Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 6e02c38d

History | View | Annotate | Download (97.6 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4
@settitle QEMU Emulator User Documentation
5
@exampleindent 0
6
@paragraphindent 0
7
@c %**end of header
8

    
9
@iftex
10
@titlepage
11
@sp 7
12
@center @titlefont{QEMU Emulator}
13
@sp 1
14
@center @titlefont{User Documentation}
15
@sp 3
16
@end titlepage
17
@end iftex
18

    
19
@ifnottex
20
@node Top
21
@top
22

    
23
@menu
24
* Introduction::
25
* Installation::
26
* QEMU PC System emulator::
27
* QEMU System emulator for non PC targets::
28
* QEMU User space emulator::
29
* compilation:: Compilation from the sources
30
* Index::
31
@end menu
32
@end ifnottex
33

    
34
@contents
35

    
36
@node Introduction
37
@chapter Introduction
38

    
39
@menu
40
* intro_features:: Features
41
@end menu
42

    
43
@node intro_features
44
@section Features
45

    
46
QEMU is a FAST! processor emulator using dynamic translation to
47
achieve good emulation speed.
48

    
49
QEMU has two operating modes:
50

    
51
@itemize @minus
52

    
53
@item
54
Full system emulation. In this mode, QEMU emulates a full system (for
55
example a PC), including one or several processors and various
56
peripherals. It can be used to launch different Operating Systems
57
without rebooting the PC or to debug system code.
58

    
59
@item
60
User mode emulation. In this mode, QEMU can launch
61
processes compiled for one CPU on another CPU. It can be used to
62
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63
to ease cross-compilation and cross-debugging.
64

    
65
@end itemize
66

    
67
QEMU can run without an host kernel driver and yet gives acceptable
68
performance.
69

    
70
For system emulation, the following hardware targets are supported:
71
@itemize
72
@item PC (x86 or x86_64 processor)
73
@item ISA PC (old style PC without PCI bus)
74
@item PREP (PowerPC processor)
75
@item G3 BW PowerMac (PowerPC processor)
76
@item Mac99 PowerMac (PowerPC processor, in progress)
77
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78
@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
79
@item Malta board (32-bit and 64-bit MIPS processors)
80
@item MIPS Magnum (64-bit MIPS processor)
81
@item ARM Integrator/CP (ARM)
82
@item ARM Versatile baseboard (ARM)
83
@item ARM RealView Emulation baseboard (ARM)
84
@item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
85
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87
@item Freescale MCF5208EVB (ColdFire V2).
88
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
89
@item Palm Tungsten|E PDA (OMAP310 processor)
90
@item N800 and N810 tablets (OMAP2420 processor)
91
@item MusicPal (MV88W8618 ARM processor)
92
@end itemize
93

    
94
For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
95

    
96
@node Installation
97
@chapter Installation
98

    
99
If you want to compile QEMU yourself, see @ref{compilation}.
100

    
101
@menu
102
* install_linux::   Linux
103
* install_windows:: Windows
104
* install_mac::     Macintosh
105
@end menu
106

    
107
@node install_linux
108
@section Linux
109

    
110
If a precompiled package is available for your distribution - you just
111
have to install it. Otherwise, see @ref{compilation}.
112

    
113
@node install_windows
114
@section Windows
115

    
116
Download the experimental binary installer at
117
@url{http://www.free.oszoo.org/@/download.html}.
118

    
119
@node install_mac
120
@section Mac OS X
121

    
122
Download the experimental binary installer at
123
@url{http://www.free.oszoo.org/@/download.html}.
124

    
125
@node QEMU PC System emulator
126
@chapter QEMU PC System emulator
127

    
128
@menu
129
* pcsys_introduction:: Introduction
130
* pcsys_quickstart::   Quick Start
131
* sec_invocation::     Invocation
132
* pcsys_keys::         Keys
133
* pcsys_monitor::      QEMU Monitor
134
* disk_images::        Disk Images
135
* pcsys_network::      Network emulation
136
* direct_linux_boot::  Direct Linux Boot
137
* pcsys_usb::          USB emulation
138
* vnc_security::       VNC security
139
* gdb_usage::          GDB usage
140
* pcsys_os_specific::  Target OS specific information
141
@end menu
142

    
143
@node pcsys_introduction
144
@section Introduction
145

    
146
@c man begin DESCRIPTION
147

    
148
The QEMU PC System emulator simulates the
149
following peripherals:
150

    
151
@itemize @minus
152
@item
153
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
154
@item
155
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
156
extensions (hardware level, including all non standard modes).
157
@item
158
PS/2 mouse and keyboard
159
@item
160
2 PCI IDE interfaces with hard disk and CD-ROM support
161
@item
162
Floppy disk
163
@item
164
PCI/ISA PCI network adapters
165
@item
166
Serial ports
167
@item
168
Creative SoundBlaster 16 sound card
169
@item
170
ENSONIQ AudioPCI ES1370 sound card
171
@item
172
Intel 82801AA AC97 Audio compatible sound card
173
@item
174
Adlib(OPL2) - Yamaha YM3812 compatible chip
175
@item
176
Gravis Ultrasound GF1 sound card
177
@item
178
CS4231A compatible sound card
179
@item
180
PCI UHCI USB controller and a virtual USB hub.
181
@end itemize
182

    
183
SMP is supported with up to 255 CPUs.
184

    
185
Note that adlib, ac97, gus and cs4231a are only available when QEMU
186
was configured with --audio-card-list option containing the name(s) of
187
required card(s).
188

    
189
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
190
VGA BIOS.
191

    
192
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
193

    
194
QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
195
by Tibor "TS" Sch?tz.
196

    
197
CS4231A is the chip used in Windows Sound System and GUSMAX products
198

    
199
@c man end
200

    
201
@node pcsys_quickstart
202
@section Quick Start
203

    
204
Download and uncompress the linux image (@file{linux.img}) and type:
205

    
206
@example
207
qemu linux.img
208
@end example
209

    
210
Linux should boot and give you a prompt.
211

    
212
@node sec_invocation
213
@section Invocation
214

    
215
@example
216
@c man begin SYNOPSIS
217
usage: qemu [options] [@var{disk_image}]
218
@c man end
219
@end example
220

    
221
@c man begin OPTIONS
222
@var{disk_image} is a raw hard disk image for IDE hard disk 0.
223

    
224
General options:
225
@table @option
226
@item -M @var{machine}
227
Select the emulated @var{machine} (@code{-M ?} for list)
228

    
229
@item -fda @var{file}
230
@item -fdb @var{file}
231
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
232
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
233

    
234
@item -hda @var{file}
235
@item -hdb @var{file}
236
@item -hdc @var{file}
237
@item -hdd @var{file}
238
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
239

    
240
@item -cdrom @var{file}
241
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
242
@option{-cdrom} at the same time). You can use the host CD-ROM by
243
using @file{/dev/cdrom} as filename (@pxref{host_drives}).
244

    
245
@item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
246

    
247
Define a new drive. Valid options are:
248

    
249
@table @code
250
@item file=@var{file}
251
This option defines which disk image (@pxref{disk_images}) to use with
252
this drive. If the filename contains comma, you must double it
253
(for instance, "file=my,,file" to use file "my,file").
254
@item if=@var{interface}
255
This option defines on which type on interface the drive is connected.
256
Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio.
257
@item bus=@var{bus},unit=@var{unit}
258
These options define where is connected the drive by defining the bus number and
259
the unit id.
260
@item index=@var{index}
261
This option defines where is connected the drive by using an index in the list
262
of available connectors of a given interface type.
263
@item media=@var{media}
264
This option defines the type of the media: disk or cdrom.
265
@item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
266
These options have the same definition as they have in @option{-hdachs}.
267
@item snapshot=@var{snapshot}
268
@var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
269
@item cache=@var{cache}
270
@var{cache} is "none", "writeback", or "writethrough" and controls how the host cache is used to access block data.
271
@item format=@var{format}
272
Specify which disk @var{format} will be used rather than detecting
273
the format.  Can be used to specifiy format=raw to avoid interpreting
274
an untrusted format header.
275
@end table
276

    
277
By default, writethrough caching is used for all block device.  This means that
278
the host page cache will be used to read and write data but write notification
279
will be sent to the guest only when the data has been reported as written by
280
the storage subsystem.
281

    
282
Writeback caching will report data writes as completed as soon as the data is
283
present in the host page cache.  This is safe as long as you trust your host.
284
If your host crashes or loses power, then the guest may experience data
285
corruption.  When using the @option{-snapshot} option, writeback caching is
286
used by default.
287

    
288
The host page can be avoided entirely with @option{cache=none}.  This will
289
attempt to do disk IO directly to the guests memory.  QEMU may still perform
290
an internal copy of the data.
291

    
292
Instead of @option{-cdrom} you can use:
293
@example
294
qemu -drive file=file,index=2,media=cdrom
295
@end example
296

    
297
Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
298
use:
299
@example
300
qemu -drive file=file,index=0,media=disk
301
qemu -drive file=file,index=1,media=disk
302
qemu -drive file=file,index=2,media=disk
303
qemu -drive file=file,index=3,media=disk
304
@end example
305

    
306
You can connect a CDROM to the slave of ide0:
307
@example
308
qemu -drive file=file,if=ide,index=1,media=cdrom
309
@end example
310

    
311
If you don't specify the "file=" argument, you define an empty drive:
312
@example
313
qemu -drive if=ide,index=1,media=cdrom
314
@end example
315

    
316
You can connect a SCSI disk with unit ID 6 on the bus #0:
317
@example
318
qemu -drive file=file,if=scsi,bus=0,unit=6
319
@end example
320

    
321
Instead of @option{-fda}, @option{-fdb}, you can use:
322
@example
323
qemu -drive file=file,index=0,if=floppy
324
qemu -drive file=file,index=1,if=floppy
325
@end example
326

    
327
By default, @var{interface} is "ide" and @var{index} is automatically
328
incremented:
329
@example
330
qemu -drive file=a -drive file=b"
331
@end example
332
is interpreted like:
333
@example
334
qemu -hda a -hdb b
335
@end example
336

    
337
@item -boot [a|c|d|n]
338
Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
339
is the default.
340

    
341
@item -snapshot
342
Write to temporary files instead of disk image files. In this case,
343
the raw disk image you use is not written back. You can however force
344
the write back by pressing @key{C-a s} (@pxref{disk_images}).
345

    
346
@item -no-fd-bootchk
347
Disable boot signature checking for floppy disks in Bochs BIOS. It may
348
be needed to boot from old floppy disks.
349

    
350
@item -m @var{megs}
351
Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB.  Optionally,
352
a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
353
gigabytes respectively.
354

    
355
@item -cpu @var{model}
356
Select CPU model (-cpu ? for list and additional feature selection)
357

    
358
@item -smp @var{n}
359
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
360
CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
361
to 4.
362

    
363
@item -audio-help
364

    
365
Will show the audio subsystem help: list of drivers, tunable
366
parameters.
367

    
368
@item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
369

    
370
Enable audio and selected sound hardware. Use ? to print all
371
available sound hardware.
372

    
373
@example
374
qemu -soundhw sb16,adlib disk.img
375
qemu -soundhw es1370 disk.img
376
qemu -soundhw ac97 disk.img
377
qemu -soundhw all disk.img
378
qemu -soundhw ?
379
@end example
380

    
381
Note that Linux's i810_audio OSS kernel (for AC97) module might
382
require manually specifying clocking.
383

    
384
@example
385
modprobe i810_audio clocking=48000
386
@end example
387

    
388
@item -localtime
389
Set the real time clock to local time (the default is to UTC
390
time). This option is needed to have correct date in MS-DOS or
391
Windows.
392

    
393
@item -startdate @var{date}
394
Set the initial date of the real time clock. Valid formats for
395
@var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
396
@code{2006-06-17}. The default value is @code{now}.
397

    
398
@item -pidfile @var{file}
399
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
400
from a script.
401

    
402
@item -daemonize
403
Daemonize the QEMU process after initialization.  QEMU will not detach from
404
standard IO until it is ready to receive connections on any of its devices.
405
This option is a useful way for external programs to launch QEMU without having
406
to cope with initialization race conditions.
407

    
408
@item -win2k-hack
409
Use it when installing Windows 2000 to avoid a disk full bug. After
410
Windows 2000 is installed, you no longer need this option (this option
411
slows down the IDE transfers).
412

    
413
@item -option-rom @var{file}
414
Load the contents of @var{file} as an option ROM.
415
This option is useful to load things like EtherBoot.
416

    
417
@item -name @var{name}
418
Sets the @var{name} of the guest.
419
This name will be displayed in the SDL window caption.
420
The @var{name} will also be used for the VNC server.
421

    
422
@end table
423

    
424
Display options:
425
@table @option
426

    
427
@item -nographic
428

    
429
Normally, QEMU uses SDL to display the VGA output. With this option,
430
you can totally disable graphical output so that QEMU is a simple
431
command line application. The emulated serial port is redirected on
432
the console. Therefore, you can still use QEMU to debug a Linux kernel
433
with a serial console.
434

