param_value(down_script, sizeof(down_script), "downscript", p) == 0) {
4661
                pstrcpy(down_script, sizeof(down_script), DEFAULT_NETWORK_DOWN_SCRIPT);
4662
            }
4663
            ret = net_tap_init(vlan, ifname, setup_script, down_script);
4664
        }
4665
    } else
4666
#endif
4667
    if (!strcmp(device, "socket")) {
4668
        if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4669
            int fd;
4670
            fd = strtol(buf, NULL, 0);
4671
            ret = -1;
4672
            if (net_socket_fd_init(vlan, fd, 1))
4673
                ret = 0;
4674
        } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
4675
            ret = net_socket_listen_init(vlan, buf);
4676
        } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
4677
            ret = net_socket_connect_init(vlan, buf);
4678
        } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
4679
            ret = net_socket_mcast_init(vlan, buf);
4680
        } else {
4681
            fprintf(stderr, "Unknown socket options: %s\n", p);
4682
            return -1;
4683
        }
4684
        vlan->nb_host_devs++;
4685
    } else
4686
    {
4687
        fprintf(stderr, "Unknown network device: %s\n", device);
4688
        return -1;
4689
    }
4690
    if (ret < 0) {
4691
        fprintf(stderr, "Could not initialize device '%s'\n", device);
4692
    }
4693

    
4694
    return ret;
4695
}
4696

    
4697
void do_info_network(void)
4698
{
4699
    VLANState *vlan;
4700
    VLANClientState *vc;
4701

    
4702
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
4703
        term_printf("VLAN %d devices:\n", vlan->id);
4704
        for(vc = vlan->first_client; vc != NULL; vc = vc->next)
4705
            term_printf("  %s\n", vc->info_str);
4706
    }
4707
}
4708

    
4709
/***********************************************************/
4710
/* USB devices */
4711

    
4712
static USBPort *used_usb_ports;
4713
static USBPort *free_usb_ports;
4714

    
4715
/* ??? Maybe change this to register a hub to keep track of the topology.  */
4716
void qemu_register_usb_port(USBPort *port, void *opaque, int index,
4717
                            usb_attachfn attach)
4718
{
4719
    port->opaque = opaque;
4720
    port->index = index;
4721
    port->attach = attach;
4722
    port->next = free_usb_ports;
4723
    free_usb_ports = port;
4724
}
4725

    
4726
static int usb_device_add(const char *devname)
4727
{
4728
    const char *p;
4729
    USBDevice *dev;
4730
    USBPort *port;
4731

    
4732
    if (!free_usb_ports)
4733
        return -1;
4734

    
4735
    if (strstart(devname, "host:", &p)) {
4736
        dev = usb_host_device_open(p);
4737
    } else if (!strcmp(devname, "mouse")) {
4738
        dev = usb_mouse_init();
4739
    } else if (!strcmp(devname, "tablet")) {
4740
        dev = usb_tablet_init();
4741
    } else if (!strcmp(devname, "keyboard")) {
4742
        dev = usb_keyboard_init();
4743
    } else if (strstart(devname, "disk:", &p)) {
4744
        dev = usb_msd_init(p);
4745
    } else if (!strcmp(devname, "wacom-tablet")) {
4746
        dev = usb_wacom_init();
4747
    } else {
4748
        return -1;
4749
    }
4750
    if (!dev)
4751
        return -1;
4752

    
4753
    /* Find a USB port to add the device to.  */
4754
    port = free_usb_ports;
4755
    if (!port->next) {
4756
        USBDevice *hub;
4757

    
4758
        /* Create a new hub and chain it on.  */
4759
        free_usb_ports = NULL;
4760
        port->next = used_usb_ports;
4761
        used_usb_ports = port;
4762

    
4763
        hub = usb_hub_init(VM_USB_HUB_SIZE);
4764
        usb_attach(port, hub);
4765
        port = free_usb_ports;
4766
    }
4767

    
4768
    free_usb_ports = port->next;
4769
    port->next = used_usb_ports;
4770
    used_usb_ports = port;
4771
    usb_attach(port, dev);
4772
    return 0;
4773
}
4774

    
4775
static int usb_device_del(const char *devname)
4776
{
4777
    USBPort *port;
4778
    USBPort **lastp;
4779
    USBDevice *dev;
4780
    int bus_num, addr;
4781
    const char *p;
4782

    
4783
    if (!used_usb_ports)
4784
        return -1;
4785

    
4786
    p = strchr(devname, '.');
4787
    if (!p)
4788
        return -1;
4789
    bus_num = strtoul(devname, NULL, 0);
4790
    addr = strtoul(p + 1, NULL, 0);
4791
    if (bus_num != 0)
4792
        return -1;
4793

    
4794
    lastp = &used_usb_ports;
4795
    port = used_usb_ports;
4796
    while (port && port->dev->addr != addr) {
4797
        lastp = &port->next;
4798
        port = port->next;
4799
    }
4800

    
4801
    if (!port)
4802
        return -1;
4803

    
4804
    dev = port->dev;
4805
    *lastp = port->next;
4806
    usb_attach(port, NULL);
4807
    dev->handle_destroy(dev);
4808
    port->next = free_usb_ports;
4809
    free_usb_ports = port;
4810
    return 0;
4811
}
4812

    
4813
void do_usb_add(const char *devname)
4814
{
4815
    int ret;
4816
    ret = usb_device_add(devname);
4817
    if (ret < 0)
4818
        term_printf("Could not add USB device '%s'\n", devname);
4819
}
4820

    
4821
void do_usb_del(const char *devname)
4822
{
4823
    int ret;
4824
    ret = usb_device_del(devname);
4825
    if (ret < 0)
4826
        term_printf("Could not remove USB device '%s'\n", devname);
4827
}
4828

    
4829
void usb_info(void)
4830
{
4831
    USBDevice *dev;
4832
    USBPort *port;
4833
    const char *speed_str;
4834

    
4835
    if (!usb_enabled) {
4836
        term_printf("USB support not enabled\n");
4837
        return;
4838
    }
4839

    
4840
    for (port = used_usb_ports; port; port = port->next) {
4841
        dev = port->dev;
4842
        if (!dev)
4843
            continue;
4844
        switch(dev->speed) {
4845
        case USB_SPEED_LOW:
4846
            speed_str = "1.5";
4847
            break;
4848
        case USB_SPEED_FULL:
4849
            speed_str = "12";
4850
            break;
4851
        case USB_SPEED_HIGH:
4852
            speed_str = "480";
4853
            break;
4854
        default:
4855
            speed_str = "?";
4856
            break;
4857
        }
4858
        term_printf("  Device %d.%d, Speed %s Mb/s, Product %s\n",
4859
                    0, dev->addr, speed_str, dev->devname);
4860
    }
4861
}
4862

    
4863
/***********************************************************/
4864
/* PCMCIA/Cardbus */
4865

    
4866
static struct pcmcia_socket_entry_s {
4867
    struct pcmcia_socket_s *socket;
4868
    struct pcmcia_socket_entry_s *next;
4869
} *pcmcia_sockets = 0;
4870

    
4871
void pcmcia_socket_register(struct pcmcia_socket_s *socket)
4872
{
4873
    struct pcmcia_socket_entry_s *entry;
4874

    
4875
    entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
4876
    entry->socket = socket;
4877
    entry->next = pcmcia_sockets;
4878
    pcmcia_sockets = entry;
4879
}
4880

    
4881
void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
4882
{
4883
    struct pcmcia_socket_entry_s *entry, **ptr;
4884

    
4885
    ptr = &pcmcia_sockets;
4886
    for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
4887
        if (entry->socket == socket) {
4888
            *ptr = entry->next;
4889
            qemu_free(entry);
4890
        }
4891
}
4892

    
4893
void pcmcia_info(void)
4894
{
4895
    struct pcmcia_socket_entry_s *iter;
4896
    if (!pcmcia_sockets)
4897
        term_printf("No PCMCIA sockets\n");
4898

    
4899
    for (iter = pcmcia_sockets; iter; iter = iter->next)
4900
        term_printf("%s: %s\n", iter->socket->slot_string,
4901
                    iter->socket->attached ? iter->socket->card_string :
4902
                    "Empty");
4903
}
4904

    
4905
/***********************************************************/
4906
/* dumb display */
4907

    
4908
static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
4909
{
4910
}
4911

    
4912
static void dumb_resize(DisplayState *ds, int w, int h)
4913
{
4914
}
4915

    
4916
static void dumb_refresh(DisplayState *ds)
4917
{
4918
#if defined(CONFIG_SDL)
4919
    vga_hw_update();
4920
#endif
4921
}
4922

    
4923
static void dumb_display_init(DisplayState *ds)
4924
{
4925
    ds->data = NULL;
4926
    ds->linesize = 0;
4927
    ds->depth = 0;
4928
    ds->dpy_update = dumb_update;
4929
    ds->dpy_resize = dumb_resize;
4930
    ds->dpy_refresh = dumb_refresh;
4931
}
4932

    
4933
/***********************************************************/
4934
/* I/O handling */
4935

    
4936
#define MAX_IO_HANDLERS 64
4937

    
4938
typedef struct IOHandlerRecord {
4939
    int fd;
4940
    IOCanRWHandler *fd_read_poll;
4941
    IOHandler *fd_read;
4942
    IOHandler *fd_write;
4943
    int deleted;
4944
    void *opaque;
4945
    /* temporary data */
4946
    struct pollfd *ufd;
4947
    struct IOHandlerRecord *next;
4948
} IOHandlerRecord;
4949

    
4950
static IOHandlerRecord *first_io_handler;
4951

    
4952
/* XXX: fd_read_poll should be suppressed, but an API change is
4953
   necessary in the character devices to suppress fd_can_read(). */
4954
int qemu_set_fd_handler2(int fd,
4955
                         IOCanRWHandler *fd_read_poll,
4956
                         IOHandler *fd_read,
4957
                         IOHandler *fd_write,
4958
                         void *opaque)
4959
{
4960
    IOHandlerRecord **pioh, *ioh;
4961

    
4962
    if (!fd_read && !fd_write) {
4963
        pioh = &first_io_handler;
4964
        for(;;) {
4965
            ioh = *pioh;
4966
            if (ioh == NULL)
4967
                break;
4968
            if (ioh->fd == fd) {
4969
                ioh->deleted = 1;
4970
                break;
4971
            }
4972
            pioh = &ioh->next;
4973
        }
4974
    } else {
4975
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4976
            if (ioh->fd == fd)
4977
                goto found;
4978
        }
4979
        ioh = qemu_mallocz(sizeof(IOHandlerRecord));
4980
        if (!ioh)
4981
            return -1;
4982
        ioh->next = first_io_handler;
4983
        first_io_handler = ioh;
4984
    found:
4985
        ioh->fd = fd;
4986
        ioh->fd_read_poll = fd_read_poll;
4987
        ioh->fd_read = fd_read;
4988
        ioh->fd_write = fd_write;
4989
        ioh->opaque = opaque;
4990
        ioh->deleted = 0;
4991
    }
4992
    return 0;
4993
}
4994

    
4995
int qemu_set_fd_handler(int fd,
4996
                        IOHandler *fd_read,
4997
                        IOHandler *fd_write,
4998
                        void *opaque)
4999
{
5000
    return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
5001
}
5002

    
5003
/***********************************************************/
5004
/* Polling handling */
5005

    
5006
typedef struct PollingEntry {
5007
    PollingFunc *func;
5008
    void *opaque;
5009
    struct PollingEntry *next;
5010
} PollingEntry;
5011

    
5012
static PollingEntry *first_polling_entry;
5013

    
5014
int qemu_add_polling_cb(PollingFunc *func, void *opaque)
5015
{
5016
    PollingEntry **ppe, *pe;
5017
    pe = qemu_mallocz(sizeof(PollingEntry));
5018
    if (!pe)
5019
        return -1;
5020
    pe->func = func;
5021
    pe->opaque = opaque;
5022
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
5023
    *ppe = pe;
5024
    return 0;
5025
}
5026

    
5027
void qemu_del_polling_cb(PollingFunc *func, void *opaque)
5028
{
5029
    PollingEntry **ppe, *pe;
5030
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
5031
        pe = *ppe;
5032
        if (pe->func == func && pe->opaque == opaque) {
5033
            *ppe = pe->next;
5034
            qemu_free(pe);
5035
            break;
5036
        }
5037
    }
5038
}
5039

    
5040
#ifdef _WIN32
5041
/***********************************************************/
5042
/* Wait objects support */
5043
typedef struct WaitObjects {
5044
    int num;
5045
    HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
5046
    WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
5047
    void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
5048
} WaitObjects;
5049

    
5050
static WaitObjects wait_objects = {0};
5051

    
5052
int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5053
{
5054
    WaitObjects *w = &wait_objects;
5055

    
5056
    if (w->num >= MAXIMUM_WAIT_OBJECTS)
5057
        return -1;
5058
    w->events[w->num] = handle;
5059
    w->func[w->num] = func;
5060
    w->opaque[w->num] = opaque;
5061
    w->num++;
5062
    return 0;
5063
}
5064

    
5065
void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5066
{
5067
    int i, found;
5068
    WaitObjects *w = &wait_objects;
5069

    
5070
    found = 0;
5071
    for (i = 0; i < w->num; i++) {
5072
        if (w->events[i] == handle)
5073
            found = 1;
5074
        if (found) {
5075
            w->events[i] = w->events[i + 1];
5076
            w->func[i] = w->func[i + 1];
5077
            w->opaque[i] = w->opaque[i + 1];
5078
        }
5079
    }
5080
    if (found)
5081
        w->num--;
5082
}
5083
#endif
5084

    
5085
/***********************************************************/
5086
/* savevm/loadvm support */
5087

    
5088
#define IO_BUF_SIZE 32768
5089

    
5090
struct QEMUFile {
5091
    FILE *outfile;
5092
    BlockDriverState *bs;
5093
    int is_file;
5094
    int is_writable;
5095
    int64_t base_offset;
5096
    int64_t buf_offset; /* start of buffer when writing, end of buffer
5097
                           when reading */
5098
    int buf_index;
5099
    int buf_size; /* 0 when writing */
5100
    uint8_t buf[IO_BUF_SIZE];
5101
};
5102

    
5103
QEMUFile *qemu_fopen(const char *filename, const char *mode)
5104
{
5105
    QEMUFile *f;
5106

    
5107
    f = qemu_mallocz(sizeof(QEMUFile));
5108
    if (!f)
5109
        return NULL;
5110
    if (!strcmp(mode, "wb")) {
5111
        f->is_writable = 1;
5112
    } else if (!strcmp(mode, "rb")) {
5113
        f->is_writable = 0;
5114
    } else {
5115
        goto fail;
5116
    }
5117
    f->outfile = fopen(filename, mode);
5118
    if (!f->outfile)
5119
        goto fail;
5120
    f->is_file = 1;
5121
    return f;
5122
 fail:
5123
    if (f->outfile)
5124
        fclose(f->outfile);
5125
    qemu_free(f);
5126
    return NULL;
5127
}
5128

    
5129
QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
5130
{
5131
    QEMUFile *f;
5132

    
5133
    f = qemu_mallocz(sizeof(QEMUFile));
5134
    if (!f)
5135
        return NULL;
5136
    f->is_file = 0;
5137
    f->bs = bs;
5138
    f->is_writable = is_writable;
5139
    f->base_offset = offset;
5140
    return f;
5141
}
5142

    
5143
void qemu_fflush(QEMUFile *f)
5144
{
5145
    if (!f->is_writable)
5146
        return;
5147
    if (f->buf_index > 0) {
5148
        if (f->is_file) {
5149
            fseek(f->outfile, f->buf_offset, SEEK_SET);
5150
            fwrite(f->buf, 1, f->buf_index, f->outfile);
5151
        } else {
5152
            bdrv_pwrite(f->bs, f->base_offset + f->buf_offset,
5153
                        f->buf, f->buf_index);
5154
        }
5155
        f->buf_offset += f->buf_index;
5156
        f->buf_index = 0;
5157
    }
5158
}
5159

    
5160
static void qemu_fill_buffer(QEMUFile *f)
5161
{
5162
    int len;
5163

    
5164
    if (f->is_writable)
5165
        return;
5166
    if (f->is_file) {
5167
        fseek(f->outfile, f->buf_offset, SEEK_SET);
5168
        len = fread(f->buf, 1, IO_BUF_SIZE, f->outfile);
5169
        if (len < 0)
5170
            len = 0;
5171
    } else {
5172
        len = bdrv_pread(f->bs, f->base_offset + f->buf_offset,
5173
                         f->buf, IO_BUF_SIZE);
5174
        if (len < 0)
5175
            len = 0;
5176
    }
5177
    f->buf_index = 0;
5178
    f->buf_size = len;
5179
    f->buf_offset += len;
5180
}
5181

    
5182
void qemu_fclose(QEMUFile *f)
5183
{
5184
    if (f->is_writable)
5185
        qemu_fflush(f);
5186
    if (f->is_file) {
5187
        fclose(f->outfile);
5188
    }
5189
    qemu_free(f);
5190
}
5191

    
5192
void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
5193
{
5194
    int l;
5195
    while (size > 0) {
5196
        l = IO_BUF_SIZE - f->buf_index;
5197
        if (l > size)
5198
            l = size;
5199
        memcpy(f->buf + f->buf_index, buf, l);
5200
        f->buf_index += l;
5201
        buf += l;
5202
        size -= l;
5203
        if (f->buf_index >= IO_BUF_SIZE)
5204
            qemu_fflush(f);
5205
    }
5206
}
5207

