Statistics
| Branch: | Revision:

root / linux-user / vm86.c @ 6c30b07f

History | View | Annotate | Download (15.3 kB)

1
/*
2
 *  vm86 linux syscall support
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 *  This program is free software; you can redistribute it and/or modify
7
 *  it under the terms of the GNU General Public License as published by
8
 *  the Free Software Foundation; either version 2 of the License, or
9
 *  (at your option) any later version.
10
 *
11
 *  This program is distributed in the hope that it will be useful,
12
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
 *  GNU General Public License for more details.
15
 *
16
 *  You should have received a copy of the GNU General Public License
17
 *  along with this program; if not, write to the Free Software
18
 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19
 */
20
#include <stdlib.h>
21
#include <stdio.h>
22
#include <stdarg.h>
23
#include <string.h>
24
#include <errno.h>
25
#include <unistd.h>
26

    
27
#include "qemu.h"
28

    
29
//#define DEBUG_VM86
30

    
31
#define set_flags(X,new,mask) \
32
((X) = ((X) & ~(mask)) | ((new) & (mask)))
33

    
34
#define SAFE_MASK        (0xDD5)
35
#define RETURN_MASK        (0xDFF)
36

    
37
static inline int is_revectored(int nr, struct target_revectored_struct *bitmap)
38
{
39
    return (((uint8_t *)bitmap)[nr >> 3] >> (nr & 7)) & 1;
40
}
41

    
42
static inline void vm_putw(uint8_t *segptr, unsigned int reg16, unsigned int val)
43
{
44
    stw(segptr + (reg16 & 0xffff), val);
45
}
46

    
47
static inline void vm_putl(uint8_t *segptr, unsigned int reg16, unsigned int val)
48
{
49
    stl(segptr + (reg16 & 0xffff), val);
50
}
51

    
52
static inline unsigned int vm_getw(uint8_t *segptr, unsigned int reg16)
53
{
54
    return lduw(segptr + (reg16 & 0xffff));
55
}
56

    
57
static inline unsigned int vm_getl(uint8_t *segptr, unsigned int reg16)
58
{
59
    return ldl(segptr + (reg16 & 0xffff));
60
}
61

    
62
void save_v86_state(CPUX86State *env)
63
{
64
    TaskState *ts = env->opaque;
65
    struct target_vm86plus_struct * target_v86;
66

    
67
    if (!lock_user_struct(VERIFY_WRITE, target_v86, ts->target_v86, 0))
68
        /* FIXME - should return an error */
69
        return;
70
    /* put the VM86 registers in the userspace register structure */
71
    target_v86->regs.eax = tswap32(env->regs[R_EAX]);
72
    target_v86->regs.ebx = tswap32(env->regs[R_EBX]);
73
    target_v86->regs.ecx = tswap32(env->regs[R_ECX]);
74
    target_v86->regs.edx = tswap32(env->regs[R_EDX]);
75
    target_v86->regs.esi = tswap32(env->regs[R_ESI]);
76
    target_v86->regs.edi = tswap32(env->regs[R_EDI]);
77
    target_v86->regs.ebp = tswap32(env->regs[R_EBP]);
78
    target_v86->regs.esp = tswap32(env->regs[R_ESP]);
79
    target_v86->regs.eip = tswap32(env->eip);
80
    target_v86->regs.cs = tswap16(env->segs[R_CS].selector);
81
    target_v86->regs.ss = tswap16(env->segs[R_SS].selector);
82
    target_v86->regs.ds = tswap16(env->segs[R_DS].selector);
83
    target_v86->regs.es = tswap16(env->segs[R_ES].selector);
84
    target_v86->regs.fs = tswap16(env->segs[R_FS].selector);
85
    target_v86->regs.gs = tswap16(env->segs[R_GS].selector);
86
    set_flags(env->eflags, ts->v86flags, VIF_MASK | ts->v86mask);
87
    target_v86->regs.eflags = tswap32(env->eflags);
88
    unlock_user_struct(target_v86, ts->target_v86, 1);
89
#ifdef DEBUG_VM86
90
    fprintf(logfile, "save_v86_state: eflags=%08x cs:ip=%04x:%04x\n",
91
            env->eflags, env->segs[R_CS].selector, env->eip);
92
#endif
93