    
435
@item -curses
436

    
437
Normally, QEMU uses SDL to display the VGA output.  With this option,
438
QEMU can display the VGA output when in text mode using a 
439
curses/ncurses interface.  Nothing is displayed in graphical mode.
440

    
441
@item -no-frame
442

    
443
Do not use decorations for SDL windows and start them using the whole
444
available screen space. This makes the using QEMU in a dedicated desktop
445
workspace more convenient.
446

    
447
@item -no-quit
448

    
449
Disable SDL window close capability.
450

    
451
@item -full-screen
452
Start in full screen.
453

    
454
@item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
455

    
456
Normally, QEMU uses SDL to display the VGA output.  With this option,
457
you can have QEMU listen on VNC display @var{display} and redirect the VGA
458
display over the VNC session.  It is very useful to enable the usb
459
tablet device when using this option (option @option{-usbdevice
460
tablet}). When using the VNC display, you must use the @option{-k}
461
parameter to set the keyboard layout if you are not using en-us. Valid
462
syntax for the @var{display} is
463

    
464
@table @code
465

    
466
@item @var{host}:@var{d}
467

    
468
TCP connections will only be allowed from @var{host} on display @var{d}.
469
By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
470
be omitted in which case the server will accept connections from any host.
471

    
472
@item @code{unix}:@var{path}
473

    
474
Connections will be allowed over UNIX domain sockets where @var{path} is the
475
location of a unix socket to listen for connections on.
476

    
477
@item none
478

    
479
VNC is initialized but not started. The monitor @code{change} command
480
can be used to later start the VNC server.
481

    
482
@end table
483

    
484
Following the @var{display} value there may be one or more @var{option} flags
485
separated by commas. Valid options are
486

    
487
@table @code
488

    
489
@item reverse
490

    
491
Connect to a listening VNC client via a ``reverse'' connection. The
492
client is specified by the @var{display}. For reverse network
493
connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
494
is a TCP port number, not a display number.
495

    
496
@item password
497

    
498
Require that password based authentication is used for client connections.
499
The password must be set separately using the @code{change} command in the
500
@ref{pcsys_monitor}
501

    
502
@item tls
503

    
504
Require that client use TLS when communicating with the VNC server. This
505
uses anonymous TLS credentials so is susceptible to a man-in-the-middle
506
attack. It is recommended that this option be combined with either the
507
@var{x509} or @var{x509verify} options.
508

    
509
@item x509=@var{/path/to/certificate/dir}
510

    
511
Valid if @option{tls} is specified. Require that x509 credentials are used
512
for negotiating the TLS session. The server will send its x509 certificate
513
to the client. It is recommended that a password be set on the VNC server
514
to provide authentication of the client when this is used. The path following
515
this option specifies where the x509 certificates are to be loaded from.
516
See the @ref{vnc_security} section for details on generating certificates.
517

    
518
@item x509verify=@var{/path/to/certificate/dir}
519

    
520
Valid if @option{tls} is specified. Require that x509 credentials are used
521
for negotiating the TLS session. The server will send its x509 certificate
522
to the client, and request that the client send its own x509 certificate.
523
The server will validate the client's certificate against the CA certificate,
524
and reject clients when validation fails. If the certificate authority is
525
trusted, this is a sufficient authentication mechanism. You may still wish
526
to set a password on the VNC server as a second authentication layer. The
527
path following this option specifies where the x509 certificates are to
528
be loaded from. See the @ref{vnc_security} section for details on generating
529
certificates.
530

    
531
@end table
532

    
533
@item -k @var{language}
534

    
535
Use keyboard layout @var{language} (for example @code{fr} for
536
French). This option is only needed where it is not easy to get raw PC
537
keycodes (e.g. on Macs, with some X11 servers or with a VNC
538
display). You don't normally need to use it on PC/Linux or PC/Windows
539
hosts.
540

    
541
The available layouts are:
542
@example
543
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
544
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
545
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
546
@end example
547

    
548
The default is @code{en-us}.
549

    
550
@end table
551

    
552
USB options:
553
@table @option
554

    
555
@item -usb
556
Enable the USB driver (will be the default soon)
557

    
558
@item -usbdevice @var{devname}
559
Add the USB device @var{devname}. @xref{usb_devices}.
560

    
561
@table @code
562

    
563
@item mouse
564
Virtual Mouse. This will override the PS/2 mouse emulation when activated.
565

    
566
@item tablet
567
Pointer device that uses absolute coordinates (like a touchscreen). This
568
means qemu is able to report the mouse position without having to grab the
569
mouse. Also overrides the PS/2 mouse emulation when activated.
570

    
571
@item disk:[format=@var{format}]:file
572
Mass storage device based on file. The optional @var{format} argument
573
will be used rather than detecting the format. Can be used to specifiy
574
format=raw to avoid interpreting an untrusted format header.
575

    
576
@item host:bus.addr
577
Pass through the host device identified by bus.addr (Linux only).
578

    
579
@item host:vendor_id:product_id
580
Pass through the host device identified by vendor_id:product_id (Linux only).
581

    
582
@item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
583
Serial converter to host character device @var{dev}, see @code{-serial} for the
584
available devices.
585

    
586
@item braille
587
Braille device.  This will use BrlAPI to display the braille output on a real
588
or fake device.
589

    
590
@item net:options
591
Network adapter that supports CDC ethernet and RNDIS protocols.
592

    
593
@end table
594

    
595
@end table
596

    
597
Network options:
598

    
599
@table @option
600

    
601
@item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}]
602
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
603
= 0 is the default). The NIC is an ne2k_pci by default on the PC
604
target. Optionally, the MAC address can be changed. If no
605
@option{-net} option is specified, a single NIC is created.
606
Qemu can emulate several different models of network card.
607
Valid values for @var{type} are
608
@code{i82551}, @code{i82557b}, @code{i82559er},
609
@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
610
@code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
611
Not all devices are supported on all targets.  Use -net nic,model=?
612
for a list of available devices for your target.
613

    
614
@item -net user[,vlan=@var{n}][,hostname=@var{name}]
615
Use the user mode network stack which requires no administrator
616
privilege to run.  @option{hostname=name} can be used to specify the client
617
hostname reported by the builtin DHCP server.
618

    
619
@item -net tap[,vlan=@var{n}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}]
620
Connect the host TAP network interface @var{name} to VLAN @var{n}, use
621
the network script @var{file} to configure it and the network script 
622
@var{dfile} to deconfigure it. If @var{name} is not provided, the OS 
623
automatically provides one. @option{fd}=@var{h} can be used to specify
624
the handle of an already opened host TAP interface. The default network 
625
configure script is @file{/etc/qemu-ifup} and the default network 
626
deconfigure script is @file{/etc/qemu-ifdown}. Use @option{script=no} 
627
or @option{downscript=no} to disable script execution. Example:
628

    
629
@example
630
qemu linux.img -net nic -net tap
631
@end example
632

    
633
More complicated example (two NICs, each one connected to a TAP device)
634
@example
635
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
636
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
637
@end example
638

    
639

    
640
@item -net socket[,vlan=@var{n}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
641

    
642
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
643
machine using a TCP socket connection. If @option{listen} is
644
specified, QEMU waits for incoming connections on @var{port}
645
(@var{host} is optional). @option{connect} is used to connect to
646
another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
647
specifies an already opened TCP socket.
648

    
649
Example:
650
@example
651
# launch a first QEMU instance
652
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
653
               -net socket,listen=:1234
654
# connect the VLAN 0 of this instance to the VLAN 0
655
# of the first instance
656
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
657
               -net socket,connect=127.0.0.1:1234
658
@end example
659

    
660
@item -net socket[,vlan=@var{n}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
661

    
662
Create a VLAN @var{n} shared with another QEMU virtual
663
machines using a UDP multicast socket, effectively making a bus for
664
every QEMU with same multicast address @var{maddr} and @var{port}.
665
NOTES:
666
@enumerate
667
@item
668
Several QEMU can be running on different hosts and share same bus (assuming
669
correct multicast setup for these hosts).
670
@item
671
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
672
@url{http://user-mode-linux.sf.net}.
673
@item
674
Use @option{fd=h} to specify an already opened UDP multicast socket.
675
@end enumerate
676

    
677
Example:
678
@example
679
# launch one QEMU instance
680
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
681
               -net socket,mcast=230.0.0.1:1234
682
# launch another QEMU instance on same "bus"
683
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
684
               -net socket,mcast=230.0.0.1:1234
685
# launch yet another QEMU instance on same "bus"
686
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
687
               -net socket,mcast=230.0.0.1:1234
688
@end example
689

    
690
Example (User Mode Linux compat.):
691
@example
692
# launch QEMU instance (note mcast address selected
693
# is UML's default)
694
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
695
               -net socket,mcast=239.192.168.1:1102
696
# launch UML
697
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
698
@end example
699

    
700
@item -net vde[,vlan=@var{n}][,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
701
Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
702
listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
703
and MODE @var{octalmode} to change default ownership and permissions for
704
communication port. This option is available only if QEMU has been compiled
705
with vde support enabled.
706

    
707
Example:
708
@example
709
# launch vde switch
710
vde_switch -F -sock /tmp/myswitch
711
# launch QEMU instance
712
qemu linux.img -net nic -net vde,sock=/tmp/myswitch
713
@end example
714

    
715
@item -net none
716
Indicate that no network devices should be configured. It is used to
717
override the default configuration (@option{-net nic -net user}) which
718
is activated if no @option{-net} options are provided.
719

    
720
@item -tftp @var{dir}
721
When using the user mode network stack, activate a built-in TFTP
722
server. The files in @var{dir} will be exposed as the root of a TFTP server.
723
The TFTP client on the guest must be configured in binary mode (use the command
724
@code{bin} of the Unix TFTP client). The host IP address on the guest is as
725
usual 10.0.2.2.
726

    
727
@item -bootp @var{file}
728
When using the user mode network stack, broadcast @var{file} as the BOOTP
729
filename.  In conjunction with @option{-tftp}, this can be used to network boot
730
a guest from a local directory.
731

    
732
Example (using pxelinux):
733
@example
734
qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
735
@end example
736

    
737
@item -smb @var{dir}
738
When using the user mode network stack, activate a built-in SMB
739
server so that Windows OSes can access to the host files in @file{@var{dir}}
740
transparently.
741

    
742
In the guest Windows OS, the line:
743
@example
744
10.0.2.4 smbserver
745
@end example
746
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
747
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
748

    
749
Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
750

    
751
Note that a SAMBA server must be installed on the host OS in
752
@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
753
2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
754

    
755
@item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
756

    
757
When using the user mode network stack, redirect incoming TCP or UDP
758
connections to the host port @var{host-port} to the guest
759
@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
760
is not specified, its value is 10.0.2.15 (default address given by the
761
built-in DHCP server).
762

    
763
For example, to redirect host X11 connection from screen 1 to guest
764
screen 0, use the following:
765

    
766
@example
767
# on the host
768
qemu -redir tcp:6001::6000 [...]
769
# this host xterm should open in the guest X11 server
770
xterm -display :1
771
@end example
772

    
773
To redirect telnet connections from host port 5555 to telnet port on
774
the guest, use the following:
775

    
776
@example
777
# on the host
778
qemu -redir tcp:5555::23 [...]
779
telnet localhost 5555
780
@end example
781

    
782
Then when you use on the host @code{telnet localhost 5555}, you
783
connect to the guest telnet server.
784

    
785
@end table
786

    
787
Bluetooth(R) options:
788
@table @option
789

    
790
@item -bt hci[...]
791
Defines the function of the corresponding Bluetooth HCI.  -bt options
792
are matched with the HCIs present in the chosen machine type.  For
793
example when emulating a machine with only one HCI built into it, only
794
the first @code{-bt hci[...]} option is valid and defines the HCI's
795
logic.  The Transport Layer is decided by the machine type.  Currently
796
the machines @code{n800} and @code{n810} have one HCI and all other
797
machines have none.
798

    
799
@anchor{bt-hcis}
800
The following three types are recognized:
801

    
802
@table @code
803
@item -bt hci,null
804
(default) The corresponding Bluetooth HCI assumes no internal logic
805
and will not respond to any HCI commands or emit events.
806

    
807
@item -bt hci,host[:@var{id}]
808
(@code{bluez} only) The corresponding HCI passes commands / events
809
to / from the physical HCI identified by the name @var{id} (default:
810
@code{hci0}) on the computer running QEMU.  Only available on @code{bluez}
811
capable systems like Linux.
812

    
813
@item -bt hci[,vlan=@var{n}]
814
Add a virtual, standard HCI that will participate in the Bluetooth
815
scatternet @var{n} (default @code{0}).  Similarly to @option{-net}
816
VLANs, devices inside a bluetooth network @var{n} can only communicate
817
with other devices in the same network (scatternet).
818
@end table
819

