Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ 6c1f42fe

History | View | Annotate | Download (25.4 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18

    
19
#include <linux/kvm.h>
20

    
21
#include "qemu-common.h"
22
#include "sysemu.h"
23
#include "kvm.h"
24
#include "cpu.h"
25
#include "gdbstub.h"
26

    
27
//#define DEBUG_KVM
28

    
29
#ifdef DEBUG_KVM
30
#define dprintf(fmt, ...) \
31
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
32
#else
33
#define dprintf(fmt, ...) \
34
    do { } while (0)
35
#endif
36

    
37
#ifdef KVM_CAP_EXT_CPUID
38

    
39
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
40
{
41
    struct kvm_cpuid2 *cpuid;
42
    int r, size;
43

    
44
    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
45
    cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
46
    cpuid->nent = max;
47
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
48
    if (r == 0 && cpuid->nent >= max) {
49
        r = -E2BIG;
50
    }
51
    if (r < 0) {
52
        if (r == -E2BIG) {
53
            qemu_free(cpuid);
54
            return NULL;
55
        } else {
56
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
57
                    strerror(-r));
58
            exit(1);
59
        }
60
    }
61
    return cpuid;
62
}
63

    
64
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
65
{
66
    struct kvm_cpuid2 *cpuid;
67
    int i, max;
68
    uint32_t ret = 0;
69
    uint32_t cpuid_1_edx;
70

    
71
    if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
72
        return -1U;
73
    }
74

    
75
    max = 1;
76
    while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
77
        max *= 2;
78
    }
79

    
80
    for (i = 0; i < cpuid->nent; ++i) {
81
        if (cpuid->entries[i].function == function) {
82
            switch (reg) {
83
            case R_EAX:
84
                ret = cpuid->entries[i].eax;
85
                break;
86
            case R_EBX:
87
                ret = cpuid->entries[i].ebx;
88
                break;
89
            case R_ECX:
90
                ret = cpuid->entries[i].ecx;
91
                break;
92
            case R_EDX:
93
                ret = cpuid->entries[i].edx;
94
                if (function == 0x80000001) {
95
                    /* On Intel, kvm returns cpuid according to the Intel spec,
96
                     * so add missing bits according to the AMD spec:
97
                     */
98
                    cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, R_EDX);
99
                    ret |= cpuid_1_edx & 0xdfeff7ff;
100
                }
101
                break;
102
            }
103
        }
104
    }
105

    
106
    qemu_free(cpuid);
107

    
108
    return ret;
109
}
110

    
111
#else
112

    
113
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
114
{
115
    return -1U;
116
}
117

    
118
#endif
119

    
120
static void kvm_trim_features(uint32_t *features, uint32_t supported)
121
{
122
    int i;
123
    uint32_t mask;
124

    
125
    for (i = 0; i < 32; ++i) {
126
        mask = 1U << i;
127
        if ((*features & mask) && !(supported & mask)) {
128
            *features &= ~mask;
129
        }
130
    }
131
}
132

    
133
int kvm_arch_init_vcpu(CPUState *env)
134
{
135
    struct {
136
        struct kvm_cpuid2 cpuid;
137
        struct kvm_cpuid_entry2 entries[100];
138
    } __attribute__((packed)) cpuid_data;
139
    uint32_t limit, i, j, cpuid_i;
140
    uint32_t unused;
141

    
142
    env->mp_state = KVM_MP_STATE_RUNNABLE;
143

    
144
    kvm_trim_features(&env->cpuid_features,
145
        kvm_arch_get_supported_cpuid(env, 1, R_EDX));
146
    kvm_trim_features(&env->cpuid_ext_features,
147
        kvm_arch_get_supported_cpuid(env, 1, R_ECX));
148
    kvm_trim_features(&env->cpuid_ext2_features,
149
        kvm_arch_get_supported_cpuid(env, 0x80000001, R_EDX));
150
    kvm_trim_features(&env->cpuid_ext3_features,
151
        kvm_arch_get_supported_cpuid(env, 0x80000001, R_ECX));
152