    
94
    /* restore 32 bit registers */
95
    env->regs[R_EAX] = ts->vm86_saved_regs.eax;
96
    env->regs[R_EBX] = ts->vm86_saved_regs.ebx;
97
    env->regs[R_ECX] = ts->vm86_saved_regs.ecx;
98
    env->regs[R_EDX] = ts->vm86_saved_regs.edx;
99
    env->regs[R_ESI] = ts->vm86_saved_regs.esi;
100
    env->regs[R_EDI] = ts->vm86_saved_regs.edi;
101
    env->regs[R_EBP] = ts->vm86_saved_regs.ebp;
102
    env->regs[R_ESP] = ts->vm86_saved_regs.esp;
103
    env->eflags = ts->vm86_saved_regs.eflags;
104
    env->eip = ts->vm86_saved_regs.eip;
105

    
106
    cpu_x86_load_seg(env, R_CS, ts->vm86_saved_regs.cs);
107
    cpu_x86_load_seg(env, R_SS, ts->vm86_saved_regs.ss);
108
    cpu_x86_load_seg(env, R_DS, ts->vm86_saved_regs.ds);
109
    cpu_x86_load_seg(env, R_ES, ts->vm86_saved_regs.es);
110
    cpu_x86_load_seg(env, R_FS, ts->vm86_saved_regs.fs);
111
    cpu_x86_load_seg(env, R_GS, ts->vm86_saved_regs.gs);
112
}
113

    
114
/* return from vm86 mode to 32 bit. The vm86() syscall will return
115
   'retval' */
116
static inline void return_to_32bit(CPUX86State *env, int retval)
117
{
118
#ifdef DEBUG_VM86
119
    fprintf(logfile, "return_to_32bit: ret=0x%x\n", retval);
120
#endif
121
    save_v86_state(env);
122
    env->regs[R_EAX] = retval;
123
}
124

    
125
static inline int set_IF(CPUX86State *env)
126
{
127
    TaskState *ts = env->opaque;
128

    
129
    ts->v86flags |= VIF_MASK;
130
    if (ts->v86flags & VIP_MASK) {
131
        return_to_32bit(env, TARGET_VM86_STI);
132
        return 1;
133
    }
134
    return 0;
135
}
136

    
137
static inline void clear_IF(CPUX86State *env)
138
{
139
    TaskState *ts = env->opaque;
140

    
141
    ts->v86flags &= ~VIF_MASK;
142
}
143

    
144
static inline void clear_TF(CPUX86State *env)
145
{
146
    env->eflags &= ~TF_MASK;
147
}
148

    
149
static inline void clear_AC(CPUX86State *env)
150
{
151
    env->eflags &= ~AC_MASK;
152
}
153

    
154
static inline int set_vflags_long(unsigned long eflags, CPUX86State *env)
155
{
156
    TaskState *ts = env->opaque;
157

    
158
    set_flags(ts->v86flags, eflags, ts->v86mask);
159
    set_flags(env->eflags, eflags, SAFE_MASK);
160
    if (eflags & IF_MASK)
161
        return set_IF(env);
162
    else
163
        clear_IF(env);
164
    return 0;
165
}
166

    
167
static inline int set_vflags_short(unsigned short flags, CPUX86State *env)
168
{
169
    TaskState *ts = env->opaque;
170

    
171
    set_flags(ts->v86flags, flags, ts->v86mask & 0xffff);
172
    set_flags(env->eflags, flags, SAFE_MASK);
173
    if (flags & IF_MASK)
174
        return set_IF(env);
175
    else
176
        clear_IF(env);
177
    return 0;
178
}
179

    
180
static inline unsigned int get_vflags(CPUX86State *env)
181
{
182
    TaskState *ts = env->opaque;
183
    unsigned int flags;
184

    
185
    flags = env->eflags & RETURN_MASK;
186
    if (ts->v86flags & VIF_MASK)
187
        flags |= IF_MASK;
188
    flags |= IOPL_MASK;
189
    return flags | (ts->v86flags & ts->v86mask);
190
}
191

    
192
#define ADD16(reg, val) reg = (reg & ~0xffff) | ((reg + (val)) & 0xffff)
193

    
194
/* handle VM86 interrupt (NOTE: the CPU core currently does not
195
   support TSS interrupt revectoring, so this code is always executed) */
196
static void do_int(CPUX86State *env, int intno)
197
{
198
    TaskState *ts = env->opaque;
199
    uint32_t *int_ptr, segoffs;
200
    uint8_t *ssp;
201
    unsigned int sp;
202

