Statistics
| Branch: | Revision:

root / target-sparc / op_helper.c @ 6d5f237a

History | View | Annotate | Download (49.5 kB)

1
#include "exec.h"
2
#include "host-utils.h"
3

    
4
//#define DEBUG_PCALL
5
//#define DEBUG_MMU
6
//#define DEBUG_MXCC
7
//#define DEBUG_UNALIGNED
8
//#define DEBUG_UNASSIGNED
9

    
10
#ifdef DEBUG_MMU
11
#define DPRINTF_MMU(fmt, args...) \
12
do { printf("MMU: " fmt , ##args); } while (0)
13
#else
14
#define DPRINTF_MMU(fmt, args...)
15
#endif
16

    
17
#ifdef DEBUG_MXCC
18
#define DPRINTF_MXCC(fmt, args...) \
19
do { printf("MXCC: " fmt , ##args); } while (0)
20
#else
21
#define DPRINTF_MXCC(fmt, args...)
22
#endif
23

    
24
void raise_exception(int tt)
25
{
26
    env->exception_index = tt;
27
    cpu_loop_exit();
28
}
29

    
30
void check_ieee_exceptions()
31
{
32
     T0 = get_float_exception_flags(&env->fp_status);
33
     if (T0)
34
     {
35
        /* Copy IEEE 754 flags into FSR */
36
        if (T0 & float_flag_invalid)
37
            env->fsr |= FSR_NVC;
38
        if (T0 & float_flag_overflow)
39
            env->fsr |= FSR_OFC;
40
        if (T0 & float_flag_underflow)
41
            env->fsr |= FSR_UFC;
42
        if (T0 & float_flag_divbyzero)
43
            env->fsr |= FSR_DZC;
44
        if (T0 & float_flag_inexact)
45
            env->fsr |= FSR_NXC;
46

    
47
        if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23))
48
        {
49
            /* Unmasked exception, generate a trap */
50
            env->fsr |= FSR_FTT_IEEE_EXCP;
51
            raise_exception(TT_FP_EXCP);
52
        }
53
        else
54
        {
55
            /* Accumulate exceptions */
56
            env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
57
        }
58
     }
59
}
60

    
61
#ifdef USE_INT_TO_FLOAT_HELPERS
62
void do_fitos(void)
63
{
64
    set_float_exception_flags(0, &env->fp_status);
65
    FT0 = int32_to_float32(*((int32_t *)&FT1), &env->fp_status);
66
    check_ieee_exceptions();
67
}
68

    
69
void do_fitod(void)
70
{
71
    DT0 = int32_to_float64(*((int32_t *)&FT1), &env->fp_status);
72
}
73
#ifdef TARGET_SPARC64
74
void do_fxtos(void)
75
{
76
    set_float_exception_flags(0, &env->fp_status);
77
    FT0 = int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
78
    check_ieee_exceptions();
79
}
80

    
81
void do_fxtod(void)
82
{
83
    set_float_exception_flags(0, &env->fp_status);
84
    DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
85
    check_ieee_exceptions();
86
}
87
#endif
88
#endif
89

    
90
void do_fabss(void)
91
{
92
    FT0 = float32_abs(FT1);
93
}
94

    
95
#ifdef TARGET_SPARC64
96
void do_fabsd(void)
97
{
98
    DT0 = float64_abs(DT1);
99
}
100
#endif
101

    
102
void do_fsqrts(void)
103
{
104
    set_float_exception_flags(0, &env->fp_status);
105
    FT0 = float32_sqrt(FT1, &env->fp_status);
106
    check_ieee_exceptions();
107
}
108

    
109
void do_fsqrtd(void)
110
{
111
    set_float_exception_flags(0, &env->fp_status);
112
    DT0 = float64_sqrt(DT1, &env->fp_status);
113
    check_ieee_exceptions();
114
}
115

    
116
#define GEN_FCMP(name, size, reg1, reg2, FS, TRAP)                      \
117
    void glue(do_, name) (void)                                         \
118
    {                                                                   \
119
        env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);                     \
120
        switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) {   \
121
        case float_relation_unordered:                                  \
122
            T0 = (FSR_FCC1 | FSR_FCC0) << FS;                           \
123
            if ((env->fsr & FSR_NVM) || TRAP) {                         \
124
                env->fsr |= T0;                                         \
125
                env->fsr |= FSR_NVC;                                    \
126
                env->fsr |= FSR_FTT_IEEE_EXCP;                          \
127
                raise_exception(TT_FP_EXCP);                            \
128
            } else {                                                    \
129
                env->fsr |= FSR_NVA;                                    \
130
            }                                                           \
131
            break;                                                      \
132
        case float_relation_less:                                       \
133
            T0 = FSR_FCC0 << FS;                                        \
134
            break;                                                      \
135
        case float_relation_greater:                                    \
136
            T0 = FSR_FCC1 << FS;                                        \
137
            break;                                                      \
138
        default:                                                        \
139
            T0 = 0;                                                     \
140
            break;                                                      \
141
        }                                                               \
142
        env->fsr |= T0;                                                 \
143
    }
144

    
145
GEN_FCMP(fcmps, float32, FT0, FT1, 0, 0);
146
GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
147

    
148
GEN_FCMP(fcmpes, float32, FT0, FT1, 0, 1);
149
GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
150

    
151
#ifdef TARGET_SPARC64
152
GEN_FCMP(fcmps_fcc1, float32, FT0, FT1, 22, 0);
153
GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
154

    
155
GEN_FCMP(fcmps_fcc2, float32, FT0, FT1, 24, 0);
156
GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
157

    
158
GEN_FCMP(fcmps_fcc3, float32, FT0, FT1, 26, 0);
159
GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
160

    
161
GEN_FCMP(fcmpes_fcc1, float32, FT0, FT1, 22, 1);
162
GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
163

    
164
GEN_FCMP(fcmpes_fcc2, float32, FT0, FT1, 24, 1);
165
GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
166

    
167
GEN_FCMP(fcmpes_fcc3, float32, FT0, FT1, 26, 1);
168
GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
169
#endif
170

    
171
#ifndef TARGET_SPARC64
172
#ifndef CONFIG_USER_ONLY
173

    
174
#ifdef DEBUG_MXCC
175
static void dump_mxcc(CPUState *env)
176
{
177
    printf("mxccdata: %016llx %016llx %016llx %016llx\n",
178
        env->mxccdata[0], env->mxccdata[1], env->mxccdata[2], env->mxccdata[3]);
179
    printf("mxccregs: %016llx %016llx %016llx %016llx\n"
180
           "          %016llx %016llx %016llx %016llx\n",
181
        env->mxccregs[0], env->mxccregs[1], env->mxccregs[2], env->mxccregs[3],
182
        env->mxccregs[4], env->mxccregs[5], env->mxccregs[6], env->mxccregs[7]);
183
}
184
#endif
185

    
186
void helper_ld_asi(int asi, int size, int sign)
187
{
188
    uint32_t ret = 0;
189
    uint64_t tmp;
190
#ifdef DEBUG_MXCC
191
    uint32_t last_T0 = T0;
192
#endif
193