    
820
@item -bt vhci[,vlan=@var{n}]
821
(Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
822
to the host bluetooth stack instead of to the emulated target.  This
823
allows the host and target machines to participate in a common scatternet
824
and communicate.  Requires the Linux @code{vhci} driver installed.  Can
825
be used as following:
826

    
827
@example
828
qemu [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
829
@end example
830

    
831
@item -bt device:@var{dev}[,vlan=@var{n}]
832
Emulate a bluetooth device @var{dev} and place it in network @var{n}
833
(default @code{0}).  QEMU can only emulate one type of bluetooth devices
834
currently:
835

    
836
@table @code
837
@item keyboard
838
Virtual wireless keyboard implementing the HIDP bluetooth profile.
839
@end table
840

    
841
@end table
842

    
843
Linux boot specific: When using these options, you can use a given
844
Linux kernel without installing it in the disk image. It can be useful
845
for easier testing of various kernels.
846

    
847
@table @option
848

    
849
@item -kernel @var{bzImage}
850
Use @var{bzImage} as kernel image.
851

    
852
@item -append @var{cmdline}
853
Use @var{cmdline} as kernel command line
854

    
855
@item -initrd @var{file}
856
Use @var{file} as initial ram disk.
857

    
858
@end table
859

    
860
Debug/Expert options:
861
@table @option
862

    
863
@item -serial @var{dev}
864
Redirect the virtual serial port to host character device
865
@var{dev}. The default device is @code{vc} in graphical mode and
866
@code{stdio} in non graphical mode.
867

    
868
This option can be used several times to simulate up to 4 serials
869
ports.
870

    
871
Use @code{-serial none} to disable all serial ports.
872

    
873
Available character devices are:
874
@table @code
875
@item vc[:WxH]
876
Virtual console. Optionally, a width and height can be given in pixel with
877
@example
878
vc:800x600
879
@end example
880
It is also possible to specify width or height in characters:
881
@example
882
vc:80Cx24C
883
@end example
884
@item pty
885
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
886
@item none
887
No device is allocated.
888
@item null
889
void device
890
@item /dev/XXX
891
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
892
parameters are set according to the emulated ones.
893
@item /dev/parport@var{N}
894
[Linux only, parallel port only] Use host parallel port
895
@var{N}. Currently SPP and EPP parallel port features can be used.
896
@item file:@var{filename}
897
Write output to @var{filename}. No character can be read.
898
@item stdio
899
[Unix only] standard input/output
900
@item pipe:@var{filename}
901
name pipe @var{filename}
902
@item COM@var{n}
903
[Windows only] Use host serial port @var{n}
904
@item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
905
This implements UDP Net Console.
906
When @var{remote_host} or @var{src_ip} are not specified
907
they default to @code{0.0.0.0}.
908
When not using a specified @var{src_port} a random port is automatically chosen.
909

    
910
If you just want a simple readonly console you can use @code{netcat} or
911
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
912
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
913
will appear in the netconsole session.
914

    
915
If you plan to send characters back via netconsole or you want to stop
916
and start qemu a lot of times, you should have qemu use the same
917
source port each time by using something like @code{-serial
918
udp::4555@@:4556} to qemu. Another approach is to use a patched
919
version of netcat which can listen to a TCP port and send and receive
920
characters via udp.  If you have a patched version of netcat which
921
activates telnet remote echo and single char transfer, then you can
922
use the following options to step up a netcat redirector to allow
923
telnet on port 5555 to access the qemu port.
924
@table @code
925
@item Qemu Options:
926
-serial udp::4555@@:4556
927
@item netcat options:
928
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
929
@item telnet options:
930
localhost 5555
931
@end table
932

    
933

    
934
@item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
935
The TCP Net Console has two modes of operation.  It can send the serial
936
I/O to a location or wait for a connection from a location.  By default
937
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
938
the @var{server} option QEMU will wait for a client socket application
939
to connect to the port before continuing, unless the @code{nowait}
940
option was specified.  The @code{nodelay} option disables the Nagle buffering
941
algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
942
one TCP connection at a time is accepted. You can use @code{telnet} to
943
connect to the corresponding character device.
944
@table @code
945
@item Example to send tcp console to 192.168.0.2 port 4444
946
-serial tcp:192.168.0.2:4444
947
@item Example to listen and wait on port 4444 for connection
948
-serial tcp::4444,server
949
@item Example to not wait and listen on ip 192.168.0.100 port 4444
950
-serial tcp:192.168.0.100:4444,server,nowait
951
@end table
952

    
953
@item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
954
The telnet protocol is used instead of raw tcp sockets.  The options
955
work the same as if you had specified @code{-serial tcp}.  The
956
difference is that the port acts like a telnet server or client using
957
telnet option negotiation.  This will also allow you to send the
958
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
959
sequence.  Typically in unix telnet you do it with Control-] and then
960
type "send break" followed by pressing the enter key.
961

    
962
@item unix:@var{path}[,server][,nowait]
963
A unix domain socket is used instead of a tcp socket.  The option works the
964
same as if you had specified @code{-serial tcp} except the unix domain socket
965
@var{path} is used for connections.
966

    
967
@item mon:@var{dev_string}
968
This is a special option to allow the monitor to be multiplexed onto
969
another serial port.  The monitor is accessed with key sequence of
970
@key{Control-a} and then pressing @key{c}. See monitor access
971
@ref{pcsys_keys} in the -nographic section for more keys.
972
@var{dev_string} should be any one of the serial devices specified
973
above.  An example to multiplex the monitor onto a telnet server
974
listening on port 4444 would be:
975
@table @code
976
@item -serial mon:telnet::4444,server,nowait
977
@end table
978

    
979
@item braille
980
Braille device.  This will use BrlAPI to display the braille output on a real
981
or fake device.
982

    
983
@end table
984

    
985
@item -parallel @var{dev}
986
Redirect the virtual parallel port to host device @var{dev} (same
987
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
988
be used to use hardware devices connected on the corresponding host
989
parallel port.
990

    
991
This option can be used several times to simulate up to 3 parallel
992
ports.
993

    
994
Use @code{-parallel none} to disable all parallel ports.
995

    
996
@item -monitor @var{dev}
997
Redirect the monitor to host device @var{dev} (same devices as the
998
serial port).
999
The default device is @code{vc} in graphical mode and @code{stdio} in
1000
non graphical mode.
1001

    
1002
@item -echr numeric_ascii_value
1003
Change the escape character used for switching to the monitor when using
1004
monitor and serial sharing.  The default is @code{0x01} when using the
1005
@code{-nographic} option.  @code{0x01} is equal to pressing
1006
@code{Control-a}.  You can select a different character from the ascii
1007
control keys where 1 through 26 map to Control-a through Control-z.  For
1008
instance you could use the either of the following to change the escape
1009
character to Control-t.
1010
@table @code
1011
@item -echr 0x14
1012
@item -echr 20
1013
@end table
1014

    
1015
@item -s
1016
Wait gdb connection to port 1234 (@pxref{gdb_usage}).
1017
@item -p @var{port}
1018
Change gdb connection port.  @var{port} can be either a decimal number
1019
to specify a TCP port, or a host device (same devices as the serial port).
1020
@item -S
1021
Do not start CPU at startup (you must type 'c' in the monitor).
1022
@item -d
1023
Output log in /tmp/qemu.log
1024
@item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
1025
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
1026
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
1027
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
1028
all those parameters. This option is useful for old MS-DOS disk
1029
images.
1030

    
1031
@item -L path
1032
Set the directory for the BIOS, VGA BIOS and keymaps.
1033

    
1034
@item -vga @var{type}
1035
Select type of VGA card to emulate. Valid values for @var{type} are
1036
@table @code
1037
@item cirrus
1038
Cirrus Logic GD5446 Video card. All Windows versions starting from
1039
Windows 95 should recognize and use this graphic card. For optimal
1040
performances, use 16 bit color depth in the guest and the host OS.
1041
(This one is the default)
1042
@item std
1043
Standard VGA card with Bochs VBE extensions.  If your guest OS
1044
supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
1045
to use high resolution modes (>= 1280x1024x16) then you should use
1046
this option.
1047
@item vmware
1048
VMWare SVGA-II compatible adapter. Use it if you have sufficiently
1049
recent XFree86/XOrg server or Windows guest with a driver for this
1050
card.
1051
@end table
1052

    
1053
@item -no-acpi
1054
Disable ACPI (Advanced Configuration and Power Interface) support. Use
1055
it if your guest OS complains about ACPI problems (PC target machine
1056
only).
1057

    
1058
@item -no-reboot
1059
Exit instead of rebooting.
1060

    
1061
@item -no-shutdown
1062
Don't exit QEMU on guest shutdown, but instead only stop the emulation.
1063
This allows for instance switching to monitor to commit changes to the
1064
disk image.
1065

    
1066
@item -loadvm file
1067
Start right away with a saved state (@code{loadvm} in monitor)
1068

    
1069
@item -semihosting
1070
Enable semihosting syscall emulation (ARM and M68K target machines only).
1071

    
1072
On ARM this implements the "Angel" interface.
1073
On M68K this implements the "ColdFire GDB" interface used by libgloss.
1074

    
1075
Note that this allows guest direct access to the host filesystem,
1076
so should only be used with trusted guest OS.
1077

    
1078
@item -icount [N|auto]
1079
Enable virtual instruction counter.  The virtual cpu will execute one
1080
instruction every 2^N ns of virtual time.  If @code{auto} is specified
1081
then the virtual cpu speed will be automatically adjusted to keep virtual
1082
time within a few seconds of real time.
1083

    
1084
Note that while this option can give deterministic behavior, it does not
1085
provide cycle accurate emulation.  Modern CPUs contain superscalar out of
1086
order cores with complex cache hierarchies.  The number of instructions
1087
executed often has little or no correlation with actual performance.
1088
@end table
1089

    
1090
@c man end
1091

    
1092
@node pcsys_keys
1093
@section Keys
1094

    
1095
@c man begin OPTIONS
1096

    
1097
During the graphical emulation, you can use the following keys:
1098
@table @key
1099
@item Ctrl-Alt-f
1100
Toggle full screen
1101

    
1102
@item Ctrl-Alt-n
1103
Switch to virtual console 'n'. Standard console mappings are:
1104
@table @emph
1105
@item 1
1106
Target system display
1107
@item 2
1108
Monitor
1109
@item 3
1110
Serial port
1111
@end table
1112

    
1113
@item Ctrl-Alt
1114
Toggle mouse and keyboard grab.
1115
@end table
1116

    
1117
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
1118
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
1119

    
1120
During emulation, if you are using the @option{-nographic} option, use
1121
@key{Ctrl-a h} to get terminal commands:
1122

    
1123
@table @key
1124
@item Ctrl-a h
1125
Print this help
1126
@item Ctrl-a x
1127
Exit emulator
1128
@item Ctrl-a s
1129
Save disk data back to file (if -snapshot)
1130
@item Ctrl-a t
1131
toggle console timestamps
1132
@item Ctrl-a b
1133
Send break (magic sysrq in Linux)
1134
@item Ctrl-a c
1135
Switch between console and monitor
1136
@item Ctrl-a Ctrl-a
1137
Send Ctrl-a
1138
@end table
1139
@c man end
1140

    
1141
@ignore
1142

    
1143
@c man begin SEEALSO
1144
The HTML documentation of QEMU for more precise information and Linux
1145
user mode emulator invocation.
1146
@c man end
1147

    
1148
@c man begin AUTHOR
1149
Fabrice Bellard
1150
@c man end
1151

    
1152
@end ignore
1153

    
1154
@node pcsys_monitor
1155
@section QEMU Monitor
1156

    
1157
The QEMU monitor is used to give complex commands to the QEMU
1158
emulator. You can use it to:
1159

    
1160
@itemize @minus
1161

    
1162
@item
1163
Remove or insert removable media images
1164
(such as CD-ROM or floppies).
1165

    
1166
@item
1167
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
1168
from a disk file.
1169

    
1170
@item Inspect the VM state without an external debugger.
1171

    
1172
@end itemize
1173

    
1174
@subsection Commands
1175

    
1176
The following commands are available:
1177

    
1178
@table @option
1179

    
1180
@item help or ? [@var{cmd}]
1181
Show the help for all commands or just for command @var{cmd}.
1182

    
1183
@item commit
1184
Commit changes to the disk images (if -snapshot is used).
1185

    
1186
@item info @var{subcommand}
1187
Show various information about the system state.
1188

    
1189
@table @option
1190
@item info network
1191
show the various VLANs and the associated devices
1192
@item info block
1193
show the block devices
1194
@item info registers
1195
show the cpu registers
1196
@item info history
1197
show the command line history
1198
@item info pci
1199
show emulated PCI device
1200
@item info usb
1201
show USB devices plugged on the virtual USB hub
1202
@item info usbhost
1203
show all USB host devices
1204
@item info capture
1205
show information about active capturing
1206
@item info snapshots
1207
show list of VM snapshots
1208
@item info mice
1209
show which guest mouse is receiving events
1210
@end table
1211