    
153
    cpuid_i = 0;
154

    
155
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
156

    
157
    for (i = 0; i <= limit; i++) {
158
        struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
159

    
160
        switch (i) {
161
        case 2: {
162
            /* Keep reading function 2 till all the input is received */
163
            int times;
164

    
165
            c->function = i;
166
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
167
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
168
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
169
            times = c->eax & 0xff;
170

    
171
            for (j = 1; j < times; ++j) {
172
                c = &cpuid_data.entries[cpuid_i++];
173
                c->function = i;
174
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
175
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
176
            }
177
            break;
178
        }
179
        case 4:
180
        case 0xb:
181
        case 0xd:
182
            for (j = 0; ; j++) {
183
                c->function = i;
184
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
185
                c->index = j;
186
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
187

    
188
                if (i == 4 && c->eax == 0)
189
                    break;
190
                if (i == 0xb && !(c->ecx & 0xff00))
191
                    break;
192
                if (i == 0xd && c->eax == 0)
193
                    break;
194

    
195
                c = &cpuid_data.entries[cpuid_i++];
196
            }
197
            break;
198
        default:
199
            c->function = i;
200
            c->flags = 0;
201
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
202
            break;
203
        }
204
    }
205
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
206

    
207
    for (i = 0x80000000; i <= limit; i++) {
208
        struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
209

    
210
        c->function = i;
211
        c->flags = 0;
212
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
213
    }
214

    
215
    cpuid_data.cpuid.nent = cpuid_i;
216

    
217
    return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
218
}
219

    
220
static int kvm_has_msr_star(CPUState *env)
221
{
222
    static int has_msr_star;
223
    int ret;
224

    
225
    /* first time */
226
    if (has_msr_star == 0) {        
227
        struct kvm_msr_list msr_list, *kvm_msr_list;
228

    
229
        has_msr_star = -1;
230

    
231
        /* Obtain MSR list from KVM.  These are the MSRs that we must
232
         * save/restore */
233
        msr_list.nmsrs = 0;
234
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
235
        if (ret < 0)
236
            return 0;
237

    
238
        kvm_msr_list = qemu_mallocz(sizeof(msr_list) +
239
                                    msr_list.nmsrs * sizeof(msr_list.indices[0]));
240

    
241
        kvm_msr_list->nmsrs = msr_list.nmsrs;
242
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
243
        if (ret >= 0) {
244
            int i;
245

    
246
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
247
                if (kvm_msr_list->indices[i] == MSR_STAR) {
248
                    has_msr_star = 1;
249
                    break;
250
                }
251
            }
252
        }
253

    
254
        free(kvm_msr_list);
255
    }
256

    
257
    if (has_msr_star == 1)
258
        return 1;
259
    return 0;
260
}
261

    
262
int kvm_arch_init(KVMState *s, int smp_cpus)
263
{
264
    int ret;
265

    
266
    /* create vm86 tss.  KVM uses vm86 mode to emulate 16-bit code
267
     * directly.  In order to use vm86 mode, a TSS is needed.  Since this
268
     * must be part of guest physical memory, we need to allocate it.  Older
269
     * versions of KVM just assumed that it would be at the end of physical
270
     * memory but that doesn't work with more than 4GB of memory.  We simply
271
     * refuse to work with those older versions of KVM. */
272
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
273
    if (ret <= 0) {
274
        fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
275
        return ret;
276
    }
277

    
278
    /* this address is 3 pages before the bios, and the bios should present
279
     * as unavaible memory.  FIXME, need to ensure the e820 map deals with
280
     * this?
281
     */
282
    return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
283
}
284
                    