    
194
    switch (asi) {
195
    case 2: /* SuperSparc MXCC registers */
196
        switch (T0) {
197
        case 0x01c00a00: /* MXCC control register */
198
            if (size == 8) {
199
                ret = env->mxccregs[3];
200
                T0 = env->mxccregs[3] >> 32;
201
            } else
202
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
203
            break;
204
        case 0x01c00a04: /* MXCC control register */
205
            if (size == 4)
206
                ret = env->mxccregs[3];
207
            else
208
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
209
            break;
210
        case 0x01c00f00: /* MBus port address register */
211
            if (size == 8) {
212
                ret = env->mxccregs[7];
213
                T0 = env->mxccregs[7] >> 32;
214
            } else
215
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
216
            break;
217
        default:
218
            DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", T0, size);
219
            break;
220
        }
221
        DPRINTF_MXCC("asi = %d, size = %d, sign = %d, T0 = %08x -> ret = %08x,"
222
                     "T0 = %08x\n", asi, size, sign, last_T0, ret, T0);
223
#ifdef DEBUG_MXCC
224
        dump_mxcc(env);
225
#endif
226
        break;
227
    case 3: /* MMU probe */
228
        {
229
            int mmulev;
230

    
231
            mmulev = (T0 >> 8) & 15;
232
            if (mmulev > 4)
233
                ret = 0;
234
            else {
235
                ret = mmu_probe(env, T0, mmulev);
236
                //bswap32s(&ret);
237
            }
238
            DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08x\n", T0, mmulev, ret);
239
        }
240
        break;
241
    case 4: /* read MMU regs */
242
        {
243
            int reg = (T0 >> 8) & 0xf;
244

    
245
            ret = env->mmuregs[reg];
246
            if (reg == 3) /* Fault status cleared on read */
247
                env->mmuregs[reg] = 0;
248
            DPRINTF_MMU("mmu_read: reg[%d] = 0x%08x\n", reg, ret);
249
        }
250
        break;
251
    case 9: /* Supervisor code access */
252
        switch(size) {
253
        case 1:
254
            ret = ldub_code(T0);
255
            break;
256
        case 2:
257
            ret = lduw_code(T0 & ~1);
258
            break;
259
        default:
260
        case 4:
261
            ret = ldl_code(T0 & ~3);
262
            break;
263
        case 8:
264
            tmp = ldq_code(T0 & ~7);
265
            ret = tmp >> 32;
266
            T0 = tmp & 0xffffffff;
267
            break;
268
        }
269
        break;
270
    case 0xa: /* User data access */
271
        switch(size) {
272
        case 1:
273
            ret = ldub_user(T0);
274
            break;
275
        case 2:
276
            ret = lduw_user(T0 & ~1);
277
            break;
278
        default:
279
        case 4:
280
            ret = ldl_user(T0 & ~3);
281
            break;
282
        case 8:
283
            tmp = ldq_user(T0 & ~7);
284
            ret = tmp >> 32;
285
            T0 = tmp & 0xffffffff;
286
            break;
287
        }
288
        break;
289
    case 0xb: /* Supervisor data access */
290
        switch(size) {
291
        case 1:
292
            ret = ldub_kernel(T0);
293
            break;
294
        case 2:
295
            ret = lduw_kernel(T0 & ~1);
296
            break;
297
        default:
298
        case 4:
299
            ret = ldl_kernel(T0 & ~3);
300
            break;
301
        case 8:
302
            tmp = ldq_kernel(T0 & ~7);
303
            ret = tmp >> 32;
304
            T0 = tmp & 0xffffffff;
305
            break;
306
        }
307
        break;
308
    case 0xc: /* I-cache tag */
309
    case 0xd: /* I-cache data */
310
    case 0xe: /* D-cache tag */
311
    case 0xf: /* D-cache data */
312
        break;
313
    case 0x20: /* MMU passthrough */
314
        switch(size) {
315
        case 1:
316
            ret = ldub_phys(T0);
317
            break;
318
        case 2:
319
            ret = lduw_phys(T0 & ~1);
320
            break;
321
        default:
322
        case 4:
323
            ret = ldl_phys(T0 & ~3);
324
            break;
325
        case 8:
326
            tmp = ldq_phys(T0 & ~7);
327
            ret = tmp >> 32;
328
            T0 = tmp & 0xffffffff;
329
            break;
330
        }
331
        break;
332
    case 0x2e: /* MMU passthrough, 0xexxxxxxxx */
333
    case 0x2f: /* MMU passthrough, 0xfxxxxxxxx */
334
        switch(size) {
335
        case 1:
336
            ret = ldub_phys((target_phys_addr_t)T0
337
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
338
            break;
339
        case 2:
340
            ret = lduw_phys((target_phys_addr_t)(T0 & ~1)
341
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
342
            break;
343
        default:
344
        case 4:
345
            ret = ldl_phys((target_phys_addr_t)(T0 & ~3)
346
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
347
            break;
348
        case 8:
349
            tmp = ldq_phys((target_phys_addr_t)(T0 & ~7)
350
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
351
            ret = tmp >> 32;
352
            T0 = tmp & 0xffffffff;
353
            break;
354
        }
355
        break;
356
    case 0x21 ... 0x2d: /* MMU passthrough, unassigned */
357
    default:
358
        do_unassigned_access(T0, 0, 0, 1);
359
        ret = 0;
360
        break;
361
    }
362
    if (sign) {
363
        switch(size) {
364
        case 1:
365
            T1 = (int8_t) ret;
366
            break;
367
        case 2:
368
            T1 = (int16_t) ret;
369
            break;
370
        default:
371
            T1 = ret;
372
            break;
373
        }
374
    }
375
    else
376
        T1 = ret;
377
}
378

    
379
void helper_st_asi(int asi, int size)
380
{
381
    switch(asi) {
382
    case 2: /* SuperSparc MXCC registers */
383
        switch (T0) {
384
        case 0x01c00000: /* MXCC stream data register 0 */
385
            if (size == 8)
386
                env->mxccdata[0] = ((uint64_t)T1 << 32) | T2;
387
            else
388
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
389
            break;
390
        case 0x01c00008: /* MXCC stream data register 1 */
391
            if (size == 8)
392
                env->mxccdata[1] = ((uint64_t)T1 << 32) | T2;
393
            else
394
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
395
            break;
396
        case 0x01c00010: /* MXCC stream data register 2 */
397
            if (size == 8)
398
                env->mxccdata[2] = ((uint64_t)T1 << 32) | T2;
399
            else
400
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
401
            break;
402
        case 0x01c00018: /* MXCC stream data register 3 */
403
            if (size == 8)
404
                env->mxccdata[3] = ((uint64_t)T1 << 32) | T2;
405
            else
406
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
407
            break;
408
        case 0x01c00100: /* MXCC stream source */
409
            if (size == 8)
410
                env->mxccregs[0] = ((uint64_t)T1 << 32) | T2;
411
            else
412
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
413
            env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +  0);
414
            env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +  8);
415
            env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 16);
416
            env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 24);
417
            break;
418
        case 0x01c00200: /* MXCC stream destination */
419
            if (size == 8)
420
                env->mxccregs[1] = ((uint64_t)T1 << 32) | T2;
421
            else
422
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
423
            stq_phys((env->mxccregs[1] & 0xffffffffULL) +  0, env->mxccdata[0]);
424
            stq_phys((env->mxccregs[1] & 0xffffffffULL) +  8, env->mxccdata[1]);
425
            stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16, env->mxccdata[2]);
426
            stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24, env->mxccdata[3]);
427
            break;
428
        case 0x01c00a00: /* MXCC control register */
429
            if (size == 8)
430
                env->mxccregs[3] = ((uint64_t)T1 << 32) | T2;
431
            else
432
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
433
            break;
434
        case 0x01c00a04: /* MXCC control register */
435
            if (size == 4)
436
                env->mxccregs[3] = (env->mxccregs[0xa] & 0xffffffff00000000) | T1;
437
            else
438
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
439
            break;
440
        case 0x01c00e00: /* MXCC error register  */
441
            if (size == 8)
442
                env->mxccregs[6] = ((uint64_t)T1 << 32) | T2;
443
            else
444
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
445
            if (env->mxccregs[6] == 0xffffffffffffffffULL) {
446
                // this is probably a reset
447
            }
448
            break;
449
        case 0x01c00f00: /* MBus port address register */
450
            if (size == 8)
451
                env->mxccregs[7] = ((uint64_t)T1 << 32) | T2;
452
            else
453
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
454
            break;
455
        default:
456
            DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", T0, size);
457
            break;
458
        }
459
        DPRINTF_MXCC("asi = %d, size = %d, T0 = %08x, T1 = %08x\n", asi, size, T0, T1);
460
#ifdef DEBUG_MXCC
461
        dump_mxcc(env);
462
#endif
463
        break;
464
    case 3: /* MMU flush */
465
        {
466
            int mmulev;
467