    
1212
@item q or quit
1213
Quit the emulator.
1214

    
1215
@item eject [-f] @var{device}
1216
Eject a removable medium (use -f to force it).
1217

    
1218
@item change @var{device} @var{setting}
1219

    
1220
Change the configuration of a device.
1221

    
1222
@table @option
1223
@item change @var{diskdevice} @var{filename}
1224
Change the medium for a removable disk device to point to @var{filename}. eg
1225

    
1226
@example
1227
(qemu) change ide1-cd0 /path/to/some.iso
1228
@end example
1229

    
1230
@item change vnc @var{display},@var{options}
1231
Change the configuration of the VNC server. The valid syntax for @var{display}
1232
and @var{options} are described at @ref{sec_invocation}. eg
1233

    
1234
@example
1235
(qemu) change vnc localhost:1
1236
@end example
1237

    
1238
@item change vnc password
1239

    
1240
Change the password associated with the VNC server. The monitor will prompt for
1241
the new password to be entered. VNC passwords are only significant upto 8 letters.
1242
eg.
1243

    
1244
@example
1245
(qemu) change vnc password
1246
Password: ********
1247
@end example
1248

    
1249
@end table
1250

    
1251
@item screendump @var{filename}
1252
Save screen into PPM image @var{filename}.
1253

    
1254
@item mouse_move @var{dx} @var{dy} [@var{dz}]
1255
Move the active mouse to the specified coordinates @var{dx} @var{dy}
1256
with optional scroll axis @var{dz}.
1257

    
1258
@item mouse_button @var{val}
1259
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1260

    
1261
@item mouse_set @var{index}
1262
Set which mouse device receives events at given @var{index}, index
1263
can be obtained with
1264
@example
1265
info mice
1266
@end example
1267

    
1268
@item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1269
Capture audio into @var{filename}. Using sample rate @var{frequency}
1270
bits per sample @var{bits} and number of channels @var{channels}.
1271

    
1272
Defaults:
1273
@itemize @minus
1274
@item Sample rate = 44100 Hz - CD quality
1275
@item Bits = 16
1276
@item Number of channels = 2 - Stereo
1277
@end itemize
1278

    
1279
@item stopcapture @var{index}
1280
Stop capture with a given @var{index}, index can be obtained with
1281
@example
1282
info capture
1283
@end example
1284

    
1285
@item log @var{item1}[,...]
1286
Activate logging of the specified items to @file{/tmp/qemu.log}.
1287

    
1288
@item savevm [@var{tag}|@var{id}]
1289
Create a snapshot of the whole virtual machine. If @var{tag} is
1290
provided, it is used as human readable identifier. If there is already
1291
a snapshot with the same tag or ID, it is replaced. More info at
1292
@ref{vm_snapshots}.
1293

    
1294
@item loadvm @var{tag}|@var{id}
1295
Set the whole virtual machine to the snapshot identified by the tag
1296
@var{tag} or the unique snapshot ID @var{id}.
1297

    
1298
@item delvm @var{tag}|@var{id}
1299
Delete the snapshot identified by @var{tag} or @var{id}.
1300

    
1301
@item stop
1302
Stop emulation.
1303

    
1304
@item c or cont
1305
Resume emulation.
1306

    
1307
@item gdbserver [@var{port}]
1308
Start gdbserver session (default @var{port}=1234)
1309

    
1310
@item x/fmt @var{addr}
1311
Virtual memory dump starting at @var{addr}.
1312

    
1313
@item xp /@var{fmt} @var{addr}
1314
Physical memory dump starting at @var{addr}.
1315

    
1316
@var{fmt} is a format which tells the command how to format the
1317
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1318

    
1319
@table @var
1320
@item count
1321
is the number of items to be dumped.
1322

    
1323
@item format
1324
can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1325
c (char) or i (asm instruction).
1326

    
1327
@item size
1328
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1329
@code{h} or @code{w} can be specified with the @code{i} format to
1330
respectively select 16 or 32 bit code instruction size.
1331

    
1332
@end table
1333

    
1334
Examples:
1335
@itemize
1336
@item
1337
Dump 10 instructions at the current instruction pointer:
1338
@example
1339
(qemu) x/10i $eip
1340
0x90107063:  ret
1341
0x90107064:  sti
1342
0x90107065:  lea    0x0(%esi,1),%esi
1343
0x90107069:  lea    0x0(%edi,1),%edi
1344
0x90107070:  ret
1345
0x90107071:  jmp    0x90107080
1346
0x90107073:  nop
1347
0x90107074:  nop
1348
0x90107075:  nop
1349
0x90107076:  nop
1350
@end example
1351

    
1352
@item
1353
Dump 80 16 bit values at the start of the video memory.
1354
@smallexample
1355
(qemu) xp/80hx 0xb8000
1356
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1357
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1358
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1359
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1360
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1361
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1362
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1363
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1364
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1365
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1366
@end smallexample
1367
@end itemize
1368

    
1369
@item p or print/@var{fmt} @var{expr}
1370

    
1371
Print expression value. Only the @var{format} part of @var{fmt} is
1372
used.
1373

    
1374
@item sendkey @var{keys}
1375

    
1376
Send @var{keys} to the emulator. @var{keys} could be the name of the
1377
key or @code{#} followed by the raw value in either decimal or hexadecimal
1378
format. Use @code{-} to press several keys simultaneously. Example:
1379
@example
1380
sendkey ctrl-alt-f1
1381
@end example
1382

    
1383
This command is useful to send keys that your graphical user interface
1384
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1385

    
1386
@item system_reset
1387

    
1388
Reset the system.
1389

    
1390
@item boot_set @var{bootdevicelist}
1391

    
1392
Define new values for the boot device list. Those values will override
1393
the values specified on the command line through the @code{-boot} option.
1394

    
1395
The values that can be specified here depend on the machine type, but are
1396
the same that can be specified in the @code{-boot} command line option.
1397

    
1398
@item usb_add @var{devname}
1399

    
1400
Add the USB device @var{devname}.  For details of available devices see
1401
@ref{usb_devices}
1402

    
1403
@item usb_del @var{devname}
1404

    
1405
Remove the USB device @var{devname} from the QEMU virtual USB
1406
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1407
command @code{info usb} to see the devices you can remove.
1408

    
1409
@end table
1410

    
1411
@subsection Integer expressions
1412

    
1413
The monitor understands integers expressions for every integer
1414
argument. You can use register names to get the value of specifics
1415
CPU registers by prefixing them with @emph{$}.
1416

    
1417
@node disk_images
1418
@section Disk Images
1419

    
1420
Since version 0.6.1, QEMU supports many disk image formats, including
1421
growable disk images (their size increase as non empty sectors are
1422
written), compressed and encrypted disk images. Version 0.8.3 added
1423
the new qcow2 disk image format which is essential to support VM
1424
snapshots.
1425

    
1426
@menu
1427
* disk_images_quickstart::    Quick start for disk image creation
1428
* disk_images_snapshot_mode:: Snapshot mode
1429
* vm_snapshots::              VM snapshots
1430
* qemu_img_invocation::       qemu-img Invocation
1431
* qemu_nbd_invocation::       qemu-nbd Invocation
1432
* host_drives::               Using host drives
1433
* disk_images_fat_images::    Virtual FAT disk images
1434
* disk_images_nbd::           NBD access
1435
@end menu
1436

    
1437
@node disk_images_quickstart
1438
@subsection Quick start for disk image creation
1439

    
1440
You can create a disk image with the command:
1441
@example
1442
qemu-img create myimage.img mysize
1443
@end example
1444
where @var{myimage.img} is the disk image filename and @var{mysize} is its
1445
size in kilobytes. You can add an @code{M} suffix to give the size in
1446
megabytes and a @code{G} suffix for gigabytes.
1447

    
1448
See @ref{qemu_img_invocation} for more information.
1449

    
1450
@node disk_images_snapshot_mode
1451
@subsection Snapshot mode
1452

    
1453
If you use the option @option{-snapshot}, all disk images are
1454
considered as read only. When sectors in written, they are written in
1455
a temporary file created in @file{/tmp}. You can however force the
1456
write back to the raw disk images by using the @code{commit} monitor
1457
command (or @key{C-a s} in the serial console).
1458

    
1459
@node vm_snapshots
1460
@subsection VM snapshots
1461

    
1462
VM snapshots are snapshots of the complete virtual machine including
1463
CPU state, RAM, device state and the content of all the writable
1464
disks. In order to use VM snapshots, you must have at least one non
1465
removable and writable block device using the @code{qcow2} disk image
1466
format. Normally this device is the first virtual hard drive.
1467

    
1468
Use the monitor command @code{savevm} to create a new VM snapshot or
1469
replace an existing one. A human readable name can be assigned to each
1470
snapshot in addition to its numerical ID.
1471

    
1472
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1473
a VM snapshot. @code{info snapshots} lists the available snapshots
1474
with their associated information:
1475

    
1476
@example
1477
(qemu) info snapshots
1478
Snapshot devices: hda
1479
Snapshot list (from hda):
1480
ID        TAG                 VM SIZE                DATE       VM CLOCK
1481
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1482
2                                 40M 2006-08-06 12:43:29   00:00:18.633
1483
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1484
@end example
1485

    
1486
A VM snapshot is made of a VM state info (its size is shown in
1487
@code{info snapshots}) and a snapshot of every writable disk image.
1488
The VM state info is stored in the first @code{qcow2} non removable
1489
and writable block device. The disk image snapshots are stored in
1490
every disk image. The size of a snapshot in a disk image is difficult
1491
to evaluate and is not shown by @code{info snapshots} because the
1492
associated disk sectors are shared among all the snapshots to save
1493
disk space (otherwise each snapshot would need a full copy of all the
1494
disk images).
1495

    
1496
When using the (unrelated) @code{-snapshot} option
1497
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1498
but they are deleted as soon as you exit QEMU.
1499

    
1500
VM snapshots currently have the following known limitations:
1501
@itemize
1502
@item
1503
They cannot cope with removable devices if they are removed or
1504
inserted after a snapshot is done.
1505
@item
1506
A few device drivers still have incomplete snapshot support so their
1507
state is not saved or restored properly (in particular USB).
1508
@end itemize
1509

    
1510
@node qemu_img_invocation
1511
@subsection @code{qemu-img} Invocation
1512

    
1513
@include qemu-img.texi
1514

    
1515
@node qemu_nbd_invocation
1516
@subsection @code{qemu-nbd} Invocation
1517

    
1518
@include qemu-nbd.texi
1519

    
1520
@node host_drives
1521
@subsection Using host drives
1522

    
1523
In addition to disk image files, QEMU can directly access host
1524
devices. We describe here the usage for QEMU version >= 0.8.3.
1525

    
1526
@subsubsection Linux
1527

    
1528
On Linux, you can directly use the host device filename instead of a
1529
disk image filename provided you have enough privileges to access
1530
it. For example, use @file{/dev/cdrom} to access to the CDROM or
1531
@file{/dev/fd0} for the floppy.
1532

    
1533
@table @code
1534
@item CD
1535
You can specify a CDROM device even if no CDROM is loaded. QEMU has
1536
specific code to detect CDROM insertion or removal. CDROM ejection by
1537
the guest OS is supported. Currently only data CDs are supported.
1538
@item Floppy
1539
You can specify a floppy device even if no floppy is loaded. Floppy
1540
removal is currently not detected accurately (if you change floppy
1541
without doing floppy access while the floppy is not loaded, the guest
1542
OS will think that the same floppy is loaded).
1543
@item Hard disks
1544
Hard disks can be used. Normally you must specify the whole disk
1545
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1546
see it as a partitioned disk. WARNING: unless you know what you do, it
1547
is better to only make READ-ONLY accesses to the hard disk otherwise
1548
you may corrupt your host data (use the @option{-snapshot} command
1549
line option or modify the device permissions accordingly).
1550
@end table
1551

    
1552
@subsubsection Windows
1553

    
1554
@table @code
1555
@item CD
1556
The preferred syntax is the drive letter (e.g. @file{d:}). The
1557
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1558
supported as an alias to the first CDROM drive.
1559

    
1560
Currently there is no specific code to handle removable media, so it
1561
is better to use the @code{change} or @code{eject} monitor commands to
1562
change or eject media.
1563
@item Hard disks
1564
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
1565
where @var{N} is the drive number (0 is the first hard disk).
1566

    
1567
WARNING: unless you know what you do, it is better to only make
1568
READ-ONLY accesses to the hard disk otherwise you may corrupt your
1569
host data (use the @option{-snapshot} command line so that the
1570
modifications are written in a temporary file).
1571
@end table
1572

    
1573

    
1574
@subsubsection Mac OS X
1575

    
1576
@file{/dev/cdrom} is an alias to the first CDROM.
1577

    
1578
Currently there is no specific code to handle removable media, so it
1579
is better to use the @code{change} or @code{eject} monitor commands to
1580
change or eject media.
1581