285
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
286
{
287
    lhs->selector = rhs->selector;
288
    lhs->base = rhs->base;
289
    lhs->limit = rhs->limit;
290
    lhs->type = 3;
291
    lhs->present = 1;
292
    lhs->dpl = 3;
293
    lhs->db = 0;
294
    lhs->s = 1;
295
    lhs->l = 0;
296
    lhs->g = 0;
297
    lhs->avl = 0;
298
    lhs->unusable = 0;
299
}
300

    
301
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
302
{
303
    unsigned flags = rhs->flags;
304
    lhs->selector = rhs->selector;
305
    lhs->base = rhs->base;
306
    lhs->limit = rhs->limit;
307
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
308
    lhs->present = (flags & DESC_P_MASK) != 0;
309
    lhs->dpl = rhs->selector & 3;
310
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
311
    lhs->s = (flags & DESC_S_MASK) != 0;
312
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
313
    lhs->g = (flags & DESC_G_MASK) != 0;
314
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
315
    lhs->unusable = 0;
316
}
317

    
318
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
319
{
320
    lhs->selector = rhs->selector;
321
    lhs->base = rhs->base;
322
    lhs->limit = rhs->limit;
323
    lhs->flags =
324
        (rhs->type << DESC_TYPE_SHIFT)
325
        | (rhs->present * DESC_P_MASK)
326
        | (rhs->dpl << DESC_DPL_SHIFT)
327
        | (rhs->db << DESC_B_SHIFT)
328
        | (rhs->s * DESC_S_MASK)
329
        | (rhs->l << DESC_L_SHIFT)
330
        | (rhs->g * DESC_G_MASK)
331
        | (rhs->avl * DESC_AVL_MASK);
332
}
333

    
334
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
335
{
336
    if (set)
337
        *kvm_reg = *qemu_reg;
338
    else
339
        *qemu_reg = *kvm_reg;
340
}
341

    
342
static int kvm_getput_regs(CPUState *env, int set)
343
{
344
    struct kvm_regs regs;
345
    int ret = 0;
346

    
347
    if (!set) {
348
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
349
        if (ret < 0)
350
            return ret;
351
    }
352

    
353
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
354
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
355
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
356
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
357
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
358
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
359
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
360
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
361
#ifdef TARGET_X86_64
362
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
363
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
364
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
365
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
366
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
367
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
368
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
369
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
370
#endif
371

    
372
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
373
    kvm_getput_reg(&regs.rip, &env->eip, set);
374

    
375
    if (set)
376
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
377

    
378
    return ret;
379
}
380

    
381
static int kvm_put_fpu(CPUState *env)
382
{
383
    struct kvm_fpu fpu;
384
    int i;
385

    
386
    memset(&fpu, 0, sizeof fpu);
387
    fpu.fsw = env->fpus & ~(7 << 11);
388
    fpu.fsw |= (env->fpstt & 7) << 11;
389
    fpu.fcw = env->fpuc;
390
    for (i = 0; i < 8; ++i)
391
        fpu.ftwx |= (!env->fptags[i]) << i;
392
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
393
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
394
    fpu.mxcsr = env->mxcsr;
395

    
396
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
397
}
398

    
399
static int kvm_put_sregs(CPUState *env)
400
{
401
    struct kvm_sregs sregs;
402

    
403
    memcpy(sregs.interrupt_bitmap,
404
           env->interrupt_bitmap,
405
           sizeof(sregs.interrupt_bitmap));
406

    
407
    if ((env->eflags & VM_MASK)) {
408
            set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
409
            set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
410
            set_v8086_seg(&sregs.es, &env->segs[R_ES]);
411
            set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
412
            set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
413
            set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
414
    } else {
415
            set_seg(&sregs.cs, &env->segs[R_CS]);
416
            set_seg(&sregs.ds, &env->segs[R_DS]);
417
            set_seg(&sregs.es, &env->segs[R_ES]);
418
            set_seg(&sregs.fs, &env->segs[R_FS]);
419
            set_seg(&sregs.gs, &env->segs[R_GS]);
420
            set_seg(&sregs.ss, &env->segs[R_SS]);
421

