Statistics
| Branch: | Revision:

root / target-sparc / op_helper.c @ 6c36d3fa

History | View | Annotate | Download (27.2 kB)

1
#include "exec.h"
2

    
3
//#define DEBUG_PCALL
4
//#define DEBUG_MMU
5
//#define DEBUG_UNALIGNED
6
//#define DEBUG_UNASSIGNED
7

    
8
void raise_exception(int tt)
9
{
10
    env->exception_index = tt;
11
    cpu_loop_exit();
12
}   
13

    
14
void check_ieee_exceptions()
15
{
16
     T0 = get_float_exception_flags(&env->fp_status);
17
     if (T0)
18
     {
19
        /* Copy IEEE 754 flags into FSR */
20
        if (T0 & float_flag_invalid)
21
            env->fsr |= FSR_NVC;
22
        if (T0 & float_flag_overflow)
23
            env->fsr |= FSR_OFC;
24
        if (T0 & float_flag_underflow)
25
            env->fsr |= FSR_UFC;
26
        if (T0 & float_flag_divbyzero)
27
            env->fsr |= FSR_DZC;
28
        if (T0 & float_flag_inexact)
29
            env->fsr |= FSR_NXC;
30

    
31
        if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23))
32
        {
33
            /* Unmasked exception, generate a trap */
34
            env->fsr |= FSR_FTT_IEEE_EXCP;
35
            raise_exception(TT_FP_EXCP);
36
        }
37
        else
38
        {
39
            /* Accumulate exceptions */
40
            env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
41
        }
42
     }
43
}
44

    
45
#ifdef USE_INT_TO_FLOAT_HELPERS
46
void do_fitos(void)
47
{
48
    set_float_exception_flags(0, &env->fp_status);
49
    FT0 = int32_to_float32(*((int32_t *)&FT1), &env->fp_status);
50
    check_ieee_exceptions();
51
}
52

    
53
void do_fitod(void)
54
{
55
    DT0 = int32_to_float64(*((int32_t *)&FT1), &env->fp_status);
56
}
57
#endif
58

    
59
void do_fabss(void)
60
{
61
    FT0 = float32_abs(FT1);
62
}
63

    
64
#ifdef TARGET_SPARC64
65
void do_fabsd(void)
66
{
67
    DT0 = float64_abs(DT1);
68
}
69
#endif
70

    
71
void do_fsqrts(void)
72
{
73
    set_float_exception_flags(0, &env->fp_status);
74
    FT0 = float32_sqrt(FT1, &env->fp_status);
75
    check_ieee_exceptions();
76
}
77

    
78
void do_fsqrtd(void)
79
{
80
    set_float_exception_flags(0, &env->fp_status);
81
    DT0 = float64_sqrt(DT1, &env->fp_status);
82
    check_ieee_exceptions();
83
}
84

    
85
#define GEN_FCMP(name, size, reg1, reg2, FS, TRAP)                      \
86
    void glue(do_, name) (void)                                         \
87
    {                                                                   \
88
        env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);                     \
89
        switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) {   \
90
        case float_relation_unordered:                                  \
91
            T0 = (FSR_FCC1 | FSR_FCC0) << FS;                           \
92
            if ((env->fsr & FSR_NVM) || TRAP) {                         \
93
                env->fsr |= T0;                                         \
94
                env->fsr |= FSR_NVC;                                    \
95
                env->fsr |= FSR_FTT_IEEE_EXCP;                          \
96
                raise_exception(TT_FP_EXCP);                            \
97
            } else {                                                    \
98
                env->fsr |= FSR_NVA;                                    \
99
            }                                                           \
100
            break;                                                      \
101
        case float_relation_less:                                       \
102
            T0 = FSR_FCC0 << FS;                                        \
103
            break;                                                      \
104
        case float_relation_greater:                                    \
105
            T0 = FSR_FCC1 << FS;                                        \
106
            break;                                                      \
107
        default:                                                        \
108
            T0 = 0;                                                     \
109
            break;                                                      \
110
        }                                                               \
111
        env->fsr |= T0;                                                 \
112
    }
113

    
114
GEN_FCMP(fcmps, float32, FT0, FT1, 0, 0);
115
GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
116

    
117
GEN_FCMP(fcmpes, float32, FT0, FT1, 0, 1);
118
GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
119

    
120
#ifdef TARGET_SPARC64
121
GEN_FCMP(fcmps_fcc1, float32, FT0, FT1, 22, 0);
122
GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
123