    
1582
@node disk_images_fat_images
1583
@subsection Virtual FAT disk images
1584

    
1585
QEMU can automatically create a virtual FAT disk image from a
1586
directory tree. In order to use it, just type:
1587

    
1588
@example
1589
qemu linux.img -hdb fat:/my_directory
1590
@end example
1591

    
1592
Then you access access to all the files in the @file{/my_directory}
1593
directory without having to copy them in a disk image or to export
1594
them via SAMBA or NFS. The default access is @emph{read-only}.
1595

    
1596
Floppies can be emulated with the @code{:floppy:} option:
1597

    
1598
@example
1599
qemu linux.img -fda fat:floppy:/my_directory
1600
@end example
1601

    
1602
A read/write support is available for testing (beta stage) with the
1603
@code{:rw:} option:
1604

    
1605
@example
1606
qemu linux.img -fda fat:floppy:rw:/my_directory
1607
@end example
1608

    
1609
What you should @emph{never} do:
1610
@itemize
1611
@item use non-ASCII filenames ;
1612
@item use "-snapshot" together with ":rw:" ;
1613
@item expect it to work when loadvm'ing ;
1614
@item write to the FAT directory on the host system while accessing it with the guest system.
1615
@end itemize
1616

    
1617
@node disk_images_nbd
1618
@subsection NBD access
1619

    
1620
QEMU can access directly to block device exported using the Network Block Device
1621
protocol.
1622

    
1623
@example
1624
qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
1625
@end example
1626

    
1627
If the NBD server is located on the same host, you can use an unix socket instead
1628
of an inet socket:
1629

    
1630
@example
1631
qemu linux.img -hdb nbd:unix:/tmp/my_socket
1632
@end example
1633

    
1634
In this case, the block device must be exported using qemu-nbd:
1635

    
1636
@example
1637
qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
1638
@end example
1639

    
1640
The use of qemu-nbd allows to share a disk between several guests:
1641
@example
1642
qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
1643
@end example
1644

    
1645
and then you can use it with two guests:
1646
@example
1647
qemu linux1.img -hdb nbd:unix:/tmp/my_socket
1648
qemu linux2.img -hdb nbd:unix:/tmp/my_socket
1649
@end example
1650

    
1651
@node pcsys_network
1652
@section Network emulation
1653

    
1654
QEMU can simulate several network cards (PCI or ISA cards on the PC
1655
target) and can connect them to an arbitrary number of Virtual Local
1656
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1657
VLAN. VLAN can be connected between separate instances of QEMU to
1658
simulate large networks. For simpler usage, a non privileged user mode
1659
network stack can replace the TAP device to have a basic network
1660
connection.
1661

    
1662
@subsection VLANs
1663

    
1664
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1665
connection between several network devices. These devices can be for
1666
example QEMU virtual Ethernet cards or virtual Host ethernet devices
1667
(TAP devices).
1668

    
1669
@subsection Using TAP network interfaces
1670

    
1671
This is the standard way to connect QEMU to a real network. QEMU adds
1672
a virtual network device on your host (called @code{tapN}), and you
1673
can then configure it as if it was a real ethernet card.
1674

    
1675
@subsubsection Linux host
1676

    
1677
As an example, you can download the @file{linux-test-xxx.tar.gz}
1678
archive and copy the script @file{qemu-ifup} in @file{/etc} and
1679
configure properly @code{sudo} so that the command @code{ifconfig}
1680
contained in @file{qemu-ifup} can be executed as root. You must verify
1681
that your host kernel supports the TAP network interfaces: the
1682
device @file{/dev/net/tun} must be present.
1683

    
1684
See @ref{sec_invocation} to have examples of command lines using the
1685
TAP network interfaces.
1686

    
1687
@subsubsection Windows host
1688

    
1689
There is a virtual ethernet driver for Windows 2000/XP systems, called
1690
TAP-Win32. But it is not included in standard QEMU for Windows,
1691
so you will need to get it separately. It is part of OpenVPN package,
1692
so download OpenVPN from : @url{http://openvpn.net/}.
1693

    
1694
@subsection Using the user mode network stack
1695

    
1696
By using the option @option{-net user} (default configuration if no
1697
@option{-net} option is specified), QEMU uses a completely user mode
1698
network stack (you don't need root privilege to use the virtual
1699
network). The virtual network configuration is the following:
1700

    
1701
@example
1702

    
1703
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1704
                           |          (10.0.2.2)
1705
                           |
1706
                           ---->  DNS server (10.0.2.3)
1707
                           |
1708
                           ---->  SMB server (10.0.2.4)
1709
@end example
1710

    
1711
The QEMU VM behaves as if it was behind a firewall which blocks all
1712
incoming connections. You can use a DHCP client to automatically
1713
configure the network in the QEMU VM. The DHCP server assign addresses
1714
to the hosts starting from 10.0.2.15.
1715

    
1716
In order to check that the user mode network is working, you can ping
1717
the address 10.0.2.2 and verify that you got an address in the range
1718
10.0.2.x from the QEMU virtual DHCP server.
1719

    
1720
Note that @code{ping} is not supported reliably to the internet as it
1721
would require root privileges. It means you can only ping the local
1722
router (10.0.2.2).
1723

    
1724
When using the built-in TFTP server, the router is also the TFTP
1725
server.
1726

    
1727
When using the @option{-redir} option, TCP or UDP connections can be
1728
redirected from the host to the guest. It allows for example to
1729
redirect X11, telnet or SSH connections.
1730

    
1731
@subsection Connecting VLANs between QEMU instances
1732

    
1733
Using the @option{-net socket} option, it is possible to make VLANs
1734
that span several QEMU instances. See @ref{sec_invocation} to have a
1735
basic example.
1736

    
1737
@node direct_linux_boot
1738
@section Direct Linux Boot
1739

    
1740
This section explains how to launch a Linux kernel inside QEMU without
1741
having to make a full bootable image. It is very useful for fast Linux
1742
kernel testing.
1743

    
1744
The syntax is:
1745
@example
1746
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1747
@end example
1748

    
1749
Use @option{-kernel} to provide the Linux kernel image and
1750
@option{-append} to give the kernel command line arguments. The
1751
@option{-initrd} option can be used to provide an INITRD image.
1752

    
1753
When using the direct Linux boot, a disk image for the first hard disk
1754
@file{hda} is required because its boot sector is used to launch the
1755
Linux kernel.
1756

    
1757
If you do not need graphical output, you can disable it and redirect
1758
the virtual serial port and the QEMU monitor to the console with the
1759
@option{-nographic} option. The typical command line is:
1760
@example
1761
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1762
     -append "root=/dev/hda console=ttyS0" -nographic
1763
@end example
1764

    
1765
Use @key{Ctrl-a c} to switch between the serial console and the
1766
monitor (@pxref{pcsys_keys}).
1767

    
1768
@node pcsys_usb
1769
@section USB emulation
1770

    
1771
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1772
virtual USB devices or real host USB devices (experimental, works only
1773
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1774
as necessary to connect multiple USB devices.
1775

    
1776
@menu
1777
* usb_devices::
1778
* host_usb_devices::
1779
@end menu
1780
@node usb_devices
1781
@subsection Connecting USB devices
1782

    
1783
USB devices can be connected with the @option{-usbdevice} commandline option
1784
or the @code{usb_add} monitor command.  Available devices are:
1785

    
1786
@table @code
1787
@item mouse
1788
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1789
@item tablet
1790
Pointer device that uses absolute coordinates (like a touchscreen).
1791
This means qemu is able to report the mouse position without having
1792
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1793
@item disk:@var{file}
1794
Mass storage device based on @var{file} (@pxref{disk_images})
1795
@item host:@var{bus.addr}
1796
Pass through the host device identified by @var{bus.addr}
1797
(Linux only)
1798
@item host:@var{vendor_id:product_id}
1799
Pass through the host device identified by @var{vendor_id:product_id}
1800
(Linux only)
1801
@item wacom-tablet
1802
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1803
above but it can be used with the tslib library because in addition to touch
1804
coordinates it reports touch pressure.
1805
@item keyboard
1806
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1807
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1808
Serial converter. This emulates an FTDI FT232BM chip connected to host character
1809
device @var{dev}. The available character devices are the same as for the
1810
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1811
used to override the default 0403:6001. For instance, 
1812
@example
1813
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1814
@end example
1815
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1816
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1817
@item braille
1818
Braille device.  This will use BrlAPI to display the braille output on a real
1819
or fake device.
1820
@item net:@var{options}
1821
Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
1822
specifies NIC options as with @code{-net nic,}@var{options} (see description).
1823
For instance, user-mode networking can be used with
1824
@example
1825
qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1826
@end example
1827
Currently this cannot be used in machines that support PCI NICs.
1828
@item bt[:@var{hci-type}]
1829
Bluetooth dongle whose type is specified in the same format as with
1830
the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
1831
no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1832
This USB device implements the USB Transport Layer of HCI.  Example
1833
usage:
1834
@example
1835
qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
1836
@end example
1837
@end table
1838

    
1839
@node host_usb_devices
1840
@subsection Using host USB devices on a Linux host
1841

    
1842
WARNING: this is an experimental feature. QEMU will slow down when
1843
using it. USB devices requiring real time streaming (i.e. USB Video
1844
Cameras) are not supported yet.
1845

    
1846
@enumerate
1847
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1848
is actually using the USB device. A simple way to do that is simply to
1849
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1850
to @file{mydriver.o.disabled}.
1851

    
1852
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1853
@example
1854
ls /proc/bus/usb
1855
001  devices  drivers
1856
@end example
1857

    
1858
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1859
@example
1860
chown -R myuid /proc/bus/usb
1861
@end example
1862

    
1863
@item Launch QEMU and do in the monitor:
1864
@example
1865
info usbhost
1866
  Device 1.2, speed 480 Mb/s
1867
    Class 00: USB device 1234:5678, USB DISK
1868
@end example
1869
You should see the list of the devices you can use (Never try to use
1870
hubs, it won't work).
1871

    
1872
@item Add the device in QEMU by using:
1873
@example
1874
usb_add host:1234:5678
1875
@end example
1876

    
1877
Normally the guest OS should report that a new USB device is
1878
plugged. You can use the option @option{-usbdevice} to do the same.
1879

    
1880
@item Now you can try to use the host USB device in QEMU.
1881

    
1882
@end enumerate
1883

    
1884
When relaunching QEMU, you may have to unplug and plug again the USB
1885
device to make it work again (this is a bug).
1886

    
1887
@node vnc_security
1888
@section VNC security
1889

    
1890
The VNC server capability provides access to the graphical console
1891
of the guest VM across the network. This has a number of security
1892
considerations depending on the deployment scenarios.
1893

    
1894
@menu
1895
* vnc_sec_none::
1896
* vnc_sec_password::
1897
* vnc_sec_certificate::
1898
* vnc_sec_certificate_verify::
1899
* vnc_sec_certificate_pw::
1900
* vnc_generate_cert::
1901
@end menu
1902
@node vnc_sec_none
1903
@subsection Without passwords
1904

    
1905
The simplest VNC server setup does not include any form of authentication.
1906
For this setup it is recommended to restrict it to listen on a UNIX domain
1907
socket only. For example
1908

    
1909
@example
1910
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1911
@end example
1912

    
1913
This ensures that only users on local box with read/write access to that
1914
path can access the VNC server. To securely access the VNC server from a
1915
remote machine, a combination of netcat+ssh can be used to provide a secure
1916
tunnel.
1917

    
1918
@node vnc_sec_password
1919
@subsection With passwords
1920

    
1921
The VNC protocol has limited support for password based authentication. Since
1922
the protocol limits passwords to 8 characters it should not be considered
1923
to provide high security. The password can be fairly easily brute-forced by
1924
a client making repeat connections. For this reason, a VNC server using password
1925
authentication should be restricted to only listen on the loopback interface
1926
or UNIX domain sockets. Password authentication is requested with the @code{password}
1927
option, and then once QEMU is running the password is set with the monitor. Until
1928
the monitor is used to set the password all clients will be rejected.
1929

    
1930
@example
1931
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1932
(qemu) change vnc password
1933
Password: ********
1934
(qemu)
1935
@end example
1936

    
1937
@node vnc_sec_certificate
1938
@subsection With x509 certificates
1939

    
1940
The QEMU VNC server also implements the VeNCrypt extension allowing use of
1941
TLS for encryption of the session, and x509 certificates for authentication.
1942
The use of x509 certificates is strongly recommended, because TLS on its
1943
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1944
support provides a secure session, but no authentication. This allows any
1945
client to connect, and provides an encrypted session.
1946

    
1947
@example
1948
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1949
@end example
1950

    
1951
In the above example @code{/etc/pki/qemu} should contain at least three files,
1952
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1953
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1954
NB the @code{server-key.pem} file should be protected with file mode 0600 to
1955
only be readable by the user owning it.
1956

