root / cpu-exec.c @ 6f12a2a6
History | View | Annotate | Download (49.5 kB)
1 |
/*
|
---|---|
2 |
* i386 emulator main execution loop
|
3 |
*
|
4 |
* Copyright (c) 2003-2005 Fabrice Bellard
|
5 |
*
|
6 |
* This library is free software; you can redistribute it and/or
|
7 |
* modify it under the terms of the GNU Lesser General Public
|
8 |
* License as published by the Free Software Foundation; either
|
9 |
* version 2 of the License, or (at your option) any later version.
|
10 |
*
|
11 |
* This library is distributed in the hope that it will be useful,
|
12 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
13 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
14 |
* Lesser General Public License for more details.
|
15 |
*
|
16 |
* You should have received a copy of the GNU Lesser General Public
|
17 |
* License along with this library; if not, write to the Free Software
|
18 |
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
19 |
*/
|
20 |
#include "config.h" |
21 |
#include "exec.h" |
22 |
#include "disas.h" |
23 |
|
24 |
#if !defined(CONFIG_SOFTMMU)
|
25 |
#undef EAX
|
26 |
#undef ECX
|
27 |
#undef EDX
|
28 |
#undef EBX
|
29 |
#undef ESP
|
30 |
#undef EBP
|
31 |
#undef ESI
|
32 |
#undef EDI
|
33 |
#undef EIP
|
34 |
#include <signal.h> |
35 |
#include <sys/ucontext.h> |
36 |
#endif
|
37 |
|
38 |
int tb_invalidated_flag;
|
39 |
|
40 |
//#define DEBUG_EXEC
|
41 |
//#define DEBUG_SIGNAL
|
42 |
|
43 |
void cpu_loop_exit(void) |
44 |
{ |
45 |
/* NOTE: the register at this point must be saved by hand because
|
46 |
longjmp restore them */
|
47 |
regs_to_env(); |
48 |
longjmp(env->jmp_env, 1);
|
49 |
} |
50 |
|
51 |
#if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
|
52 |
#define reg_T2
|
53 |
#endif
|
54 |
|
55 |
/* exit the current TB from a signal handler. The host registers are
|
56 |
restored in a state compatible with the CPU emulator
|
57 |
*/
|
58 |
void cpu_resume_from_signal(CPUState *env1, void *puc) |
59 |
{ |
60 |
#if !defined(CONFIG_SOFTMMU)
|
61 |
struct ucontext *uc = puc;
|
62 |
#endif
|
63 |
|
64 |
env = env1; |
65 |
|
66 |
/* XXX: restore cpu registers saved in host registers */
|
67 |
|
68 |
#if !defined(CONFIG_SOFTMMU)
|
69 |
if (puc) {
|
70 |
/* XXX: use siglongjmp ? */
|
71 |
sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
|
72 |
} |
73 |
#endif
|
74 |
longjmp(env->jmp_env, 1);
|
75 |
} |
76 |
|
77 |
|
78 |
static TranslationBlock *tb_find_slow(target_ulong pc,
|
79 |
target_ulong cs_base, |
80 |
uint64_t flags) |
81 |
{ |
82 |
TranslationBlock *tb, **ptb1; |
83 |
int code_gen_size;
|
84 |
unsigned int h; |
85 |
target_ulong phys_pc, phys_page1, phys_page2, virt_page2; |
86 |
uint8_t *tc_ptr; |
87 |
|
88 |
spin_lock(&tb_lock); |
89 |
|
90 |
tb_invalidated_flag = 0;
|
91 |
|
92 |
regs_to_env(); /* XXX: do it just before cpu_gen_code() */
|
93 |
|
94 |
/* find translated block using physical mappings */
|
95 |
phys_pc = get_phys_addr_code(env, pc); |
96 |
phys_page1 = phys_pc & TARGET_PAGE_MASK; |
97 |
phys_page2 = -1;
|
98 |
h = tb_phys_hash_func(phys_pc); |
99 |
ptb1 = &tb_phys_hash[h]; |
100 |
for(;;) {
|
101 |
tb = *ptb1; |
102 |
if (!tb)
|
103 |
goto not_found;
|
104 |
if (tb->pc == pc &&
|
105 |
tb->page_addr[0] == phys_page1 &&
|
106 |
tb->cs_base == cs_base && |