    
5208
void qemu_put_byte(QEMUFile *f, int v)
5209
{
5210
    f->buf[f->buf_index++] = v;
5211
    if (f->buf_index >= IO_BUF_SIZE)
5212
        qemu_fflush(f);
5213
}
5214

    
5215
int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
5216
{
5217
    int size, l;
5218

    
5219
    size = size1;
5220
    while (size > 0) {
5221
        l = f->buf_size - f->buf_index;
5222
        if (l == 0) {
5223
            qemu_fill_buffer(f);
5224
            l = f->buf_size - f->buf_index;
5225
            if (l == 0)
5226
                break;
5227
        }
5228
        if (l > size)
5229
            l = size;
5230
        memcpy(buf, f->buf + f->buf_index, l);
5231
        f->buf_index += l;
5232
        buf += l;
5233
        size -= l;
5234
    }
5235
    return size1 - size;
5236
}
5237

    
5238
int qemu_get_byte(QEMUFile *f)
5239
{
5240
    if (f->buf_index >= f->buf_size) {
5241
        qemu_fill_buffer(f);
5242
        if (f->buf_index >= f->buf_size)
5243
            return 0;
5244
    }
5245
    return f->buf[f->buf_index++];
5246
}
5247

    
5248
int64_t qemu_ftell(QEMUFile *f)
5249
{
5250
    return f->buf_offset - f->buf_size + f->buf_index;
5251
}
5252

    
5253
int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
5254
{
5255
    if (whence == SEEK_SET) {
5256
        /* nothing to do */
5257
    } else if (whence == SEEK_CUR) {
5258
        pos += qemu_ftell(f);
5259
    } else {
5260
        /* SEEK_END not supported */
5261
        return -1;
5262
    }
5263
    if (f->is_writable) {
5264
        qemu_fflush(f);
5265
        f->buf_offset = pos;
5266
    } else {
5267
        f->buf_offset = pos;
5268
        f->buf_index = 0;
5269
        f->buf_size = 0;
5270
    }
5271
    return pos;
5272
}
5273

    
5274
void qemu_put_be16(QEMUFile *f, unsigned int v)
5275
{
5276
    qemu_put_byte(f, v >> 8);
5277
    qemu_put_byte(f, v);
5278
}
5279

    
5280
void qemu_put_be32(QEMUFile *f, unsigned int v)
5281
{
5282
    qemu_put_byte(f, v >> 24);
5283
    qemu_put_byte(f, v >> 16);
5284
    qemu_put_byte(f, v >> 8);
5285
    qemu_put_byte(f, v);
5286
}
5287

    
5288
void qemu_put_be64(QEMUFile *f, uint64_t v)
5289
{
5290
    qemu_put_be32(f, v >> 32);
5291
    qemu_put_be32(f, v);
5292
}
5293

    
5294
unsigned int qemu_get_be16(QEMUFile *f)
5295
{
5296
    unsigned int v;
5297
    v = qemu_get_byte(f) << 8;
5298
    v |= qemu_get_byte(f);
5299
    return v;
5300
}
5301

    
5302
unsigned int qemu_get_be32(QEMUFile *f)
5303
{
5304
    unsigned int v;
5305
    v = qemu_get_byte(f) << 24;
5306
    v |= qemu_get_byte(f) << 16;
5307
    v |= qemu_get_byte(f) << 8;
5308
    v |= qemu_get_byte(f);
5309
    return v;
5310
}
5311

    
5312
uint64_t qemu_get_be64(QEMUFile *f)
5313
{
5314
    uint64_t v;
5315
    v = (uint64_t)qemu_get_be32(f) << 32;
5316
    v |= qemu_get_be32(f);
5317
    return v;
5318
}
5319

    
5320
typedef struct SaveStateEntry {
5321
    char idstr[256];
5322
    int instance_id;
5323
    int version_id;
5324
    SaveStateHandler *save_state;
5325
    LoadStateHandler *load_state;
5326
    void *opaque;
5327
    struct SaveStateEntry *next;
5328
} SaveStateEntry;
5329

    
5330
static SaveStateEntry *first_se;
5331

    
5332
int register_savevm(const char *idstr,
5333
                    int instance_id,
5334
                    int version_id,
5335
                    SaveStateHandler *save_state,
5336
                    LoadStateHandler *load_state,
5337
                    void *opaque)
5338
{
5339
    SaveStateEntry *se, **pse;
5340

    
5341
    se = qemu_malloc(sizeof(SaveStateEntry));
5342
    if (!se)
5343
        return -1;
5344
    pstrcpy(se->idstr, sizeof(se->idstr), idstr);
5345
    se->instance_id = instance_id;
5346
    se->version_id = version_id;
5347
    se->save_state = save_state;
5348
    se->load_state = load_state;
5349
    se->opaque = opaque;
5350
    se->next = NULL;
5351

    
5352
    /* add at the end of list */
5353
    pse = &first_se;
5354
    while (*pse != NULL)
5355
        pse = &(*pse)->next;
5356
    *pse = se;
5357
    return 0;
5358
}
5359

    
5360
#define QEMU_VM_FILE_MAGIC   0x5145564d
5361
#define QEMU_VM_FILE_VERSION 0x00000002
5362

    
5363
int qemu_savevm_state(QEMUFile *f)
5364
{
5365
    SaveStateEntry *se;
5366
    int len, ret;
5367
    int64_t cur_pos, len_pos, total_len_pos;
5368

    
5369
    qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
5370
    qemu_put_be32(f, QEMU_VM_FILE_VERSION);
5371
    total_len_pos = qemu_ftell(f);
5372
    qemu_put_be64(f, 0); /* total size */
5373

    
5374
    for(se = first_se; se != NULL; se = se->next) {
5375
        /* ID string */
5376
        len = strlen(se->idstr);
5377
        qemu_put_byte(f, len);
5378
        qemu_put_buffer(f, se->idstr, len);
5379

    
5380
        qemu_put_be32(f, se->instance_id);
5381
        qemu_put_be32(f, se->version_id);
5382

    
5383
        /* record size: filled later */
5384
        len_pos = qemu_ftell(f);
5385
        qemu_put_be32(f, 0);
5386

    
5387
        se->save_state(f, se->opaque);
5388

    
5389
        /* fill record size */
5390
        cur_pos = qemu_ftell(f);
5391
        len = cur_pos - len_pos - 4;
5392
        qemu_fseek(f, len_pos, SEEK_SET);
5393
        qemu_put_be32(f, len);
5394
        qemu_fseek(f, cur_pos, SEEK_SET);
5395
    }
5396
    cur_pos = qemu_ftell(f);
5397
    qemu_fseek(f, total_len_pos, SEEK_SET);
5398
    qemu_put_be64(f, cur_pos - total_len_pos - 8);
5399
    qemu_fseek(f, cur_pos, SEEK_SET);
5400

    
5401
    ret = 0;
5402
    return ret;
5403
}
5404

    
5405
static SaveStateEntry *find_se(const char *idstr, int instance_id)
5406
{
5407
    SaveStateEntry *se;
5408

    
5409
    for(se = first_se; se != NULL; se = se->next) {
5410
        if (!strcmp(se->idstr, idstr) &&
5411
            instance_id == se->instance_id)
5412
            return se;
5413
    }
5414
    return NULL;
5415
}
5416

    
5417
int qemu_loadvm_state(QEMUFile *f)
5418
{
5419
    SaveStateEntry *se;
5420
    int len, ret, instance_id, record_len, version_id;
5421
    int64_t total_len, end_pos, cur_pos;
5422
    unsigned int v;
5423
    char idstr[256];
5424

    
5425
    v = qemu_get_be32(f);
5426
    if (v != QEMU_VM_FILE_MAGIC)
5427
        goto fail;
5428
    v = qemu_get_be32(f);
5429
    if (v != QEMU_VM_FILE_VERSION) {
5430
    fail:
5431
        ret = -1;
5432
        goto the_end;
5433
    }
5434
    total_len = qemu_get_be64(f);
5435
    end_pos = total_len + qemu_ftell(f);
5436
    for(;;) {
5437
        if (qemu_ftell(f) >= end_pos)
5438
            break;
5439
        len = qemu_get_byte(f);
5440
        qemu_get_buffer(f, idstr, len);
5441
        idstr[len] = '\0';
5442
        instance_id = qemu_get_be32(f);
5443
        version_id = qemu_get_be32(f);
5444
        record_len = qemu_get_be32(f);
5445
#if 0
5446
        printf("idstr=%s instance=0x%x version=%d len=%d\n",
5447
               idstr, instance_id, version_id, record_len);
5448
#endif
5449
        cur_pos = qemu_ftell(f);
5450
        se = find_se(idstr, instance_id);
5451
        if (!se) {
5452
            fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
5453
                    instance_id, idstr);
5454
        } else {
5455
            ret = se->load_state(f, se->opaque, version_id);
5456
            if (ret < 0) {
5457
                fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
5458
                        instance_id, idstr);
5459
            }
5460
        }
5461
        /* always seek to exact end of record */
5462
        qemu_fseek(f, cur_pos + record_len, SEEK_SET);
5463
    }
5464
    ret = 0;
5465
 the_end:
5466
    return ret;
5467
}
5468

    
5469
/* device can contain snapshots */
5470
static int bdrv_can_snapshot(BlockDriverState *bs)
5471
{
5472
    return (bs &&
5473
            !bdrv_is_removable(bs) &&
5474
            !bdrv_is_read_only(bs));
5475
}
5476

    
5477
/* device must be snapshots in order to have a reliable snapshot */
5478
static int bdrv_has_snapshot(BlockDriverState *bs)
5479
{
5480
    return (bs &&
5481
            !bdrv_is_removable(bs) &&
5482
            !bdrv_is_read_only(bs));
5483
}
5484

    
5485
static BlockDriverState *get_bs_snapshots(void)
5486
{
5487
    BlockDriverState *bs;
5488
    int i;
5489

    
5490
    if (bs_snapshots)
5491
        return bs_snapshots;
5492
    for(i = 0; i <= MAX_DISKS; i++) {
5493
        bs = bs_table[i];
5494
        if (bdrv_can_snapshot(bs))
5495
            goto ok;
5496
    }
5497
    return NULL;
5498
 ok:
5499
    bs_snapshots = bs;
5500
    return bs;
5501
}
5502

    
5503
static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
5504
                              const char *name)
5505
{
5506
    QEMUSnapshotInfo *sn_tab, *sn;
5507
    int nb_sns, i, ret;
5508

    
5509
    ret = -ENOENT;
5510
    nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5511
    if (nb_sns < 0)
5512
        return ret;
5513
    for(i = 0; i < nb_sns; i++) {
5514
        sn = &sn_tab[i];
5515
        if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
5516
            *sn_info = *sn;
5517
            ret = 0;
5518
            break;
5519
        }
5520
    }
5521
    qemu_free(sn_tab);
5522
    return ret;
5523
}
5524

    
5525
void do_savevm(const char *name)
5526
{
5527
    BlockDriverState *bs, *bs1;
5528
    QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
5529
    int must_delete, ret, i;
5530
    BlockDriverInfo bdi1, *bdi = &bdi1;
5531
    QEMUFile *f;
5532
    int saved_vm_running;
5533
#ifdef _WIN32
5534
    struct _timeb tb;
5535
#else
5536
    struct timeval tv;
5537
#endif
5538

    
5539
    bs = get_bs_snapshots();
5540
    if (!bs) {
5541
        term_printf("No block device can accept snapshots\n");
5542
        return;
5543
    }
5544

    
5545
    /* ??? Should this occur after vm_stop?  */
5546
    qemu_aio_flush();
5547

    
5548
    saved_vm_running = vm_running;
5549
    vm_stop(0);
5550

    
5551
    must_delete = 0;
5552
    if (name) {
5553
        ret = bdrv_snapshot_find(bs, old_sn, name);
5554
        if (ret >= 0) {
5555
            must_delete = 1;
5556
        }
5557
    }
5558
    memset(sn, 0, sizeof(*sn));
5559
    if (must_delete) {
5560
        pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
5561
        pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
5562
    } else {
5563
        if (name)
5564
            pstrcpy(sn->name, sizeof(sn->name), name);
5565
    }
5566

    
5567
    /* fill auxiliary fields */
5568
#ifdef _WIN32
5569
    _ftime(&tb);
5570
    sn->date_sec = tb.time;
5571
    sn->date_nsec = tb.millitm * 1000000;
5572
#else
5573
    gettimeofday(&tv, NULL);
5574
    sn->date_sec = tv.tv_sec;
5575
    sn->date_nsec = tv.tv_usec * 1000;
5576
#endif
5577
    sn->vm_clock_nsec = qemu_get_clock(vm_clock);
5578

    
5579
    if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5580
        term_printf("Device %s does not support VM state snapshots\n",
5581
                    bdrv_get_device_name(bs));
5582
        goto the_end;
5583
    }
5584

    
5585
    /* save the VM state */
5586
    f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
5587
    if (!f) {
5588
        term_printf("Could not open VM state file\n");
5589
        goto the_end;
5590
    }
5591
    ret = qemu_savevm_state(f);
5592
    sn->vm_state_size = qemu_ftell(f);
5593
    qemu_fclose(f);
5594
    if (ret < 0) {
5595
        term_printf("Error %d while writing VM\n", ret);
5596
        goto the_end;
5597
    }
5598

    
5599
    /* create the snapshots */
5600

    
5601
    for(i = 0; i < MAX_DISKS; i++) {
5602
        bs1 = bs_table[i];
5603
        if (bdrv_has_snapshot(bs1)) {
5604
            if (must_delete) {
5605
                ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
5606
                if (ret < 0) {
5607
                    term_printf("Error while deleting snapshot on '%s'\n",
5608
                                bdrv_get_device_name(bs1));
5609
                }
5610
            }
5611
            ret = bdrv_snapshot_create(bs1, sn);
5612
            if (ret < 0) {
5613
                term_printf("Error while creating snapshot on '%s'\n",
5614
                            bdrv_get_device_name(bs1));
5615
            }
5616
        }
5617
    }
5618

    
5619
 the_end:
5620
    if (saved_vm_running)
5621
        vm_start();
5622
}
5623

    
5624
void do_loadvm(const char *name)
5625
{
5626
    BlockDriverState *bs, *bs1;
5627
    BlockDriverInfo bdi1, *bdi = &bdi1;
5628
    QEMUFile *f;
5629
    int i, ret;
5630
    int saved_vm_running;
5631

    
5632
    bs = get_bs_snapshots();
5633
    if (!bs) {
5634
        term_printf("No block device supports snapshots\n");
5635
        return;
5636
    }
5637

    
5638
    /* Flush all IO requests so they don't interfere with the new state.  */
5639
    qemu_aio_flush();
5640

    
5641
    saved_vm_running = vm_running;
5642
    vm_stop(0);
5643

    
5644
    for(i = 0; i <= MAX_DISKS; i++) {
5645
        bs1 = bs_table[i];
5646
        if (bdrv_has_snapshot(bs1)) {
5647
            ret = bdrv_snapshot_goto(bs1, name);
5648
            if (ret < 0) {
5649
                if (bs != bs1)
5650
                    term_printf("Warning: ");
5651
                switch(ret) {
5652
                case -ENOTSUP:
5653
                    term_printf("Snapshots not supported on device '%s'\n",
5654
                                bdrv_get_device_name(bs1));
5655
                    break;
5656
                case -ENOENT:
5657
                    term_printf("Could not find snapshot '%s' on device '%s'\n",
5658
                                name, bdrv_get_device_name(bs1));
5659
                    break;
5660
                default:
5661
                    term_printf("Error %d while activating snapshot on '%s'\n",
5662
                                ret, bdrv_get_device_name(bs1));
5663
                    break;
5664
                }
5665
                /* fatal on snapshot block device */
5666
                if (bs == bs1)
5667
                    goto the_end;
5668
            }
5669
        }
5670
    }
5671

    
5672
    if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5673
        term_printf("Device %s does not support VM state snapshots\n",
5674
                    bdrv_get_device_name(bs));
5675
        return;
5676
    }
5677

    
5678
    /* restore the VM state */
5679
    f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
5680
    if (!f) {
5681
        term_printf("Could not open VM state file\n");
5682
        goto the_end;
5683
    }
5684
    ret = qemu_loadvm_state(f);
5685
    qemu_fclose(f);
5686
    if (ret < 0) {
5687
        term_printf("Error %d while loading VM state\n", ret);
5688
    }
5689
 the_end:
5690
    if (saved_vm_running)
5691
        vm_start();
5692
}
5693

    
5694
void do_delvm(const char *name)
5695
{
5696
    BlockDriverState *bs, *bs1;
5697
    int i, ret;
5698

    
5699
    bs = get_bs_snapshots();
5700
    if (!bs) {
5701
        term_printf("No block device supports snapshots\n");
5702
        return;
5703
    }
5704

    
5705
    for(i = 0; i <= MAX_DISKS; i++) {
5706
        bs1 = bs_table[i];
5707
        if (bdrv_has_snapshot(bs1)) {
5708
            ret = bdrv_snapshot_delete(bs1, name);
5709
            if (ret < 0) {
5710
                if (ret == -ENOTSUP)
5711
                    term_printf("Snapshots not supported on device '%s'\n",
5712
                                bdrv_get_device_name(bs1));
5713
                else
5714
                    term_printf("Error %d while deleting snapshot on '%s'\n",
5715
                                ret, bdrv_get_device_name(bs1));
5716
            }
5717
        }
5718
    }
5719
}
5720