    
1957
@node vnc_sec_certificate_verify
1958
@subsection With x509 certificates and client verification
1959

    
1960
Certificates can also provide a means to authenticate the client connecting.
1961
The server will request that the client provide a certificate, which it will
1962
then validate against the CA certificate. This is a good choice if deploying
1963
in an environment with a private internal certificate authority.
1964

    
1965
@example
1966
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1967
@end example
1968

    
1969

    
1970
@node vnc_sec_certificate_pw
1971
@subsection With x509 certificates, client verification and passwords
1972

    
1973
Finally, the previous method can be combined with VNC password authentication
1974
to provide two layers of authentication for clients.
1975

    
1976
@example
1977
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1978
(qemu) change vnc password
1979
Password: ********
1980
(qemu)
1981
@end example
1982

    
1983
@node vnc_generate_cert
1984
@subsection Generating certificates for VNC
1985

    
1986
The GNU TLS packages provides a command called @code{certtool} which can
1987
be used to generate certificates and keys in PEM format. At a minimum it
1988
is neccessary to setup a certificate authority, and issue certificates to
1989
each server. If using certificates for authentication, then each client
1990
will also need to be issued a certificate. The recommendation is for the
1991
server to keep its certificates in either @code{/etc/pki/qemu} or for
1992
unprivileged users in @code{$HOME/.pki/qemu}.
1993

    
1994
@menu
1995
* vnc_generate_ca::
1996
* vnc_generate_server::
1997
* vnc_generate_client::
1998
@end menu
1999
@node vnc_generate_ca
2000
@subsubsection Setup the Certificate Authority
2001

    
2002
This step only needs to be performed once per organization / organizational
2003
unit. First the CA needs a private key. This key must be kept VERY secret
2004
and secure. If this key is compromised the entire trust chain of the certificates
2005
issued with it is lost.
2006

    
2007
@example
2008
# certtool --generate-privkey > ca-key.pem
2009
@end example
2010

    
2011
A CA needs to have a public certificate. For simplicity it can be a self-signed
2012
certificate, or one issue by a commercial certificate issuing authority. To
2013
generate a self-signed certificate requires one core piece of information, the
2014
name of the organization.
2015

    
2016
@example
2017
# cat > ca.info <<EOF
2018
cn = Name of your organization
2019
ca
2020
cert_signing_key
2021
EOF
2022
# certtool --generate-self-signed \
2023
           --load-privkey ca-key.pem
2024
           --template ca.info \
2025
           --outfile ca-cert.pem
2026
@end example
2027

    
2028
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
2029
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
2030

    
2031
@node vnc_generate_server
2032
@subsubsection Issuing server certificates
2033

    
2034
Each server (or host) needs to be issued with a key and certificate. When connecting
2035
the certificate is sent to the client which validates it against the CA certificate.
2036
The core piece of information for a server certificate is the hostname. This should
2037
be the fully qualified hostname that the client will connect with, since the client
2038
will typically also verify the hostname in the certificate. On the host holding the
2039
secure CA private key:
2040

    
2041
@example
2042
# cat > server.info <<EOF
2043
organization = Name  of your organization
2044
cn = server.foo.example.com
2045
tls_www_server
2046
encryption_key
2047
signing_key
2048
EOF
2049
# certtool --generate-privkey > server-key.pem
2050
# certtool --generate-certificate \
2051
           --load-ca-certificate ca-cert.pem \
2052
           --load-ca-privkey ca-key.pem \
2053
           --load-privkey server server-key.pem \
2054
           --template server.info \
2055
           --outfile server-cert.pem
2056
@end example
2057

    
2058
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
2059
to the server for which they were generated. The @code{server-key.pem} is security
2060
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
2061

    
2062
@node vnc_generate_client
2063
@subsubsection Issuing client certificates
2064

    
2065
If the QEMU VNC server is to use the @code{x509verify} option to validate client
2066
certificates as its authentication mechanism, each client also needs to be issued
2067
a certificate. The client certificate contains enough metadata to uniquely identify
2068
the client, typically organization, state, city, building, etc. On the host holding
2069
the secure CA private key:
2070

    
2071
@example
2072
# cat > client.info <<EOF
2073
country = GB
2074
state = London
2075
locality = London
2076
organiazation = Name of your organization
2077
cn = client.foo.example.com
2078
tls_www_client
2079
encryption_key
2080
signing_key
2081
EOF
2082
# certtool --generate-privkey > client-key.pem
2083
# certtool --generate-certificate \
2084
           --load-ca-certificate ca-cert.pem \
2085
           --load-ca-privkey ca-key.pem \
2086
           --load-privkey client-key.pem \
2087
           --template client.info \
2088
           --outfile client-cert.pem
2089
@end example
2090

    
2091
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
2092
copied to the client for which they were generated.
2093

    
2094
@node gdb_usage
2095
@section GDB usage
2096

    
2097
QEMU has a primitive support to work with gdb, so that you can do
2098
'Ctrl-C' while the virtual machine is running and inspect its state.
2099

    
2100
In order to use gdb, launch qemu with the '-s' option. It will wait for a
2101
gdb connection:
2102
@example
2103
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
2104
       -append "root=/dev/hda"
2105
Connected to host network interface: tun0
2106
Waiting gdb connection on port 1234
2107
@end example
2108

    
2109
Then launch gdb on the 'vmlinux' executable:
2110
@example
2111
> gdb vmlinux
2112
@end example
2113

    
2114
In gdb, connect to QEMU:
2115
@example
2116
(gdb) target remote localhost:1234
2117
@end example
2118

    
2119
Then you can use gdb normally. For example, type 'c' to launch the kernel:
2120
@example
2121
(gdb) c
2122
@end example
2123

    
2124
Here are some useful tips in order to use gdb on system code:
2125

    
2126
@enumerate
2127
@item
2128
Use @code{info reg} to display all the CPU registers.
2129
@item
2130
Use @code{x/10i $eip} to display the code at the PC position.
2131
@item
2132
Use @code{set architecture i8086} to dump 16 bit code. Then use
2133
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
2134
@end enumerate
2135

    
2136
Advanced debugging options:
2137

    
2138
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
2139
@table @code
2140
@item maintenance packet qqemu.sstepbits
2141

    
2142
This will display the MASK bits used to control the single stepping IE:
2143
@example
2144
(gdb) maintenance packet qqemu.sstepbits
2145
sending: "qqemu.sstepbits"
2146
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
2147
@end example
2148
@item maintenance packet qqemu.sstep
2149

    
2150
This will display the current value of the mask used when single stepping IE:
2151
@example
2152
(gdb) maintenance packet qqemu.sstep
2153
sending: "qqemu.sstep"
2154
received: "0x7"
2155
@end example
2156
@item maintenance packet Qqemu.sstep=HEX_VALUE
2157

    
2158
This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
2159
@example
2160
(gdb) maintenance packet Qqemu.sstep=0x5
2161
sending: "qemu.sstep=0x5"
2162
received: "OK"
2163
@end example
2164
@end table
2165

    
2166
@node pcsys_os_specific
2167
@section Target OS specific information
2168

    
2169
@subsection Linux
2170

    
2171
To have access to SVGA graphic modes under X11, use the @code{vesa} or
2172
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
2173
color depth in the guest and the host OS.
2174

    
2175
When using a 2.6 guest Linux kernel, you should add the option
2176
@code{clock=pit} on the kernel command line because the 2.6 Linux
2177
kernels make very strict real time clock checks by default that QEMU
2178
cannot simulate exactly.
2179

    
2180
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
2181
not activated because QEMU is slower with this patch. The QEMU
2182
Accelerator Module is also much slower in this case. Earlier Fedora
2183
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
2184
patch by default. Newer kernels don't have it.
2185

    
2186
@subsection Windows
2187

    
2188
If you have a slow host, using Windows 95 is better as it gives the
2189
best speed. Windows 2000 is also a good choice.
2190

    
2191
@subsubsection SVGA graphic modes support
2192

    
2193
QEMU emulates a Cirrus Logic GD5446 Video
2194
card. All Windows versions starting from Windows 95 should recognize
2195
and use this graphic card. For optimal performances, use 16 bit color
2196
depth in the guest and the host OS.
2197

    
2198
If you are using Windows XP as guest OS and if you want to use high
2199
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
2200
1280x1024x16), then you should use the VESA VBE virtual graphic card
2201
(option @option{-std-vga}).
2202

    
2203
@subsubsection CPU usage reduction
2204

    
2205
Windows 9x does not correctly use the CPU HLT
2206
instruction. The result is that it takes host CPU cycles even when
2207
idle. You can install the utility from
2208
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
2209
problem. Note that no such tool is needed for NT, 2000 or XP.
2210

    
2211
@subsubsection Windows 2000 disk full problem
2212

    
2213
Windows 2000 has a bug which gives a disk full problem during its
2214
installation. When installing it, use the @option{-win2k-hack} QEMU
2215
option to enable a specific workaround. After Windows 2000 is
2216
installed, you no longer need this option (this option slows down the
2217
IDE transfers).
2218

    
2219
@subsubsection Windows 2000 shutdown
2220

    
2221
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
2222
can. It comes from the fact that Windows 2000 does not automatically
2223
use the APM driver provided by the BIOS.
2224

    
2225
In order to correct that, do the following (thanks to Struan
2226
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
2227
Add/Troubleshoot a device => Add a new device & Next => No, select the
2228
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
2229
(again) a few times. Now the driver is installed and Windows 2000 now
2230
correctly instructs QEMU to shutdown at the appropriate moment.
2231

    
2232
@subsubsection Share a directory between Unix and Windows
2233

    
2234
See @ref{sec_invocation} about the help of the option @option{-smb}.
2235

    
2236
@subsubsection Windows XP security problem
2237

    
2238
Some releases of Windows XP install correctly but give a security
2239
error when booting:
2240
@example
2241
A problem is preventing Windows from accurately checking the
2242
license for this computer. Error code: 0x800703e6.
2243
@end example
2244

    
2245
The workaround is to install a service pack for XP after a boot in safe
2246
mode. Then reboot, and the problem should go away. Since there is no
2247
network while in safe mode, its recommended to download the full
2248
installation of SP1 or SP2 and transfer that via an ISO or using the
2249
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
2250

    
2251
@subsection MS-DOS and FreeDOS
2252

    
2253
@subsubsection CPU usage reduction
2254

    
2255
DOS does not correctly use the CPU HLT instruction. The result is that
2256
it takes host CPU cycles even when idle. You can install the utility
2257
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
2258
problem.
2259

    
2260
@node QEMU System emulator for non PC targets
2261
@chapter QEMU System emulator for non PC targets
2262

    
2263
QEMU is a generic emulator and it emulates many non PC
2264
machines. Most of the options are similar to the PC emulator. The
2265
differences are mentioned in the following sections.
2266

    
2267
@menu
2268
* QEMU PowerPC System emulator::
2269
* Sparc32 System emulator::
2270
* Sparc64 System emulator::
2271
* MIPS System emulator::
2272
* ARM System emulator::
2273
* ColdFire System emulator::
2274
@end menu
2275

    
2276
@node QEMU PowerPC System emulator
2277
@section QEMU PowerPC System emulator
2278

    
2279
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2280
or PowerMac PowerPC system.
2281

    
2282
QEMU emulates the following PowerMac peripherals:
2283

    
2284
@itemize @minus
2285
@item
2286
UniNorth PCI Bridge
2287
@item
2288
PCI VGA compatible card with VESA Bochs Extensions
2289
@item
2290
2 PMAC IDE interfaces with hard disk and CD-ROM support
2291
@item
2292
NE2000 PCI adapters
2293
@item
2294
Non Volatile RAM
2295
@item
2296
VIA-CUDA with ADB keyboard and mouse.
2297
@end itemize
2298

    
2299
QEMU emulates the following PREP peripherals:
2300

    
2301
@itemize @minus
2302
@item
2303
PCI Bridge
2304
@item
2305
PCI VGA compatible card with VESA Bochs Extensions
2306
@item
2307
2 IDE interfaces with hard disk and CD-ROM support
2308
@item
2309
Floppy disk
2310
@item
2311
NE2000 network adapters
2312
@item
2313
Serial port
2314
@item
2315
PREP Non Volatile RAM
2316
@item
2317
PC compatible keyboard and mouse.
2318
@end itemize
2319

    
2320
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2321
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2322

    
2323
@c man begin OPTIONS
2324

    
2325
The following options are specific to the PowerPC emulation:
2326

    
2327
@table @option
2328

    
2329
@item -g WxH[xDEPTH]
2330

    
2331
Set the initial VGA graphic mode. The default is 800x600x15.
2332

    
2333
@end table
2334

    
2335
@c man end
2336

    
2337

    
2338
More information is available at
2339
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2340

    
2341
@node Sparc32 System emulator
2342
@section Sparc32 System emulator
2343

    
2344
Use the executable @file{qemu-system-sparc} to simulate the following
2345
Sun4m architecture machines:
2346
@itemize @minus
2347
@item
2348
SPARCstation 4
2349
@item
2350
SPARCstation 5
2351
@item
2352
SPARCstation 10
2353
@item
2354
SPARCstation 20
2355
@item
2356
SPARCserver 600MP
2357
@item
2358
SPARCstation LX
2359
@item
2360
SPARCstation Voyager
2361
@item
2362
SPARCclassic
2363
@item
2364
SPARCbook
2365
@end itemize
2366