107 |
tb->flags == flags) { |
108 |
/* check next page if needed */
|
109 |
if (tb->page_addr[1] != -1) { |
110 |
virt_page2 = (pc & TARGET_PAGE_MASK) + |
111 |
TARGET_PAGE_SIZE; |
112 |
phys_page2 = get_phys_addr_code(env, virt_page2); |
113 |
if (tb->page_addr[1] == phys_page2) |
114 |
goto found;
|
115 |
} else {
|
116 |
goto found;
|
117 |
} |
118 |
} |
119 |
ptb1 = &tb->phys_hash_next; |
120 |
} |
121 |
not_found:
|
122 |
/* if no translated code available, then translate it now */
|
123 |
tb = tb_alloc(pc); |
124 |
if (!tb) {
|
125 |
/* flush must be done */
|
126 |
tb_flush(env); |
127 |
/* cannot fail at this point */
|
128 |
tb = tb_alloc(pc); |
129 |
/* don't forget to invalidate previous TB info */
|
130 |
tb_invalidated_flag = 1;
|
131 |
} |
132 |
tc_ptr = code_gen_ptr; |
133 |
tb->tc_ptr = tc_ptr; |
134 |
tb->cs_base = cs_base; |
135 |
tb->flags = flags; |
136 |
cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size); |
137 |
code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1)); |
138 |
|
139 |
/* check next page if needed */
|
140 |
virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
|
141 |
phys_page2 = -1;
|
142 |
if ((pc & TARGET_PAGE_MASK) != virt_page2) {
|
143 |
phys_page2 = get_phys_addr_code(env, virt_page2); |
144 |
} |
145 |
tb_link_phys(tb, phys_pc, phys_page2); |
146 |
|
147 |
found:
|
148 |
/* we add the TB in the virtual pc hash table */
|
149 |
env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb; |
150 |
spin_unlock(&tb_lock); |
151 |
return tb;
|
152 |
} |
153 |
|
154 |
static inline TranslationBlock *tb_find_fast(void) |
155 |
{ |
156 |
TranslationBlock *tb; |
157 |
target_ulong cs_base, pc; |
158 |
uint64_t flags; |
159 |
|
160 |
/* we record a subset of the CPU state. It will
|
161 |
always be the same before a given translated block
|
162 |
is executed. */
|
163 |
#if defined(TARGET_I386)
|
164 |
flags = env->hflags; |
165 |
flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK)); |
166 |
flags |= env->intercept; |
167 |
cs_base = env->segs[R_CS].base; |
168 |
pc = cs_base + env->eip; |
169 |
#elif defined(TARGET_ARM)
|
170 |
flags = env->thumb | (env->vfp.vec_len << 1)
|
171 |
| (env->vfp.vec_stride << 4);
|
172 |
if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
|
173 |
flags |= (1 << 6); |
174 |
if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) |
175 |
flags |= (1 << 7); |
176 |
flags |= (env->condexec_bits << 8);
|
177 |
cs_base = 0;
|
178 |
pc = env->regs[15];
|
179 |
#elif defined(TARGET_SPARC)
|
180 |
#ifdef TARGET_SPARC64
|
181 |
// Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
|
182 |
flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2)) |
183 |
| (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
|
184 |
#else
|
185 |
// FPU enable . Supervisor
|
186 |
flags = (env->psref << 4) | env->psrs;
|
187 |
#endif
|
188 |
cs_base = env->npc; |
189 |
pc = env->pc; |
190 |
#elif defined(TARGET_PPC)
|
191 |
flags = env->hflags; |
192 |
cs_base = 0;
|
193 |
pc = env->nip; |
194 |
#elif defined(TARGET_MIPS)
|
195 |
flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK); |
196 |
cs_base = 0;
|
197 |
pc = env->PC[env->current_tc]; |
198 |
#elif defined(TARGET_M68K)
|
199 |
flags = (env->fpcr & M68K_FPCR_PREC) /* Bit 6 */
|
200 |