    
124
GEN_FCMP(fcmps_fcc2, float32, FT0, FT1, 24, 0);
125
GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
126

    
127
GEN_FCMP(fcmps_fcc3, float32, FT0, FT1, 26, 0);
128
GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
129

    
130
GEN_FCMP(fcmpes_fcc1, float32, FT0, FT1, 22, 1);
131
GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
132

    
133
GEN_FCMP(fcmpes_fcc2, float32, FT0, FT1, 24, 1);
134
GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
135

    
136
GEN_FCMP(fcmpes_fcc3, float32, FT0, FT1, 26, 1);
137
GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
138
#endif
139

    
140
#if defined(CONFIG_USER_ONLY) 
141
void helper_ld_asi(int asi, int size, int sign)
142
{
143
}
144

    
145
void helper_st_asi(int asi, int size, int sign)
146
{
147
}
148
#else
149
#ifndef TARGET_SPARC64
150
void helper_ld_asi(int asi, int size, int sign)
151
{
152
    uint32_t ret = 0;
153

    
154
    switch (asi) {
155
    case 2: /* SuperSparc MXCC registers */
156
        break;
157
    case 3: /* MMU probe */
158
        {
159
            int mmulev;
160

    
161
            mmulev = (T0 >> 8) & 15;
162
            if (mmulev > 4)
163
                ret = 0;
164
            else {
165
                ret = mmu_probe(env, T0, mmulev);
166
                //bswap32s(&ret);
167
            }
168
#ifdef DEBUG_MMU
169
            printf("mmu_probe: 0x%08x (lev %d) -> 0x%08x\n", T0, mmulev, ret);
170
#endif
171
        }
172
        break;
173
    case 4: /* read MMU regs */
174
        {
175
            int reg = (T0 >> 8) & 0xf;
176
            
177
            ret = env->mmuregs[reg];
178
            if (reg == 3) /* Fault status cleared on read */
179
                env->mmuregs[reg] = 0;
180
#ifdef DEBUG_MMU
181
            printf("mmu_read: reg[%d] = 0x%08x\n", reg, ret);
182
#endif
183
        }
184
        break;
185
    case 9: /* Supervisor code access */
186
        switch(size) {
187
        case 1:
188
            ret = ldub_code(T0);
189
            break;
190
        case 2:
191
            ret = lduw_code(T0 & ~1);
192
            break;
193
        default:
194
        case 4:
195
            ret = ldl_code(T0 & ~3);
196
            break;
197
        case 8:
198
            ret = ldl_code(T0 & ~3);
199
            T0 = ldl_code((T0 + 4) & ~3);
200
            break;
201
        }
202
        break;
203
    case 0xc: /* I-cache tag */
204
    case 0xd: /* I-cache data */
205
    case 0xe: /* D-cache tag */
206
    case 0xf: /* D-cache data */
207
        break;
208
    case 0x20: /* MMU passthrough */
209
        switch(size) {
210
        case 1:
211
            ret = ldub_phys(T0);
212
            break;
213
        case 2:
214
            ret = lduw_phys(T0 & ~1);
215
            break;
216
        default:
217
        case 4:
218
            ret = ldl_phys(T0 & ~3);
219
            break;
220
        case 8:
221
            ret = ldl_phys(T0 & ~3);
222
            T0 = ldl_phys((T0 + 4) & ~3);
223
            break;
224
        }
225
        break;
226
    case 0x21 ... 0x2f: /* MMU passthrough, unassigned */
227
    default:
228
        do_unassigned_access(T0, 0, 0, 1);
229
        ret = 0;
230
        break;
231
    }
232
    T1 = ret;
233
}
234

    
235
void helper_st_asi(int asi, int size, int sign)
236
{
237
    switch(asi) {
238
    case 2: /* SuperSparc MXCC registers */
239
        break;
240
    case 3: /* MMU flush */
241
        {
242
            int mmulev;
243

    
244
            mmulev = (T0 >> 8) & 15;
245
#ifdef DEBUG_MMU
246
            printf("mmu flush level %d\n", mmulev);
247
#endif
248
            switch (mmulev) {
249
            case 0: // flush page
250
                tlb_flush_page(env, T0 & 0xfffff000);
251
                break;
252
            case 1: // flush segment (256k)
253
            case 2: // flush region (16M)
254
            case 3: // flush context (4G)
255
            case 4: // flush entire
256
                tlb_flush(env, 1);
257
                break;
258
            default:
259
                break;
260
            }
261
#ifdef DEBUG_MMU
262
            dump_mmu(env);
263
#endif
264
            return;
265
        }
266
    case 4: /* write MMU regs */
267
        {
268
            int reg = (T0 >> 8) & 0xf;
269
            uint32_t oldreg;
270
            