    
2367
The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2368
but Linux limits the number of usable CPUs to 4.
2369

    
2370
It's also possible to simulate a SPARCstation 2 (sun4c architecture),
2371
SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
2372
emulators are not usable yet.
2373

    
2374
QEMU emulates the following sun4m/sun4c/sun4d peripherals:
2375

    
2376
@itemize @minus
2377
@item
2378
IOMMU or IO-UNITs
2379
@item
2380
TCX Frame buffer
2381
@item
2382
Lance (Am7990) Ethernet
2383
@item
2384
Non Volatile RAM M48T02/M48T08
2385
@item
2386
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2387
and power/reset logic
2388
@item
2389
ESP SCSI controller with hard disk and CD-ROM support
2390
@item
2391
Floppy drive (not on SS-600MP)
2392
@item
2393
CS4231 sound device (only on SS-5, not working yet)
2394
@end itemize
2395

    
2396
The number of peripherals is fixed in the architecture.  Maximum
2397
memory size depends on the machine type, for SS-5 it is 256MB and for
2398
others 2047MB.
2399

    
2400
Since version 0.8.2, QEMU uses OpenBIOS
2401
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2402
firmware implementation. The goal is to implement a 100% IEEE
2403
1275-1994 (referred to as Open Firmware) compliant firmware.
2404

    
2405
A sample Linux 2.6 series kernel and ram disk image are available on
2406
the QEMU web site. There are still issues with NetBSD and OpenBSD, but
2407
some kernel versions work. Please note that currently Solaris kernels
2408
don't work probably due to interface issues between OpenBIOS and
2409
Solaris.
2410

    
2411
@c man begin OPTIONS
2412

    
2413
The following options are specific to the Sparc32 emulation:
2414

    
2415
@table @option
2416

    
2417
@item -g WxHx[xDEPTH]
2418

    
2419
Set the initial TCX graphic mode. The default is 1024x768x8, currently
2420
the only other possible mode is 1024x768x24.
2421

    
2422
@item -prom-env string
2423

    
2424
Set OpenBIOS variables in NVRAM, for example:
2425

    
2426
@example
2427
qemu-system-sparc -prom-env 'auto-boot?=false' \
2428
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2429
@end example
2430

    
2431
@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic|SPARCbook|SS-2|SS-1000|SS-2000]
2432

    
2433
Set the emulated machine type. Default is SS-5.
2434

    
2435
@end table
2436

    
2437
@c man end
2438

    
2439
@node Sparc64 System emulator
2440
@section Sparc64 System emulator
2441

    
2442
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2443
(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2444
Niagara (T1) machine. The emulator is not usable for anything yet, but
2445
it can launch some kernels.
2446

    
2447
QEMU emulates the following peripherals:
2448

    
2449
@itemize @minus
2450
@item
2451
UltraSparc IIi APB PCI Bridge
2452
@item
2453
PCI VGA compatible card with VESA Bochs Extensions
2454
@item
2455
PS/2 mouse and keyboard
2456
@item
2457
Non Volatile RAM M48T59
2458
@item
2459
PC-compatible serial ports
2460
@item
2461
2 PCI IDE interfaces with hard disk and CD-ROM support
2462
@item
2463
Floppy disk
2464
@end itemize
2465

    
2466
@c man begin OPTIONS
2467

    
2468
The following options are specific to the Sparc64 emulation:
2469

    
2470
@table @option
2471

    
2472
@item -prom-env string
2473

    
2474
Set OpenBIOS variables in NVRAM, for example:
2475

    
2476
@example
2477
qemu-system-sparc64 -prom-env 'auto-boot?=false'
2478
@end example
2479

    
2480
@item -M [sun4u|sun4v|Niagara]
2481

    
2482
Set the emulated machine type. The default is sun4u.
2483

    
2484
@end table
2485

    
2486
@c man end
2487

    
2488
@node MIPS System emulator
2489
@section MIPS System emulator
2490

    
2491
Four executables cover simulation of 32 and 64-bit MIPS systems in
2492
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2493
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2494
Five different machine types are emulated:
2495

    
2496
@itemize @minus
2497
@item
2498
A generic ISA PC-like machine "mips"
2499
@item
2500
The MIPS Malta prototype board "malta"
2501
@item
2502
An ACER Pica "pica61". This machine needs the 64-bit emulator.
2503
@item
2504
MIPS emulator pseudo board "mipssim"
2505
@item
2506
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2507
@end itemize
2508

    
2509
The generic emulation is supported by Debian 'Etch' and is able to
2510
install Debian into a virtual disk image. The following devices are
2511
emulated:
2512

    
2513
@itemize @minus
2514
@item
2515
A range of MIPS CPUs, default is the 24Kf
2516
@item
2517
PC style serial port
2518
@item
2519
PC style IDE disk
2520
@item
2521
NE2000 network card
2522
@end itemize
2523

    
2524
The Malta emulation supports the following devices:
2525

    
2526
@itemize @minus
2527
@item
2528
Core board with MIPS 24Kf CPU and Galileo system controller
2529
@item
2530
PIIX4 PCI/USB/SMbus controller
2531
@item
2532
The Multi-I/O chip's serial device
2533
@item
2534
PCnet32 PCI network card
2535
@item
2536
Malta FPGA serial device
2537
@item
2538
Cirrus VGA graphics card
2539
@end itemize
2540

    
2541
The ACER Pica emulation supports:
2542

    
2543
@itemize @minus
2544
@item
2545
MIPS R4000 CPU
2546
@item
2547
PC-style IRQ and DMA controllers
2548
@item
2549
PC Keyboard
2550
@item
2551
IDE controller
2552
@end itemize
2553

    
2554
The mipssim pseudo board emulation provides an environment similiar
2555
to what the proprietary MIPS emulator uses for running Linux.
2556
It supports:
2557

    
2558
@itemize @minus
2559
@item
2560
A range of MIPS CPUs, default is the 24Kf
2561
@item
2562
PC style serial port
2563
@item
2564
MIPSnet network emulation
2565
@end itemize
2566

    
2567
The MIPS Magnum R4000 emulation supports:
2568

    
2569
@itemize @minus
2570
@item
2571
MIPS R4000 CPU
2572
@item
2573
PC-style IRQ controller
2574
@item
2575
PC Keyboard
2576
@item
2577
SCSI controller
2578
@item
2579
G364 framebuffer
2580
@end itemize
2581

    
2582

    
2583
@node ARM System emulator
2584
@section ARM System emulator
2585

    
2586
Use the executable @file{qemu-system-arm} to simulate a ARM
2587
machine. The ARM Integrator/CP board is emulated with the following
2588
devices:
2589

    
2590
@itemize @minus
2591
@item
2592
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2593
@item
2594
Two PL011 UARTs
2595
@item
2596
SMC 91c111 Ethernet adapter
2597
@item
2598
PL110 LCD controller
2599
@item
2600
PL050 KMI with PS/2 keyboard and mouse.
2601
@item
2602
PL181 MultiMedia Card Interface with SD card.
2603
@end itemize
2604

    
2605
The ARM Versatile baseboard is emulated with the following devices:
2606

    
2607
@itemize @minus
2608
@item
2609
ARM926E, ARM1136 or Cortex-A8 CPU
2610
@item
2611
PL190 Vectored Interrupt Controller
2612
@item
2613
Four PL011 UARTs
2614
@item
2615
SMC 91c111 Ethernet adapter
2616
@item
2617
PL110 LCD controller
2618
@item
2619
PL050 KMI with PS/2 keyboard and mouse.
2620
@item
2621
PCI host bridge.  Note the emulated PCI bridge only provides access to
2622
PCI memory space.  It does not provide access to PCI IO space.
2623
This means some devices (eg. ne2k_pci NIC) are not usable, and others
2624
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2625
mapped control registers.
2626
@item
2627
PCI OHCI USB controller.
2628
@item
2629
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2630
@item
2631
PL181 MultiMedia Card Interface with SD card.
2632
@end itemize
2633

    
2634
The ARM RealView Emulation baseboard is emulated with the following devices:
2635

    
2636
@itemize @minus
2637
@item
2638
ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2639
@item
2640
ARM AMBA Generic/Distributed Interrupt Controller
2641
@item
2642
Four PL011 UARTs
2643
@item
2644
SMC 91c111 Ethernet adapter
2645
@item
2646
PL110 LCD controller
2647
@item
2648
PL050 KMI with PS/2 keyboard and mouse
2649
@item
2650
PCI host bridge
2651
@item
2652
PCI OHCI USB controller
2653
@item
2654
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2655
@item
2656
PL181 MultiMedia Card Interface with SD card.
2657
@end itemize
2658

    
2659
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2660
and "Terrier") emulation includes the following peripherals:
2661

    
2662
@itemize @minus
2663
@item
2664
Intel PXA270 System-on-chip (ARM V5TE core)
2665
@item
2666
NAND Flash memory
2667
@item
2668
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2669
@item
2670
On-chip OHCI USB controller
2671
@item
2672
On-chip LCD controller
2673
@item
2674
On-chip Real Time Clock
2675
@item
2676
TI ADS7846 touchscreen controller on SSP bus
2677
@item
2678
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2679
@item
2680
GPIO-connected keyboard controller and LEDs
2681
@item
2682
Secure Digital card connected to PXA MMC/SD host
2683
@item
2684
Three on-chip UARTs
2685
@item
2686
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2687
@end itemize
2688

    
2689
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2690
following elements:
2691

    
2692
@itemize @minus
2693
@item
2694
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2695
@item
2696
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2697
@item
2698
On-chip LCD controller
2699
@item
2700
On-chip Real Time Clock
2701
@item
2702
TI TSC2102i touchscreen controller / analog-digital converter / Audio
2703
CODEC, connected through MicroWire and I@math{^2}S busses
2704
@item
2705
GPIO-connected matrix keypad
2706
@item
2707
Secure Digital card connected to OMAP MMC/SD host
2708
@item
2709
Three on-chip UARTs
2710
@end itemize
2711

    
2712
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2713
emulation supports the following elements:
2714

    
2715
@itemize @minus
2716
@item
2717
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2718
@item
2719
RAM and non-volatile OneNAND Flash memories
2720
@item
2721
Display connected to EPSON remote framebuffer chip and OMAP on-chip
2722
display controller and a LS041y3 MIPI DBI-C controller
2723
@item
2724
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2725
driven through SPI bus
2726
@item
2727
National Semiconductor LM8323-controlled qwerty keyboard driven
2728
through I@math{^2}C bus
2729
@item
2730
Secure Digital card connected to OMAP MMC/SD host
2731
@item
2732
Three OMAP on-chip UARTs and on-chip STI debugging console
2733
@item
2734
A Bluetooth(R) transciever and HCI connected to an UART
2735
@item
2736
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2737
TUSB6010 chip - only USB host mode is supported
2738
@item
2739
TI TMP105 temperature sensor driven through I@math{^2}C bus
2740
@item
2741
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2742
@item
2743
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2744
through CBUS
2745
@end itemize
2746

    
2747
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2748
devices:
2749

    
2750
@itemize @minus
2751
@item
2752
Cortex-M3 CPU core.
2753
@item
2754
64k Flash and 8k SRAM.
2755
@item
2756
Timers, UARTs, ADC and I@math{^2}C interface.
2757
@item
2758
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2759
@end itemize
2760

    
2761
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2762
devices:
2763

    
2764
@itemize @minus
2765
@item
2766
Cortex-M3 CPU core.
2767
@item
2768
256k Flash and 64k SRAM.
2769
@item
2770
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2771
@item
2772
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2773
@end itemize
2774

    
2775
The Freecom MusicPal internet radio emulation includes the following
2776
elements:
2777

    
2778
@itemize @minus
2779
@item
2780
Marvell MV88W8618 ARM core.
2781
@item
2782
32 MB RAM, 256 KB SRAM, 8 MB flash.
2783
@item
2784
Up to 2 16550 UARTs
2785
@item
2786
MV88W8xx8 Ethernet controller
2787
@item
2788
MV88W8618 audio controller, WM8750 CODEC and mixer
2789
@item
2790
128?64 display with brightness control
2791
@item
2792
2 buttons, 2 navigation wheels with button function
2793
@end itemize
2794

    
2795
A Linux 2.6 test image is available on the QEMU web site. More
2796
information is available in the QEMU mailing-list archive.
2797

    
2798
@node ColdFire System emulator
2799
@section ColdFire System emulator
2800

    
2801
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2802
The emulator is able to boot a uClinux kernel.
2803