    
203
    if (env->segs[R_CS].selector == TARGET_BIOSSEG)
204
        goto cannot_handle;
205
    if (is_revectored(intno, &ts->vm86plus.int_revectored))
206
        goto cannot_handle;
207
    if (intno == 0x21 && is_revectored((env->regs[R_EAX] >> 8) & 0xff,
208
                                       &ts->vm86plus.int21_revectored))
209
        goto cannot_handle;
210
    int_ptr = (uint32_t *)(intno << 2);
211
    segoffs = tswap32(*int_ptr);
212
    if ((segoffs >> 16) == TARGET_BIOSSEG)
213
        goto cannot_handle;
214
#if defined(DEBUG_VM86)
215
    fprintf(logfile, "VM86: emulating int 0x%x. CS:IP=%04x:%04x\n",
216
            intno, segoffs >> 16, segoffs & 0xffff);
217
#endif
218
    /* save old state */
219
    ssp = (uint8_t *)(env->segs[R_SS].selector << 4);
220
    sp = env->regs[R_ESP] & 0xffff;
221
    vm_putw(ssp, sp - 2, get_vflags(env));
222
    vm_putw(ssp, sp - 4, env->segs[R_CS].selector);
223
    vm_putw(ssp, sp - 6, env->eip);
224
    ADD16(env->regs[R_ESP], -6);
225
    /* goto interrupt handler */
226
    env->eip = segoffs & 0xffff;
227
    cpu_x86_load_seg(env, R_CS, segoffs >> 16);
228
    clear_TF(env);
229
    clear_IF(env);
230
    clear_AC(env);
231
    return;
232
 cannot_handle:
233
#if defined(DEBUG_VM86)
234
    fprintf(logfile, "VM86: return to 32 bits int 0x%x\n", intno);
235
#endif
236
    return_to_32bit(env, TARGET_VM86_INTx | (intno << 8));
237
}
238

    
239
void handle_vm86_trap(CPUX86State *env, int trapno)
240
{
241
    if (trapno == 1 || trapno == 3) {
242
        return_to_32bit(env, TARGET_VM86_TRAP + (trapno << 8));
243
    } else {
244
        do_int(env, trapno);
245
    }
246
}
247

    
248
#define CHECK_IF_IN_TRAP() \
249
      if ((ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) && \
250
          (ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_TFpendig)) \
251
                newflags |= TF_MASK
252

    
253
#define VM86_FAULT_RETURN \
254
        if ((ts->vm86plus.vm86plus.flags & TARGET_force_return_for_pic) && \
255
            (ts->v86flags & (IF_MASK | VIF_MASK))) \
256
            return_to_32bit(env, TARGET_VM86_PICRETURN); \
257
        return
258

    
259
void handle_vm86_fault(CPUX86State *env)
260
{
261
    TaskState *ts = env->opaque;
262
    uint8_t *csp, *pc, *ssp;
263
    unsigned int ip, sp, newflags, newip, newcs, opcode, intno;
264
    int data32, pref_done;
265

    
266
    csp = (uint8_t *)(env->segs[R_CS].selector << 4);
267
    ip = env->eip & 0xffff;
268
    pc = csp + ip;
269

    
270
    ssp = (uint8_t *)(env->segs[R_SS].selector << 4);
271
    sp = env->regs[R_ESP] & 0xffff;
272

    
273
#if defined(DEBUG_VM86)
274
    fprintf(logfile, "VM86 exception %04x:%08x %02x %02x\n",
275
            env->segs[R_CS].selector, env->eip, pc[0], pc[1]);
276
#endif
277

    
278
    data32 = 0;
279
    pref_done = 0;
280
    do {
281
        opcode = csp[ip];
282
        ADD16(ip, 1);
283
        switch (opcode) {
284
        case 0x66:      /* 32-bit data */     data32=1; break;
285
        case 0x67:      /* 32-bit address */  break;
286
        case 0x2e:      /* CS */              break;
287
        case 0x3e:      /* DS */              break;
288
        case 0x26:      /* ES */              break;
289
        case 0x36:      /* SS */              break;
290
        case 0x65:      /* GS */              break;
291
        case 0x64:      /* FS */              break;
292
        case 0xf2:      /* repnz */              break;
293
        case 0xf3:      /* rep */             break;
294
        default: pref_done = 1;
295
        }
296
    } while (!pref_done);
297