| (env->sr & SR_S) /* Bit 13 */
|
201 |
| ((env->macsr >> 4) & 0xf); /* Bits 0-3 */ |
202 |
cs_base = 0;
|
203 |
pc = env->pc; |
204 |
#elif defined(TARGET_SH4)
|
205 |
flags = env->sr & (SR_MD | SR_RB); |
206 |
cs_base = 0; /* XXXXX */ |
207 |
pc = env->pc; |
208 |
#elif defined(TARGET_ALPHA)
|
209 |
flags = env->ps; |
210 |
cs_base = 0;
|
211 |
pc = env->pc; |
212 |
#elif defined(TARGET_CRIS)
|
213 |
flags = 0;
|
214 |
cs_base = 0;
|
215 |
pc = env->pc; |
216 |
#else
|
217 |
#error unsupported CPU
|
218 |
#endif
|
219 |
tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)]; |
220 |
if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
|
221 |
tb->flags != flags, 0)) {
|
222 |
tb = tb_find_slow(pc, cs_base, flags); |
223 |
/* Note: we do it here to avoid a gcc bug on Mac OS X when
|
224 |
doing it in tb_find_slow */
|
225 |
if (tb_invalidated_flag) {
|
226 |
/* as some TB could have been invalidated because
|
227 |
of memory exceptions while generating the code, we
|
228 |
must recompute the hash index here */
|
229 |
T0 = 0;
|
230 |
} |
231 |
} |
232 |
return tb;
|
233 |
} |
234 |
|
235 |
|
236 |
/* main execution loop */
|
237 |
|
238 |
int cpu_exec(CPUState *env1)
|
239 |
{ |
240 |
#define DECLARE_HOST_REGS 1 |
241 |
#include "hostregs_helper.h" |
242 |
#if defined(TARGET_SPARC)
|
243 |
#if defined(reg_REGWPTR)
|
244 |
uint32_t *saved_regwptr; |
245 |
#endif
|
246 |
#endif
|
247 |
#if defined(__sparc__) && !defined(HOST_SOLARIS)
|
248 |
int saved_i7;
|
249 |
target_ulong tmp_T0; |
250 |
#endif
|
251 |
int ret, interrupt_request;
|
252 |
void (*gen_func)(void); |
253 |
TranslationBlock *tb; |
254 |
uint8_t *tc_ptr; |
255 |
|
256 |
if (cpu_halted(env1) == EXCP_HALTED)
|
257 |
return EXCP_HALTED;
|
258 |
|
259 |
cpu_single_env = env1; |
260 |
|
261 |
/* first we save global registers */
|
262 |
#define SAVE_HOST_REGS 1 |
263 |
#include "hostregs_helper.h" |
264 |
env = env1; |
265 |
#if defined(__sparc__) && !defined(HOST_SOLARIS)
|
266 |
/* we also save i7 because longjmp may not restore it */
|
267 |
asm volatile ("mov %%i7, %0" : "=r" (saved_i7)); |
268 |
#endif
|
269 |
|
270 |
env_to_regs(); |
271 |
#if defined(TARGET_I386)
|
272 |
/* put eflags in CPU temporary format */
|
273 |
CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); |
274 |
DF = 1 - (2 * ((env->eflags >> 10) & 1)); |
275 |
CC_OP = CC_OP_EFLAGS; |
276 |
env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); |
277 |
#elif defined(TARGET_SPARC)
|
278 |
#if defined(reg_REGWPTR)
|
279 |
saved_regwptr = REGWPTR; |
280 |
#endif
|
281 |
#elif defined(TARGET_M68K)
|
282 |
env->cc_op = CC_OP_FLAGS; |
283 |
env->cc_dest = env->sr & 0xf;
|
284 |
env->cc_x = (env->sr >> 4) & 1; |
285 |
#elif defined(TARGET_ALPHA)
|
286 |
#elif defined(TARGET_ARM)
|
287 |
#elif defined(TARGET_PPC)
|
288 |
#elif defined(TARGET_MIPS)
|
289 |
#elif defined(TARGET_SH4)
|
290 |
#elif defined(TARGET_CRIS)
|
291 |
/* XXXXX */
|
292 |
#else
|
293 |
#error unsupported target CPU
|
294 |
#endif
|
295 |
env->exception_index = -1;
|
296 |
|
297 |
/* prepare setjmp context for exception handling */
|
298 |
for(;;) {
|
299 |
if (setjmp(env->jmp_env) == 0) { |
300 |
env->current_tb = NULL;
|
301 |
/* if an exception is pending, we execute it here */
|
302 |