    
5721
void do_info_snapshots(void)
5722
{
5723
    BlockDriverState *bs, *bs1;
5724
    QEMUSnapshotInfo *sn_tab, *sn;
5725
    int nb_sns, i;
5726
    char buf[256];
5727

    
5728
    bs = get_bs_snapshots();
5729
    if (!bs) {
5730
        term_printf("No available block device supports snapshots\n");
5731
        return;
5732
    }
5733
    term_printf("Snapshot devices:");
5734
    for(i = 0; i <= MAX_DISKS; i++) {
5735
        bs1 = bs_table[i];
5736
        if (bdrv_has_snapshot(bs1)) {
5737
            if (bs == bs1)
5738
                term_printf(" %s", bdrv_get_device_name(bs1));
5739
        }
5740
    }
5741
    term_printf("\n");
5742

    
5743
    nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5744
    if (nb_sns < 0) {
5745
        term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
5746
        return;
5747
    }
5748
    term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
5749
    term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
5750
    for(i = 0; i < nb_sns; i++) {
5751
        sn = &sn_tab[i];
5752
        term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
5753
    }
5754
    qemu_free(sn_tab);
5755
}
5756

    
5757
/***********************************************************/
5758
/* cpu save/restore */
5759

    
5760
#if defined(TARGET_I386)
5761

    
5762
static void cpu_put_seg(QEMUFile *f, SegmentCache *dt)
5763
{
5764
    qemu_put_be32(f, dt->selector);
5765
    qemu_put_betl(f, dt->base);
5766
    qemu_put_be32(f, dt->limit);
5767
    qemu_put_be32(f, dt->flags);
5768
}
5769

    
5770
static void cpu_get_seg(QEMUFile *f, SegmentCache *dt)
5771
{
5772
    dt->selector = qemu_get_be32(f);
5773
    dt->base = qemu_get_betl(f);
5774
    dt->limit = qemu_get_be32(f);
5775
    dt->flags = qemu_get_be32(f);
5776
}
5777

    
5778
void cpu_save(QEMUFile *f, void *opaque)
5779
{
5780
    CPUState *env = opaque;
5781
    uint16_t fptag, fpus, fpuc, fpregs_format;
5782
    uint32_t hflags;
5783
    int i;
5784

    
5785
    for(i = 0; i < CPU_NB_REGS; i++)
5786
        qemu_put_betls(f, &env->regs[i]);
5787
    qemu_put_betls(f, &env->eip);
5788
    qemu_put_betls(f, &env->eflags);
5789
    hflags = env->hflags; /* XXX: suppress most of the redundant hflags */
5790
    qemu_put_be32s(f, &hflags);
5791

    
5792
    /* FPU */
5793
    fpuc = env->fpuc;
5794
    fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
5795
    fptag = 0;
5796
    for(i = 0; i < 8; i++) {
5797
        fptag |= ((!env->fptags[i]) << i);
5798
    }
5799

    
5800
    qemu_put_be16s(f, &fpuc);
5801
    qemu_put_be16s(f, &fpus);
5802
    qemu_put_be16s(f, &fptag);
5803

    
5804
#ifdef USE_X86LDOUBLE
5805
    fpregs_format = 0;
5806
#else
5807
    fpregs_format = 1;
5808
#endif
5809
    qemu_put_be16s(f, &fpregs_format);
5810

    
5811
    for(i = 0; i < 8; i++) {
5812
#ifdef USE_X86LDOUBLE
5813
        {
5814
            uint64_t mant;
5815
            uint16_t exp;
5816
            /* we save the real CPU data (in case of MMX usage only 'mant'
5817
               contains the MMX register */
5818
            cpu_get_fp80(&mant, &exp, env->fpregs[i].d);
5819
            qemu_put_be64(f, mant);
5820
            qemu_put_be16(f, exp);
5821
        }
5822
#else
5823
        /* if we use doubles for float emulation, we save the doubles to
5824
           avoid losing information in case of MMX usage. It can give
5825
           problems if the image is restored on a CPU where long
5826
           doubles are used instead. */
5827
        qemu_put_be64(f, env->fpregs[i].mmx.MMX_Q(0));
5828
#endif
5829
    }
5830

    
5831
    for(i = 0; i < 6; i++)
5832
        cpu_put_seg(f, &env->segs[i]);
5833
    cpu_put_seg(f, &env->ldt);
5834
    cpu_put_seg(f, &env->tr);
5835
    cpu_put_seg(f, &env->gdt);
5836
    cpu_put_seg(f, &env->idt);
5837

    
5838
    qemu_put_be32s(f, &env->sysenter_cs);
5839
    qemu_put_be32s(f, &env->sysenter_esp);
5840
    qemu_put_be32s(f, &env->sysenter_eip);
5841

    
5842
    qemu_put_betls(f, &env->cr[0]);
5843
    qemu_put_betls(f, &env->cr[2]);
5844
    qemu_put_betls(f, &env->cr[3]);
5845
    qemu_put_betls(f, &env->cr[4]);
5846

    
5847
    for(i = 0; i < 8; i++)
5848
        qemu_put_betls(f, &env->dr[i]);
5849

    
5850
    /* MMU */
5851
    qemu_put_be32s(f, &env->a20_mask);
5852

    
5853
    /* XMM */
5854
    qemu_put_be32s(f, &env->mxcsr);
5855
    for(i = 0; i < CPU_NB_REGS; i++) {
5856
        qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5857
        qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5858
    }
5859

    
5860
#ifdef TARGET_X86_64
5861
    qemu_put_be64s(f, &env->efer);
5862
    qemu_put_be64s(f, &env->star);
5863
    qemu_put_be64s(f, &env->lstar);
5864
    qemu_put_be64s(f, &env->cstar);
5865
    qemu_put_be64s(f, &env->fmask);
5866
    qemu_put_be64s(f, &env->kernelgsbase);
5867
#endif
5868
    qemu_put_be32s(f, &env->smbase);
5869
}
5870

    
5871
#ifdef USE_X86LDOUBLE
5872
/* XXX: add that in a FPU generic layer */
5873
union x86_longdouble {
5874
    uint64_t mant;
5875
    uint16_t exp;
5876
};
5877

    
5878
#define MANTD1(fp)        (fp & ((1LL << 52) - 1))
5879
#define EXPBIAS1 1023
5880
#define EXPD1(fp)        ((fp >> 52) & 0x7FF)
5881
#define SIGND1(fp)        ((fp >> 32) & 0x80000000)
5882

    
5883
static void fp64_to_fp80(union x86_longdouble *p, uint64_t temp)
5884
{
5885
    int e;
5886
    /* mantissa */
5887
    p->mant = (MANTD1(temp) << 11) | (1LL << 63);
5888
    /* exponent + sign */
5889
    e = EXPD1(temp) - EXPBIAS1 + 16383;
5890
    e |= SIGND1(temp) >> 16;
5891
    p->exp = e;
5892
}
5893
#endif
5894

    
5895
int cpu_load(QEMUFile *f, void *opaque, int version_id)
5896
{
5897
    CPUState *env = opaque;
5898
    int i, guess_mmx;
5899
    uint32_t hflags;
5900
    uint16_t fpus, fpuc, fptag, fpregs_format;
5901

    
5902
    if (version_id != 3 && version_id != 4)
5903
        return -EINVAL;
5904
    for(i = 0; i < CPU_NB_REGS; i++)
5905
        qemu_get_betls(f, &env->regs[i]);
5906
    qemu_get_betls(f, &env->eip);
5907
    qemu_get_betls(f, &env->eflags);
5908
    qemu_get_be32s(f, &hflags);
5909

    
5910
    qemu_get_be16s(f, &fpuc);
5911
    qemu_get_be16s(f, &fpus);
5912
    qemu_get_be16s(f, &fptag);
5913
    qemu_get_be16s(f, &fpregs_format);
5914

    
5915
    /* NOTE: we cannot always restore the FPU state if the image come
5916
       from a host with a different 'USE_X86LDOUBLE' define. We guess
5917
       if we are in an MMX state to restore correctly in that case. */
5918
    guess_mmx = ((fptag == 0xff) && (fpus & 0x3800) == 0);
5919
    for(i = 0; i < 8; i++) {
5920
        uint64_t mant;
5921
        uint16_t exp;
5922

    
5923
        switch(fpregs_format) {
5924
        case 0:
5925
            mant = qemu_get_be64(f);
5926
            exp = qemu_get_be16(f);
5927
#ifdef USE_X86LDOUBLE
5928
            env->fpregs[i].d = cpu_set_fp80(mant, exp);
5929
#else
5930
            /* difficult case */
5931
            if (guess_mmx)
5932
                env->fpregs[i].mmx.MMX_Q(0) = mant;
5933
            else
5934
                env->fpregs[i].d = cpu_set_fp80(mant, exp);
5935
#endif
5936
            break;
5937
        case 1:
5938
            mant = qemu_get_be64(f);
5939
#ifdef USE_X86LDOUBLE
5940
            {
5941
                union x86_longdouble *p;
5942
                /* difficult case */
5943
                p = (void *)&env->fpregs[i];
5944
                if (guess_mmx) {
5945
                    p->mant = mant;
5946
                    p->exp = 0xffff;
5947
                } else {
5948
                    fp64_to_fp80(p, mant);
5949
                }
5950
            }
5951
#else
5952
            env->fpregs[i].mmx.MMX_Q(0) = mant;
5953
#endif
5954
            break;
5955
        default:
5956
            return -EINVAL;
5957
        }
5958
    }
5959

    
5960
    env->fpuc = fpuc;
5961
    /* XXX: restore FPU round state */
5962
    env->fpstt = (fpus >> 11) & 7;
5963
    env->fpus = fpus & ~0x3800;
5964
    fptag ^= 0xff;
5965
    for(i = 0; i < 8; i++) {
5966
        env->fptags[i] = (fptag >> i) & 1;
5967
    }
5968

    
5969
    for(i = 0; i < 6; i++)
5970
        cpu_get_seg(f, &env->segs[i]);
5971
    cpu_get_seg(f, &env->ldt);
5972
    cpu_get_seg(f, &env->tr);
5973
    cpu_get_seg(f, &env->gdt);
5974
    cpu_get_seg(f, &env->idt);
5975

    
5976
    qemu_get_be32s(f, &env->sysenter_cs);
5977
    qemu_get_be32s(f, &env->sysenter_esp);
5978
    qemu_get_be32s(f, &env->sysenter_eip);
5979

    
5980
    qemu_get_betls(f, &env->cr[0]);
5981
    qemu_get_betls(f, &env->cr[2]);
5982
    qemu_get_betls(f, &env->cr[3]);
5983
    qemu_get_betls(f, &env->cr[4]);
5984

    
5985
    for(i = 0; i < 8; i++)
5986
        qemu_get_betls(f, &env->dr[i]);
5987

    
5988
    /* MMU */
5989
    qemu_get_be32s(f, &env->a20_mask);
5990

    
5991
    qemu_get_be32s(f, &env->mxcsr);
5992
    for(i = 0; i < CPU_NB_REGS; i++) {
5993
        qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5994
        qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5995
    }
5996

    
5997
#ifdef TARGET_X86_64
5998
    qemu_get_be64s(f, &env->efer);
5999
    qemu_get_be64s(f, &env->star);
6000
    qemu_get_be64s(f, &env->lstar);
6001
    qemu_get_be64s(f, &env->cstar);
6002
    qemu_get_be64s(f, &env->fmask);
6003
    qemu_get_be64s(f, &env->kernelgsbase);
6004
#endif
6005
    if (version_id >= 4)
6006
        qemu_get_be32s(f, &env->smbase);
6007

    
6008
    /* XXX: compute hflags from scratch, except for CPL and IIF */
6009
    env->hflags = hflags;
6010
    tlb_flush(env, 1);
6011
    return 0;
6012
}
6013

    
6014
#elif defined(TARGET_PPC)
6015
void cpu_save(QEMUFile *f, void *opaque)
6016
{
6017
}
6018

    
6019
int cpu_load(QEMUFile *f, void *opaque, int version_id)
6020
{
6021
    return 0;
6022
}
6023

    
6024
#elif defined(TARGET_MIPS)
6025
void cpu_save(QEMUFile *f, void *opaque)
6026
{
6027
}
6028

    
6029
int cpu_load(QEMUFile *f, void *opaque, int version_id)
6030
{
6031
    return 0;
6032
}
6033

    
6034
#elif defined(TARGET_SPARC)
6035
void cpu_save(QEMUFile *f, void *opaque)
6036
{
6037
    CPUState *env = opaque;
6038
    int i;
6039
    uint32_t tmp;
6040

    
6041
    for(i = 0; i < 8; i++)
6042
        qemu_put_betls(f, &env->gregs[i]);
6043
    for(i = 0; i < NWINDOWS * 16; i++)
6044
        qemu_put_betls(f, &env->regbase[i]);
6045

    
6046
    /* FPU */
6047
    for(i = 0; i < TARGET_FPREGS; i++) {
6048
        union {
6049
            float32 f;
6050
            uint32_t i;
6051
        } u;
6052
        u.f = env->fpr[i];
6053
        qemu_put_be32(f, u.i);
6054
    }
6055

    
6056
    qemu_put_betls(f, &env->pc);
6057
    qemu_put_betls(f, &env->npc);
6058
    qemu_put_betls(f, &env->y);
6059
    tmp = GET_PSR(env);
6060
    qemu_put_be32(f, tmp);
6061
    qemu_put_betls(f, &env->fsr);
6062
    qemu_put_betls(f, &env->tbr);
6063
#ifndef TARGET_SPARC64
6064
    qemu_put_be32s(f, &env->wim);
6065
    /* MMU */
6066
    for(i = 0; i < 16; i++)
6067
        qemu_put_be32s(f, &env->mmuregs[i]);
6068
#endif
6069
}
6070

    
6071
int cpu_load(QEMUFile *f, void *opaque, int version_id)
6072
{
6073
    CPUState *env = opaque;
6074
    int i;
6075
    uint32_t tmp;
6076

    
6077
    for(i = 0; i < 8; i++)
6078
        qemu_get_betls(f, &env->gregs[i]);
6079
    for(i = 0; i < NWINDOWS * 16; i++)
6080
        qemu_get_betls(f, &env->regbase[i]);
6081

    
6082
    /* FPU */
6083
    for(i = 0; i < TARGET_FPREGS; i++) {
6084
        union {
6085
            float32 f;
6086
            uint32_t i;
6087
        } u;
6088
        u.i = qemu_get_be32(f);
6089
        env->fpr[i] = u.f;
6090
    }
6091

    
6092
    qemu_get_betls(f, &env->pc);
6093
    qemu_get_betls(f, &env->npc);
6094
    qemu_get_betls(f, &env->y);
6095
    tmp = qemu_get_be32(f);
6096
    env->cwp = 0; /* needed to ensure that the wrapping registers are
6097
                     correctly updated */
6098
    PUT_PSR(env, tmp);
6099
    qemu_get_betls(f, &env->fsr);
6100
    qemu_get_betls(f, &env->tbr);
6101
#ifndef TARGET_SPARC64
6102
    qemu_get_be32s(f, &env->wim);
6103
    /* MMU */
6104
    for(i = 0; i < 16; i++)
6105
        qemu_get_be32s(f, &env->mmuregs[i]);
6106
#endif
6107
    tlb_flush(env, 1);
6108
    return 0;
6109
}
6110

    
6111
#elif defined(TARGET_ARM)
6112

    
6113
void cpu_save(QEMUFile *f, void *opaque)
6114
{
6115
    int i;
6116
    CPUARMState *env = (CPUARMState *)opaque;
6117

    
6118
    for (i = 0; i < 16; i++) {
6119
        qemu_put_be32(f, env->regs[i]);
6120
    }
6121
    qemu_put_be32(f, cpsr_read(env));
6122
    qemu_put_be32(f, env->spsr);
6123
    for (i = 0; i < 6; i++) {
6124
        qemu_put_be32(f, env->banked_spsr[i]);
6125
        qemu_put_be32(f, env->banked_r13[i]);
6126
        qemu_put_be32(f, env->banked_r14[i]);
6127
    }
6128
    for (i = 0; i < 5; i++) {
6129
        qemu_put_be32(f, env->usr_regs[i]);
6130
        qemu_put_be32(f, env->fiq_regs[i]);
6131
    }
6132
    qemu_put_be32(f, env->cp15.c0_cpuid);
6133
    qemu_put_be32(f, env->cp15.c0_cachetype);
6134
    qemu_put_be32(f, env->cp15.c1_sys);
6135
    qemu_put_be32(f, env->cp15.c1_coproc);
6136
    qemu_put_be32(f, env->cp15.c1_xscaleauxcr);
6137
    qemu_put_be32(f, env->cp15.c2_base);
6138
    qemu_put_be32(f, env->cp15.c2_data);
6139
    qemu_put_be32(f, env->cp15.c2_insn);
6140
    qemu_put_be32(f, env->cp15.c3);
6141
    qemu_put_be32(f, env->cp15.c5_insn);
6142
    qemu_put_be32(f, env->cp15.c5_data);
6143
    for (i = 0; i < 8; i++) {
6144
        qemu_put_be32(f, env->cp15.c6_region[i]);
6145
    }
6146
    qemu_put_be32(f, env->cp15.c6_insn);
6147
    qemu_put_be32(f, env->cp15.c6_data);
6148
    qemu_put_be32(f, env->cp15.c9_insn);
6149
    qemu_put_be32(f, env->cp15.c9_data);
6150
    qemu_put_be32(f, env->cp15.c13_fcse);
6151
    qemu_put_be32(f, env->cp15.c13_context);
6152
    qemu_put_be32(f, env->cp15.c15_cpar);
6153