    
422
            if (env->cr[0] & CR0_PE_MASK) {
423
                /* force ss cpl to cs cpl */
424
                sregs.ss.selector = (sregs.ss.selector & ~3) |
425
                        (sregs.cs.selector & 3);
426
                sregs.ss.dpl = sregs.ss.selector & 3;
427
            }
428
    }
429

    
430
    set_seg(&sregs.tr, &env->tr);
431
    set_seg(&sregs.ldt, &env->ldt);
432

    
433
    sregs.idt.limit = env->idt.limit;
434
    sregs.idt.base = env->idt.base;
435
    sregs.gdt.limit = env->gdt.limit;
436
    sregs.gdt.base = env->gdt.base;
437

    
438
    sregs.cr0 = env->cr[0];
439
    sregs.cr2 = env->cr[2];
440
    sregs.cr3 = env->cr[3];
441
    sregs.cr4 = env->cr[4];
442

    
443
    sregs.cr8 = cpu_get_apic_tpr(env);
444
    sregs.apic_base = cpu_get_apic_base(env);
445

    
446
    sregs.efer = env->efer;
447

    
448
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
449
}
450

    
451
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
452
                              uint32_t index, uint64_t value)
453
{
454
    entry->index = index;
455
    entry->data = value;
456
}
457

    
458
static int kvm_put_msrs(CPUState *env)
459
{
460
    struct {
461
        struct kvm_msrs info;
462
        struct kvm_msr_entry entries[100];
463
    } msr_data;
464
    struct kvm_msr_entry *msrs = msr_data.entries;
465
    int n = 0;
466

    
467
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
468
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
469
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
470
    if (kvm_has_msr_star(env))
471
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
472
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
473
#ifdef TARGET_X86_64
474
    /* FIXME if lm capable */
475
    kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
476
    kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
477
    kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
478
    kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
479
#endif
480
    msr_data.info.nmsrs = n;
481

    
482
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
483

    
484
}
485

    
486

    
487
static int kvm_get_fpu(CPUState *env)
488
{
489
    struct kvm_fpu fpu;
490
    int i, ret;
491

    
492
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
493
    if (ret < 0)
494
        return ret;
495

    
496
    env->fpstt = (fpu.fsw >> 11) & 7;
497
    env->fpus = fpu.fsw;
498
    env->fpuc = fpu.fcw;
499
    for (i = 0; i < 8; ++i)
500
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
501
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
502
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
503
    env->mxcsr = fpu.mxcsr;
504

    
505
    return 0;
506
}
507

    
508
static int kvm_get_sregs(CPUState *env)
509
{
510
    struct kvm_sregs sregs;
511
    uint32_t hflags;
512
    int ret;
513

    
514
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
515
    if (ret < 0)
516
        return ret;
517

    
518
    memcpy(env->interrupt_bitmap, 
519
           sregs.interrupt_bitmap,
520
           sizeof(sregs.interrupt_bitmap));
521

    
522
    get_seg(&env->segs[R_CS], &sregs.cs);
523
    get_seg(&env->segs[R_DS], &sregs.ds);
524
    get_seg(&env->segs[R_ES], &sregs.es);
525
    get_seg(&env->segs[R_FS], &sregs.fs);
526
    get_seg(&env->segs[R_GS], &sregs.gs);
527
    get_seg(&env->segs[R_SS], &sregs.ss);
528

    
529
    get_seg(&env->tr, &sregs.tr);
530
    get_seg(&env->ldt, &sregs.ldt);
531

    
532
    env->idt.limit = sregs.idt.limit;
533
    env->idt.base = sregs.idt.base;
534
    env->gdt.limit = sregs.gdt.limit;
535
    env->gdt.base = sregs.gdt.base;
536

    
537
    env->cr[0] = sregs.cr0;
538
    env->cr[2] = sregs.cr2;
539
    env->cr[3] = sregs.cr3;
540
    env->cr[4] = sregs.cr4;
541