    
298
    /* VM86 mode */
299
    switch(opcode) {
300
    case 0x9c: /* pushf */
301
        if (data32) {
302
            vm_putl(ssp, sp - 4, get_vflags(env));
303
            ADD16(env->regs[R_ESP], -4);
304
        } else {
305
            vm_putw(ssp, sp - 2, get_vflags(env));
306
            ADD16(env->regs[R_ESP], -2);
307
        }
308
        env->eip = ip;
309
        VM86_FAULT_RETURN;
310

    
311
    case 0x9d: /* popf */
312
        if (data32) {
313
            newflags = vm_getl(ssp, sp);
314
            ADD16(env->regs[R_ESP], 4);
315
        } else {
316
            newflags = vm_getw(ssp, sp);
317
            ADD16(env->regs[R_ESP], 2);
318
        }
319
        env->eip = ip;
320
        CHECK_IF_IN_TRAP();
321
        if (data32) {
322
            if (set_vflags_long(newflags, env))
323
                return;
324
        } else {
325
            if (set_vflags_short(newflags, env))
326
                return;
327
        }
328
        VM86_FAULT_RETURN;
329

    
330
    case 0xcd: /* int */
331
        intno = csp[ip];
332
        ADD16(ip, 1);
333
        env->eip = ip;
334
        if (ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) {
335
            if ( (ts->vm86plus.vm86plus.vm86dbg_intxxtab[intno >> 3] >>
336
                  (intno &7)) & 1) {
337
                return_to_32bit(env, TARGET_VM86_INTx + (intno << 8));
338
                return;
339
            }
340
        }
341
        do_int(env, intno);
342
        break;
343

    
344
    case 0xcf: /* iret */
345
        if (data32) {
346
            newip = vm_getl(ssp, sp) & 0xffff;
347
            newcs = vm_getl(ssp, sp + 4) & 0xffff;
348
            newflags = vm_getl(ssp, sp + 8);
349
            ADD16(env->regs[R_ESP], 12);
350
        } else {
351
            newip = vm_getw(ssp, sp);
352
            newcs = vm_getw(ssp, sp + 2);
353
            newflags = vm_getw(ssp, sp + 4);
354
            ADD16(env->regs[R_ESP], 6);
355
        }
356
        env->eip = newip;
357
        cpu_x86_load_seg(env, R_CS, newcs);
358
        CHECK_IF_IN_TRAP();
359
        if (data32) {
360
            if (set_vflags_long(newflags, env))
361
                return;
362
        } else {
363
            if (set_vflags_short(newflags, env))
364
                return;
365
        }
366
        VM86_FAULT_RETURN;
367

    
368
    case 0xfa: /* cli */
369
        env->eip = ip;
370
        clear_IF(env);
371
        VM86_FAULT_RETURN;
372

    
373
    case 0xfb: /* sti */
374
        env->eip = ip;
375
        if (set_IF(env))
376
            return;
377
        VM86_FAULT_RETURN;
378

    
379
    default:
380
        /* real VM86 GPF exception */
381
        return_to_32bit(env, TARGET_VM86_UNKNOWN);
382
        break;
383
    }
384
}
385

    
386
int do_vm86(CPUX86State *env, long subfunction, abi_ulong vm86_addr)
387
{
388
    TaskState *ts = env->opaque;
389
    struct target_vm86plus_struct * target_v86;
390
    int ret;
391

    
392
    switch (subfunction) {
393
    case TARGET_VM86_REQUEST_IRQ:
394
    case TARGET_VM86_FREE_IRQ:
395
    case TARGET_VM86_GET_IRQ_BITS:
396
    case TARGET_VM86_GET_AND_RESET_IRQ:
397
        gemu_log("qemu: unsupported vm86 subfunction (%ld)\n", subfunction);
398
        ret = -TARGET_EINVAL;
399
        goto out;
400
    case TARGET_VM86_PLUS_INSTALL_CHECK:
401
        /* NOTE: on old vm86 stuff this will return the error
402
           from verify_area(), because the subfunction is
403
           interpreted as (invalid) address to vm86_struct.
404
           So the installation check works.
405
            */
406
        ret = 0;
407
        goto out;
408
    }
409