    
468
            mmulev = (T0 >> 8) & 15;
469
            DPRINTF_MMU("mmu flush level %d\n", mmulev);
470
            switch (mmulev) {
471
            case 0: // flush page
472
                tlb_flush_page(env, T0 & 0xfffff000);
473
                break;
474
            case 1: // flush segment (256k)
475
            case 2: // flush region (16M)
476
            case 3: // flush context (4G)
477
            case 4: // flush entire
478
                tlb_flush(env, 1);
479
                break;
480
            default:
481
                break;
482
            }
483
#ifdef DEBUG_MMU
484
            dump_mmu(env);
485
#endif
486
            return;
487
        }
488
    case 4: /* write MMU regs */
489
        {
490
            int reg = (T0 >> 8) & 0xf;
491
            uint32_t oldreg;
492

    
493
            oldreg = env->mmuregs[reg];
494
            switch(reg) {
495
            case 0:
496
                env->mmuregs[reg] &= ~(MMU_E | MMU_NF | env->mmu_bm);
497
                env->mmuregs[reg] |= T1 & (MMU_E | MMU_NF | env->mmu_bm);
498
                // Mappings generated during no-fault mode or MMU
499
                // disabled mode are invalid in normal mode
500
                if (oldreg != env->mmuregs[reg])
501
                    tlb_flush(env, 1);
502
                break;
503
            case 2:
504
                env->mmuregs[reg] = T1;
505
                if (oldreg != env->mmuregs[reg]) {
506
                    /* we flush when the MMU context changes because
507
                       QEMU has no MMU context support */
508
                    tlb_flush(env, 1);
509
                }
510
                break;
511
            case 3:
512
            case 4:
513
                break;
514
            default:
515
                env->mmuregs[reg] = T1;
516
                break;
517
            }
518
            if (oldreg != env->mmuregs[reg]) {
519
                DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg, oldreg, env->mmuregs[reg]);
520
            }
521
#ifdef DEBUG_MMU
522
            dump_mmu(env);
523
#endif
524
            return;
525
        }
526
    case 0xa: /* User data access */
527
        switch(size) {
528
        case 1:
529
            stb_user(T0, T1);
530
            break;
531
        case 2:
532
            stw_user(T0 & ~1, T1);
533
            break;
534
        default:
535
        case 4:
536
            stl_user(T0 & ~3, T1);
537
            break;
538
        case 8:
539
            stq_user(T0 & ~7, ((uint64_t)T1 << 32) | T2);
540
            break;
541
        }
542
        break;
543
    case 0xb: /* Supervisor data access */
544
        switch(size) {
545
        case 1:
546
            stb_kernel(T0, T1);
547
            break;
548
        case 2:
549
            stw_kernel(T0 & ~1, T1);
550
            break;
551
        default:
552
        case 4:
553
            stl_kernel(T0 & ~3, T1);
554
            break;
555
        case 8:
556
            stq_kernel(T0 & ~7, ((uint64_t)T1 << 32) | T2);
557
            break;
558
        }
559
        break;
560
    case 0xc: /* I-cache tag */
561
    case 0xd: /* I-cache data */
562
    case 0xe: /* D-cache tag */
563
    case 0xf: /* D-cache data */
564
    case 0x10: /* I/D-cache flush page */
565
    case 0x11: /* I/D-cache flush segment */
566
    case 0x12: /* I/D-cache flush region */
567
    case 0x13: /* I/D-cache flush context */
568
    case 0x14: /* I/D-cache flush user */
569
        break;
570
    case 0x17: /* Block copy, sta access */
571
        {
572
            // value (T1) = src
573
            // address (T0) = dst
574
            // copy 32 bytes
575
            unsigned int i;
576
            uint32_t src = T1 & ~3, dst = T0 & ~3, temp;
577

    
578
            for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
579
                temp = ldl_kernel(src);
580
                stl_kernel(dst, temp);
581
            }
582
        }
583
        return;
584
    case 0x1f: /* Block fill, stda access */
585
        {
586
            // value (T1, T2)
587
            // address (T0) = dst
588
            // fill 32 bytes
589
            unsigned int i;
590
            uint32_t dst = T0 & 7;
591
            uint64_t val;
592

    
593
            val = (((uint64_t)T1) << 32) | T2;
594

    
595
            for (i = 0; i < 32; i += 8, dst += 8)
596
                stq_kernel(dst, val);
597
        }
598
        return;
599
    case 0x20: /* MMU passthrough */
600
        {
601
            switch(size) {
602
            case 1:
603
                stb_phys(T0, T1);
604
                break;
605
            case 2:
606
                stw_phys(T0 & ~1, T1);
607
                break;
608
            case 4:
609
            default:
610
                stl_phys(T0 & ~3, T1);
611
                break;
612
            case 8:
613
                stq_phys(T0 & ~7, ((uint64_t)T1 << 32) | T2);
614
                break;
615
            }
616
        }
617
        return;
618
    case 0x2e: /* MMU passthrough, 0xexxxxxxxx */
619
    case 0x2f: /* MMU passthrough, 0xfxxxxxxxx */
620
        {
621
            switch(size) {
622
            case 1:
623
                stb_phys((target_phys_addr_t)T0
624
                         | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
625
                break;
626
            case 2:
627
                stw_phys((target_phys_addr_t)(T0 & ~1)
628
                            | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
629
                break;
630
            case 4:
631
            default:
632
                stl_phys((target_phys_addr_t)(T0 & ~3)
633
                           | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
634
                break;
635
            case 8:
636
                stq_phys((target_phys_addr_t)(T0 & ~7)
637
                           | ((target_phys_addr_t)(asi & 0xf) << 32),
638
                         ((uint64_t)T1 << 32) | T2);
639
                break;
640
            }
641
        }
642
        return;
643
    case 0x31: /* Ross RT620 I-cache flush */
644
    case 0x36: /* I-cache flash clear */
645
    case 0x37: /* D-cache flash clear */
646
        break;
647
    case 9: /* Supervisor code access, XXX */
648
    case 0x21 ... 0x2d: /* MMU passthrough, unassigned */
649
    default:
650
        do_unassigned_access(T0, 1, 0, 1);
651
        return;
652
    }
653
}
654

    
655
#endif /* CONFIG_USER_ONLY */
656
#else /* TARGET_SPARC64 */
657

    
658
#ifdef CONFIG_USER_ONLY
659
void helper_ld_asi(int asi, int size, int sign)
660
{
661
    uint64_t ret = 0;
662