    
542
    cpu_set_apic_base(env, sregs.apic_base);
543

    
544
    env->efer = sregs.efer;
545
    //cpu_set_apic_tpr(env, sregs.cr8);
546

    
547
#define HFLAG_COPY_MASK ~( \
548
                        HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
549
                        HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
550
                        HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
551
                        HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
552

    
553

    
554

    
555
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
556
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
557
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
558
            (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
559
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
560
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
561
            (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
562

    
563
    if (env->efer & MSR_EFER_LMA) {
564
        hflags |= HF_LMA_MASK;
565
    }
566

    
567
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
568
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
569
    } else {
570
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
571
                (DESC_B_SHIFT - HF_CS32_SHIFT);
572
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
573
                (DESC_B_SHIFT - HF_SS32_SHIFT);
574
        if (!(env->cr[0] & CR0_PE_MASK) ||
575
                   (env->eflags & VM_MASK) ||
576
                   !(hflags & HF_CS32_MASK)) {
577
                hflags |= HF_ADDSEG_MASK;
578
            } else {
579
                hflags |= ((env->segs[R_DS].base |
580
                                env->segs[R_ES].base |
581
                                env->segs[R_SS].base) != 0) <<
582
                    HF_ADDSEG_SHIFT;
583
            }
584
    }
585
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
586

    
587
    return 0;
588
}
589

    
590
static int kvm_get_msrs(CPUState *env)
591
{
592
    struct {
593
        struct kvm_msrs info;
594
        struct kvm_msr_entry entries[100];
595
    } msr_data;
596
    struct kvm_msr_entry *msrs = msr_data.entries;
597
    int ret, i, n;
598

    
599
    n = 0;
600
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
601
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
602
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
603
    if (kvm_has_msr_star(env))
604
        msrs[n++].index = MSR_STAR;
605
    msrs[n++].index = MSR_IA32_TSC;
606
#ifdef TARGET_X86_64
607
    /* FIXME lm_capable_kernel */
608
    msrs[n++].index = MSR_CSTAR;
609
    msrs[n++].index = MSR_KERNELGSBASE;
610
    msrs[n++].index = MSR_FMASK;
611
    msrs[n++].index = MSR_LSTAR;
612
#endif
613
    msr_data.info.nmsrs = n;
614
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
615
    if (ret < 0)
616
        return ret;
617

    
618
    for (i = 0; i < ret; i++) {
619
        switch (msrs[i].index) {
620
        case MSR_IA32_SYSENTER_CS:
621
            env->sysenter_cs = msrs[i].data;
622
            break;
623
        case MSR_IA32_SYSENTER_ESP:
624
            env->sysenter_esp = msrs[i].data;
625
            break;
626
        case MSR_IA32_SYSENTER_EIP:
627
            env->sysenter_eip = msrs[i].data;
628
            break;
629
        case MSR_STAR:
630
            env->star = msrs[i].data;
631
            break;
632
#ifdef TARGET_X86_64
633
        case MSR_CSTAR:
634
            env->cstar = msrs[i].data;
635
            break;
636
        case MSR_KERNELGSBASE:
637
            env->kernelgsbase = msrs[i].data;
638
            break;
639
        case MSR_FMASK:
640
            env->fmask = msrs[i].data;
641
            break;
642
        case MSR_LSTAR:
643
            env->lstar = msrs[i].data;
644
            break;
645
#endif
646
        case MSR_IA32_TSC:
647
            env->tsc = msrs[i].data;
648
            break;
649
        }
650
    }
651

    
652
    return 0;
653
}
654

    
655
int kvm_arch_put_registers(CPUState *env)
656
{
657
    int ret;
658

    
659
    ret = kvm_getput_regs(env, 1);
660
    if (ret < 0)
661
        return ret;
662