271
            oldreg = env->mmuregs[reg];
272
            switch(reg) {
273
            case 0:
274
                env->mmuregs[reg] &= ~(MMU_E | MMU_NF);
275
                env->mmuregs[reg] |= T1 & (MMU_E | MMU_NF);
276
                // Mappings generated during no-fault mode or MMU
277
                // disabled mode are invalid in normal mode
278
                if (oldreg != env->mmuregs[reg])
279
                    tlb_flush(env, 1);
280
                break;
281
            case 2:
282
                env->mmuregs[reg] = T1;
283
                if (oldreg != env->mmuregs[reg]) {
284
                    /* we flush when the MMU context changes because
285
                       QEMU has no MMU context support */
286
                    tlb_flush(env, 1);
287
                }
288
                break;
289
            case 3:
290
            case 4:
291
                break;
292
            default:
293
                env->mmuregs[reg] = T1;
294
                break;
295
            }
296
#ifdef DEBUG_MMU
297
            if (oldreg != env->mmuregs[reg]) {
298
                printf("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg, oldreg, env->mmuregs[reg]);
299
            }
300
            dump_mmu(env);
301
#endif
302
            return;
303
        }
304
    case 0xc: /* I-cache tag */
305
    case 0xd: /* I-cache data */
306
    case 0xe: /* D-cache tag */
307
    case 0xf: /* D-cache data */
308
    case 0x10: /* I/D-cache flush page */
309
    case 0x11: /* I/D-cache flush segment */
310
    case 0x12: /* I/D-cache flush region */
311
    case 0x13: /* I/D-cache flush context */
312
    case 0x14: /* I/D-cache flush user */
313
        break;
314
    case 0x17: /* Block copy, sta access */
315
        {
316
            // value (T1) = src
317
            // address (T0) = dst
318
            // copy 32 bytes
319
            unsigned int i;
320
            uint32_t src = T1 & ~3, dst = T0 & ~3, temp;
321
            
322
            for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
323
                temp = ldl_kernel(src);
324
                stl_kernel(dst, temp);
325
            }
326
        }
327
        return;
328
    case 0x1f: /* Block fill, stda access */
329
        {
330
            // value (T1, T2)
331
            // address (T0) = dst
332
            // fill 32 bytes
333
            unsigned int i;
334
            uint32_t dst = T0 & 7;
335
            uint64_t val;
336

    
337
            val = (((uint64_t)T1) << 32) | T2;
338

    
339
            for (i = 0; i < 32; i += 8, dst += 8)
340
                stq_kernel(dst, val);
341
        }
342
        return;
343
    case 0x20: /* MMU passthrough */
344
        {
345
            switch(size) {
346
            case 1:
347
                stb_phys(T0, T1);
348
                break;
349
            case 2:
350
                stw_phys(T0 & ~1, T1);
351
                break;
352
            case 4:
353
            default:
354
                stl_phys(T0 & ~3, T1);
355
                break;
356
            case 8:
357
                stl_phys(T0 & ~3, T1);
358
                stl_phys((T0 + 4) & ~3, T2);
359
                break;
360
            }
361
        }
362
        return;
363
    case 0x31: /* Ross RT620 I-cache flush */
364
    case 0x36: /* I-cache flash clear */
365
    case 0x37: /* D-cache flash clear */
366
        break;
367
    case 9: /* Supervisor code access, XXX */
368
    case 0x21 ... 0x2f: /* MMU passthrough, unassigned */
369
    default:
370
        do_unassigned_access(T0, 1, 0, 1);
371
        return;
372
    }
373
}
374

    
375
#else
376

    
377
void helper_ld_asi(int asi, int size, int sign)
378
{
379
    uint64_t ret = 0;
380

    
381
    if (asi < 0x80 && (env->pstate & PS_PRIV) == 0)
382
        raise_exception(TT_PRIV_ACT);
383

    
384
    switch (asi) {
385
    case 0x14: // Bypass
386
    case 0x15: // Bypass, non-cacheable
387
        {
388
            switch(size) {
389
            case 1:
390
                ret = ldub_phys(T0);
391
                break;
392
            case 2:
393
                ret = lduw_phys(T0 & ~1);
394
                break;
395
            case 4:
396
                ret = ldl_phys(T0 & ~3);
397
                break;
398
            default:
399
            case 8:
400
                ret = ldq_phys(T0 & ~7);
401
                break;
402
            }
403
            break;
404
        }
405
    case 0x04: // Nucleus
406
    case 0x0c: // Nucleus Little Endian (LE)
407
    case 0x10: // As if user primary
408
    case 0x11: // As if user secondary
409
    case 0x18: // As if user primary LE
410
    case 0x19: // As if user secondary LE
411
    case 0x1c: // Bypass LE
412
    case 0x1d: // Bypass, non-cacheable LE
413
    case 0x24: // Nucleus quad LDD 128 bit atomic
414
    case 0x2c: // Nucleus quad LDD 128 bit atomic
415
    case 0x4a: // UPA config
416
    case 0x82: // Primary no-fault
417
    case 0x83: // Secondary no-fault
418
    case 0x88: // Primary LE
419
    case 0x89: // Secondary LE
420
    case 0x8a: // Primary no-fault LE
421
    case 0x8b: // Secondary no-fault LE
422
        // XXX
423
        break;
424
    case 0x45: // LSU
425
        ret = env->lsu;
426
        break;
427
    case 0x50: // I-MMU regs
428
        {
429
            int reg = (T0 >> 3) & 0xf;
430