if (env->exception_index >= 0) { |
303 |
if (env->exception_index >= EXCP_INTERRUPT) {
|
304 |
/* exit request from the cpu execution loop */
|
305 |
ret = env->exception_index; |
306 |
break;
|
307 |
} else if (env->user_mode_only) { |
308 |
/* if user mode only, we simulate a fake exception
|
309 |
which will be handled outside the cpu execution
|
310 |
loop */
|
311 |
#if defined(TARGET_I386)
|
312 |
do_interrupt_user(env->exception_index, |
313 |
env->exception_is_int, |
314 |
env->error_code, |
315 |
env->exception_next_eip); |
316 |
#endif
|
317 |
ret = env->exception_index; |
318 |
break;
|
319 |
} else {
|
320 |
#if defined(TARGET_I386)
|
321 |
/* simulate a real cpu exception. On i386, it can
|
322 |
trigger new exceptions, but we do not handle
|
323 |
double or triple faults yet. */
|
324 |
do_interrupt(env->exception_index, |
325 |
env->exception_is_int, |
326 |
env->error_code, |
327 |
env->exception_next_eip, 0);
|
328 |
/* successfully delivered */
|
329 |
env->old_exception = -1;
|
330 |
#elif defined(TARGET_PPC)
|
331 |
do_interrupt(env); |
332 |
#elif defined(TARGET_MIPS)
|
333 |
do_interrupt(env); |
334 |
#elif defined(TARGET_SPARC)
|
335 |
do_interrupt(env->exception_index); |
336 |
#elif defined(TARGET_ARM)
|
337 |
do_interrupt(env); |
338 |
#elif defined(TARGET_SH4)
|
339 |
do_interrupt(env); |
340 |
#elif defined(TARGET_ALPHA)
|
341 |
do_interrupt(env); |
342 |
#elif defined(TARGET_CRIS)
|
343 |
do_interrupt(env); |
344 |
#elif defined(TARGET_M68K)
|
345 |
do_interrupt(0);
|
346 |
#endif
|
347 |
} |
348 |
env->exception_index = -1;
|
349 |
} |
350 |
#ifdef USE_KQEMU
|
351 |
if (kqemu_is_ok(env) && env->interrupt_request == 0) { |
352 |
int ret;
|
353 |
env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK); |
354 |
ret = kqemu_cpu_exec(env); |
355 |
/* put eflags in CPU temporary format */
|
356 |
CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); |
357 |
DF = 1 - (2 * ((env->eflags >> 10) & 1)); |
358 |
CC_OP = CC_OP_EFLAGS; |
359 |
env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); |
360 |
if (ret == 1) { |
361 |
/* exception */
|
362 |
longjmp(env->jmp_env, 1);
|
363 |
} else if (ret == 2) { |
364 |
/* softmmu execution needed */
|
365 |
} else {
|
366 |
if (env->interrupt_request != 0) { |
367 |
/* hardware interrupt will be executed just after */
|
368 |
} else {
|
369 |
/* otherwise, we restart */
|
370 |
longjmp(env->jmp_env, 1);
|
371 |
} |
372 |
} |
373 |
} |
374 |
#endif
|
375 |
|
376 |
T0 = 0; /* force lookup of first TB */ |
377 |
for(;;) {
|
378 |
#if defined(__sparc__) && !defined(HOST_SOLARIS)
|
379 |
/* g1 can be modified by some libc? functions */
|
380 |
tmp_T0 = T0; |
381 |
#endif
|
382 |
interrupt_request = env->interrupt_request; |
383 |
if (__builtin_expect(interrupt_request, 0) |
384 |
#if defined(TARGET_I386)
|
385 |
&& env->hflags & HF_GIF_MASK |
386 |
#endif
|
387 |
) { |
388 |
if (interrupt_request & CPU_INTERRUPT_DEBUG) {
|
389 |
env->interrupt_request &= ~CPU_INTERRUPT_DEBUG; |
390 |
env->exception_index = EXCP_DEBUG; |
391 |
cpu_loop_exit(); |
392 |
} |
393 |
#if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
|
394 |
defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) |
395 |
if (interrupt_request & CPU_INTERRUPT_HALT) {
|
396 |