    
663
    ret = kvm_put_fpu(env);
664
    if (ret < 0)
665
        return ret;
666

    
667
    ret = kvm_put_sregs(env);
668
    if (ret < 0)
669
        return ret;
670

    
671
    ret = kvm_put_msrs(env);
672
    if (ret < 0)
673
        return ret;
674

    
675
    ret = kvm_put_mp_state(env);
676
    if (ret < 0)
677
        return ret;
678

    
679
    ret = kvm_get_mp_state(env);
680
    if (ret < 0)
681
        return ret;
682

    
683
    return 0;
684
}
685

    
686
int kvm_arch_get_registers(CPUState *env)
687
{
688
    int ret;
689

    
690
    ret = kvm_getput_regs(env, 0);
691
    if (ret < 0)
692
        return ret;
693

    
694
    ret = kvm_get_fpu(env);
695
    if (ret < 0)
696
        return ret;
697

    
698
    ret = kvm_get_sregs(env);
699
    if (ret < 0)
700
        return ret;
701

    
702
    ret = kvm_get_msrs(env);
703
    if (ret < 0)
704
        return ret;
705

    
706
    return 0;
707
}
708

    
709
int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
710
{
711
    /* Try to inject an interrupt if the guest can accept it */
712
    if (run->ready_for_interrupt_injection &&
713
        (env->interrupt_request & CPU_INTERRUPT_HARD) &&
714
        (env->eflags & IF_MASK)) {
715
        int irq;
716

    
717
        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
718
        irq = cpu_get_pic_interrupt(env);
719
        if (irq >= 0) {
720
            struct kvm_interrupt intr;
721
            intr.irq = irq;
722
            /* FIXME: errors */
723
            dprintf("injected interrupt %d\n", irq);
724
            kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
725
        }
726
    }
727

    
728
    /* If we have an interrupt but the guest is not ready to receive an
729
     * interrupt, request an interrupt window exit.  This will
730
     * cause a return to userspace as soon as the guest is ready to
731
     * receive interrupts. */
732
    if ((env->interrupt_request & CPU_INTERRUPT_HARD))
733
        run->request_interrupt_window = 1;
734
    else
735
        run->request_interrupt_window = 0;
736

    
737
    dprintf("setting tpr\n");
738
    run->cr8 = cpu_get_apic_tpr(env);
739

    
740
    return 0;
741
}
742

    
743
int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
744
{
745
    if (run->if_flag)
746
        env->eflags |= IF_MASK;
747
    else
748
        env->eflags &= ~IF_MASK;
749
    
750
    cpu_set_apic_tpr(env, run->cr8);
751
    cpu_set_apic_base(env, run->apic_base);
752

    
753
    return 0;
754
}
755

    
756
static int kvm_handle_halt(CPUState *env)
757
{
758
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
759
          (env->eflags & IF_MASK)) &&
760
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
761
        env->halted = 1;
762
        env->exception_index = EXCP_HLT;
763
        return 0;
764
    }
765

    
766
    return 1;
767
}
768

    
769
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
770
{
771
    int ret = 0;
772

    
773
    switch (run->exit_reason) {
774
    case KVM_EXIT_HLT:
775
        dprintf("handle_hlt\n");
776
        ret = kvm_handle_halt(env);
777
        break;
778
    }
779

    
780
    return ret;
781
}
782

    
783
#ifdef KVM_CAP_SET_GUEST_DEBUG
784
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
785
{
786
    const static uint8_t int3 = 0xcc;
787

    
788
    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
789
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
790
        return -EINVAL;
791
    return 0;
792
}
793

    
794
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
795
{
796
    uint8_t int3;
797

    
798
    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
799
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
800
        return -EINVAL;
801
    return 0;
802
}
803

    
804
static struct {
805
    target_ulong addr;
806
    int len;
807
    int type;
808
} hw_breakpoint[4];
809

    
810
static int nb_hw_breakpoint;
811

    
812
static int find_hw_breakpoint(target_ulong addr, int len, int type)
813
{
814
    int n;
815