    
431
            ret = env->immuregs[reg];
432
            break;
433
        }
434
    case 0x51: // I-MMU 8k TSB pointer
435
    case 0x52: // I-MMU 64k TSB pointer
436
    case 0x55: // I-MMU data access
437
        // XXX
438
        break;
439
    case 0x56: // I-MMU tag read
440
        {
441
            unsigned int i;
442
            
443
            for (i = 0; i < 64; i++) {
444
                // Valid, ctx match, vaddr match
445
                if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0 &&
446
                    env->itlb_tag[i] == T0) {
447
                    ret = env->itlb_tag[i];
448
                    break;
449
                }
450
            }
451
            break;
452
        }
453
    case 0x58: // D-MMU regs
454
        {
455
            int reg = (T0 >> 3) & 0xf;
456

    
457
            ret = env->dmmuregs[reg];
458
            break;
459
        }
460
    case 0x5e: // D-MMU tag read
461
        {
462
            unsigned int i;
463
            
464
            for (i = 0; i < 64; i++) {
465
                // Valid, ctx match, vaddr match
466
                if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0 &&
467
                    env->dtlb_tag[i] == T0) {
468
                    ret = env->dtlb_tag[i];
469
                    break;
470
                }
471
            }
472
            break;
473
        }
474
    case 0x59: // D-MMU 8k TSB pointer
475
    case 0x5a: // D-MMU 64k TSB pointer
476
    case 0x5b: // D-MMU data pointer
477
    case 0x5d: // D-MMU data access
478
    case 0x48: // Interrupt dispatch, RO
479
    case 0x49: // Interrupt data receive
480
    case 0x7f: // Incoming interrupt vector, RO
481
        // XXX
482
        break;
483
    case 0x54: // I-MMU data in, WO
484
    case 0x57: // I-MMU demap, WO
485
    case 0x5c: // D-MMU data in, WO
486
    case 0x5f: // D-MMU demap, WO
487
    case 0x77: // Interrupt vector, WO
488
    default:
489
        do_unassigned_access(T0, 0, 0, 1);
490
        ret = 0;
491
        break;
492
    }
493
    T1 = ret;
494
}
495

    
496
void helper_st_asi(int asi, int size, int sign)
497
{
498
    if (asi < 0x80 && (env->pstate & PS_PRIV) == 0)
499
        raise_exception(TT_PRIV_ACT);
500

    
501
    switch(asi) {
502
    case 0x14: // Bypass
503
    case 0x15: // Bypass, non-cacheable
504
        {
505
            switch(size) {
506
            case 1:
507
                stb_phys(T0, T1);
508
                break;
509
            case 2:
510
                stw_phys(T0 & ~1, T1);
511
                break;
512
            case 4:
513
                stl_phys(T0 & ~3, T1);
514
                break;
515
            case 8:
516
            default:
517
                stq_phys(T0 & ~7, T1);
518
                break;
519
            }
520
        }
521
        return;
522
    case 0x04: // Nucleus
523
    case 0x0c: // Nucleus Little Endian (LE)
524
    case 0x10: // As if user primary
525
    case 0x11: // As if user secondary
526
    case 0x18: // As if user primary LE
527
    case 0x19: // As if user secondary LE
528
    case 0x1c: // Bypass LE
529
    case 0x1d: // Bypass, non-cacheable LE
530
    case 0x24: // Nucleus quad LDD 128 bit atomic
531
    case 0x2c: // Nucleus quad LDD 128 bit atomic
532
    case 0x4a: // UPA config
533
    case 0x88: // Primary LE
534
    case 0x89: // Secondary LE
535
        // XXX
536
        return;
537
    case 0x45: // LSU
538
        {
539
            uint64_t oldreg;
540

    
541
            oldreg = env->lsu;
542
            env->lsu = T1 & (DMMU_E | IMMU_E);
543
            // Mappings generated during D/I MMU disabled mode are
544
            // invalid in normal mode
545
            if (oldreg != env->lsu) {
546
#ifdef DEBUG_MMU
547
                printf("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n", oldreg, env->lsu);
548
                dump_mmu(env);
549
#endif
550
                tlb_flush(env, 1);
551
            }
552
            return;
553
        }
554
    case 0x50: // I-MMU regs
555
        {
556
            int reg = (T0 >> 3) & 0xf;
557
            uint64_t oldreg;
558
            