env->interrupt_request &= ~CPU_INTERRUPT_HALT; |
397 |
env->halted = 1;
|
398 |
env->exception_index = EXCP_HLT; |
399 |
cpu_loop_exit(); |
400 |
} |
401 |
#endif
|
402 |
#if defined(TARGET_I386)
|
403 |
if ((interrupt_request & CPU_INTERRUPT_SMI) &&
|
404 |
!(env->hflags & HF_SMM_MASK)) { |
405 |
svm_check_intercept(SVM_EXIT_SMI); |
406 |
env->interrupt_request &= ~CPU_INTERRUPT_SMI; |
407 |
do_smm_enter(); |
408 |
#if defined(__sparc__) && !defined(HOST_SOLARIS)
|
409 |
tmp_T0 = 0;
|
410 |
#else
|
411 |
T0 = 0;
|
412 |
#endif
|
413 |
} else if ((interrupt_request & CPU_INTERRUPT_HARD) && |
414 |
(env->eflags & IF_MASK || env->hflags & HF_HIF_MASK) && |
415 |
!(env->hflags & HF_INHIBIT_IRQ_MASK)) { |
416 |
int intno;
|
417 |
svm_check_intercept(SVM_EXIT_INTR); |
418 |
env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ); |
419 |
intno = cpu_get_pic_interrupt(env); |
420 |
if (loglevel & CPU_LOG_TB_IN_ASM) {
|
421 |
fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
|
422 |
} |
423 |
do_interrupt(intno, 0, 0, 0, 1); |
424 |
/* ensure that no TB jump will be modified as
|
425 |
the program flow was changed */
|
426 |
#if defined(__sparc__) && !defined(HOST_SOLARIS)
|
427 |
tmp_T0 = 0;
|
428 |
#else
|
429 |
T0 = 0;
|
430 |
#endif
|
431 |
#if !defined(CONFIG_USER_ONLY)
|
432 |
} else if ((interrupt_request & CPU_INTERRUPT_VIRQ) && |
433 |
(env->eflags & IF_MASK) && !(env->hflags & HF_INHIBIT_IRQ_MASK)) { |
434 |
int intno;
|
435 |
/* FIXME: this should respect TPR */
|
436 |
env->interrupt_request &= ~CPU_INTERRUPT_VIRQ; |
437 |
svm_check_intercept(SVM_EXIT_VINTR); |
438 |
intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
|
439 |
if (loglevel & CPU_LOG_TB_IN_ASM)
|
440 |
fprintf(logfile, "Servicing virtual hardware INT=0x%02x\n", intno);
|
441 |
do_interrupt(intno, 0, 0, -1, 1); |
442 |
stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl),
|
443 |
ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl)) & ~V_IRQ_MASK);
|
444 |
#if defined(__sparc__) && !defined(HOST_SOLARIS)
|
445 |
tmp_T0 = 0;
|
446 |
#else
|
447 |
T0 = 0;
|
448 |
#endif
|
449 |
#endif
|
450 |
} |
451 |
#elif defined(TARGET_PPC)
|
452 |
#if 0
|
453 |
if ((interrupt_request & CPU_INTERRUPT_RESET)) {
|
454 |
cpu_ppc_reset(env);
|
455 |
}
|
456 |
#endif
|
457 |
if (interrupt_request & CPU_INTERRUPT_HARD) {
|
458 |
ppc_hw_interrupt(env); |
459 |
if (env->pending_interrupts == 0) |
460 |
env->interrupt_request &= ~CPU_INTERRUPT_HARD; |
461 |
#if defined(__sparc__) && !defined(HOST_SOLARIS)
|
462 |
tmp_T0 = 0;
|
463 |
#else
|
464 |
T0 = 0;
|
465 |
#endif
|
466 |
} |
467 |
#elif defined(TARGET_MIPS)
|
468 |
if ((interrupt_request & CPU_INTERRUPT_HARD) &&
|
469 |
(env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) && |
470 |
(env->CP0_Status & (1 << CP0St_IE)) &&
|
471 |
!(env->CP0_Status & (1 << CP0St_EXL)) &&
|
472 |
!(env->CP0_Status & (1 << CP0St_ERL)) &&
|
473 |
!(env->hflags & MIPS_HFLAG_DM)) { |
474 |
/* Raise it */
|
475 |
env->exception_index = EXCP_EXT_INTERRUPT; |
476 |
env->error_code = 0;
|
477 |
do_interrupt(env); |
478 |
#if defined(__sparc__) && !defined(HOST_SOLARIS)
|
479 |
tmp_T0 = 0;
|
480 |
#else
|
481 |
T0 = 0;
|
482 |
#endif
|
483 |
} |
484 |
#elif defined(TARGET_SPARC)
|
485 |
if ((interrupt_request & CPU_INTERRUPT_HARD) &&