    
2804
The M5208EVB emulation includes the following devices:
2805

    
2806
@itemize @minus
2807
@item
2808
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2809
@item
2810
Three Two on-chip UARTs.
2811
@item
2812
Fast Ethernet Controller (FEC)
2813
@end itemize
2814

    
2815
The AN5206 emulation includes the following devices:
2816

    
2817
@itemize @minus
2818
@item
2819
MCF5206 ColdFire V2 Microprocessor.
2820
@item
2821
Two on-chip UARTs.
2822
@end itemize
2823

    
2824
@node QEMU User space emulator
2825
@chapter QEMU User space emulator
2826

    
2827
@menu
2828
* Supported Operating Systems ::
2829
* Linux User space emulator::
2830
* Mac OS X/Darwin User space emulator ::
2831
* BSD User space emulator ::
2832
@end menu
2833

    
2834
@node Supported Operating Systems
2835
@section Supported Operating Systems
2836

    
2837
The following OS are supported in user space emulation:
2838

    
2839
@itemize @minus
2840
@item
2841
Linux (referred as qemu-linux-user)
2842
@item
2843
Mac OS X/Darwin (referred as qemu-darwin-user)
2844
@item
2845
BSD (referred as qemu-bsd-user)
2846
@end itemize
2847

    
2848
@node Linux User space emulator
2849
@section Linux User space emulator
2850

    
2851
@menu
2852
* Quick Start::
2853
* Wine launch::
2854
* Command line options::
2855
* Other binaries::
2856
@end menu
2857

    
2858
@node Quick Start
2859
@subsection Quick Start
2860

    
2861
In order to launch a Linux process, QEMU needs the process executable
2862
itself and all the target (x86) dynamic libraries used by it.
2863

    
2864
@itemize
2865

    
2866
@item On x86, you can just try to launch any process by using the native
2867
libraries:
2868

    
2869
@example
2870
qemu-i386 -L / /bin/ls
2871
@end example
2872

    
2873
@code{-L /} tells that the x86 dynamic linker must be searched with a
2874
@file{/} prefix.
2875

    
2876
@item Since QEMU is also a linux process, you can launch qemu with
2877
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2878

    
2879
@example
2880
qemu-i386 -L / qemu-i386 -L / /bin/ls
2881
@end example
2882

    
2883
@item On non x86 CPUs, you need first to download at least an x86 glibc
2884
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2885
@code{LD_LIBRARY_PATH} is not set:
2886

    
2887
@example
2888
unset LD_LIBRARY_PATH
2889
@end example
2890

    
2891
Then you can launch the precompiled @file{ls} x86 executable:
2892

    
2893
@example
2894
qemu-i386 tests/i386/ls
2895
@end example
2896
You can look at @file{qemu-binfmt-conf.sh} so that
2897
QEMU is automatically launched by the Linux kernel when you try to
2898
launch x86 executables. It requires the @code{binfmt_misc} module in the
2899
Linux kernel.
2900

    
2901
@item The x86 version of QEMU is also included. You can try weird things such as:
2902
@example
2903
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2904
          /usr/local/qemu-i386/bin/ls-i386
2905
@end example
2906

    
2907
@end itemize
2908

    
2909
@node Wine launch
2910
@subsection Wine launch
2911

    
2912
@itemize
2913

    
2914
@item Ensure that you have a working QEMU with the x86 glibc
2915
distribution (see previous section). In order to verify it, you must be
2916
able to do:
2917

    
2918
@example
2919
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2920
@end example
2921

    
2922
@item Download the binary x86 Wine install
2923
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2924

    
2925
@item Configure Wine on your account. Look at the provided script
2926
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2927
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2928

    
2929
@item Then you can try the example @file{putty.exe}:
2930

    
2931
@example
2932
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2933
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2934
@end example
2935

    
2936
@end itemize
2937

    
2938
@node Command line options
2939
@subsection Command line options
2940

    
2941
@example
2942
usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] program [arguments...]
2943
@end example
2944

    
2945
@table @option
2946
@item -h
2947
Print the help
2948
@item -L path
2949
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2950
@item -s size
2951
Set the x86 stack size in bytes (default=524288)
2952
@item -cpu model
2953
Select CPU model (-cpu ? for list and additional feature selection)
2954
@end table
2955

    
2956
Debug options:
2957

    
2958
@table @option
2959
@item -d
2960
Activate log (logfile=/tmp/qemu.log)
2961
@item -p pagesize
2962
Act as if the host page size was 'pagesize' bytes
2963
@item -g port
2964
Wait gdb connection to port
2965
@end table
2966

    
2967
Environment variables:
2968

    
2969
@table @env
2970
@item QEMU_STRACE
2971
Print system calls and arguments similar to the 'strace' program
2972
(NOTE: the actual 'strace' program will not work because the user
2973
space emulator hasn't implemented ptrace).  At the moment this is
2974
incomplete.  All system calls that don't have a specific argument
2975
format are printed with information for six arguments.  Many
2976
flag-style arguments don't have decoders and will show up as numbers.
2977
@end table
2978

    
2979
@node Other binaries
2980
@subsection Other binaries
2981

    
2982
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2983
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2984
configurations), and arm-uclinux bFLT format binaries.
2985

    
2986
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2987
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2988
coldfire uClinux bFLT format binaries.
2989

    
2990
The binary format is detected automatically.
2991

    
2992
@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2993

    
2994
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2995
(Sparc64 CPU, 32 bit ABI).
2996

    
2997
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2998
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2999

    
3000
@node Mac OS X/Darwin User space emulator
3001
@section Mac OS X/Darwin User space emulator
3002

    
3003
@menu
3004
* Mac OS X/Darwin Status::
3005
* Mac OS X/Darwin Quick Start::
3006
* Mac OS X/Darwin Command line options::
3007
@end menu
3008

    
3009
@node Mac OS X/Darwin Status
3010
@subsection Mac OS X/Darwin Status
3011

    
3012
@itemize @minus
3013
@item
3014
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
3015
@item
3016
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
3017
@item
3018
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
3019
@item
3020
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
3021
@end itemize
3022

    
3023
[1] If you're host commpage can be executed by qemu.
3024

    
3025
@node Mac OS X/Darwin Quick Start
3026
@subsection Quick Start
3027

    
3028
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
3029
itself and all the target dynamic libraries used by it. If you don't have the FAT
3030
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
3031
CD or compile them by hand.
3032

    
3033
@itemize
3034

    
3035
@item On x86, you can just try to launch any process by using the native
3036
libraries:
3037

    
3038
@example
3039
qemu-i386 /bin/ls
3040
@end example
3041

    
3042
or to run the ppc version of the executable:
3043

    
3044
@example
3045
qemu-ppc /bin/ls
3046
@end example
3047

    
3048
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
3049
are installed:
3050

    
3051
@example
3052
qemu-i386 -L /opt/x86_root/ /bin/ls
3053
@end example
3054

    
3055
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
3056
@file{/opt/x86_root/usr/bin/dyld}.
3057

    
3058
@end itemize
3059

    
3060
@node Mac OS X/Darwin Command line options
3061
@subsection Command line options
3062

    
3063
@example
3064
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
3065
@end example
3066

    
3067
@table @option
3068
@item -h
3069
Print the help
3070
@item -L path
3071
Set the library root path (default=/)
3072
@item -s size
3073
Set the stack size in bytes (default=524288)
3074
@end table
3075

    
3076
Debug options:
3077

    
3078
@table @option
3079
@item -d
3080
Activate log (logfile=/tmp/qemu.log)
3081
@item -p pagesize
3082
Act as if the host page size was 'pagesize' bytes
3083
@end table
3084

    
3085
@node BSD User space emulator
3086
@section BSD User space emulator
3087

    
3088
@menu
3089
* BSD Status::
3090
* BSD Quick Start::
3091
* BSD Command line options::
3092
@end menu
3093

    
3094
@node BSD Status
3095
@subsection BSD Status
3096

    
3097
@itemize @minus
3098
@item
3099
target Sparc64 on Sparc64: Some trivial programs work.
3100
@end itemize
3101

    
3102
@node BSD Quick Start
3103
@subsection Quick Start
3104

    
3105
In order to launch a BSD process, QEMU needs the process executable
3106
itself and all the target dynamic libraries used by it.
3107

    
3108
@itemize
3109

    
3110
@item On Sparc64, you can just try to launch any process by using the native
3111
libraries:
3112

    
3113
@example
3114
qemu-sparc64 /bin/ls
3115
@end example
3116

    
3117
@end itemize
3118

    
3119
@node BSD Command line options
3120
@subsection Command line options
3121

    
3122
@example
3123
usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
3124
@end example
3125

    
3126
@table @option
3127
@item -h
3128
Print the help
3129
@item -L path
3130
Set the library root path (default=/)
3131
@item -s size
3132
Set the stack size in bytes (default=524288)
3133
@item -bsd type
3134
Set the type of the emulated BSD Operating system. Valid values are
3135
FreeBSD, NetBSD and OpenBSD (default).
3136
@end table
3137

    
3138
Debug options:
3139

    
3140
@table @option
3141
@item -d
3142
Activate log (logfile=/tmp/qemu.log)
3143
@item -p pagesize
3144
Act as if the host page size was 'pagesize' bytes
3145
@end table
3146

    
3147
@node compilation
3148
@chapter Compilation from the sources
3149

    
3150
@menu
3151
* Linux/Unix::
3152
* Windows::
3153
* Cross compilation for Windows with Linux::
3154
* Mac OS X::
3155
@end menu
3156

    
3157
@node Linux/Unix
3158
@section Linux/Unix
3159

    
3160
@subsection Compilation
3161

    
3162
First you must decompress the sources:
3163
@example
3164
cd /tmp
3165
tar zxvf qemu-x.y.z.tar.gz
3166
cd qemu-x.y.z
3167
@end example
3168

    
3169
Then you configure QEMU and build it (usually no options are needed):
3170
@example
3171
./configure
3172
make
3173
@end example
3174

    
3175
Then type as root user:
3176
@example
3177
make install
3178
@end example
3179
to install QEMU in @file{/usr/local}.
3180

    
3181
@subsection GCC version
3182

    
3183
In order to compile QEMU successfully, it is very important that you
3184
have the right tools. The most important one is gcc. On most hosts and
3185
in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
3186
Linux distribution includes a gcc 4.x compiler, you can usually
3187
install an older version (it is invoked by @code{gcc32} or
3188
@code{gcc34}). The QEMU configure script automatically probes for
3189
these older versions so that usually you don't have to do anything.
3190

    
3191
@node Windows
3192
@section Windows
3193

    
3194
@itemize
3195
@item Install the current versions of MSYS and MinGW from
3196
@url{http://www.mingw.org/}. You can find detailed installation
3197
instructions in the download section and the FAQ.
3198

    
3199
@item Download
3200
the MinGW development library of SDL 1.2.x
3201
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
3202
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
3203
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
3204
directory. Edit the @file{sdl-config} script so that it gives the
3205
correct SDL directory when invoked.
3206

    
3207
@item Extract the current version of QEMU.
3208

    
3209
@item Start the MSYS shell (file @file{msys.bat}).
3210

    
3211
@item Change to the QEMU directory. Launch @file{./configure} and
3212
@file{make}.  If you have problems using SDL, verify that
3213
@file{sdl-config} can be launched from the MSYS command line.
3214

    
3215
@item You can install QEMU in @file{Program Files/Qemu} by typing
3216
@file{make install}. Don't forget to copy @file{SDL.dll} in
3217
@file{Program Files/Qemu}.
3218

    
3219
@end itemize
3220

    
3221
@node Cross compilation for Windows with Linux
3222
@section Cross compilation for Windows with Linux
3223

    
3224
@itemize
3225
@item
3226
Install the MinGW cross compilation tools available at
3227
@url{http://www.mingw.org/}.
3228

    
3229
@item
3230
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
3231
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
3232
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
3233
the QEMU configuration script.
3234

    
3235
@item
3236
Configure QEMU for Windows cross compilation:
3237
@example
3238
./configure --enable-mingw32
3239
@end example
3240
If necessary, you can change the cross-prefix according to the prefix
3241
chosen for the MinGW tools with --cross-prefix. You can also use
3242
--prefix to set the Win32 install path.
3243

    
3244
@item You can install QEMU in the installation directory by typing
3245
@file{make install}. Don't forget to copy @file{SDL.dll} in the
3246
installation directory.
3247

    
3248
@end itemize
3249

    
3250
Note: Currently, Wine does not seem able to launch
3251
QEMU for Win32.
3252

    
3253
@node Mac OS X
3254
@section Mac OS X
3255

    
3256
The Mac OS X patches are not fully merged in QEMU, so you should look
3257
at the QEMU mailing list archive to have all the necessary
3258
information.
3259

    
3260
@node Index
3261
@chapter Index
3262
@printindex cp
3263

    
3264
@bye