    
6154
    qemu_put_be32(f, env->features);
6155

    
6156
    if (arm_feature(env, ARM_FEATURE_VFP)) {
6157
        for (i = 0;  i < 16; i++) {
6158
            CPU_DoubleU u;
6159
            u.d = env->vfp.regs[i];
6160
            qemu_put_be32(f, u.l.upper);
6161
            qemu_put_be32(f, u.l.lower);
6162
        }
6163
        for (i = 0; i < 16; i++) {
6164
            qemu_put_be32(f, env->vfp.xregs[i]);
6165
        }
6166

    
6167
        /* TODO: Should use proper FPSCR access functions.  */
6168
        qemu_put_be32(f, env->vfp.vec_len);
6169
        qemu_put_be32(f, env->vfp.vec_stride);
6170
    }
6171

    
6172
    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6173
        for (i = 0; i < 16; i++) {
6174
            qemu_put_be64(f, env->iwmmxt.regs[i]);
6175
        }
6176
        for (i = 0; i < 16; i++) {
6177
            qemu_put_be32(f, env->iwmmxt.cregs[i]);
6178
        }
6179
    }
6180
}
6181

    
6182
int cpu_load(QEMUFile *f, void *opaque, int version_id)
6183
{
6184
    CPUARMState *env = (CPUARMState *)opaque;
6185
    int i;
6186

    
6187
    if (version_id != 0)
6188
        return -EINVAL;
6189

    
6190
    for (i = 0; i < 16; i++) {
6191
        env->regs[i] = qemu_get_be32(f);
6192
    }
6193
    cpsr_write(env, qemu_get_be32(f), 0xffffffff);
6194
    env->spsr = qemu_get_be32(f);
6195
    for (i = 0; i < 6; i++) {
6196
        env->banked_spsr[i] = qemu_get_be32(f);
6197
        env->banked_r13[i] = qemu_get_be32(f);
6198
        env->banked_r14[i] = qemu_get_be32(f);
6199
    }
6200
    for (i = 0; i < 5; i++) {
6201
        env->usr_regs[i] = qemu_get_be32(f);
6202
        env->fiq_regs[i] = qemu_get_be32(f);
6203
    }
6204
    env->cp15.c0_cpuid = qemu_get_be32(f);
6205
    env->cp15.c0_cachetype = qemu_get_be32(f);
6206
    env->cp15.c1_sys = qemu_get_be32(f);
6207
    env->cp15.c1_coproc = qemu_get_be32(f);
6208
    env->cp15.c1_xscaleauxcr = qemu_get_be32(f);
6209
    env->cp15.c2_base = qemu_get_be32(f);
6210
    env->cp15.c2_data = qemu_get_be32(f);
6211
    env->cp15.c2_insn = qemu_get_be32(f);
6212
    env->cp15.c3 = qemu_get_be32(f);
6213
    env->cp15.c5_insn = qemu_get_be32(f);
6214
    env->cp15.c5_data = qemu_get_be32(f);
6215
    for (i = 0; i < 8; i++) {
6216
        env->cp15.c6_region[i] = qemu_get_be32(f);
6217
    }
6218
    env->cp15.c6_insn = qemu_get_be32(f);
6219
    env->cp15.c6_data = qemu_get_be32(f);
6220
    env->cp15.c9_insn = qemu_get_be32(f);
6221
    env->cp15.c9_data = qemu_get_be32(f);
6222
    env->cp15.c13_fcse = qemu_get_be32(f);
6223
    env->cp15.c13_context = qemu_get_be32(f);
6224
    env->cp15.c15_cpar = qemu_get_be32(f);
6225

    
6226
    env->features = qemu_get_be32(f);
6227

    
6228
    if (arm_feature(env, ARM_FEATURE_VFP)) {
6229
        for (i = 0;  i < 16; i++) {
6230
            CPU_DoubleU u;
6231
            u.l.upper = qemu_get_be32(f);
6232
            u.l.lower = qemu_get_be32(f);
6233
            env->vfp.regs[i] = u.d;
6234
        }
6235
        for (i = 0; i < 16; i++) {
6236
            env->vfp.xregs[i] = qemu_get_be32(f);
6237
        }
6238

    
6239
        /* TODO: Should use proper FPSCR access functions.  */
6240
        env->vfp.vec_len = qemu_get_be32(f);
6241
        env->vfp.vec_stride = qemu_get_be32(f);
6242
    }
6243

    
6244
    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6245
        for (i = 0; i < 16; i++) {
6246
            env->iwmmxt.regs[i] = qemu_get_be64(f);
6247
        }
6248
        for (i = 0; i < 16; i++) {
6249
            env->iwmmxt.cregs[i] = qemu_get_be32(f);
6250
        }
6251
    }
6252

    
6253
    return 0;
6254
}
6255

    
6256
#else
6257

    
6258
#warning No CPU save/restore functions
6259

    
6260
#endif
6261

    
6262
/***********************************************************/
6263
/* ram save/restore */
6264

    
6265
static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
6266
{
6267
    int v;
6268

    
6269
    v = qemu_get_byte(f);
6270
    switch(v) {
6271
    case 0:
6272
        if (qemu_get_buffer(f, buf, len) != len)
6273
            return -EIO;
6274
        break;
6275
    case 1:
6276
        v = qemu_get_byte(f);
6277
        memset(buf, v, len);
6278
        break;
6279
    default:
6280
        return -EINVAL;
6281
    }
6282
    return 0;
6283
}
6284

    
6285
static int ram_load_v1(QEMUFile *f, void *opaque)
6286
{
6287
    int i, ret;
6288

    
6289
    if (qemu_get_be32(f) != phys_ram_size)
6290
        return -EINVAL;
6291
    for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
6292
        ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
6293
        if (ret)
6294
            return ret;
6295
    }
6296
    return 0;
6297
}
6298

    
6299
#define BDRV_HASH_BLOCK_SIZE 1024
6300
#define IOBUF_SIZE 4096
6301
#define RAM_CBLOCK_MAGIC 0xfabe
6302

    
6303
typedef struct RamCompressState {
6304
    z_stream zstream;
6305
    QEMUFile *f;
6306
    uint8_t buf[IOBUF_SIZE];
6307
} RamCompressState;
6308

    
6309
static int ram_compress_open(RamCompressState *s, QEMUFile *f)
6310
{
6311
    int ret;
6312
    memset(s, 0, sizeof(*s));
6313
    s->f = f;
6314
    ret = deflateInit2(&s->zstream, 1,
6315
                       Z_DEFLATED, 15,
6316
                       9, Z_DEFAULT_STRATEGY);
6317
    if (ret != Z_OK)
6318
        return -1;
6319
    s->zstream.avail_out = IOBUF_SIZE;
6320
    s->zstream.next_out = s->buf;
6321
    return 0;
6322
}
6323

    
6324
static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len)
6325
{
6326
    qemu_put_be16(s->f, RAM_CBLOCK_MAGIC);
6327
    qemu_put_be16(s->f, len);
6328
    qemu_put_buffer(s->f, buf, len);
6329
}
6330

    
6331
static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len)
6332
{
6333
    int ret;
6334

    
6335
    s->zstream.avail_in = len;
6336
    s->zstream.next_in = (uint8_t *)buf;
6337
    while (s->zstream.avail_in > 0) {
6338
        ret = deflate(&s->zstream, Z_NO_FLUSH);
6339
        if (ret != Z_OK)
6340
            return -1;
6341
        if (s->zstream.avail_out == 0) {
6342
            ram_put_cblock(s, s->buf, IOBUF_SIZE);
6343
            s->zstream.avail_out = IOBUF_SIZE;
6344
            s->zstream.next_out = s->buf;
6345
        }
6346
    }
6347
    return 0;
6348
}
6349

    
6350
static void ram_compress_close(RamCompressState *s)
6351
{
6352
    int len, ret;
6353

    
6354
    /* compress last bytes */
6355
    for(;;) {
6356
        ret = deflate(&s->zstream, Z_FINISH);
6357
        if (ret == Z_OK || ret == Z_STREAM_END) {
6358
            len = IOBUF_SIZE - s->zstream.avail_out;
6359
            if (len > 0) {
6360
                ram_put_cblock(s, s->buf, len);
6361
            }
6362
            s->zstream.avail_out = IOBUF_SIZE;
6363
            s->zstream.next_out = s->buf;
6364
            if (ret == Z_STREAM_END)
6365
                break;
6366
        } else {
6367
            goto fail;
6368
        }
6369
    }
6370
fail:
6371
    deflateEnd(&s->zstream);
6372
}
6373

    
6374
typedef struct RamDecompressState {
6375
    z_stream zstream;
6376
    QEMUFile *f;
6377
    uint8_t buf[IOBUF_SIZE];
6378
} RamDecompressState;
6379

    
6380
static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
6381
{
6382
    int ret;
6383
    memset(s, 0, sizeof(*s));
6384
    s->f = f;
6385
    ret = inflateInit(&s->zstream);
6386
    if (ret != Z_OK)
6387
        return -1;
6388
    return 0;
6389
}
6390

    
6391
static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
6392
{
6393
    int ret, clen;
6394

    
6395
    s->zstream.avail_out = len;
6396
    s->zstream.next_out = buf;
6397
    while (s->zstream.avail_out > 0) {
6398
        if (s->zstream.avail_in == 0) {
6399
            if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
6400
                return -1;
6401
            clen = qemu_get_be16(s->f);
6402
            if (clen > IOBUF_SIZE)
6403
                return -1;
6404
            qemu_get_buffer(s->f, s->buf, clen);
6405
            s->zstream.avail_in = clen;
6406
            s->zstream.next_in = s->buf;
6407
        }
6408
        ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
6409
        if (ret != Z_OK && ret != Z_STREAM_END) {
6410
            return -1;
6411
        }
6412
    }
6413
    return 0;
6414
}
6415

    
6416
static void ram_decompress_close(RamDecompressState *s)
6417
{
6418
    inflateEnd(&s->zstream);
6419
}
6420

    
6421
static void ram_save(QEMUFile *f, void *opaque)
6422
{
6423
    int i;
6424
    RamCompressState s1, *s = &s1;
6425
    uint8_t buf[10];
6426

    
6427
    qemu_put_be32(f, phys_ram_size);
6428
    if (ram_compress_open(s, f) < 0)
6429
        return;
6430
    for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6431
#if 0
6432
        if (tight_savevm_enabled) {
6433
            int64_t sector_num;
6434
            int j;
6435

6436
            /* find if the memory block is available on a virtual
6437
               block device */
6438
            sector_num = -1;
6439
            for(j = 0; j < MAX_DISKS; j++) {
6440
                if (bs_table[j]) {
6441
                    sector_num = bdrv_hash_find(bs_table[j],
6442
                                                phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
6443
                    if (sector_num >= 0)
6444
                        break;
6445
                }
6446
            }
6447
            if (j == MAX_DISKS)
6448
                goto normal_compress;
6449
            buf[0] = 1;
6450
            buf[1] = j;
6451
            cpu_to_be64wu((uint64_t *)(buf + 2), sector_num);
6452
            ram_compress_buf(s, buf, 10);
6453
        } else
6454
#endif
6455
        {
6456
            //        normal_compress:
6457
            buf[0] = 0;
6458
            ram_compress_buf(s, buf, 1);
6459
            ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
6460
        }
6461
    }
6462
    ram_compress_close(s);
6463
}
6464

    
6465
static int ram_load(QEMUFile *f, void *opaque, int version_id)
6466
{
6467
    RamDecompressState s1, *s = &s1;
6468
    uint8_t buf[10];
6469
    int i;
6470

    
6471
    if (version_id == 1)
6472
        return ram_load_v1(f, opaque);
6473
    if (version_id != 2)
6474
        return -EINVAL;
6475
    if (qemu_get_be32(f) != phys_ram_size)
6476
        return -EINVAL;
6477
    if (ram_decompress_open(s, f) < 0)
6478
        return -EINVAL;
6479
    for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6480
        if (ram_decompress_buf(s, buf, 1) < 0) {
6481
            fprintf(stderr, "Error while reading ram block header\n");
6482
            goto error;
6483
        }
6484
        if (buf[0] == 0) {
6485
            if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
6486
                fprintf(stderr, "Error while reading ram block address=0x%08x", i);
6487
                goto error;
6488
            }
6489
        } else
6490
#if 0
6491
        if (buf[0] == 1) {
6492
            int bs_index;
6493
            int64_t sector_num;
6494

6495
            ram_decompress_buf(s, buf + 1, 9);
6496
            bs_index = buf[1];
6497
            sector_num = be64_to_cpupu((const uint64_t *)(buf + 2));
6498
            if (bs_index >= MAX_DISKS || bs_table[bs_index] == NULL) {
6499
                fprintf(stderr, "Invalid block device index %d\n", bs_index);
6500
                goto error;
6501
            }
6502
            if (bdrv_read(bs_table[bs_index], sector_num, phys_ram_base + i,
6503
                          BDRV_HASH_BLOCK_SIZE / 512) < 0) {
6504
                fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n",
6505
                        bs_index, sector_num);
6506
                goto error;
6507
            }
6508
        } else
6509
#endif
6510
        {
6511
        error:
6512
            printf("Error block header\n");
6513
            return -EINVAL;
6514
        }
6515
    }
6516
    ram_decompress_close(s);
6517
    return 0;
6518
}
6519

    
6520
/***********************************************************/
6521
/* bottom halves (can be seen as timers which expire ASAP) */
6522

    
6523
struct QEMUBH {
6524
    QEMUBHFunc *cb;
6525
    void *opaque;
6526
    int scheduled;
6527
    QEMUBH *next;
6528
};
6529

    
6530
static QEMUBH *first_bh = NULL;
6531

    
6532
QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
6533
{
6534
    QEMUBH *bh;
6535
    bh = qemu_mallocz(sizeof(QEMUBH));
6536
    if (!bh)
6537
        return NULL;
6538
    bh->cb = cb;
6539
    bh->opaque = opaque;
6540
    return bh;
6541
}
6542

    
6543
int qemu_bh_poll(void)
6544
{
6545
    QEMUBH *bh, **pbh;
6546
    int ret;
6547

    
6548
    ret = 0;
6549
    for(;;) {
6550
        pbh = &first_bh;
6551
        bh = *pbh;
6552
        if (!bh)
6553
            break;
6554
        ret = 1;
6555
        *pbh = bh->next;
6556
        bh->scheduled = 0;
6557
        bh->cb(bh->opaque);
6558
    }
6559
    return ret;
6560
}
6561

    
6562
void qemu_bh_schedule(QEMUBH *bh)
6563
{
6564
    CPUState *env = cpu_single_env;
6565
    if (bh->scheduled)
6566
        return;
6567
    bh->scheduled = 1;
6568
    bh->next = first_bh;
6569
    first_bh = bh;
6570

    
6571
    /* stop the currently executing CPU to execute the BH ASAP */
6572
    if (env) {
6573
        cpu_interrupt(env, CPU_INTERRUPT_EXIT);
6574
    }
6575
}
6576

    
6577
void qemu_bh_cancel(QEMUBH *bh)
6578
{
6579
    QEMUBH **pbh;
6580
    if (bh->scheduled) {
6581
        pbh = &first_bh;
6582
        while (*pbh != bh)
6583
            pbh = &(*pbh)->next;
6584
        *pbh = bh->next;
6585
        bh->scheduled = 0;
6586
    }
6587
}
6588

    
6589
void qemu_bh_delete(QEMUBH *bh)
6590
{
6591
    qemu_bh_cancel(bh);
6592
    qemu_free(bh);
6593
}
6594

    
6595
/***********************************************************/
6596
/* machine registration */
6597

    
6598
QEMUMachine *first_machine = NULL;
6599

    
6600
int qemu_register_machine(QEMUMachine *m)
6601
{
6602
    QEMUMachine **pm;
6603
    pm = &first_machine;
6604
    while (*pm != NULL)
6605
        pm = &(*pm)->next;
6606
    m->next = NULL;
6607
    *pm = m;
6608
    return 0;
6609
}
6610

    
6611
QEMUMachine *find_machine(const char *name)
6612
{
6613
    QEMUMachine *m;
6614

    
6615
    for(m = first_machine; m != NULL; m = m->next) {
6616
        if (!strcmp(m->name, name))
6617
            return m;
6618
    }
6619
    return NULL;
6620
}
6621

    
6622
/***********************************************************/
6623
/* main execution loop */
6624

    
6625
void gui_update(void *opaque)
6626
{
6627
    DisplayState *ds = opaque;
6628
    ds->dpy_refresh(ds);
6629
    qemu_mod_timer(ds->gui_timer, GUI_REFRESH_INTERVAL + qemu_get_clock(rt_clock));
6630
}
6631

    
6632
struct vm_change_state_entry {
6633
    VMChangeStateHandler *cb;
6634
    void *opaque;
6635
    LIST_ENTRY (vm_change_state_entry) entries;
6636
};
6637

    
6638
static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
6639

    
6640
VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
6641
                                                     void *opaque)
6642
{
6643
    VMChangeStateEntry *e;
6644

    
6645
    e = qemu_mallocz(sizeof (*e));
6646
    if (!e)
6647
        return NULL;
6648

    
6649
    e->cb = cb;
6650
    e->opaque = opaque;
6651
    LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
6652
    return e;
6653
}
6654

    
6655
void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
6656
{
6657
    LIST_REMOVE (e, entries);
6658
    qemu_free (e);
6659
}
6660