    
663
    if (asi < 0x80)
664
        raise_exception(TT_PRIV_ACT);
665

    
666
    switch (asi) {
667
    case 0x80: // Primary
668
    case 0x82: // Primary no-fault
669
    case 0x88: // Primary LE
670
    case 0x8a: // Primary no-fault LE
671
        {
672
            switch(size) {
673
            case 1:
674
                ret = ldub_raw(T0);
675
                break;
676
            case 2:
677
                ret = lduw_raw(T0 & ~1);
678
                break;
679
            case 4:
680
                ret = ldl_raw(T0 & ~3);
681
                break;
682
            default:
683
            case 8:
684
                ret = ldq_raw(T0 & ~7);
685
                break;
686
            }
687
        }
688
        break;
689
    case 0x81: // Secondary
690
    case 0x83: // Secondary no-fault
691
    case 0x89: // Secondary LE
692
    case 0x8b: // Secondary no-fault LE
693
        // XXX
694
        break;
695
    default:
696
        break;
697
    }
698

    
699
    /* Convert from little endian */
700
    switch (asi) {
701
    case 0x88: // Primary LE
702
    case 0x89: // Secondary LE
703
    case 0x8a: // Primary no-fault LE
704
    case 0x8b: // Secondary no-fault LE
705
        switch(size) {
706
        case 2:
707
            ret = bswap16(ret);
708
            break;
709
        case 4:
710
            ret = bswap32(ret);
711
            break;
712
        case 8:
713
            ret = bswap64(ret);
714
            break;
715
        default:
716
            break;
717
        }
718
    default:
719
        break;
720
    }
721

    
722
    /* Convert to signed number */
723
    if (sign) {
724
        switch(size) {
725
        case 1:
726
            ret = (int8_t) ret;
727
            break;
728
        case 2:
729
            ret = (int16_t) ret;
730
            break;
731
        case 4:
732
            ret = (int32_t) ret;
733
            break;
734
        default:
735
            break;
736
        }
737
    }
738
    T1 = ret;
739
}
740

    
741
void helper_st_asi(int asi, int size)
742
{
743
    if (asi < 0x80)
744
        raise_exception(TT_PRIV_ACT);
745

    
746
    /* Convert to little endian */
747
    switch (asi) {
748
    case 0x88: // Primary LE
749
    case 0x89: // Secondary LE
750
        switch(size) {
751
        case 2:
752
            T0 = bswap16(T0);
753
            break;
754
        case 4:
755
            T0 = bswap32(T0);
756
            break;
757
        case 8:
758
            T0 = bswap64(T0);
759
            break;
760
        default:
761
            break;
762
        }
763
    default:
764
        break;
765
    }
766

    
767
    switch(asi) {
768
    case 0x80: // Primary
769
    case 0x88: // Primary LE
770
        {
771
            switch(size) {
772
            case 1:
773
                stb_raw(T0, T1);
774
                break;
775
            case 2:
776
                stw_raw(T0 & ~1, T1);
777
                break;
778
            case 4:
779
                stl_raw(T0 & ~3, T1);
780
                break;
781
            case 8:
782
            default:
783
                stq_raw(T0 & ~7, T1);
784
                break;
785
            }
786
        }
787
        break;
788
    case 0x81: // Secondary
789
    case 0x89: // Secondary LE
790
        // XXX
791
        return;
792

    
793
    case 0x82: // Primary no-fault, RO
794
    case 0x83: // Secondary no-fault, RO
795
    case 0x8a: // Primary no-fault LE, RO
796
    case 0x8b: // Secondary no-fault LE, RO
797
    default:
798
        do_unassigned_access(T0, 1, 0, 1);
799
        return;
800
    }
801
}
802

    
803
#else /* CONFIG_USER_ONLY */
804

    
805
void helper_ld_asi(int asi, int size, int sign)
806
{
807
    uint64_t ret = 0;
808

    
809
    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
810
        || (asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV)))
811
        raise_exception(TT_PRIV_ACT);
812

    
813
    switch (asi) {
814
    case 0x10: // As if user primary
815
    case 0x18: // As if user primary LE
816
    case 0x80: // Primary
817
    case 0x82: // Primary no-fault
818
    case 0x88: // Primary LE
819
    case 0x8a: // Primary no-fault LE
820
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
821
            if (env->hpstate & HS_PRIV) {
822
                switch(size) {
823
                case 1:
824
                    ret = ldub_hypv(T0);
825
                    break;
826
                case 2:
827
                    ret = lduw_hypv(T0 & ~1);
828
                    break;
829
                case 4:
830
                    ret = ldl_hypv(T0 & ~3);
831
                    break;
832
                default:
833
                case 8:
834
                    ret = ldq_hypv(T0 & ~7);
835
                    break;
836
                }
837
            } else {
838
                switch(size) {
839
                case 1:
840
                    ret = ldub_kernel(T0);
841
                    break;
842
                case 2:
843
                    ret = lduw_kernel(T0 & ~1);
844
                    break;
845
                case 4:
846
                    ret = ldl_kernel(T0 & ~3);
847
                    break;
848
                default:
849
                case 8:
850
                    ret = ldq_kernel(T0 & ~7);
851
                    break;
852
                }
853
            }
854
        } else {
855
            switch(size) {
856
            case 1:
857
                ret = ldub_user(T0);
858
                break;
859
            case 2:
860
                ret = lduw_user(T0 & ~1);
861
                break;
862
            case 4:
863
                ret = ldl_user(T0 & ~3);
864
                break;
865
            default:
866
            case 8:
867
                ret = ldq_user(T0 & ~7);
868
                break;
869
            }
870
        }
871
        break;
872
    case 0x14: // Bypass
873
    case 0x15: // Bypass, non-cacheable
874
    case 0x1c: // Bypass LE
875
    case 0x1d: // Bypass, non-cacheable LE
876
        {
877
            switch(size) {
878
            case 1:
879
                ret = ldub_phys(T0);
880
                break;
881
            case 2:
882
                ret = lduw_phys(T0 & ~1);
883
                break;
884
            case 4:
885
                ret = ldl_phys(T0 & ~3);
886
                break;
887
            default:
888
            case 8:
889
                ret = ldq_phys(T0 & ~7);
890
                break;
891
            }
892
            break;
893
        }
894
    case 0x04: // Nucleus
895
    case 0x0c: // Nucleus Little Endian (LE)
896
    case 0x11: // As if user secondary
897
    case 0x19: // As if user secondary LE
898
    case 0x24: // Nucleus quad LDD 128 bit atomic
899
    case 0x2c: // Nucleus quad LDD 128 bit atomic
900
    case 0x4a: // UPA config
901
    case 0x81: // Secondary
902
    case 0x83: // Secondary no-fault
903
    case 0x89: // Secondary LE
904
    case 0x8b: // Secondary no-fault LE
905
        // XXX
906
        break;
907
    case 0x45: // LSU
908
        ret = env->lsu;
909
        break;
910
    case 0x50: // I-MMU regs
911
        {
912
            int reg = (T0 >> 3) & 0xf;
913

    
914
            ret = env->immuregs[reg];
915
            break;
916
        }
917
    case 0x51: // I-MMU 8k TSB pointer
918
    case 0x52: // I-MMU 64k TSB pointer
919
    case 0x55: // I-MMU data access
920
        // XXX
921
        break;
922
    case 0x56: // I-MMU tag read
923
        {
924
            unsigned int i;
925

    
926
            for (i = 0; i < 64; i++) {
927
                // Valid, ctx match, vaddr match
928
                if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0 &&
929
                    env->itlb_tag[i] == T0) {
930
                    ret = env->itlb_tag[i];
931
                    break;
932
                }
933
            }
934
            break;
935
        }
936
    case 0x58: // D-MMU regs
937
        {
938
            int reg = (T0 >> 3) & 0xf;
939

    
940
            ret = env->dmmuregs[reg];
941
            break;
942
        }
943
    case 0x5e: // D-MMU tag read
944
        {
945
            unsigned int i;
946