559
            oldreg = env->immuregs[reg];
560
            switch(reg) {
561
            case 0: // RO
562
            case 4:
563
                return;
564
            case 1: // Not in I-MMU
565
            case 2:
566
            case 7:
567
            case 8:
568
                return;
569
            case 3: // SFSR
570
                if ((T1 & 1) == 0)
571
                    T1 = 0; // Clear SFSR
572
                break;
573
            case 5: // TSB access
574
            case 6: // Tag access
575
            default:
576
                break;
577
            }
578
            env->immuregs[reg] = T1;
579
#ifdef DEBUG_MMU
580
            if (oldreg != env->immuregs[reg]) {
581
                printf("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
582
            }
583
            dump_mmu(env);
584
#endif
585
            return;
586
        }
587
    case 0x54: // I-MMU data in
588
        {
589
            unsigned int i;
590

    
591
            // Try finding an invalid entry
592
            for (i = 0; i < 64; i++) {
593
                if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
594
                    env->itlb_tag[i] = env->immuregs[6];
595
                    env->itlb_tte[i] = T1;
596
                    return;
597
                }
598
            }
599
            // Try finding an unlocked entry
600
            for (i = 0; i < 64; i++) {
601
                if ((env->itlb_tte[i] & 0x40) == 0) {
602
                    env->itlb_tag[i] = env->immuregs[6];
603
                    env->itlb_tte[i] = T1;
604
                    return;
605
                }
606
            }
607
            // error state?
608
            return;
609
        }
610
    case 0x55: // I-MMU data access
611
        {
612
            unsigned int i = (T0 >> 3) & 0x3f;
613

    
614
            env->itlb_tag[i] = env->immuregs[6];
615
            env->itlb_tte[i] = T1;
616
            return;
617
        }
618
    case 0x57: // I-MMU demap
619
        // XXX
620
        return;
621
    case 0x58: // D-MMU regs
622
        {
623
            int reg = (T0 >> 3) & 0xf;
624
            uint64_t oldreg;
625
            
626
            oldreg = env->dmmuregs[reg];
627
            switch(reg) {
628
            case 0: // RO
629
            case 4:
630
                return;
631
            case 3: // SFSR
632
                if ((T1 & 1) == 0) {
633
                    T1 = 0; // Clear SFSR, Fault address
634
                    env->dmmuregs[4] = 0;
635
                }
636
                env->dmmuregs[reg] = T1;
637
                break;
638
            case 1: // Primary context
639
            case 2: // Secondary context
640
            case 5: // TSB access
641
            case 6: // Tag access
642
            case 7: // Virtual Watchpoint
643
            case 8: // Physical Watchpoint
644
            default:
645
                break;
646
            }
647
            env->dmmuregs[reg] = T1;
648
#ifdef DEBUG_MMU
649
            if (oldreg != env->dmmuregs[reg]) {
650
                printf("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
651
            }
652
            dump_mmu(env);
653
#endif
654
            return;
655
        }
656
    case 0x5c: // D-MMU data in
657
        {
658
            unsigned int i;
659

    
660
            // Try finding an invalid entry
661
            for (i = 0; i < 64; i++) {
662
                if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
663
                    env->dtlb_tag[i] = env->dmmuregs[6];
664
                    env->dtlb_tte[i] = T1;
665
                    return;
666
                }
667
            }
668
            // Try finding an unlocked entry
669
            for (i = 0; i < 64; i++) {
670
                if ((env->dtlb_tte[i] & 0x40) == 0) {
671
                    env->dtlb_tag[i] = env->dmmuregs[6];
672
                    env->dtlb_tte[i] = T1;
673
                    return;
674
                }
675
            }
676
            // error state?
677
            return;
678
        }
679
    case 0x5d: // D-MMU data access
680
        {
681
            unsigned int i = (T0 >> 3) & 0x3f;
682

    
683
            env->dtlb_tag[i] = env->dmmuregs[6];
684
            env->dtlb_tte[i] = T1;
685
            return;
686
        }
687
    case 0x5f: // D-MMU demap
688
    case 0x49: // Interrupt data receive
689
        // XXX
690
        return;
691
    case 0x51: // I-MMU 8k TSB pointer, RO
692
    case 0x52: // I-MMU 64k TSB pointer, RO
693
    case 0x56: // I-MMU tag read, RO
694
    case 0x59: // D-MMU 8k TSB pointer, RO
695
    case 0x5a: // D-MMU 64k TSB pointer, RO
696
    case 0x5b: // D-MMU data pointer, RO
697
    case 0x5e: // D-MMU tag read, RO
698
    case 0x48: // Interrupt dispatch, RO
699
    case 0x7f: // Incoming interrupt vector, RO
700
    case 0x82: // Primary no-fault, RO
701
    case 0x83: // Secondary no-fault, RO
702
    case 0x8a: // Primary no-fault LE, RO
703
    case 0x8b: // Secondary no-fault LE, RO
704
    default:
705
        do_unassigned_access(T0, 1, 0, 1);
706
        return;
707
    }
708
}
709
#endif
710
#endif /* !CONFIG_USER_ONLY */
711