    
6661
static void vm_state_notify(int running)
6662
{
6663
    VMChangeStateEntry *e;
6664

    
6665
    for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
6666
        e->cb(e->opaque, running);
6667
    }
6668
}
6669

    
6670
/* XXX: support several handlers */
6671
static VMStopHandler *vm_stop_cb;
6672
static void *vm_stop_opaque;
6673

    
6674
int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
6675
{
6676
    vm_stop_cb = cb;
6677
    vm_stop_opaque = opaque;
6678
    return 0;
6679
}
6680

    
6681
void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
6682
{
6683
    vm_stop_cb = NULL;
6684
}
6685

    
6686
void vm_start(void)
6687
{
6688
    if (!vm_running) {
6689
        cpu_enable_ticks();
6690
        vm_running = 1;
6691
        vm_state_notify(1);
6692
        qemu_rearm_alarm_timer(alarm_timer);
6693
    }
6694
}
6695

    
6696
void vm_stop(int reason)
6697
{
6698
    if (vm_running) {
6699
        cpu_disable_ticks();
6700
        vm_running = 0;
6701
        if (reason != 0) {
6702
            if (vm_stop_cb) {
6703
                vm_stop_cb(vm_stop_opaque, reason);
6704
            }
6705
        }
6706
        vm_state_notify(0);
6707
    }
6708
}
6709

    
6710
/* reset/shutdown handler */
6711

    
6712
typedef struct QEMUResetEntry {
6713
    QEMUResetHandler *func;
6714
    void *opaque;
6715
    struct QEMUResetEntry *next;
6716
} QEMUResetEntry;
6717

    
6718
static QEMUResetEntry *first_reset_entry;
6719
static int reset_requested;
6720
static int shutdown_requested;
6721
static int powerdown_requested;
6722

    
6723
void qemu_register_reset(QEMUResetHandler *func, void *opaque)
6724
{
6725
    QEMUResetEntry **pre, *re;
6726

    
6727
    pre = &first_reset_entry;
6728
    while (*pre != NULL)
6729
        pre = &(*pre)->next;
6730
    re = qemu_mallocz(sizeof(QEMUResetEntry));
6731
    re->func = func;
6732
    re->opaque = opaque;
6733
    re->next = NULL;
6734
    *pre = re;
6735
}
6736

    
6737
static void qemu_system_reset(void)
6738
{
6739
    QEMUResetEntry *re;
6740

    
6741
    /* reset all devices */
6742
    for(re = first_reset_entry; re != NULL; re = re->next) {
6743
        re->func(re->opaque);
6744
    }
6745
}
6746

    
6747
void qemu_system_reset_request(void)
6748
{
6749
    if (no_reboot) {
6750
        shutdown_requested = 1;
6751
    } else {
6752
        reset_requested = 1;
6753
    }
6754
    if (cpu_single_env)
6755
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6756
}
6757

    
6758
void qemu_system_shutdown_request(void)
6759
{
6760
    shutdown_requested = 1;
6761
    if (cpu_single_env)
6762
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6763
}
6764

    
6765
void qemu_system_powerdown_request(void)
6766
{
6767
    powerdown_requested = 1;
6768
    if (cpu_single_env)
6769
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6770
}
6771

    
6772
void main_loop_wait(int timeout)
6773
{
6774
    IOHandlerRecord *ioh;
6775
    fd_set rfds, wfds, xfds;
6776
    int ret, nfds;
6777
#ifdef _WIN32
6778
    int ret2, i;
6779
#endif
6780
    struct timeval tv;
6781
    PollingEntry *pe;
6782

    
6783

    
6784
    /* XXX: need to suppress polling by better using win32 events */
6785
    ret = 0;
6786
    for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
6787
        ret |= pe->func(pe->opaque);
6788
    }
6789
#ifdef _WIN32
6790
    if (ret == 0) {
6791
        int err;
6792
        WaitObjects *w = &wait_objects;
6793

    
6794
        ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
6795
        if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
6796
            if (w->func[ret - WAIT_OBJECT_0])
6797
                w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
6798

    
6799
            /* Check for additional signaled events */
6800
            for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
6801

    
6802
                /* Check if event is signaled */
6803
                ret2 = WaitForSingleObject(w->events[i], 0);
6804
                if(ret2 == WAIT_OBJECT_0) {
6805
                    if (w->func[i])
6806
                        w->func[i](w->opaque[i]);
6807
                } else if (ret2 == WAIT_TIMEOUT) {
6808
                } else {
6809
                    err = GetLastError();
6810
                    fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
6811
                }
6812
            }
6813
        } else if (ret == WAIT_TIMEOUT) {
6814
        } else {
6815
            err = GetLastError();
6816
            fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
6817
        }
6818
    }
6819
#endif
6820
    /* poll any events */
6821
    /* XXX: separate device handlers from system ones */
6822
    nfds = -1;
6823
    FD_ZERO(&rfds);
6824
    FD_ZERO(&wfds);
6825
    FD_ZERO(&xfds);
6826
    for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6827
        if (ioh->deleted)
6828
            continue;
6829
        if (ioh->fd_read &&
6830
            (!ioh->fd_read_poll ||
6831
             ioh->fd_read_poll(ioh->opaque) != 0)) {
6832
            FD_SET(ioh->fd, &rfds);
6833
            if (ioh->fd > nfds)
6834
                nfds = ioh->fd;
6835
        }
6836
        if (ioh->fd_write) {
6837
            FD_SET(ioh->fd, &wfds);
6838
            if (ioh->fd > nfds)
6839
                nfds = ioh->fd;
6840
        }
6841
    }
6842

    
6843
    tv.tv_sec = 0;
6844
#ifdef _WIN32
6845
    tv.tv_usec = 0;
6846
#else
6847
    tv.tv_usec = timeout * 1000;
6848
#endif
6849
#if defined(CONFIG_SLIRP)
6850
    if (slirp_inited) {
6851
        slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
6852
    }
6853
#endif
6854
    ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
6855
    if (ret > 0) {
6856
        IOHandlerRecord **pioh;
6857

    
6858
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6859
            if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
6860
                ioh->fd_read(ioh->opaque);
6861
            }
6862
            if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
6863
                ioh->fd_write(ioh->opaque);
6864
            }
6865
        }
6866

    
6867
        /* remove deleted IO handlers */
6868
        pioh = &first_io_handler;
6869
        while (*pioh) {
6870
            ioh = *pioh;
6871
            if (ioh->deleted) {
6872
                *pioh = ioh->next;
6873
                qemu_free(ioh);
6874
            } else
6875
                pioh = &ioh->next;
6876
        }
6877
    }
6878
#if defined(CONFIG_SLIRP)
6879
    if (slirp_inited) {
6880
        if (ret < 0) {
6881
            FD_ZERO(&rfds);
6882
            FD_ZERO(&wfds);
6883
            FD_ZERO(&xfds);
6884
        }
6885
        slirp_select_poll(&rfds, &wfds, &xfds);
6886
    }
6887
#endif
6888
    qemu_aio_poll();
6889

    
6890
    if (vm_running) {
6891
        qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
6892
                        qemu_get_clock(vm_clock));
6893
        /* run dma transfers, if any */
6894
        DMA_run();
6895
    }
6896

    
6897
    /* real time timers */
6898
    qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
6899
                    qemu_get_clock(rt_clock));
6900

    
6901
    /* Check bottom-halves last in case any of the earlier events triggered
6902
       them.  */
6903
    qemu_bh_poll();
6904

    
6905
}
6906

    
6907
static CPUState *cur_cpu;
6908

    
6909
int main_loop(void)
6910
{
6911
    int ret, timeout;
6912
#ifdef CONFIG_PROFILER
6913
    int64_t ti;
6914
#endif
6915
    CPUState *env;
6916

    
6917
    cur_cpu = first_cpu;
6918
    for(;;) {
6919
        if (vm_running) {
6920

    
6921
            env = cur_cpu;
6922
            for(;;) {
6923
                /* get next cpu */
6924
                env = env->next_cpu;
6925
                if (!env)
6926
                    env = first_cpu;
6927
#ifdef CONFIG_PROFILER
6928
                ti = profile_getclock();
6929
#endif
6930
                ret = cpu_exec(env);
6931
#ifdef CONFIG_PROFILER
6932
                qemu_time += profile_getclock() - ti;
6933
#endif
6934
                if (ret == EXCP_HLT) {
6935
                    /* Give the next CPU a chance to run.  */
6936
                    cur_cpu = env;
6937
                    continue;
6938
                }
6939
                if (ret != EXCP_HALTED)
6940
                    break;
6941
                /* all CPUs are halted ? */
6942
                if (env == cur_cpu)
6943
                    break;
6944
            }
6945
            cur_cpu = env;
6946

    
6947
            if (shutdown_requested) {
6948
                ret = EXCP_INTERRUPT;
6949
                break;
6950
            }
6951
            if (reset_requested) {
6952
                reset_requested = 0;
6953
                qemu_system_reset();
6954
                ret = EXCP_INTERRUPT;
6955
            }
6956
            if (powerdown_requested) {
6957
                powerdown_requested = 0;
6958
                qemu_system_powerdown();
6959
                ret = EXCP_INTERRUPT;
6960
            }
6961
            if (ret == EXCP_DEBUG) {
6962
                vm_stop(EXCP_DEBUG);
6963
            }
6964
            /* If all cpus are halted then wait until the next IRQ */
6965
            /* XXX: use timeout computed from timers */
6966
            if (ret == EXCP_HALTED)
6967
                timeout = 10;
6968
            else
6969
                timeout = 0;
6970
        } else {
6971
            timeout = 10;
6972
        }
6973
#ifdef CONFIG_PROFILER
6974
        ti = profile_getclock();
6975
#endif
6976
        main_loop_wait(timeout);
6977
#ifdef CONFIG_PROFILER
6978
        dev_time += profile_getclock() - ti;
6979
#endif
6980
    }
6981
    cpu_disable_ticks();
6982
    return ret;
6983
}
6984

    
6985
static void help(int exitcode)
6986
{
6987
    printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2007 Fabrice Bellard\n"
6988
           "usage: %s [options] [disk_image]\n"
6989
           "\n"
6990
           "'disk_image' is a raw hard image image for IDE hard disk 0\n"
6991
           "\n"
6992
           "Standard options:\n"
6993
           "-M machine      select emulated machine (-M ? for list)\n"
6994
           "-cpu cpu        select CPU (-cpu ? for list)\n"
6995
           "-fda/-fdb file  use 'file' as floppy disk 0/1 image\n"
6996
           "-hda/-hdb file  use 'file' as IDE hard disk 0/1 image\n"
6997
           "-hdc/-hdd file  use 'file' as IDE hard disk 2/3 image\n"
6998
           "-cdrom file     use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
6999
           "-mtdblock file  use 'file' as on-board Flash memory image\n"
7000
           "-sd file        use 'file' as SecureDigital card image\n"
7001
           "-pflash file    use 'file' as a parallel flash image\n"
7002
           "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
7003
           "-snapshot       write to temporary files instead of disk image files\n"
7004
#ifdef CONFIG_SDL
7005
           "-no-frame       open SDL window without a frame and window decorations\n"
7006
           "-alt-grab       use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
7007
           "-no-quit        disable SDL window close capability\n"
7008
#endif
7009
#ifdef TARGET_I386
7010
           "-no-fd-bootchk  disable boot signature checking for floppy disks\n"
7011
#endif
7012
           "-m megs         set virtual RAM size to megs MB [default=%d]\n"
7013
           "-smp n          set the number of CPUs to 'n' [default=1]\n"
7014
           "-nographic      disable graphical output and redirect serial I/Os to console\n"
7015
           "-portrait       rotate graphical output 90 deg left (only PXA LCD)\n"
7016
#ifndef _WIN32
7017
           "-k language     use keyboard layout (for example \"fr\" for French)\n"
7018
#endif
7019
#ifdef HAS_AUDIO
7020
           "-audio-help     print list of audio drivers and their options\n"
7021
           "-soundhw c1,... enable audio support\n"
7022
           "                and only specified sound cards (comma separated list)\n"
7023
           "                use -soundhw ? to get the list of supported cards\n"
7024
           "                use -soundhw all to enable all of them\n"
7025
#endif
7026
           "-localtime      set the real time clock to local time [default=utc]\n"
7027
           "-full-screen    start in full screen\n"
7028
#ifdef TARGET_I386
7029
           "-win2k-hack     use it when installing Windows 2000 to avoid a disk full bug\n"
7030
#endif
7031
           "-usb            enable the USB driver (will be the default soon)\n"
7032
           "-usbdevice name add the host or guest USB device 'name'\n"
7033
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
7034
           "-g WxH[xDEPTH]  Set the initial graphical resolution and depth\n"
7035
#endif
7036
           "-name string    set the name of the guest\n"
7037
           "\n"
7038
           "Network options:\n"
7039
           "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
7040
           "                create a new Network Interface Card and connect it to VLAN 'n'\n"
7041
#ifdef CONFIG_SLIRP
7042
           "-net user[,vlan=n][,hostname=host]\n"
7043
           "                connect the user mode network stack to VLAN 'n' and send\n"
7044
           "                hostname 'host' to DHCP clients\n"
7045
#endif
7046
#ifdef _WIN32
7047
           "-net tap[,vlan=n],ifname=name\n"
7048
           "                connect the host TAP network interface to VLAN 'n'\n"
7049
#else
7050
           "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
7051
           "                connect the host TAP network interface to VLAN 'n' and use the\n"
7052
           "                network scripts 'file' (default=%s)\n"
7053
           "                and 'dfile' (default=%s);\n"
7054
           "                use '[down]script=no' to disable script execution;\n"
7055
           "                use 'fd=h' to connect to an already opened TAP interface\n"
7056
#endif
7057
           "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
7058
           "                connect the vlan 'n' to another VLAN using a socket connection\n"
7059
           "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
7060
           "                connect the vlan 'n' to multicast maddr and port\n"
7061
           "-net none       use it alone to have zero network devices; if no -net option\n"
7062
           "                is provided, the default is '-net nic -net user'\n"
7063
           "\n"
7064
#ifdef CONFIG_SLIRP
7065
           "-tftp dir       allow tftp access to files in dir [-net user]\n"
7066
           "-bootp file     advertise file in BOOTP replies\n"
7067
#ifndef _WIN32
7068
           "-smb dir        allow SMB access to files in 'dir' [-net user]\n"
7069
#endif
7070
           "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
7071
           "                redirect TCP or UDP connections from host to guest [-net user]\n"
7072
#endif
7073
           "\n"
7074
           "Linux boot specific:\n"
7075
           "-kernel bzImage use 'bzImage' as kernel image\n"
7076
           "-append cmdline use 'cmdline' as kernel command line\n"
7077
           "-initrd file    use 'file' as initial ram disk\n"
7078
           "\n"
7079
           "Debug/Expert options:\n"
7080
           "-monitor dev    redirect the monitor to char device 'dev'\n"
7081
           "-serial dev     redirect the serial port to char device 'dev'\n"
7082
           "-parallel dev   redirect the parallel port to char device 'dev'\n"
7083
           "-pidfile file   Write PID to 'file'\n"
7084
           "-S              freeze CPU at startup (use 'c' to start execution)\n"
7085
           "-s              wait gdb connection to port\n"
7086
           "-p port         set gdb connection port [default=%s]\n"
7087
           "-d item1,...    output log to %s (use -d ? for a list of log items)\n"
7088
           "-hdachs c,h,s[,t]  force hard disk 0 physical geometry and the optional BIOS\n"
7089
           "                translation (t=none or lba) (usually qemu can guess them)\n"
7090
           "-L path         set the directory for the BIOS, VGA BIOS and keymaps\n"
7091
#ifdef USE_KQEMU
7092
           "-kernel-kqemu   enable KQEMU full virtualization (default is user mode only)\n"
7093
           "-no-kqemu       disable KQEMU kernel module usage\n"
7094
#endif
7095
#ifdef USE_CODE_COPY
7096
           "-no-code-copy   disable code copy acceleration\n"
7097
#endif
7098
#ifdef TARGET_I386
7099
           "-std-vga        simulate a standard VGA card with VESA Bochs Extensions\n"
7100
           "                (default is CL-GD5446 PCI VGA)\n"
7101
           "-no-acpi        disable ACPI\n"
7102
#endif
7103
           "-no-reboot      exit instead of rebooting\n"
7104
           "-loadvm file    start right away with a saved state (loadvm in monitor)\n"
7105
           "-vnc display    start a VNC server on display\n"
7106
#ifndef _WIN32
7107
           "-daemonize      daemonize QEMU after initializing\n"
7108
#endif
7109
           "-option-rom rom load a file, rom, into the option ROM space\n"
7110
#ifdef TARGET_SPARC
7111
           "-prom-env variable=value  set OpenBIOS nvram variables\n"
7112
#endif
7113
           "-clock          force the use of the given methods for timer alarm.\n"
7114
           "                To see what timers are available use -clock help\n"
7115
           "\n"
7116
           "During emulation, the following keys are useful:\n"
7117
           "ctrl-alt-f      toggle full screen\n"
7118
           "ctrl-alt-n      switch to virtual console 'n'\n"
7119
           "ctrl-alt        toggle mouse and keyboard grab\n"
7120
           "\n"
7121
           "When using -nographic, press 'ctrl-a h' to get some help.\n"
7122
           ,
7123
           "qemu",
7124
           DEFAULT_RAM_SIZE,
7125
#ifndef _WIN32
7126
           DEFAULT_NETWORK_SCRIPT,
7127
           DEFAULT_NETWORK_DOWN_SCRIPT,
7128
#endif
7129
           DEFAULT_GDBSTUB_PORT,
7130
           "/tmp/qemu.log");
7131
    exit(exitcode);
7132
}
7133