    
947
            for (i = 0; i < 64; i++) {
948
                // Valid, ctx match, vaddr match
949
                if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0 &&
950
                    env->dtlb_tag[i] == T0) {
951
                    ret = env->dtlb_tag[i];
952
                    break;
953
                }
954
            }
955
            break;
956
        }
957
    case 0x59: // D-MMU 8k TSB pointer
958
    case 0x5a: // D-MMU 64k TSB pointer
959
    case 0x5b: // D-MMU data pointer
960
    case 0x5d: // D-MMU data access
961
    case 0x48: // Interrupt dispatch, RO
962
    case 0x49: // Interrupt data receive
963
    case 0x7f: // Incoming interrupt vector, RO
964
        // XXX
965
        break;
966
    case 0x54: // I-MMU data in, WO
967
    case 0x57: // I-MMU demap, WO
968
    case 0x5c: // D-MMU data in, WO
969
    case 0x5f: // D-MMU demap, WO
970
    case 0x77: // Interrupt vector, WO
971
    default:
972
        do_unassigned_access(T0, 0, 0, 1);
973
        ret = 0;
974
        break;
975
    }
976

    
977
    /* Convert from little endian */
978
    switch (asi) {
979
    case 0x0c: // Nucleus Little Endian (LE)
980
    case 0x18: // As if user primary LE
981
    case 0x19: // As if user secondary LE
982
    case 0x1c: // Bypass LE
983
    case 0x1d: // Bypass, non-cacheable LE
984
    case 0x88: // Primary LE
985
    case 0x89: // Secondary LE
986
    case 0x8a: // Primary no-fault LE
987
    case 0x8b: // Secondary no-fault LE
988
        switch(size) {
989
        case 2:
990
            ret = bswap16(ret);
991
            break;
992
        case 4:
993
            ret = bswap32(ret);
994
            break;
995
        case 8:
996
            ret = bswap64(ret);
997
            break;
998
        default:
999
            break;
1000
        }
1001
    default:
1002
        break;
1003
    }
1004

    
1005
    /* Convert to signed number */
1006
    if (sign) {
1007
        switch(size) {
1008
        case 1:
1009
            ret = (int8_t) ret;
1010
            break;
1011
        case 2:
1012
            ret = (int16_t) ret;
1013
            break;
1014
        case 4:
1015
            ret = (int32_t) ret;
1016
            break;
1017
        default:
1018
            break;
1019
        }
1020
    }
1021
    T1 = ret;
1022
}
1023

    
1024
void helper_st_asi(int asi, int size)
1025
{
1026
    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1027
        || (asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV)))
1028
        raise_exception(TT_PRIV_ACT);
1029

    
1030
    /* Convert to little endian */
1031
    switch (asi) {
1032
    case 0x0c: // Nucleus Little Endian (LE)
1033
    case 0x18: // As if user primary LE
1034
    case 0x19: // As if user secondary LE
1035
    case 0x1c: // Bypass LE
1036
    case 0x1d: // Bypass, non-cacheable LE
1037
    case 0x88: // Primary LE
1038
    case 0x89: // Secondary LE
1039
        switch(size) {
1040
        case 2:
1041
            T0 = bswap16(T0);
1042
            break;
1043
        case 4:
1044
            T0 = bswap32(T0);
1045
            break;
1046
        case 8:
1047
            T0 = bswap64(T0);
1048
            break;
1049
        default:
1050
            break;
1051
        }
1052
    default:
1053
        break;
1054
    }
1055

    
1056
    switch(asi) {
1057
    case 0x10: // As if user primary
1058
    case 0x18: // As if user primary LE
1059
    case 0x80: // Primary
1060
    case 0x88: // Primary LE
1061
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1062
            if (env->hpstate & HS_PRIV) {
1063
                switch(size) {
1064
                case 1:
1065
                    stb_hypv(T0, T1);
1066
                    break;
1067
                case 2:
1068
                    stw_hypv(T0 & ~1, T1);
1069
                    break;
1070
                case 4:
1071
                    stl_hypv(T0 & ~3, T1);
1072
                    break;
1073
                case 8:
1074
                default:
1075
                    stq_hypv(T0 & ~7, T1);
1076
                    break;
1077
                }
1078
            } else {
1079
                switch(size) {
1080
                case 1:
1081
                    stb_kernel(T0, T1);
1082
                    break;
1083
                case 2:
1084
                    stw_kernel(T0 & ~1, T1);
1085
                    break;
1086
                case 4:
1087
                    stl_kernel(T0 & ~3, T1);
1088
                    break;
1089
                case 8:
1090
                default:
1091
                    stq_kernel(T0 & ~7, T1);
1092
                    break;
1093
                }
1094
            }
1095
        } else {
1096
            switch(size) {
1097
            case 1:
1098
                stb_user(T0, T1);
1099
                break;
1100
            case 2:
1101
                stw_user(T0 & ~1, T1);
1102
                break;
1103
            case 4:
1104
                stl_user(T0 & ~3, T1);
1105
                break;
1106
            case 8:
1107
            default:
1108
                stq_user(T0 & ~7, T1);
1109
                break;
1110
            }
1111
        }
1112
        break;
1113
    case 0x14: // Bypass
1114
    case 0x15: // Bypass, non-cacheable
1115
    case 0x1c: // Bypass LE
1116
    case 0x1d: // Bypass, non-cacheable LE
1117
        {
1118
            switch(size) {
1119
            case 1:
1120
                stb_phys(T0, T1);
1121
                break;
1122
            case 2:
1123
                stw_phys(T0 & ~1, T1);
1124
                break;
1125
            case 4:
1126
                stl_phys(T0 & ~3, T1);
1127
                break;
1128
            case 8:
1129
            default:
1130
                stq_phys(T0 & ~7, T1);
1131
                break;
1132
            }
1133
        }
1134
        return;
1135
    case 0x04: // Nucleus
1136
    case 0x0c: // Nucleus Little Endian (LE)
1137
    case 0x11: // As if user secondary
1138
    case 0x19: // As if user secondary LE
1139
    case 0x24: // Nucleus quad LDD 128 bit atomic
1140
    case 0x2c: // Nucleus quad LDD 128 bit atomic
1141
    case 0x4a: // UPA config
1142
    case 0x81: // Secondary
1143
    case 0x89: // Secondary LE
1144
        // XXX
1145
        return;
1146
    case 0x45: // LSU
1147
        {
1148
            uint64_t oldreg;
1149

    
1150
            oldreg = env->lsu;
1151
            env->lsu = T1 & (DMMU_E | IMMU_E);
1152
            // Mappings generated during D/I MMU disabled mode are
1153
            // invalid in normal mode
1154
            if (oldreg != env->lsu) {
1155
                DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n", oldreg, env->lsu);
1156
#ifdef DEBUG_MMU
1157
                dump_mmu(env);
1158
#endif
1159
                tlb_flush(env, 1);
1160
            }
1161
            return;
1162
        }
1163
    case 0x50: // I-MMU regs
1164
        {
1165
            int reg = (T0 >> 3) & 0xf;
1166
            uint64_t oldreg;
1167

    
1168
            oldreg = env->immuregs[reg];
1169
            switch(reg) {
1170
            case 0: // RO
1171
            case 4:
1172
                return;
1173
            case 1: // Not in I-MMU
1174
            case 2:
1175
            case 7:
1176
            case 8:
1177
                return;
1178
            case 3: // SFSR
1179
                if ((T1 & 1) == 0)
1180
                    T1 = 0; // Clear SFSR
1181
                break;
1182
            case 5: // TSB access
1183
            case 6: // Tag access
1184
            default:
1185
                break;
1186
            }
1187
            env->immuregs[reg] = T1;
1188
            if (oldreg != env->immuregs[reg]) {
1189
                DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1190
            }
1191
#ifdef DEBUG_MMU
1192
            dump_mmu(env);
1193
#endif
1194
            return;
1195
        }
1196
    case 0x54: // I-MMU data in
1197
        {
1198
            unsigned int i;
1199