    
712
#ifndef TARGET_SPARC64
713
void helper_rett()
714
{
715
    unsigned int cwp;
716

    
717
    if (env->psret == 1)
718
        raise_exception(TT_ILL_INSN);
719

    
720
    env->psret = 1;
721
    cwp = (env->cwp + 1) & (NWINDOWS - 1); 
722
    if (env->wim & (1 << cwp)) {
723
        raise_exception(TT_WIN_UNF);
724
    }
725
    set_cwp(cwp);
726
    env->psrs = env->psrps;
727
}
728
#endif
729

    
730
void helper_ldfsr(void)
731
{
732
    int rnd_mode;
733
    switch (env->fsr & FSR_RD_MASK) {
734
    case FSR_RD_NEAREST:
735
        rnd_mode = float_round_nearest_even;
736
        break;
737
    default:
738
    case FSR_RD_ZERO:
739
        rnd_mode = float_round_to_zero;
740
        break;
741
    case FSR_RD_POS:
742
        rnd_mode = float_round_up;
743
        break;
744
    case FSR_RD_NEG:
745
        rnd_mode = float_round_down;
746
        break;
747
    }
748
    set_float_rounding_mode(rnd_mode, &env->fp_status);
749
}
750

    
751
void helper_debug()
752
{
753
    env->exception_index = EXCP_DEBUG;
754
    cpu_loop_exit();
755
}
756

    
757
#ifndef TARGET_SPARC64
758
void do_wrpsr()
759
{
760
    if ((T0 & PSR_CWP) >= NWINDOWS)
761
        raise_exception(TT_ILL_INSN);
762
    else
763
        PUT_PSR(env, T0);
764
}
765

    
766
void do_rdpsr()
767
{
768
    T0 = GET_PSR(env);
769
}
770

    
771
#else
772

    
773
void do_popc()
774
{
775
    T0 = (T1 & 0x5555555555555555ULL) + ((T1 >> 1) & 0x5555555555555555ULL);
776
    T0 = (T0 & 0x3333333333333333ULL) + ((T0 >> 2) & 0x3333333333333333ULL);
777
    T0 = (T0 & 0x0f0f0f0f0f0f0f0fULL) + ((T0 >> 4) & 0x0f0f0f0f0f0f0f0fULL);
778
    T0 = (T0 & 0x00ff00ff00ff00ffULL) + ((T0 >> 8) & 0x00ff00ff00ff00ffULL);
779
    T0 = (T0 & 0x0000ffff0000ffffULL) + ((T0 >> 16) & 0x0000ffff0000ffffULL);
780
    T0 = (T0 & 0x00000000ffffffffULL) + ((T0 >> 32) & 0x00000000ffffffffULL);
781
}
782

    
783
static inline uint64_t *get_gregset(uint64_t pstate)
784
{
785
    switch (pstate) {
786
    default:
787
    case 0:
788
        return env->bgregs;
789
    case PS_AG:
790
        return env->agregs;
791
    case PS_MG:
792
        return env->mgregs;
793
    case PS_IG:
794
        return env->igregs;
795
    }
796
}
797

    
798
void do_wrpstate()
799
{
800
    uint64_t new_pstate, pstate_regs, new_pstate_regs;
801
    uint64_t *src, *dst;
802

    
803
    new_pstate = T0 & 0xf3f;
804
    pstate_regs = env->pstate & 0xc01;
805
    new_pstate_regs = new_pstate & 0xc01;
806
    if (new_pstate_regs != pstate_regs) {
807
        // Switch global register bank
808
        src = get_gregset(new_pstate_regs);
809
        dst = get_gregset(pstate_regs);
810
        memcpy32(dst, env->gregs);
811
        memcpy32(env->gregs, src);
812
    }
813
    env->pstate = new_pstate;
814
}
815

    
816
void do_done(void)
817
{
818
    env->tl--;
819
    env->pc = env->tnpc[env->tl];
820
    env->npc = env->tnpc[env->tl] + 4;
821
    PUT_CCR(env, env->tstate[env->tl] >> 32);
822
    env->asi = (env->tstate[env->tl] >> 24) & 0xff;
823
    env->pstate = (env->tstate[env->tl] >> 8) & 0xfff;
824
    set_cwp(env->tstate[env->tl] & 0xff);
825
}
826