    
7134
#define HAS_ARG 0x0001
7135

    
7136
enum {
7137
    QEMU_OPTION_h,
7138

    
7139
    QEMU_OPTION_M,
7140
    QEMU_OPTION_cpu,
7141
    QEMU_OPTION_fda,
7142
    QEMU_OPTION_fdb,
7143
    QEMU_OPTION_hda,
7144
    QEMU_OPTION_hdb,
7145
    QEMU_OPTION_hdc,
7146
    QEMU_OPTION_hdd,
7147
    QEMU_OPTION_cdrom,
7148
    QEMU_OPTION_mtdblock,
7149
    QEMU_OPTION_sd,
7150
    QEMU_OPTION_pflash,
7151
    QEMU_OPTION_boot,
7152
    QEMU_OPTION_snapshot,
7153
#ifdef TARGET_I386
7154
    QEMU_OPTION_no_fd_bootchk,
7155
#endif
7156
    QEMU_OPTION_m,
7157
    QEMU_OPTION_nographic,
7158
    QEMU_OPTION_portrait,
7159
#ifdef HAS_AUDIO
7160
    QEMU_OPTION_audio_help,
7161
    QEMU_OPTION_soundhw,
7162
#endif
7163

    
7164
    QEMU_OPTION_net,
7165
    QEMU_OPTION_tftp,
7166
    QEMU_OPTION_bootp,
7167
    QEMU_OPTION_smb,
7168
    QEMU_OPTION_redir,
7169

    
7170
    QEMU_OPTION_kernel,
7171
    QEMU_OPTION_append,
7172
    QEMU_OPTION_initrd,
7173

    
7174
    QEMU_OPTION_S,
7175
    QEMU_OPTION_s,
7176
    QEMU_OPTION_p,
7177
    QEMU_OPTION_d,
7178
    QEMU_OPTION_hdachs,
7179
    QEMU_OPTION_L,
7180
    QEMU_OPTION_bios,
7181
    QEMU_OPTION_no_code_copy,
7182
    QEMU_OPTION_k,
7183
    QEMU_OPTION_localtime,
7184
    QEMU_OPTION_cirrusvga,
7185
    QEMU_OPTION_vmsvga,
7186
    QEMU_OPTION_g,
7187
    QEMU_OPTION_std_vga,
7188
    QEMU_OPTION_echr,
7189
    QEMU_OPTION_monitor,
7190
    QEMU_OPTION_serial,
7191
    QEMU_OPTION_parallel,
7192
    QEMU_OPTION_loadvm,
7193
    QEMU_OPTION_full_screen,
7194
    QEMU_OPTION_no_frame,
7195
    QEMU_OPTION_alt_grab,
7196
    QEMU_OPTION_no_quit,
7197
    QEMU_OPTION_pidfile,
7198
    QEMU_OPTION_no_kqemu,
7199
    QEMU_OPTION_kernel_kqemu,
7200
    QEMU_OPTION_win2k_hack,
7201
    QEMU_OPTION_usb,
7202
    QEMU_OPTION_usbdevice,
7203
    QEMU_OPTION_smp,
7204
    QEMU_OPTION_vnc,
7205
    QEMU_OPTION_no_acpi,
7206
    QEMU_OPTION_no_reboot,
7207
    QEMU_OPTION_show_cursor,
7208
    QEMU_OPTION_daemonize,
7209
    QEMU_OPTION_option_rom,
7210
    QEMU_OPTION_semihosting,
7211
    QEMU_OPTION_name,
7212
    QEMU_OPTION_prom_env,
7213
    QEMU_OPTION_old_param,
7214
    QEMU_OPTION_clock,
7215
};
7216

    
7217
typedef struct QEMUOption {
7218
    const char *name;
7219
    int flags;
7220
    int index;
7221
} QEMUOption;
7222

    
7223
const QEMUOption qemu_options[] = {
7224
    { "h", 0, QEMU_OPTION_h },
7225
    { "help", 0, QEMU_OPTION_h },
7226

    
7227
    { "M", HAS_ARG, QEMU_OPTION_M },
7228
    { "cpu", HAS_ARG, QEMU_OPTION_cpu },
7229
    { "fda", HAS_ARG, QEMU_OPTION_fda },
7230
    { "fdb", HAS_ARG, QEMU_OPTION_fdb },
7231
    { "hda", HAS_ARG, QEMU_OPTION_hda },
7232
    { "hdb", HAS_ARG, QEMU_OPTION_hdb },
7233
    { "hdc", HAS_ARG, QEMU_OPTION_hdc },
7234
    { "hdd", HAS_ARG, QEMU_OPTION_hdd },
7235
    { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
7236
    { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
7237
    { "sd", HAS_ARG, QEMU_OPTION_sd },
7238
    { "pflash", HAS_ARG, QEMU_OPTION_pflash },
7239
    { "boot", HAS_ARG, QEMU_OPTION_boot },
7240
    { "snapshot", 0, QEMU_OPTION_snapshot },
7241
#ifdef TARGET_I386
7242
    { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
7243
#endif
7244
    { "m", HAS_ARG, QEMU_OPTION_m },
7245
    { "nographic", 0, QEMU_OPTION_nographic },
7246
    { "portrait", 0, QEMU_OPTION_portrait },
7247
    { "k", HAS_ARG, QEMU_OPTION_k },
7248
#ifdef HAS_AUDIO
7249
    { "audio-help", 0, QEMU_OPTION_audio_help },
7250
    { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
7251
#endif
7252

    
7253
    { "net", HAS_ARG, QEMU_OPTION_net},
7254
#ifdef CONFIG_SLIRP
7255
    { "tftp", HAS_ARG, QEMU_OPTION_tftp },
7256
    { "bootp", HAS_ARG, QEMU_OPTION_bootp },
7257
#ifndef _WIN32
7258
    { "smb", HAS_ARG, QEMU_OPTION_smb },
7259
#endif
7260
    { "redir", HAS_ARG, QEMU_OPTION_redir },
7261
#endif
7262

    
7263
    { "kernel", HAS_ARG, QEMU_OPTION_kernel },
7264
    { "append", HAS_ARG, QEMU_OPTION_append },
7265
    { "initrd", HAS_ARG, QEMU_OPTION_initrd },
7266

    
7267
    { "S", 0, QEMU_OPTION_S },
7268
    { "s", 0, QEMU_OPTION_s },
7269
    { "p", HAS_ARG, QEMU_OPTION_p },
7270
    { "d", HAS_ARG, QEMU_OPTION_d },
7271
    { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
7272
    { "L", HAS_ARG, QEMU_OPTION_L },
7273
    { "bios", HAS_ARG, QEMU_OPTION_bios },
7274
    { "no-code-copy", 0, QEMU_OPTION_no_code_copy },
7275
#ifdef USE_KQEMU
7276
    { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
7277
    { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
7278
#endif
7279
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
7280
    { "g", 1, QEMU_OPTION_g },
7281
#endif
7282
    { "localtime", 0, QEMU_OPTION_localtime },
7283
    { "std-vga", 0, QEMU_OPTION_std_vga },
7284
    { "echr", HAS_ARG, QEMU_OPTION_echr },
7285
    { "monitor", HAS_ARG, QEMU_OPTION_monitor },
7286
    { "serial", HAS_ARG, QEMU_OPTION_serial },
7287
    { "parallel", HAS_ARG, QEMU_OPTION_parallel },
7288
    { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
7289
    { "full-screen", 0, QEMU_OPTION_full_screen },
7290
#ifdef CONFIG_SDL
7291
    { "no-frame", 0, QEMU_OPTION_no_frame },
7292
    { "alt-grab", 0, QEMU_OPTION_alt_grab },
7293
    { "no-quit", 0, QEMU_OPTION_no_quit },
7294
#endif
7295
    { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
7296
    { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
7297
    { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
7298
    { "smp", HAS_ARG, QEMU_OPTION_smp },
7299
    { "vnc", HAS_ARG, QEMU_OPTION_vnc },
7300

    
7301
    /* temporary options */
7302
    { "usb", 0, QEMU_OPTION_usb },
7303
    { "cirrusvga", 0, QEMU_OPTION_cirrusvga },
7304
    { "vmwarevga", 0, QEMU_OPTION_vmsvga },
7305
    { "no-acpi", 0, QEMU_OPTION_no_acpi },
7306
    { "no-reboot", 0, QEMU_OPTION_no_reboot },
7307
    { "show-cursor", 0, QEMU_OPTION_show_cursor },
7308
    { "daemonize", 0, QEMU_OPTION_daemonize },
7309
    { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
7310
#if defined(TARGET_ARM) || defined(TARGET_M68K)
7311
    { "semihosting", 0, QEMU_OPTION_semihosting },
7312
#endif
7313
    { "name", HAS_ARG, QEMU_OPTION_name },
7314
#if defined(TARGET_SPARC)
7315
    { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
7316
#endif
7317
#if defined(TARGET_ARM)
7318
    { "old-param", 0, QEMU_OPTION_old_param },
7319
#endif
7320
    { "clock", HAS_ARG, QEMU_OPTION_clock },
7321
    { NULL },
7322
};
7323

    
7324
#if defined (TARGET_I386) && defined(USE_CODE_COPY)
7325

    
7326
/* this stack is only used during signal handling */
7327
#define SIGNAL_STACK_SIZE 32768
7328

    
7329
static uint8_t *signal_stack;
7330

    
7331
#endif
7332

    
7333
/* password input */
7334

    
7335
int qemu_key_check(BlockDriverState *bs, const char *name)
7336
{
7337
    char password[256];
7338
    int i;
7339

    
7340
    if (!bdrv_is_encrypted(bs))
7341
        return 0;
7342

    
7343
    term_printf("%s is encrypted.\n", name);
7344
    for(i = 0; i < 3; i++) {
7345
        monitor_readline("Password: ", 1, password, sizeof(password));
7346
        if (bdrv_set_key(bs, password) == 0)
7347
            return 0;
7348
        term_printf("invalid password\n");
7349
    }
7350
    return -EPERM;
7351
}
7352

    
7353
static BlockDriverState *get_bdrv(int index)
7354
{
7355
    BlockDriverState *bs;
7356

    
7357
    if (index < 4) {
7358
        bs = bs_table[index];
7359
    } else if (index < 6) {
7360
        bs = fd_table[index - 4];
7361
    } else {
7362
        bs = NULL;
7363
    }
7364
    return bs;
7365
}
7366

    
7367
static void read_passwords(void)
7368
{
7369
    BlockDriverState *bs;
7370
    int i;
7371

    
7372
    for(i = 0; i < 6; i++) {
7373
        bs = get_bdrv(i);
7374
        if (bs)
7375
            qemu_key_check(bs, bdrv_get_device_name(bs));
7376
    }
7377
}
7378

    
7379
/* XXX: currently we cannot use simultaneously different CPUs */
7380
void register_machines(void)
7381
{
7382
#if defined(TARGET_I386)
7383
    qemu_register_machine(&pc_machine);
7384
    qemu_register_machine(&isapc_machine);
7385
#elif defined(TARGET_PPC)
7386
    qemu_register_machine(&heathrow_machine);
7387
    qemu_register_machine(&core99_machine);
7388
    qemu_register_machine(&prep_machine);
7389
    qemu_register_machine(&ref405ep_machine);
7390
    qemu_register_machine(&taihu_machine);
7391
#elif defined(TARGET_MIPS)
7392
    qemu_register_machine(&mips_machine);
7393
    qemu_register_machine(&mips_malta_machine);
7394
    qemu_register_machine(&mips_pica61_machine);
7395
    qemu_register_machine(&mips_mipssim_machine);
7396
#elif defined(TARGET_SPARC)
7397
#ifdef TARGET_SPARC64
7398
    qemu_register_machine(&sun4u_machine);
7399
#else
7400
    qemu_register_machine(&ss5_machine);
7401
    qemu_register_machine(&ss10_machine);
7402
#endif
7403
#elif defined(TARGET_ARM)
7404
    qemu_register_machine(&integratorcp_machine);
7405
    qemu_register_machine(&versatilepb_machine);
7406
    qemu_register_machine(&versatileab_machine);
7407
    qemu_register_machine(&realview_machine);
7408
    qemu_register_machine(&akitapda_machine);
7409
    qemu_register_machine(&spitzpda_machine);
7410
    qemu_register_machine(&borzoipda_machine);
7411
    qemu_register_machine(&terrierpda_machine);
7412
    qemu_register_machine(&palmte_machine);
7413
#elif defined(TARGET_SH4)
7414
    qemu_register_machine(&shix_machine);
7415
    qemu_register_machine(&r2d_machine);
7416
#elif defined(TARGET_ALPHA)
7417
    /* XXX: TODO */
7418
#elif defined(TARGET_M68K)
7419
    qemu_register_machine(&mcf5208evb_machine);
7420
    qemu_register_machine(&an5206_machine);
7421
#elif defined(TARGET_CRIS)
7422
    qemu_register_machine(&bareetraxfs_machine);
7423
#else
7424
#error unsupported CPU
7425
#endif
7426
}
7427

    
7428
#ifdef HAS_AUDIO
7429
struct soundhw soundhw[] = {
7430
#ifdef HAS_AUDIO_CHOICE
7431
#ifdef TARGET_I386
7432
    {
7433
        "pcspk",
7434
        "PC speaker",
7435
        0,
7436
        1,
7437
        { .init_isa = pcspk_audio_init }
7438
    },
7439
#endif
7440
    {
7441
        "sb16",
7442
        "Creative Sound Blaster 16",
7443
        0,
7444
        1,
7445
        { .init_isa = SB16_init }
7446
    },
7447

    
7448
#ifdef CONFIG_ADLIB
7449
    {
7450
        "adlib",
7451
#ifdef HAS_YMF262
7452
        "Yamaha YMF262 (OPL3)",
7453
#else
7454
        "Yamaha YM3812 (OPL2)",
7455
#endif
7456
        0,
7457
        1,
7458
        { .init_isa = Adlib_init }
7459
    },
7460
#endif
7461

    
7462
#ifdef CONFIG_GUS
7463
    {
7464
        "gus",
7465
        "Gravis Ultrasound GF1",
7466
        0,
7467
        1,
7468
        { .init_isa = GUS_init }
7469
    },
7470
#endif
7471

    
7472
    {
7473
        "es1370",
7474
        "ENSONIQ AudioPCI ES1370",
7475
        0,
7476
        0,
7477
        { .init_pci = es1370_init }
7478
    },
7479
#endif
7480

    
7481
    { NULL, NULL, 0, 0, { NULL } }
7482
};
7483

    
7484
static void select_soundhw (const char *optarg)
7485
{
7486
    struct soundhw *c;
7487

    
7488
    if (*optarg == '?') {
7489
    show_valid_cards:
7490

    
7491
        printf ("Valid sound card names (comma separated):\n");
7492
        for (c = soundhw; c->name; ++c) {
7493
            printf ("%-11s %s\n", c->name, c->descr);
7494
        }
7495
        printf ("\n-soundhw all will enable all of the above\n");
7496
        exit (*optarg != '?');
7497
    }
7498
    else {
7499
        size_t l;
7500
        const char *p;
7501
        char *e;
7502
        int bad_card = 0;
7503

    
7504
        if (!strcmp (optarg, "all")) {
7505
            for (c = soundhw; c->name; ++c) {
7506
                c->enabled = 1;
7507
            }
7508
            return;
7509
        }
7510

    
7511
        p = optarg;
7512
        while (*p) {
7513
            e = strchr (p, ',');
7514
            l = !e ? strlen (p) : (size_t) (e - p);
7515

    
7516
            for (c = soundhw; c->name; ++c) {
7517
                if (!strncmp (c->name, p, l)) {
7518
                    c->enabled = 1;
7519
                    break;
7520
                }
7521
            }
7522

    
7523
            if (!c->name) {
7524
                if (l > 80) {
7525
                    fprintf (stderr,
7526
                             "Unknown sound card name (too big to show)\n");
7527
                }
7528
                else {
7529
                    fprintf (stderr, "Unknown sound card name `%.*s'\n",
7530
                             (int) l, p);
7531
                }
7532
                bad_card = 1;
7533
            }
7534
            p += l + (e != NULL);
7535
        }
7536

    
7537
        if (bad_card)
7538
            goto show_valid_cards;
7539
    }
7540
}
7541
#endif
7542

    
7543
#ifdef _WIN32
7544
static BOOL WINAPI qemu_ctrl_handler(DWORD type)
7545
{
7546
    exit(STATUS_CONTROL_C_EXIT);
7547
    return TRUE;
7548
}
7549
#endif
7550