    
1200
            // Try finding an invalid entry
1201
            for (i = 0; i < 64; i++) {
1202
                if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
1203
                    env->itlb_tag[i] = env->immuregs[6];
1204
                    env->itlb_tte[i] = T1;
1205
                    return;
1206
                }
1207
            }
1208
            // Try finding an unlocked entry
1209
            for (i = 0; i < 64; i++) {
1210
                if ((env->itlb_tte[i] & 0x40) == 0) {
1211
                    env->itlb_tag[i] = env->immuregs[6];
1212
                    env->itlb_tte[i] = T1;
1213
                    return;
1214
                }
1215
            }
1216
            // error state?
1217
            return;
1218
        }
1219
    case 0x55: // I-MMU data access
1220
        {
1221
            unsigned int i = (T0 >> 3) & 0x3f;
1222

    
1223
            env->itlb_tag[i] = env->immuregs[6];
1224
            env->itlb_tte[i] = T1;
1225
            return;
1226
        }
1227
    case 0x57: // I-MMU demap
1228
        // XXX
1229
        return;
1230
    case 0x58: // D-MMU regs
1231
        {
1232
            int reg = (T0 >> 3) & 0xf;
1233
            uint64_t oldreg;
1234

    
1235
            oldreg = env->dmmuregs[reg];
1236
            switch(reg) {
1237
            case 0: // RO
1238
            case 4:
1239
                return;
1240
            case 3: // SFSR
1241
                if ((T1 & 1) == 0) {
1242
                    T1 = 0; // Clear SFSR, Fault address
1243
                    env->dmmuregs[4] = 0;
1244
                }
1245
                env->dmmuregs[reg] = T1;
1246
                break;
1247
            case 1: // Primary context
1248
            case 2: // Secondary context
1249
            case 5: // TSB access
1250
            case 6: // Tag access
1251
            case 7: // Virtual Watchpoint
1252
            case 8: // Physical Watchpoint
1253
            default:
1254
                break;
1255
            }
1256
            env->dmmuregs[reg] = T1;
1257
            if (oldreg != env->dmmuregs[reg]) {
1258
                DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
1259
            }
1260
#ifdef DEBUG_MMU
1261
            dump_mmu(env);
1262
#endif
1263
            return;
1264
        }
1265
    case 0x5c: // D-MMU data in
1266
        {
1267
            unsigned int i;
1268

    
1269
            // Try finding an invalid entry
1270
            for (i = 0; i < 64; i++) {
1271
                if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
1272
                    env->dtlb_tag[i] = env->dmmuregs[6];
1273
                    env->dtlb_tte[i] = T1;
1274
                    return;
1275
                }
1276
            }
1277
            // Try finding an unlocked entry
1278
            for (i = 0; i < 64; i++) {
1279
                if ((env->dtlb_tte[i] & 0x40) == 0) {
1280
                    env->dtlb_tag[i] = env->dmmuregs[6];
1281
                    env->dtlb_tte[i] = T1;
1282
                    return;
1283
                }
1284
            }
1285
            // error state?
1286
            return;
1287
        }
1288
    case 0x5d: // D-MMU data access
1289
        {
1290
            unsigned int i = (T0 >> 3) & 0x3f;
1291

    
1292
            env->dtlb_tag[i] = env->dmmuregs[6];
1293
            env->dtlb_tte[i] = T1;
1294
            return;
1295
        }
1296
    case 0x5f: // D-MMU demap
1297
    case 0x49: // Interrupt data receive
1298
        // XXX
1299
        return;
1300
    case 0x51: // I-MMU 8k TSB pointer, RO
1301
    case 0x52: // I-MMU 64k TSB pointer, RO
1302
    case 0x56: // I-MMU tag read, RO
1303
    case 0x59: // D-MMU 8k TSB pointer, RO
1304
    case 0x5a: // D-MMU 64k TSB pointer, RO
1305
    case 0x5b: // D-MMU data pointer, RO
1306
    case 0x5e: // D-MMU tag read, RO
1307
    case 0x48: // Interrupt dispatch, RO
1308
    case 0x7f: // Incoming interrupt vector, RO
1309
    case 0x82: // Primary no-fault, RO
1310
    case 0x83: // Secondary no-fault, RO
1311
    case 0x8a: // Primary no-fault LE, RO
1312
    case 0x8b: // Secondary no-fault LE, RO
1313
    default:
1314
        do_unassigned_access(T0, 1, 0, 1);
1315
        return;
1316
    }
1317
}
1318
#endif /* CONFIG_USER_ONLY */
1319

    
1320
void helper_ldf_asi(int asi, int size, int rd)
1321
{
1322
    target_ulong tmp_T0 = T0, tmp_T1 = T1;
1323
    unsigned int i;
1324

    
1325
    switch (asi) {
1326
    case 0xf0: // Block load primary
1327
    case 0xf1: // Block load secondary
1328
    case 0xf8: // Block load primary LE
1329
    case 0xf9: // Block load secondary LE
1330
        if (rd & 7) {
1331
            raise_exception(TT_ILL_INSN);
1332
            return;
1333
        }
1334
        if (T0 & 0x3f) {
1335
            raise_exception(TT_UNALIGNED);
1336
            return;
1337
        }
1338
        for (i = 0; i < 16; i++) {
1339
            helper_ld_asi(asi & 0x8f, 4, 0);
1340
            *(uint32_t *)&env->fpr[rd++] = T1;
1341
            T0 += 4;
1342
        }
1343
        T0 = tmp_T0;
1344
        T1 = tmp_T1;
1345

    
1346
        return;
1347
    default:
1348
        break;
1349
    }
1350

    
1351
    helper_ld_asi(asi, size, 0);
1352
    switch(size) {
1353
    default:
1354
    case 4:
1355
        *((uint32_t *)&FT0) = T1;
1356
        break;
1357
    case 8:
1358
        *((int64_t *)&DT0) = T1;
1359
        break;
1360
    }
1361
    T1 = tmp_T1;
1362
}
1363

    
1364
void helper_stf_asi(int asi, int size, int rd)
1365
{
1366
    target_ulong tmp_T0 = T0, tmp_T1 = T1;
1367
    unsigned int i;
1368

    
1369
    switch (asi) {
1370
    case 0xf0: // Block store primary
1371
    case 0xf1: // Block store secondary
1372
    case 0xf8: // Block store primary LE
1373
    case 0xf9: // Block store secondary LE
1374
        if (rd & 7) {
1375
            raise_exception(TT_ILL_INSN);
1376
            return;
1377
        }
1378
        if (T0 & 0x3f) {
1379
            raise_exception(TT_UNALIGNED);
1380
            return;
1381
        }
1382
        for (i = 0; i < 16; i++) {
1383
            T1 = *(uint32_t *)&env->fpr[rd++];
1384
            helper_st_asi(asi & 0x8f, 4);
1385
            T0 += 4;
1386
        }
1387
        T0 = tmp_T0;
1388
        T1 = tmp_T1;
1389

    
1390
        return;
1391
    default:
1392
        break;
1393
    }
1394

    
1395
    switch(size) {
1396
    default:
1397
    case 4:
1398
        T1 = *((uint32_t *)&FT0);
1399
        break;
1400
    case 8:
1401
        T1 = *((int64_t *)&DT0);
1402
        break;
1403
    }
1404
    helper_st_asi(asi, size);
1405
    T1 = tmp_T1;
1406
}
1407