    
410
    /* save current CPU regs */
411
    ts->vm86_saved_regs.eax = 0; /* default vm86 syscall return code */
412
    ts->vm86_saved_regs.ebx = env->regs[R_EBX];
413
    ts->vm86_saved_regs.ecx = env->regs[R_ECX];
414
    ts->vm86_saved_regs.edx = env->regs[R_EDX];
415
    ts->vm86_saved_regs.esi = env->regs[R_ESI];
416
    ts->vm86_saved_regs.edi = env->regs[R_EDI];
417
    ts->vm86_saved_regs.ebp = env->regs[R_EBP];
418
    ts->vm86_saved_regs.esp = env->regs[R_ESP];
419
    ts->vm86_saved_regs.eflags = env->eflags;
420
    ts->vm86_saved_regs.eip  = env->eip;
421
    ts->vm86_saved_regs.cs = env->segs[R_CS].selector;
422
    ts->vm86_saved_regs.ss = env->segs[R_SS].selector;
423
    ts->vm86_saved_regs.ds = env->segs[R_DS].selector;
424
    ts->vm86_saved_regs.es = env->segs[R_ES].selector;
425
    ts->vm86_saved_regs.fs = env->segs[R_FS].selector;
426
    ts->vm86_saved_regs.gs = env->segs[R_GS].selector;
427

    
428
    ts->target_v86 = vm86_addr;
429
    if (!lock_user_struct(VERIFY_READ, target_v86, vm86_addr, 1))
430
        return -TARGET_EFAULT;
431
    /* build vm86 CPU state */
432
    ts->v86flags = tswap32(target_v86->regs.eflags);
433
    env->eflags = (env->eflags & ~SAFE_MASK) |
434
        (tswap32(target_v86->regs.eflags) & SAFE_MASK) | VM_MASK;
435

    
436
    ts->vm86plus.cpu_type = tswapl(target_v86->cpu_type);
437
    switch (ts->vm86plus.cpu_type) {
438
    case TARGET_CPU_286:
439
        ts->v86mask = 0;
440
        break;
441
    case TARGET_CPU_386:
442
        ts->v86mask = NT_MASK | IOPL_MASK;
443
        break;
444
    case TARGET_CPU_486:
445
        ts->v86mask = AC_MASK | NT_MASK | IOPL_MASK;
446
        break;
447
    default:
448
        ts->v86mask = ID_MASK | AC_MASK | NT_MASK | IOPL_MASK;
449
        break;
450
    }
451

    
452
    env->regs[R_EBX] = tswap32(target_v86->regs.ebx);
453
    env->regs[R_ECX] = tswap32(target_v86->regs.ecx);
454
    env->regs[R_EDX] = tswap32(target_v86->regs.edx);
455
    env->regs[R_ESI] = tswap32(target_v86->regs.esi);
456
    env->regs[R_EDI] = tswap32(target_v86->regs.edi);
457
    env->regs[R_EBP] = tswap32(target_v86->regs.ebp);
458
    env->regs[R_ESP] = tswap32(target_v86->regs.esp);
459
    env->eip = tswap32(target_v86->regs.eip);
460
    cpu_x86_load_seg(env, R_CS, tswap16(target_v86->regs.cs));
461
    cpu_x86_load_seg(env, R_SS, tswap16(target_v86->regs.ss));
462
    cpu_x86_load_seg(env, R_DS, tswap16(target_v86->regs.ds));
463
    cpu_x86_load_seg(env, R_ES, tswap16(target_v86->regs.es));
464
    cpu_x86_load_seg(env, R_FS, tswap16(target_v86->regs.fs));
465
    cpu_x86_load_seg(env, R_GS, tswap16(target_v86->regs.gs));
466
    ret = tswap32(target_v86->regs.eax); /* eax will be restored at
467
                                            the end of the syscall */
468
    memcpy(&ts->vm86plus.int_revectored,
469
           &target_v86->int_revectored, 32);
470
    memcpy(&ts->vm86plus.int21_revectored,
471
           &target_v86->int21_revectored, 32);
472
    ts->vm86plus.vm86plus.flags = tswapl(target_v86->vm86plus.flags);
473
    memcpy(&ts->vm86plus.vm86plus.vm86dbg_intxxtab,
474
           target_v86->vm86plus.vm86dbg_intxxtab, 32);
475
    unlock_user_struct(target_v86, vm86_addr, 0);
476

    
477
#ifdef DEBUG_VM86
478
    fprintf(logfile, "do_vm86: cs:ip=%04x:%04x\n",
479
            env->segs[R_CS].selector, env->eip);
480
#endif
481
    /* now the virtual CPU is ready for vm86 execution ! */
482
 out:
483
    return ret;
484
}
485