    
7551
#define MAX_NET_CLIENTS 32
7552

    
7553
int main(int argc, char **argv)
7554
{
7555
#ifdef CONFIG_GDBSTUB
7556
    int use_gdbstub;
7557
    const char *gdbstub_port;
7558
#endif
7559
    int i, cdrom_index, pflash_index;
7560
    int snapshot, linux_boot;
7561
    const char *initrd_filename;
7562
    const char *hd_filename[MAX_DISKS], *fd_filename[MAX_FD];
7563
    const char *pflash_filename[MAX_PFLASH];
7564
    const char *sd_filename;
7565
    const char *mtd_filename;
7566
    const char *kernel_filename, *kernel_cmdline;
7567
    DisplayState *ds = &display_state;
7568
    int cyls, heads, secs, translation;
7569
    char net_clients[MAX_NET_CLIENTS][256];
7570
    int nb_net_clients;
7571
    int optind;
7572
    const char *r, *optarg;
7573
    CharDriverState *monitor_hd;
7574
    char monitor_device[128];
7575
    char serial_devices[MAX_SERIAL_PORTS][128];
7576
    int serial_device_index;
7577
    char parallel_devices[MAX_PARALLEL_PORTS][128];
7578
    int parallel_device_index;
7579
    const char *loadvm = NULL;
7580
    QEMUMachine *machine;
7581
    const char *cpu_model;
7582
    char usb_devices[MAX_USB_CMDLINE][128];
7583
    int usb_devices_index;
7584
    int fds[2];
7585
    const char *pid_file = NULL;
7586
    VLANState *vlan;
7587

    
7588
    LIST_INIT (&vm_change_state_head);
7589
#ifndef _WIN32
7590
    {
7591
        struct sigaction act;
7592
        sigfillset(&act.sa_mask);
7593
        act.sa_flags = 0;
7594
        act.sa_handler = SIG_IGN;
7595
        sigaction(SIGPIPE, &act, NULL);
7596
    }
7597
#else
7598
    SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
7599
    /* Note: cpu_interrupt() is currently not SMP safe, so we force
7600
       QEMU to run on a single CPU */
7601
    {
7602
        HANDLE h;
7603
        DWORD mask, smask;
7604
        int i;
7605
        h = GetCurrentProcess();
7606
        if (GetProcessAffinityMask(h, &mask, &smask)) {
7607
            for(i = 0; i < 32; i++) {
7608
                if (mask & (1 << i))
7609
                    break;
7610
            }
7611
            if (i != 32) {
7612
                mask = 1 << i;
7613
                SetProcessAffinityMask(h, mask);
7614
            }
7615
        }
7616
    }
7617
#endif
7618

    
7619
    register_machines();
7620
    machine = first_machine;
7621
    cpu_model = NULL;
7622
    initrd_filename = NULL;
7623
    for(i = 0; i < MAX_FD; i++)
7624
        fd_filename[i] = NULL;
7625
    for(i = 0; i < MAX_DISKS; i++)
7626
        hd_filename[i] = NULL;
7627
    for(i = 0; i < MAX_PFLASH; i++)
7628
        pflash_filename[i] = NULL;
7629
    pflash_index = 0;
7630
    sd_filename = NULL;
7631
    mtd_filename = NULL;
7632
    ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
7633
    vga_ram_size = VGA_RAM_SIZE;
7634
#ifdef CONFIG_GDBSTUB
7635
    use_gdbstub = 0;
7636
    gdbstub_port = DEFAULT_GDBSTUB_PORT;
7637
#endif
7638
    snapshot = 0;
7639
    nographic = 0;
7640
    kernel_filename = NULL;
7641
    kernel_cmdline = "";
7642
#ifdef TARGET_PPC
7643
    cdrom_index = 1;
7644
#else
7645
    cdrom_index = 2;
7646
#endif
7647
    cyls = heads = secs = 0;
7648
    translation = BIOS_ATA_TRANSLATION_AUTO;
7649
    pstrcpy(monitor_device, sizeof(monitor_device), "vc");
7650

    
7651
    pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "vc");
7652
    for(i = 1; i < MAX_SERIAL_PORTS; i++)
7653
        serial_devices[i][0] = '\0';
7654
    serial_device_index = 0;
7655

    
7656
    pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "vc");
7657
    for(i = 1; i < MAX_PARALLEL_PORTS; i++)
7658
        parallel_devices[i][0] = '\0';
7659
    parallel_device_index = 0;
7660

    
7661
    usb_devices_index = 0;
7662

    
7663
    nb_net_clients = 0;
7664

    
7665
    nb_nics = 0;
7666
    /* default mac address of the first network interface */
7667

    
7668
    optind = 1;
7669
    for(;;) {
7670
        if (optind >= argc)
7671
            break;
7672
        r = argv[optind];
7673
        if (r[0] != '-') {
7674
            hd_filename[0] = argv[optind++];
7675
        } else {
7676
            const QEMUOption *popt;
7677

    
7678
            optind++;
7679
            /* Treat --foo the same as -foo.  */
7680
            if (r[1] == '-')
7681
                r++;
7682
            popt = qemu_options;
7683
            for(;;) {
7684
                if (!popt->name) {
7685
                    fprintf(stderr, "%s: invalid option -- '%s'\n",
7686
                            argv[0], r);
7687
                    exit(1);
7688
                }
7689
                if (!strcmp(popt->name, r + 1))
7690
                    break;
7691
                popt++;
7692
            }
7693
            if (popt->flags & HAS_ARG) {
7694
                if (optind >= argc) {
7695
                    fprintf(stderr, "%s: option '%s' requires an argument\n",
7696
                            argv[0], r);
7697
                    exit(1);
7698
                }
7699
                optarg = argv[optind++];
7700
            } else {
7701
                optarg = NULL;
7702
            }
7703

    
7704
            switch(popt->index) {
7705
            case QEMU_OPTION_M:
7706
                machine = find_machine(optarg);
7707
                if (!machine) {
7708
                    QEMUMachine *m;
7709
                    printf("Supported machines are:\n");
7710
                    for(m = first_machine; m != NULL; m = m->next) {
7711
                        printf("%-10s %s%s\n",
7712
                               m->name, m->desc,
7713
                               m == first_machine ? " (default)" : "");
7714
                    }
7715
                    exit(*optarg != '?');
7716
                }
7717
                break;
7718
            case QEMU_OPTION_cpu:
7719
                /* hw initialization will check this */
7720
                if (*optarg == '?') {
7721
/* XXX: implement xxx_cpu_list for targets that still miss it */
7722
#if defined(cpu_list)
7723
                    cpu_list(stdout, &fprintf);
7724
#endif
7725
                    exit(0);
7726
                } else {
7727
                    cpu_model = optarg;
7728
                }
7729
                break;
7730
            case QEMU_OPTION_initrd:
7731
                initrd_filename = optarg;
7732
                break;
7733
            case QEMU_OPTION_hda:
7734
            case QEMU_OPTION_hdb:
7735
            case QEMU_OPTION_hdc:
7736
            case QEMU_OPTION_hdd:
7737
                {
7738
                    int hd_index;
7739
                    hd_index = popt->index - QEMU_OPTION_hda;
7740
                    hd_filename[hd_index] = optarg;
7741
                    if (hd_index == cdrom_index)
7742
                        cdrom_index = -1;
7743
                }
7744
                break;
7745
            case QEMU_OPTION_mtdblock:
7746
                mtd_filename = optarg;
7747
                break;
7748
            case QEMU_OPTION_sd:
7749
                sd_filename = optarg;
7750
                break;
7751
            case QEMU_OPTION_pflash:
7752
                if (pflash_index >= MAX_PFLASH) {
7753
                    fprintf(stderr, "qemu: too many parallel flash images\n");
7754
                    exit(1);
7755
                }
7756
                pflash_filename[pflash_index++] = optarg;
7757
                break;
7758
            case QEMU_OPTION_snapshot:
7759
                snapshot = 1;
7760
                break;
7761
            case QEMU_OPTION_hdachs:
7762
                {
7763
                    const char *p;
7764
                    p = optarg;
7765
                    cyls = strtol(p, (char **)&p, 0);
7766
                    if (cyls < 1 || cyls > 16383)
7767
                        goto chs_fail;
7768
                    if (*p != ',')
7769
                        goto chs_fail;
7770
                    p++;
7771
                    heads = strtol(p, (char **)&p, 0);
7772
                    if (heads < 1 || heads > 16)
7773
                        goto chs_fail;
7774
                    if (*p != ',')
7775
                        goto chs_fail;
7776
                    p++;
7777
                    secs = strtol(p, (char **)&p, 0);
7778
                    if (secs < 1 || secs > 63)
7779
                        goto chs_fail;
7780
                    if (*p == ',') {
7781
                        p++;
7782
                        if (!strcmp(p, "none"))
7783
                            translation = BIOS_ATA_TRANSLATION_NONE;
7784
                        else if (!strcmp(p, "lba"))
7785
                            translation = BIOS_ATA_TRANSLATION_LBA;
7786
                        else if (!strcmp(p, "auto"))
7787
                            translation = BIOS_ATA_TRANSLATION_AUTO;
7788
                        else
7789
                            goto chs_fail;
7790
                    } else if (*p != '\0') {
7791
                    chs_fail:
7792
                        fprintf(stderr, "qemu: invalid physical CHS format\n");
7793
                        exit(1);
7794
                    }
7795
                }
7796
                break;
7797
            case QEMU_OPTION_nographic:
7798
                pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "stdio");
7799
                pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "null");
7800
                pstrcpy(monitor_device, sizeof(monitor_device), "stdio");
7801
                nographic = 1;
7802
                break;
7803
            case QEMU_OPTION_portrait:
7804
                graphic_rotate = 1;
7805
                break;
7806
            case QEMU_OPTION_kernel:
7807
                kernel_filename = optarg;
7808
                break;
7809
            case QEMU_OPTION_append:
7810
                kernel_cmdline = optarg;
7811
                break;
7812
            case QEMU_OPTION_cdrom:
7813
                if (cdrom_index >= 0) {
7814
                    hd_filename[cdrom_index] = optarg;
7815
                }
7816
                break;
7817
            case QEMU_OPTION_boot:
7818
                if (strlen(optarg) > MAX_BOOT_DEVICES) {
7819
                    fprintf(stderr, "qemu: too many boot devices\n");
7820
                    exit(1);
7821
                }
7822
                strncpy(boot_device, optarg, MAX_BOOT_DEVICES);
7823
#if defined(TARGET_SPARC) || defined(TARGET_I386)
7824
#define BOOTCHARS "acdn"
7825
#else
7826
#define BOOTCHARS "acd"
7827
#endif
7828
                if (strlen(boot_device) != strspn(boot_device, BOOTCHARS)) {
7829
                    fprintf(stderr, "qemu: invalid boot device "
7830
                                    "sequence '%s'\n", boot_device);
7831
                    exit(1);
7832
                }
7833
                break;
7834
            case QEMU_OPTION_fda:
7835
                fd_filename[0] = optarg;
7836
                break;
7837
            case QEMU_OPTION_fdb:
7838
                fd_filename[1] = optarg;
7839
                break;
7840
#ifdef TARGET_I386
7841
            case QEMU_OPTION_no_fd_bootchk:
7842
                fd_bootchk = 0;
7843
                break;
7844
#endif
7845
            case QEMU_OPTION_no_code_copy:
7846
                code_copy_enabled = 0;
7847
                break;
7848
            case QEMU_OPTION_net:
7849
                if (nb_net_clients >= MAX_NET_CLIENTS) {
7850
                    fprintf(stderr, "qemu: too many network clients\n");
7851
                    exit(1);
7852
                }
7853
                pstrcpy(net_clients[nb_net_clients],
7854
                        sizeof(net_clients[0]),
7855
                        optarg);
7856
                nb_net_clients++;
7857
                break;
7858
#ifdef CONFIG_SLIRP
7859
            case QEMU_OPTION_tftp:
7860
                tftp_prefix = optarg;
7861
                break;
7862
            case QEMU_OPTION_bootp:
7863
                bootp_filename = optarg;
7864
                break;
7865
#ifndef _WIN32
7866
            case QEMU_OPTION_smb:
7867
                net_slirp_smb(optarg);
7868
                break;
7869
#endif
7870
            case QEMU_OPTION_redir:
7871
                net_slirp_redir(optarg);
7872
                break;
7873
#endif
7874
#ifdef HAS_AUDIO
7875
            case QEMU_OPTION_audio_help:
7876
                AUD_help ();
7877
                exit (0);
7878
                break;
7879
            case QEMU_OPTION_soundhw:
7880
                select_soundhw (optarg);
7881
                break;
7882
#endif
7883
            case QEMU_OPTION_h:
7884
                help(0);
7885
                break;
7886
            case QEMU_OPTION_m:
7887
                ram_size = atoi(optarg) * 1024 * 1024;
7888
                if (ram_size <= 0)
7889
                    help(1);
7890
                if (ram_size > PHYS_RAM_MAX_SIZE) {
7891
                    fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
7892
                            PHYS_RAM_MAX_SIZE / (1024 * 1024));
7893
                    exit(1);
7894
                }
7895
                break;
7896
            case QEMU_OPTION_d:
7897
                {
7898
                    int mask;
7899
                    CPULogItem *item;
7900

    
7901
                    mask = cpu_str_to_log_mask(optarg);
7902
                    if (!mask) {
7903
                        printf("Log items (comma separated):\n");
7904
                    for(item = cpu_log_items; item->mask != 0; item++) {
7905
                        printf("%-10s %s\n", item->name, item->help);
7906
                    }
7907
                    exit(1);
7908
                    }
7909
                    cpu_set_log(mask);
7910
                }
7911
                break;
7912
#ifdef CONFIG_GDBSTUB
7913
            case QEMU_OPTION_s:
7914
                use_gdbstub = 1;
7915
                break;
7916
            case QEMU_OPTION_p:
7917
                gdbstub_port = optarg;
7918
                break;
7919
#endif
7920
            case QEMU_OPTION_L:
7921
                bios_dir = optarg;
7922
                break;
7923
            case QEMU_OPTION_bios:
7924
                bios_name = optarg;
7925
                break;
7926
            case QEMU_OPTION_S:
7927
                autostart = 0;
7928
                break;
7929
            case QEMU_OPTION_k:
7930
                keyboard_layout = optarg;
7931
                break;
7932
            case QEMU_OPTION_localtime:
7933
                rtc_utc = 0;
7934
                break;
7935
            case QEMU_OPTION_cirrusvga:
7936
                cirrus_vga_enabled = 1;
7937
                vmsvga_enabled = 0;
7938
                break;
7939
            case QEMU_OPTION_vmsvga:
7940
                cirrus_vga_enabled = 0;
7941
                vmsvga_enabled = 1;
7942
                break;
7943
            case QEMU_OPTION_std_vga:
7944
                cirrus_vga_enabled = 0;
7945
                vmsvga_enabled = 0;
7946
                break;
7947
            case QEMU_OPTION_g:
7948
                {
7949
                    const char *p;
7950
                    int w, h, depth;
7951
                    p = optarg;
7952
                    w = strtol(p, (char **)&p, 10);
7953
                    if (w <= 0) {
7954
                    graphic_error:
7955
                        fprintf(stderr, "qemu: invalid resolution or depth\n");
7956
                        exit(1);
7957
                    }
7958
                    if (*p != 'x')
7959
                        goto graphic_error;
7960
                    p++;
7961
                    h = strtol(p, (char **)&p, 10);
7962
                    if (h <= 0)
7963
                        goto graphic_error;
7964
                    if (*p == 'x') {
7965
                        p++;
7966
                        depth = strtol(p, (char **)&p, 10);
7967
                        if (depth != 8 && depth != 15 && depth != 16 &&
7968
                            depth != 24 && depth != 32)
7969
                            goto graphic_error;
7970
                    } else if (*p == '\0') {
7971
                        depth = graphic_depth;
7972
                    } else {
7973
                        goto graphic_error;
7974
                    }
7975