    
1408
#endif /* TARGET_SPARC64 */
1409

    
1410
#ifndef TARGET_SPARC64
1411
void helper_rett()
1412
{
1413
    unsigned int cwp;
1414

    
1415
    if (env->psret == 1)
1416
        raise_exception(TT_ILL_INSN);
1417

    
1418
    env->psret = 1;
1419
    cwp = (env->cwp + 1) & (NWINDOWS - 1);
1420
    if (env->wim & (1 << cwp)) {
1421
        raise_exception(TT_WIN_UNF);
1422
    }
1423
    set_cwp(cwp);
1424
    env->psrs = env->psrps;
1425
}
1426
#endif
1427

    
1428
void helper_ldfsr(void)
1429
{
1430
    int rnd_mode;
1431
    switch (env->fsr & FSR_RD_MASK) {
1432
    case FSR_RD_NEAREST:
1433
        rnd_mode = float_round_nearest_even;
1434
        break;
1435
    default:
1436
    case FSR_RD_ZERO:
1437
        rnd_mode = float_round_to_zero;
1438
        break;
1439
    case FSR_RD_POS:
1440
        rnd_mode = float_round_up;
1441
        break;
1442
    case FSR_RD_NEG:
1443
        rnd_mode = float_round_down;
1444
        break;
1445
    }
1446
    set_float_rounding_mode(rnd_mode, &env->fp_status);
1447
}
1448

    
1449
void helper_debug()
1450
{
1451
    env->exception_index = EXCP_DEBUG;
1452
    cpu_loop_exit();
1453
}
1454

    
1455
#ifndef TARGET_SPARC64
1456
void do_wrpsr()
1457
{
1458
    if ((T0 & PSR_CWP) >= NWINDOWS)
1459
        raise_exception(TT_ILL_INSN);
1460
    else
1461
        PUT_PSR(env, T0);
1462
}
1463

    
1464
void do_rdpsr()
1465
{
1466
    T0 = GET_PSR(env);
1467
}
1468

    
1469
#else
1470

    
1471
void do_popc()
1472
{
1473
    T0 = ctpop64(T1);
1474
}
1475

    
1476
static inline uint64_t *get_gregset(uint64_t pstate)
1477
{
1478
    switch (pstate) {
1479
    default:
1480
    case 0:
1481
        return env->bgregs;
1482
    case PS_AG:
1483
        return env->agregs;
1484
    case PS_MG:
1485
        return env->mgregs;
1486
    case PS_IG:
1487
        return env->igregs;
1488
    }
1489
}
1490

    
1491
static inline void change_pstate(uint64_t new_pstate)
1492
{
1493
    uint64_t pstate_regs, new_pstate_regs;
1494
    uint64_t *src, *dst;
1495

    
1496
    pstate_regs = env->pstate & 0xc01;
1497
    new_pstate_regs = new_pstate & 0xc01;
1498
    if (new_pstate_regs != pstate_regs) {
1499
        // Switch global register bank
1500
        src = get_gregset(new_pstate_regs);
1501
        dst = get_gregset(pstate_regs);
1502
        memcpy32(dst, env->gregs);
1503
        memcpy32(env->gregs, src);
1504
    }
1505
    env->pstate = new_pstate;
1506
}
1507

    
1508
void do_wrpstate(void)
1509
{
1510
    change_pstate(T0 & 0xf3f);
1511
}
1512

    
1513
void do_done(void)
1514
{
1515
    env->tl--;
1516
    env->pc = env->tnpc[env->tl];
1517
    env->npc = env->tnpc[env->tl] + 4;
1518
    PUT_CCR(env, env->tstate[env->tl] >> 32);
1519
    env->asi = (env->tstate[env->tl] >> 24) & 0xff;
1520
    change_pstate((env->tstate[env->tl] >> 8) & 0xf3f);
1521
    PUT_CWP64(env, env->tstate[env->tl] & 0xff);
1522
}
1523

    
1524
void do_retry(void)
1525
{
1526
    env->tl--;
1527
    env->pc = env->tpc[env->tl];
1528
    env->npc = env->tnpc[env->tl];
1529
    PUT_CCR(env, env->tstate[env->tl] >> 32);
1530
    env->asi = (env->tstate[env->tl] >> 24) & 0xff;
1531
    change_pstate((env->tstate[env->tl] >> 8) & 0xf3f);
1532
    PUT_CWP64(env, env->tstate[env->tl] & 0xff);
1533
}
1534
#endif
1535

    
1536
void set_cwp(int new_cwp)
1537
{
1538
    /* put the modified wrap registers at their proper location */
1539
    if (env->cwp == (NWINDOWS - 1))
1540
        memcpy32(env->regbase, env->regbase + NWINDOWS * 16);
1541
    env->cwp = new_cwp;
1542
    /* put the wrap registers at their temporary location */
1543
    if (new_cwp == (NWINDOWS - 1))
1544
        memcpy32(env->regbase + NWINDOWS * 16, env->regbase);
1545
    env->regwptr = env->regbase + (new_cwp * 16);
1546
    REGWPTR = env->regwptr;
1547
}
1548

    
1549
void cpu_set_cwp(CPUState *env1, int new_cwp)
1550
{
1551
    CPUState *saved_env;
1552
#ifdef reg_REGWPTR
1553
    target_ulong *saved_regwptr;
1554
#endif
1555

    
1556
    saved_env = env;
1557
#ifdef reg_REGWPTR
1558
    saved_regwptr = REGWPTR;
1559
#endif
1560
    env = env1;
1561
    set_cwp(new_cwp);
1562
    env = saved_env;
1563
#ifdef reg_REGWPTR
1564
    REGWPTR = saved_regwptr;
1565
#endif
1566
}
1567

    
1568
#ifdef TARGET_SPARC64
1569
void do_interrupt(int intno)
1570
{
1571
#ifdef DEBUG_PCALL
1572
    if (loglevel & CPU_LOG_INT) {
1573
        static int count;
1574
        fprintf(logfile, "%6d: v=%04x pc=%016" PRIx64 " npc=%016" PRIx64 " SP=%016" PRIx64 "\n",
1575
                count, intno,
1576
                env->pc,
1577
                env->npc, env->regwptr[6]);
1578
        cpu_dump_state(env, logfile, fprintf, 0);
1579
#if 0
1580
        {
1581
            int i;
1582
            uint8_t *ptr;
1583

1584
            fprintf(logfile, "       code=");
1585
            ptr = (uint8_t *)env->pc;
1586
            for(i = 0; i < 16; i++) {
1587
                fprintf(logfile, " %02x", ldub(ptr + i));
1588
            }
1589
            fprintf(logfile, "\n");
1590
        }
1591
#endif
1592
        count++;
1593
    }
1594
#endif
1595
#if !defined(CONFIG_USER_ONLY)
1596
    if (env->tl == MAXTL) {
1597
        cpu_abort(env, "Trap 0x%04x while trap level is MAXTL, Error state", env->exception_index);
1598
        return;
1599
    }
1600
#endif
1601
    env->tstate[env->tl] = ((uint64_t)GET_CCR(env) << 32) | ((env->asi & 0xff) << 24) |
1602
        ((env->pstate & 0xf3f) << 8) | GET_CWP64(env);
1603
    env->tpc[env->tl] = env->pc;
1604
    env->tnpc[env->tl] = env->npc;
1605
    env->tt[env->tl] = intno;
1606
    change_pstate(PS_PEF | PS_PRIV | PS_AG);
1607