    
827
void do_retry(void)
828
{
829
    env->tl--;
830
    env->pc = env->tpc[env->tl];
831
    env->npc = env->tnpc[env->tl];
832
    PUT_CCR(env, env->tstate[env->tl] >> 32);
833
    env->asi = (env->tstate[env->tl] >> 24) & 0xff;
834
    env->pstate = (env->tstate[env->tl] >> 8) & 0xfff;
835
    set_cwp(env->tstate[env->tl] & 0xff);
836
}
837
#endif
838

    
839
void set_cwp(int new_cwp)
840
{
841
    /* put the modified wrap registers at their proper location */
842
    if (env->cwp == (NWINDOWS - 1))
843
        memcpy32(env->regbase, env->regbase + NWINDOWS * 16);
844
    env->cwp = new_cwp;
845
    /* put the wrap registers at their temporary location */
846
    if (new_cwp == (NWINDOWS - 1))
847
        memcpy32(env->regbase + NWINDOWS * 16, env->regbase);
848
    env->regwptr = env->regbase + (new_cwp * 16);
849
    REGWPTR = env->regwptr;
850
}
851

    
852
void cpu_set_cwp(CPUState *env1, int new_cwp)
853
{
854
    CPUState *saved_env;
855
#ifdef reg_REGWPTR
856
    target_ulong *saved_regwptr;
857
#endif
858

    
859
    saved_env = env;
860
#ifdef reg_REGWPTR
861
    saved_regwptr = REGWPTR;
862
#endif
863
    env = env1;
864
    set_cwp(new_cwp);
865
    env = saved_env;
866
#ifdef reg_REGWPTR
867
    REGWPTR = saved_regwptr;
868
#endif
869
}
870

    
871
#ifdef TARGET_SPARC64
872
void do_interrupt(int intno)
873
{
874
#ifdef DEBUG_PCALL
875
    if (loglevel & CPU_LOG_INT) {
876
        static int count;
877
        fprintf(logfile, "%6d: v=%04x pc=%016" PRIx64 " npc=%016" PRIx64 " SP=%016" PRIx64 "\n",
878
                count, intno,
879
                env->pc,
880
                env->npc, env->regwptr[6]);
881
        cpu_dump_state(env, logfile, fprintf, 0);
882
#if 0
883
        {
884
            int i;
885
            uint8_t *ptr;
886

887
            fprintf(logfile, "       code=");
888
            ptr = (uint8_t *)env->pc;
889
            for(i = 0; i < 16; i++) {
890
                fprintf(logfile, " %02x", ldub(ptr + i));
891
            }
892
            fprintf(logfile, "\n");
893
        }
894
#endif
895
        count++;
896
    }
897
#endif
898
#if !defined(CONFIG_USER_ONLY) 
899
    if (env->tl == MAXTL) {
900
        cpu_abort(env, "Trap 0x%04x while trap level is MAXTL, Error state", env->exception_index);
901
        return;
902
    }
903
#endif
904
    env->tstate[env->tl] = ((uint64_t)GET_CCR(env) << 32) | ((env->asi & 0xff) << 24) |
905
        ((env->pstate & 0xfff) << 8) | (env->cwp & 0xff);
906
    env->tpc[env->tl] = env->pc;
907
    env->tnpc[env->tl] = env->npc;
908
    env->tt[env->tl] = intno;
909
    env->pstate = PS_PEF | PS_PRIV | PS_AG;
910
    env->tbr &= ~0x7fffULL;
911
    env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
912
    if (env->tl < MAXTL - 1) {
913
        env->tl++;
914
    } else {
915
        env->pstate |= PS_RED;
916
        if (env->tl != MAXTL)
917
            env->tl++;
918
    }
919
    env->pc = env->tbr;
920
    env->npc = env->pc + 4;
921
    env->exception_index = 0;
922
}
923
#else
924
void do_interrupt(int intno)
925
{
926
    int cwp;
927

    
928
#ifdef DEBUG_PCALL
929
    if (loglevel & CPU_LOG_INT) {
930
        static int count;
931
        fprintf(logfile, "%6d: v=%02x pc=%08x npc=%08x SP=%08x\n",
932
                count, intno,
933
                env->pc,
934
                env->npc, env->regwptr[6]);
935
        cpu_dump_state(env, logfile, fprintf, 0);
936
#if 0
937
        {
938
            int i;
939
            uint8_t *ptr;
940