    
816
    for (n = 0; n < nb_hw_breakpoint; n++)
817
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
818
            (hw_breakpoint[n].len == len || len == -1))
819
            return n;
820
    return -1;
821
}
822

    
823
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
824
                                  target_ulong len, int type)
825
{
826
    switch (type) {
827
    case GDB_BREAKPOINT_HW:
828
        len = 1;
829
        break;
830
    case GDB_WATCHPOINT_WRITE:
831
    case GDB_WATCHPOINT_ACCESS:
832
        switch (len) {
833
        case 1:
834
            break;
835
        case 2:
836
        case 4:
837
        case 8:
838
            if (addr & (len - 1))
839
                return -EINVAL;
840
            break;
841
        default:
842
            return -EINVAL;
843
        }
844
        break;
845
    default:
846
        return -ENOSYS;
847
    }
848

    
849
    if (nb_hw_breakpoint == 4)
850
        return -ENOBUFS;
851

    
852
    if (find_hw_breakpoint(addr, len, type) >= 0)
853
        return -EEXIST;
854

    
855
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
856
    hw_breakpoint[nb_hw_breakpoint].len = len;
857
    hw_breakpoint[nb_hw_breakpoint].type = type;
858
    nb_hw_breakpoint++;
859

    
860
    return 0;
861
}
862

    
863
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
864
                                  target_ulong len, int type)
865
{
866
    int n;
867

    
868
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
869
    if (n < 0)
870
        return -ENOENT;
871

    
872
    nb_hw_breakpoint--;
873
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
874

    
875
    return 0;
876
}
877

    
878
void kvm_arch_remove_all_hw_breakpoints(void)
879
{
880
    nb_hw_breakpoint = 0;
881
}
882

    
883
static CPUWatchpoint hw_watchpoint;
884

    
885
int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
886
{
887
    int handle = 0;
888
    int n;
889

    
890
    if (arch_info->exception == 1) {
891
        if (arch_info->dr6 & (1 << 14)) {
892
            if (cpu_single_env->singlestep_enabled)
893
                handle = 1;
894
        } else {
895
            for (n = 0; n < 4; n++)
896
                if (arch_info->dr6 & (1 << n))
897
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
898
                    case 0x0:
899
                        handle = 1;
900
                        break;
901
                    case 0x1:
902
                        handle = 1;
903
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
904
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
905
                        hw_watchpoint.flags = BP_MEM_WRITE;
906
                        break;
907
                    case 0x3:
908
                        handle = 1;
909
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
910
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
911
                        hw_watchpoint.flags = BP_MEM_ACCESS;
912
                        break;
913
                    }
914
        }
915
    } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
916
        handle = 1;
917

    
918
    if (!handle)
919
        kvm_update_guest_debug(cpu_single_env,
920
                        (arch_info->exception == 1) ?
921
                        KVM_GUESTDBG_INJECT_DB : KVM_GUESTDBG_INJECT_BP);
922

    
923
    return handle;
924
}
925

    
926
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
927
{
928
    const uint8_t type_code[] = {
929
        [GDB_BREAKPOINT_HW] = 0x0,
930
        [GDB_WATCHPOINT_WRITE] = 0x1,
931
        [GDB_WATCHPOINT_ACCESS] = 0x3
932
    };
933
    const uint8_t len_code[] = {
934
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
935
    };
936
    int n;
937

    
938
    if (kvm_sw_breakpoints_active(env))
939
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
940

    
941
    if (nb_hw_breakpoint > 0) {
942
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
943
        dbg->arch.debugreg[7] = 0x0600;
944
        for (n = 0; n < nb_hw_breakpoint; n++) {
945
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
946
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
947
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
948
                (len_code[hw_breakpoint[n].len] << (18 + n*4));
949
        }
950
    }
951
}
952
#endif /* KVM_CAP_SET_GUEST_DEBUG */