    
7976
                    graphic_width = w;
7977
                    graphic_height = h;
7978
                    graphic_depth = depth;
7979
                }
7980
                break;
7981
            case QEMU_OPTION_echr:
7982
                {
7983
                    char *r;
7984
                    term_escape_char = strtol(optarg, &r, 0);
7985
                    if (r == optarg)
7986
                        printf("Bad argument to echr\n");
7987
                    break;
7988
                }
7989
            case QEMU_OPTION_monitor:
7990
                pstrcpy(monitor_device, sizeof(monitor_device), optarg);
7991
                break;
7992
            case QEMU_OPTION_serial:
7993
                if (serial_device_index >= MAX_SERIAL_PORTS) {
7994
                    fprintf(stderr, "qemu: too many serial ports\n");
7995
                    exit(1);
7996
                }
7997
                pstrcpy(serial_devices[serial_device_index],
7998
                        sizeof(serial_devices[0]), optarg);
7999
                serial_device_index++;
8000
                break;
8001
            case QEMU_OPTION_parallel:
8002
                if (parallel_device_index >= MAX_PARALLEL_PORTS) {
8003
                    fprintf(stderr, "qemu: too many parallel ports\n");
8004
                    exit(1);
8005
                }
8006
                pstrcpy(parallel_devices[parallel_device_index],
8007
                        sizeof(parallel_devices[0]), optarg);
8008
                parallel_device_index++;
8009
                break;
8010
            case QEMU_OPTION_loadvm:
8011
                loadvm = optarg;
8012
                break;
8013
            case QEMU_OPTION_full_screen:
8014
                full_screen = 1;
8015
                break;
8016
#ifdef CONFIG_SDL
8017
            case QEMU_OPTION_no_frame:
8018
                no_frame = 1;
8019
                break;
8020
            case QEMU_OPTION_alt_grab:
8021
                alt_grab = 1;
8022
                break;
8023
            case QEMU_OPTION_no_quit:
8024
                no_quit = 1;
8025
                break;
8026
#endif
8027
            case QEMU_OPTION_pidfile:
8028
                pid_file = optarg;
8029
                break;
8030
#ifdef TARGET_I386
8031
            case QEMU_OPTION_win2k_hack:
8032
                win2k_install_hack = 1;
8033
                break;
8034
#endif
8035
#ifdef USE_KQEMU
8036
            case QEMU_OPTION_no_kqemu:
8037
                kqemu_allowed = 0;
8038
                break;
8039
            case QEMU_OPTION_kernel_kqemu:
8040
                kqemu_allowed = 2;
8041
                break;
8042
#endif
8043
            case QEMU_OPTION_usb:
8044
                usb_enabled = 1;
8045
                break;
8046
            case QEMU_OPTION_usbdevice:
8047
                usb_enabled = 1;
8048
                if (usb_devices_index >= MAX_USB_CMDLINE) {
8049
                    fprintf(stderr, "Too many USB devices\n");
8050
                    exit(1);
8051
                }
8052
                pstrcpy(usb_devices[usb_devices_index],
8053
                        sizeof(usb_devices[usb_devices_index]),
8054
                        optarg);
8055
                usb_devices_index++;
8056
                break;
8057
            case QEMU_OPTION_smp:
8058
                smp_cpus = atoi(optarg);
8059
                if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
8060
                    fprintf(stderr, "Invalid number of CPUs\n");
8061
                    exit(1);
8062
                }
8063
                break;
8064
            case QEMU_OPTION_vnc:
8065
                vnc_display = optarg;
8066
                break;
8067
            case QEMU_OPTION_no_acpi:
8068
                acpi_enabled = 0;
8069
                break;
8070
            case QEMU_OPTION_no_reboot:
8071
                no_reboot = 1;
8072
                break;
8073
            case QEMU_OPTION_show_cursor:
8074
                cursor_hide = 0;
8075
                break;
8076
            case QEMU_OPTION_daemonize:
8077
                daemonize = 1;
8078
                break;
8079
            case QEMU_OPTION_option_rom:
8080
                if (nb_option_roms >= MAX_OPTION_ROMS) {
8081
                    fprintf(stderr, "Too many option ROMs\n");
8082
                    exit(1);
8083
                }
8084
                option_rom[nb_option_roms] = optarg;
8085
                nb_option_roms++;
8086
                break;
8087
            case QEMU_OPTION_semihosting:
8088
                semihosting_enabled = 1;
8089
                break;
8090
            case QEMU_OPTION_name:
8091
                qemu_name = optarg;
8092
                break;
8093
#ifdef TARGET_SPARC
8094
            case QEMU_OPTION_prom_env:
8095
                if (nb_prom_envs >= MAX_PROM_ENVS) {
8096
                    fprintf(stderr, "Too many prom variables\n");
8097
                    exit(1);
8098
                }
8099
                prom_envs[nb_prom_envs] = optarg;
8100
                nb_prom_envs++;
8101
                break;
8102
#endif
8103
#ifdef TARGET_ARM
8104
            case QEMU_OPTION_old_param:
8105
                old_param = 1;
8106
#endif
8107
            case QEMU_OPTION_clock:
8108
                configure_alarms(optarg);
8109
                break;
8110
            }
8111
        }
8112
    }
8113

    
8114
#ifndef _WIN32
8115
    if (daemonize && !nographic && vnc_display == NULL) {
8116
        fprintf(stderr, "Can only daemonize if using -nographic or -vnc\n");
8117
        daemonize = 0;
8118
    }
8119

    
8120
    if (daemonize) {
8121
        pid_t pid;
8122

    
8123
        if (pipe(fds) == -1)
8124
            exit(1);
8125

    
8126
        pid = fork();
8127
        if (pid > 0) {
8128
            uint8_t status;
8129
            ssize_t len;
8130

    
8131
            close(fds[1]);
8132

    
8133
        again:
8134
            len = read(fds[0], &status, 1);
8135
            if (len == -1 && (errno == EINTR))
8136
                goto again;
8137

    
8138
            if (len != 1)
8139
                exit(1);
8140
            else if (status == 1) {
8141
                fprintf(stderr, "Could not acquire pidfile\n");
8142
                exit(1);
8143
            } else
8144
                exit(0);
8145
        } else if (pid < 0)
8146
            exit(1);
8147

    
8148
        setsid();
8149

    
8150
        pid = fork();
8151
        if (pid > 0)
8152
            exit(0);
8153
        else if (pid < 0)
8154
            exit(1);
8155

    
8156
        umask(027);
8157
        chdir("/");
8158

    
8159
        signal(SIGTSTP, SIG_IGN);
8160
        signal(SIGTTOU, SIG_IGN);
8161
        signal(SIGTTIN, SIG_IGN);
8162
    }
8163
#endif
8164

    
8165
    if (pid_file && qemu_create_pidfile(pid_file) != 0) {
8166
        if (daemonize) {
8167
            uint8_t status = 1;
8168
            write(fds[1], &status, 1);
8169
        } else
8170
            fprintf(stderr, "Could not acquire pid file\n");
8171
        exit(1);
8172
    }
8173

    
8174
#ifdef USE_KQEMU
8175
    if (smp_cpus > 1)
8176
        kqemu_allowed = 0;
8177
#endif
8178
    linux_boot = (kernel_filename != NULL);
8179

    
8180
    if (!linux_boot &&
8181
        (!strchr(boot_device, 'n')) &&
8182
        hd_filename[0] == '\0' &&
8183
        (cdrom_index >= 0 && hd_filename[cdrom_index] == '\0') &&
8184
        fd_filename[0] == '\0')
8185
        help(1);
8186

    
8187
    /* boot to floppy or the default cd if no hard disk defined yet */
8188
    if (!boot_device[0]) {
8189
        if (hd_filename[0] != '\0')
8190
            boot_device[0] = 'c';
8191
        else if (fd_filename[0] != '\0')
8192
            boot_device[0] = 'a';
8193
        else
8194
            boot_device[0] = 'd';
8195
        boot_device[1] = 0;
8196
    }
8197
    setvbuf(stdout, NULL, _IOLBF, 0);
8198

    
8199
    init_timers();
8200
    init_timer_alarm();
8201
    qemu_aio_init();
8202

    
8203
#ifdef _WIN32
8204
    socket_init();
8205
#endif
8206

    
8207
    /* init network clients */
8208
    if (nb_net_clients == 0) {
8209
        /* if no clients, we use a default config */
8210
        pstrcpy(net_clients[0], sizeof(net_clients[0]),
8211
                "nic");
8212
        pstrcpy(net_clients[1], sizeof(net_clients[0]),
8213
                "user");
8214
        nb_net_clients = 2;
8215
    }
8216

    
8217
    for(i = 0;i < nb_net_clients; i++) {
8218
        if (net_client_init(net_clients[i]) < 0)
8219
            exit(1);
8220
    }
8221
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
8222
        if (vlan->nb_guest_devs == 0 && vlan->nb_host_devs == 0)
8223
            continue;
8224
        if (vlan->nb_guest_devs == 0) {
8225
            fprintf(stderr, "Invalid vlan (%d) with no nics\n", vlan->id);
8226
            exit(1);
8227
        }
8228
        if (vlan->nb_host_devs == 0)
8229
            fprintf(stderr,
8230
                    "Warning: vlan %d is not connected to host network\n",
8231
                    vlan->id);
8232
    }
8233

    
8234
#ifdef TARGET_I386
8235
    if (strchr(boot_device, 'n')) {
8236
        for (i = 0; i < nb_nics; i++) {
8237
            const char *model = nd_table[i].model;
8238
            char buf[1024];
8239
            if (model == NULL)
8240
                model = "ne2k_pci";
8241
            snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
8242
            if (get_image_size(buf) > 0) {
8243
                option_rom[nb_option_roms] = strdup(buf);
8244
                nb_option_roms++;
8245
                break;
8246
            }
8247
        }
8248
        if (i == nb_nics) {
8249
            fprintf(stderr, "No valid PXE rom found for network device\n");
8250
            exit(1);
8251
        }
8252
    }
8253
#endif
8254

    
8255
    /* init the memory */
8256
    phys_ram_size = ram_size + vga_ram_size + MAX_BIOS_SIZE;
8257

    
8258
    phys_ram_base = qemu_vmalloc(phys_ram_size);
8259
    if (!phys_ram_base) {
8260
        fprintf(stderr, "Could not allocate physical memory\n");
8261
        exit(1);
8262
    }
8263

    
8264
    /* we always create the cdrom drive, even if no disk is there */
8265
    bdrv_init();
8266
    if (cdrom_index >= 0) {
8267
        bs_table[cdrom_index] = bdrv_new("cdrom");
8268
        bdrv_set_type_hint(bs_table[cdrom_index], BDRV_TYPE_CDROM);
8269
    }
8270

    
8271
    /* open the virtual block devices */
8272
    for(i = 0; i < MAX_DISKS; i++) {
8273
        if (hd_filename[i]) {
8274
            if (!bs_table[i]) {
8275
                char buf[64];
8276
                snprintf(buf, sizeof(buf), "hd%c", i + 'a');
8277
                bs_table[i] = bdrv_new(buf);
8278
            }
8279
            if (bdrv_open(bs_table[i], hd_filename[i], snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8280
                fprintf(stderr, "qemu: could not open hard disk image '%s'\n",
8281
                        hd_filename[i]);
8282
                exit(1);
8283
            }
8284
            if (i == 0 && cyls != 0) {
8285
                bdrv_set_geometry_hint(bs_table[i], cyls, heads, secs);
8286
                bdrv_set_translation_hint(bs_table[i], translation);
8287
            }
8288
        }
8289
    }
8290

    
8291
    /* we always create at least one floppy disk */
8292
    fd_table[0] = bdrv_new("fda");
8293
    bdrv_set_type_hint(fd_table[0], BDRV_TYPE_FLOPPY);
8294

    
8295
    for(i = 0; i < MAX_FD; i++) {
8296
        if (fd_filename[i]) {
8297
            if (!fd_table[i]) {
8298
                char buf[64];
8299
                snprintf(buf, sizeof(buf), "fd%c", i + 'a');
8300
                fd_table[i] = bdrv_new(buf);
8301
                bdrv_set_type_hint(fd_table[i], BDRV_TYPE_FLOPPY);
8302
            }
8303
            if (fd_filename[i][0] != '\0') {
8304
                if (bdrv_open(fd_table[i], fd_filename[i],
8305
                              snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8306
                    fprintf(stderr, "qemu: could not open floppy disk image '%s'\n",
8307
                            fd_filename[i]);
8308
                    exit(1);
8309
                }
8310
            }
8311
        }
8312
    }
8313

    
8314
    /* Open the virtual parallel flash block devices */
8315
    for(i = 0; i < MAX_PFLASH; i++) {
8316
        if (pflash_filename[i]) {
8317
            if (!pflash_table[i]) {
8318
                char buf[64];
8319
                snprintf(buf, sizeof(buf), "fl%c", i + 'a');
8320
                pflash_table[i] = bdrv_new(buf);
8321
            }
8322
            if (bdrv_open(pflash_table[i], pflash_filename[i],
8323
                          snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8324
                fprintf(stderr, "qemu: could not open flash image '%s'\n",
8325
                        pflash_filename[i]);
8326
                exit(1);
8327
            }
8328
        }
8329
    }
8330

    
8331
    sd_bdrv = bdrv_new ("sd");
8332
    /* FIXME: This isn't really a floppy, but it's a reasonable
8333
       approximation.  */
8334
    bdrv_set_type_hint(sd_bdrv, BDRV_TYPE_FLOPPY);
8335
    if (sd_filename) {
8336
        if (bdrv_open(sd_bdrv, sd_filename,
8337
                      snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8338
            fprintf(stderr, "qemu: could not open SD card image %s\n",
8339
                    sd_filename);
8340
        } else
8341
            qemu_key_check(sd_bdrv, sd_filename);
8342
    }
8343

    
8344
    if (mtd_filename) {
8345
        mtd_bdrv = bdrv_new ("mtd");
8346
        if (bdrv_open(mtd_bdrv, mtd_filename,
8347
                      snapshot ? BDRV_O_SNAPSHOT : 0) < 0 ||
8348
            qemu_key_check(mtd_bdrv, mtd_filename)) {
8349
            fprintf(stderr, "qemu: could not open Flash image %s\n",
8350
                    mtd_filename);
8351
            bdrv_delete(mtd_bdrv);
8352
            mtd_bdrv = 0;
8353
        }
8354
    }
8355

    
8356
    register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
8357
    register_savevm("ram", 0, 2, ram_save, ram_load, NULL);
8358

    
8359
    init_ioports();
8360

    
8361
    /* terminal init */
8362
    memset(&display_state, 0, sizeof(display_state));
8363
    if (nographic) {
8364
        /* nearly nothing to do */
8365
        dumb_display_init(ds);
8366
    } else if (vnc_display != NULL) {
8367
        vnc_display_init(ds);
8368
        if (vnc_display_open(ds, vnc_display) < 0)
8369
            exit(1);
8370
    } else {
8371
#if defined(CONFIG_SDL)
8372
        sdl_display_init(ds, full_screen, no_frame);
8373
#elif defined(CONFIG_COCOA)
8374
        cocoa_display_init(ds, full_screen);
8375
#endif
8376
    }
8377

    
8378
    /* Maintain compatibility with multiple stdio monitors */
8379
    if (!strcmp(monitor_device,"stdio")) {
8380
        for (i = 0; i < MAX_SERIAL_PORTS; i++) {
8381
            if (!strcmp(serial_devices[i],"mon:stdio")) {
8382
                monitor_device[0] = '\0';
8383
                break;
8384
            } else if (!strcmp(serial_devices[i],"stdio")) {
8385
                monitor_device[0] = '\0';
8386
                pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "mon:stdio");
8387
                break;
8388
            }
8389
        }
8390
    }
8391
    if (monitor_device[0] != '\0') {
8392
        monitor_hd = qemu_chr_open(monitor_device);
8393
        if (!monitor_hd) {
8394
            fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
8395
            exit(1);
8396
        }
8397
        monitor_init(monitor_hd, !nographic);
8398
    }
8399

    
8400
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
8401
        const char *devname = serial_devices[i];
8402
        if (devname[0] != '\0' && strcmp(devname, "none")) {
8403
            serial_hds[i] = qemu_chr_open(devname);
8404
            if (!serial_hds[i]) {
8405
                fprintf(stderr, "qemu: could not open serial device '%s'\n",
8406
                        devname);
8407
                exit(1);
8408
            }
8409
            if (strstart(devname, "vc", 0))
8410
                qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
8411
        }
8412
    }
8413

    
8414
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
8415
        const char *devname = parallel_devices[i];
8416
        if (devname[0] != '\0' && strcmp(devname, "none")) {
8417
            parallel_hds[i] = qemu_chr_open(devname);
8418
            if (!parallel_hds[i]) {
8419
                fprintf(stderr, "qemu: could not open parallel device '%s'\n",
8420
                        devname);
8421
                exit(1);
8422
            }
8423
            if (strstart(devname, "vc", 0))
8424
                qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
8425
        }
8426
    }
8427

    
8428
    machine->init(ram_size, vga_ram_size, boot_device,
8429
                  ds, fd_filename, snapshot,
8430
                  kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
8431

    
8432
    /* init USB devices */
8433
    if (usb_enabled) {
8434
        for(i = 0; i < usb_devices_index; i++) {
8435
            if (usb_device_add(usb_devices[i]) < 0) {
8436
                fprintf(stderr, "Warning: could not add USB device %s\n",
8437
                        usb_devices[i]);
8438
            }
8439
        }
8440
    }
8441

    
8442
    if (display_state.dpy_refresh) {
8443
        display_state.gui_timer = qemu_new_timer(rt_clock, gui_update, &display_state);
8444
        qemu_mod_timer(display_state.gui_timer, qemu_get_clock(rt_clock));
8445
    }
8446

    
8447
#ifdef CONFIG_GDBSTUB
8448
    if (use_gdbstub) {
8449
        /* XXX: use standard host:port notation and modify options
8450
           accordingly. */
8451
        if (gdbserver_start(gdbstub_port) < 0) {
8452
            fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
8453
                    gdbstub_port);
8454
            exit(1);
8455
        }
8456
    }
8457
#endif
8458

    
8459
    if (loadvm)
8460
        do_loadvm(loadvm);
8461

    
8462
    {
8463
        /* XXX: simplify init */
8464
        read_passwords();
8465
        if (autostart) {
8466
            vm_start();
8467
        }
8468
    }
8469

    
8470
    if (daemonize) {
8471
        uint8_t status = 0;
8472
        ssize_t len;
8473
        int fd;
8474

    
8475
    again1:
8476
        len = write(fds[1], &status, 1);
8477
        if (len == -1 && (errno == EINTR))
8478
            goto again1;
8479

    
8480
        if (len != 1)
8481
            exit(1);
8482

    
8483
        TFR(fd = open("/dev/null", O_RDWR));
8484
        if (fd == -1)
8485
            exit(1);
8486

    
8487
        dup2(fd, 0);
8488
        dup2(fd, 1);
8489
        dup2(fd, 2);
8490

    
8491
        close(fd);
8492
    }
8493

    
8494
    main_loop();
8495
    quit_timers();
8496

    
8497
#if !defined(_WIN32)
8498
    /* close network clients */
8499
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
8500
        VLANClientState *vc;
8501

    
8502
        for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
8503
            if (vc->fd_read == tap_receive) {
8504
                char ifname[64];
8505
                TAPState *s = vc->opaque;
8506

    
8507
                if (sscanf(vc->info_str, "tap: ifname=%63s ", ifname) == 1 &&
8508
                    s->down_script[0])
8509
                    launch_script(s->down_script, ifname, s->fd);
8510
            }
8511
    }
8512
    }
8513
#endif
8514
    return 0;
8515
}