941
            fprintf(logfile, "       code=");
942
            ptr = (uint8_t *)env->pc;
943
            for(i = 0; i < 16; i++) {
944
                fprintf(logfile, " %02x", ldub(ptr + i));
945
            }
946
            fprintf(logfile, "\n");
947
        }
948
#endif
949
        count++;
950
    }
951
#endif
952
#if !defined(CONFIG_USER_ONLY) 
953
    if (env->psret == 0) {
954
        cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state", env->exception_index);
955
        return;
956
    }
957
#endif
958
    env->psret = 0;
959
    cwp = (env->cwp - 1) & (NWINDOWS - 1); 
960
    set_cwp(cwp);
961
    env->regwptr[9] = env->pc;
962
    env->regwptr[10] = env->npc;
963
    env->psrps = env->psrs;
964
    env->psrs = 1;
965
    env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
966
    env->pc = env->tbr;
967
    env->npc = env->pc + 4;
968
    env->exception_index = 0;
969
}
970
#endif
971

    
972
#if !defined(CONFIG_USER_ONLY) 
973

    
974
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
975
                                void *retaddr);
976

    
977
#define MMUSUFFIX _mmu
978
#define ALIGNED_ONLY
979
#define GETPC() (__builtin_return_address(0))
980

    
981
#define SHIFT 0
982
#include "softmmu_template.h"
983

    
984
#define SHIFT 1
985
#include "softmmu_template.h"
986

    
987
#define SHIFT 2
988
#include "softmmu_template.h"
989

    
990
#define SHIFT 3
991
#include "softmmu_template.h"
992

    
993
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
994
                                void *retaddr)
995
{
996
#ifdef DEBUG_UNALIGNED
997
    printf("Unaligned access to 0x%x from 0x%x\n", addr, env->pc);
998
#endif
999
    raise_exception(TT_UNALIGNED);
1000
}
1001

    
1002
/* try to fill the TLB and return an exception if error. If retaddr is
1003
   NULL, it means that the function was called in C code (i.e. not
1004
   from generated code or from helper.c) */
1005
/* XXX: fix it to restore all registers */
1006
void tlb_fill(target_ulong addr, int is_write, int is_user, void *retaddr)
1007
{
1008
    TranslationBlock *tb;
1009
    int ret;
1010
    unsigned long pc;
1011
    CPUState *saved_env;
1012

    
1013
    /* XXX: hack to restore env in all cases, even if not called from
1014
       generated code */
1015
    saved_env = env;
1016
    env = cpu_single_env;
1017

    
1018
    ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, is_user, 1);
1019
    if (ret) {
1020
        if (retaddr) {
1021
            /* now we have a real cpu fault */
1022
            pc = (unsigned long)retaddr;
1023
            tb = tb_find_pc(pc);
1024
            if (tb) {
1025
                /* the PC is inside the translated code. It means that we have
1026
                   a virtual CPU fault */
1027
                cpu_restore_state(tb, env, pc, (void *)T2);
1028
            }
1029
        }
1030
        cpu_loop_exit();
1031
    }
1032
    env = saved_env;
1033
}
1034

    
1035
#endif
1036

    
1037
#ifndef TARGET_SPARC64
1038
void do_unassigned_access(target_ulong addr, int is_write, int is_exec,
1039
                          int is_asi)
1040
{
1041
    CPUState *saved_env;
1042

    
1043
    /* XXX: hack to restore env in all cases, even if not called from
1044
       generated code */
1045
    saved_env = env;
1046
    env = cpu_single_env;
1047
    if (env->mmuregs[3]) /* Fault status register */
1048
        env->mmuregs[3] = 1; /* overflow (not read before another fault) */
1049
    if (is_asi)
1050
        env->mmuregs[3] |= 1 << 16;
1051
    if (env->psrs)
1052
        env->mmuregs[3] |= 1 << 5;
1053
    if (is_exec)
1054
        env->mmuregs[3] |= 1 << 6;
1055
    if (is_write)
1056
        env->mmuregs[3] |= 1 << 7;
1057
    env->mmuregs[3] |= (5 << 2) | 2;
1058
    env->mmuregs[4] = addr; /* Fault address register */
1059
    if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
1060
#ifdef DEBUG_UNASSIGNED
1061
        printf("Unassigned mem access to " TARGET_FMT_lx " from " TARGET_FMT_lx
1062
               "\n", addr, env->pc);
1063
#endif
1064
        raise_exception(TT_DATA_ACCESS);
1065
    }
1066
    env = saved_env;
1067
}
1068
#else
1069
void do_unassigned_access(target_ulong addr, int is_write, int is_exec,
1070
                          int is_asi)
1071
{
1072
#ifdef DEBUG_UNASSIGNED
1073
    CPUState *saved_env;
1074

    
1075
    /* XXX: hack to restore env in all cases, even if not called from
1076
       generated code */
1077
    saved_env = env;
1078
    env = cpu_single_env;
1079
    printf("Unassigned mem access to " TARGET_FMT_lx " from " TARGET_FMT_lx "\n",
1080
           addr, env->pc);
1081
    env = saved_env;
1082
#endif
1083
    raise_exception(TT_DATA_ACCESS);
1084
}
1085
#endif