    
1608
    if (intno == TT_CLRWIN)
1609
        set_cwp((env->cwp - 1) & (NWINDOWS - 1));
1610
    else if ((intno & 0x1c0) == TT_SPILL)
1611
        set_cwp((env->cwp - env->cansave - 2) & (NWINDOWS - 1));
1612
    else if ((intno & 0x1c0) == TT_FILL)
1613
        set_cwp((env->cwp + 1) & (NWINDOWS - 1));
1614
    env->tbr &= ~0x7fffULL;
1615
    env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
1616
    if (env->tl < MAXTL - 1) {
1617
        env->tl++;
1618
    } else {
1619
        env->pstate |= PS_RED;
1620
        if (env->tl != MAXTL)
1621
            env->tl++;
1622
    }
1623
    env->pc = env->tbr;
1624
    env->npc = env->pc + 4;
1625
    env->exception_index = 0;
1626
}
1627
#else
1628
void do_interrupt(int intno)
1629
{
1630
    int cwp;
1631

    
1632
#ifdef DEBUG_PCALL
1633
    if (loglevel & CPU_LOG_INT) {
1634
        static int count;
1635
        fprintf(logfile, "%6d: v=%02x pc=%08x npc=%08x SP=%08x\n",
1636
                count, intno,
1637
                env->pc,
1638
                env->npc, env->regwptr[6]);
1639
        cpu_dump_state(env, logfile, fprintf, 0);
1640
#if 0
1641
        {
1642
            int i;
1643
            uint8_t *ptr;
1644

1645
            fprintf(logfile, "       code=");
1646
            ptr = (uint8_t *)env->pc;
1647
            for(i = 0; i < 16; i++) {
1648
                fprintf(logfile, " %02x", ldub(ptr + i));
1649
            }
1650
            fprintf(logfile, "\n");
1651
        }
1652
#endif
1653
        count++;
1654
    }
1655
#endif
1656
#if !defined(CONFIG_USER_ONLY)
1657
    if (env->psret == 0) {
1658
        cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state", env->exception_index);
1659
        return;
1660
    }
1661
#endif
1662
    env->psret = 0;
1663
    cwp = (env->cwp - 1) & (NWINDOWS - 1);
1664
    set_cwp(cwp);
1665
    env->regwptr[9] = env->pc;
1666
    env->regwptr[10] = env->npc;
1667
    env->psrps = env->psrs;
1668
    env->psrs = 1;
1669
    env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
1670
    env->pc = env->tbr;
1671
    env->npc = env->pc + 4;
1672
    env->exception_index = 0;
1673
}
1674
#endif
1675

    
1676
#if !defined(CONFIG_USER_ONLY)
1677

    
1678
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
1679
                                void *retaddr);
1680

    
1681
#define MMUSUFFIX _mmu
1682
#define ALIGNED_ONLY
1683
#ifdef __s390__
1684
# define GETPC() ((void*)((unsigned long)__builtin_return_address(0) & 0x7fffffffUL))
1685
#else
1686
# define GETPC() (__builtin_return_address(0))
1687
#endif
1688

    
1689
#define SHIFT 0
1690
#include "softmmu_template.h"
1691

    
1692
#define SHIFT 1
1693
#include "softmmu_template.h"
1694

    
1695
#define SHIFT 2
1696
#include "softmmu_template.h"
1697

    
1698
#define SHIFT 3
1699
#include "softmmu_template.h"
1700

    
1701
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
1702
                                void *retaddr)
1703
{
1704
#ifdef DEBUG_UNALIGNED
1705
    printf("Unaligned access to 0x%x from 0x%x\n", addr, env->pc);
1706
#endif
1707
    raise_exception(TT_UNALIGNED);
1708
}
1709

    
1710
/* try to fill the TLB and return an exception if error. If retaddr is
1711
   NULL, it means that the function was called in C code (i.e. not
1712
   from generated code or from helper.c) */
1713
/* XXX: fix it to restore all registers */
1714
void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
1715
{
1716
    TranslationBlock *tb;
1717
    int ret;
1718
    unsigned long pc;
1719
    CPUState *saved_env;
1720

    
1721
    /* XXX: hack to restore env in all cases, even if not called from
1722
       generated code */
1723
    saved_env = env;
1724
    env = cpu_single_env;
1725

    
1726
    ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
1727
    if (ret) {
1728
        if (retaddr) {
1729
            /* now we have a real cpu fault */
1730
            pc = (unsigned long)retaddr;
1731
            tb = tb_find_pc(pc);
1732
            if (tb) {
1733
                /* the PC is inside the translated code. It means that we have
1734
                   a virtual CPU fault */
1735
                cpu_restore_state(tb, env, pc, (void *)T2);
1736
            }
1737
        }
1738
        cpu_loop_exit();
1739
    }
1740
    env = saved_env;
1741
}
1742

    
1743
#endif
1744

    
1745
#ifndef TARGET_SPARC64
1746
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
1747
                          int is_asi)
1748
{
1749
    CPUState *saved_env;
1750

    
1751
    /* XXX: hack to restore env in all cases, even if not called from
1752
       generated code */
1753
    saved_env = env;
1754
    env = cpu_single_env;
1755
    if (env->mmuregs[3]) /* Fault status register */
1756
        env->mmuregs[3] = 1; /* overflow (not read before another fault) */
1757
    if (is_asi)
1758
        env->mmuregs[3] |= 1 << 16;
1759
    if (env->psrs)
1760
        env->mmuregs[3] |= 1 << 5;
1761
    if (is_exec)
1762
        env->mmuregs[3] |= 1 << 6;
1763
    if (is_write)
1764
        env->mmuregs[3] |= 1 << 7;
1765
    env->mmuregs[3] |= (5 << 2) | 2;
1766
    env->mmuregs[4] = addr; /* Fault address register */
1767
    if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
1768
#ifdef DEBUG_UNASSIGNED
1769
        printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
1770
               "\n", addr, env->pc);
1771
#endif
1772
        if (is_exec)
1773
            raise_exception(TT_CODE_ACCESS);
1774
        else
1775
            raise_exception(TT_DATA_ACCESS);
1776
    }
1777
    env = saved_env;
1778
}
1779
#else
1780
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
1781
                          int is_asi)
1782
{
1783
#ifdef DEBUG_UNASSIGNED
1784
    CPUState *saved_env;
1785

    
1786
    /* XXX: hack to restore env in all cases, even if not called from
1787
       generated code */
1788
    saved_env = env;
1789
    env = cpu_single_env;
1790
    printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx "\n",
1791
           addr, env->pc);
1792
    env = saved_env;
1793
#endif
1794
    if (is_exec)
1795
        raise_exception(TT_CODE_ACCESS);
1796
    else
1797
        raise_exception(TT_DATA_ACCESS);
1798
}
1799
#endif
1800

    
1801
#ifdef TARGET_SPARC64
1802
void do_tick_set_count(void *opaque, uint64_t count)
1803
{
1804
#if !defined(CONFIG_USER_ONLY)
1805
    ptimer_set_count(opaque, -count);
1806
#endif
1807
}
1808

    
1809
uint64_t do_tick_get_count(void *opaque)
1810
{
1811
#if !defined(CONFIG_USER_ONLY)
1812
    return -ptimer_get_count(opaque);
1813
#else
1814
    return 0;
1815
#endif
1816
}
1817

    
1818
void do_tick_set_limit(void *opaque, uint64_t limit)
1819
{
1820
#if !defined(CONFIG_USER_ONLY)
1821
    ptimer_set_limit(opaque, -limit, 0);
1822
#endif
1823
}
1824
#endif