|
486 |
(env->psret != 0)) {
|
487 |
int pil = env->interrupt_index & 15; |
488 |
int type = env->interrupt_index & 0xf0; |
489 |
|
490 |
if (((type == TT_EXTINT) &&
|
491 |
(pil == 15 || pil > env->psrpil)) ||
|
492 |
type != TT_EXTINT) { |
493 |
env->interrupt_request &= ~CPU_INTERRUPT_HARD; |
494 |
do_interrupt(env->interrupt_index); |
495 |
env->interrupt_index = 0;
|
496 |
#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
|
497 |
cpu_check_irqs(env); |
498 |
#endif
|
499 |
#if defined(__sparc__) && !defined(HOST_SOLARIS)
|
500 |
tmp_T0 = 0;
|
501 |
#else
|
502 |
T0 = 0;
|
503 |
#endif
|
504 |
} |
505 |
} else if (interrupt_request & CPU_INTERRUPT_TIMER) { |
506 |
//do_interrupt(0, 0, 0, 0, 0);
|
507 |
env->interrupt_request &= ~CPU_INTERRUPT_TIMER; |
508 |
} |
509 |
#elif defined(TARGET_ARM)
|
510 |
if (interrupt_request & CPU_INTERRUPT_FIQ
|
511 |
&& !(env->uncached_cpsr & CPSR_F)) { |
512 |
env->exception_index = EXCP_FIQ; |
513 |
do_interrupt(env); |
514 |
} |
515 |
/* ARMv7-M interrupt return works by loading a magic value
|
516 |
into the PC. On real hardware the load causes the
|
517 |
return to occur. The qemu implementation performs the
|
518 |
jump normally, then does the exception return when the
|
519 |
CPU tries to execute code at the magic address.
|
520 |
This will cause the magic PC value to be pushed to
|
521 |
the stack if an interrupt occured at the wrong time.
|
522 |
We avoid this by disabling interrupts when
|
523 |
pc contains a magic address. */
|
524 |
if (interrupt_request & CPU_INTERRUPT_HARD
|
525 |
&& ((IS_M(env) && env->regs[15] < 0xfffffff0) |
526 |
|| !(env->uncached_cpsr & CPSR_I))) { |
527 |
env->exception_index = EXCP_IRQ; |
528 |
do_interrupt(env); |
529 |
} |
530 |
#elif defined(TARGET_SH4)
|
531 |
/* XXXXX */
|
532 |
#elif defined(TARGET_ALPHA)
|
533 |
if (interrupt_request & CPU_INTERRUPT_HARD) {
|
534 |
do_interrupt(env); |
535 |
} |
536 |
#elif defined(TARGET_CRIS)
|
537 |
if (interrupt_request & CPU_INTERRUPT_HARD) {
|
538 |
do_interrupt(env); |
539 |
env->interrupt_request &= ~CPU_INTERRUPT_HARD; |
540 |
} |
541 |
#elif defined(TARGET_M68K)
|
542 |
if (interrupt_request & CPU_INTERRUPT_HARD
|
543 |
&& ((env->sr & SR_I) >> SR_I_SHIFT) |
544 |
< env->pending_level) { |
545 |
/* Real hardware gets the interrupt vector via an
|
546 |
IACK cycle at this point. Current emulated
|
547 |
hardware doesn't rely on this, so we
|
548 |
provide/save the vector when the interrupt is
|
549 |
first signalled. */
|
550 |
env->exception_index = env->pending_vector; |
551 |
do_interrupt(1);
|
552 |
} |
553 |
#endif
|
554 |
/* Don't use the cached interupt_request value,
|
555 |
do_interrupt may have updated the EXITTB flag. */
|
556 |
if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
|
557 |
env->interrupt_request &= ~CPU_INTERRUPT_EXITTB; |
558 |
/* ensure that no TB jump will be modified as
|
559 |
the program flow was changed */
|
560 |
#if defined(__sparc__) && !defined(HOST_SOLARIS)
|
561 |
tmp_T0 = 0;
|
562 |
#else
|
563 |
T0 = 0;
|
564 |
#endif
|
565 |
} |
566 |
if (interrupt_request & CPU_INTERRUPT_EXIT) {
|
567 |
env->interrupt_request &= ~CPU_INTERRUPT_EXIT; |
568 |
env->exception_index = EXCP_INTERRUPT; |
569 |
cpu_loop_exit(); |
570 |
} |
571 |
} |
572 |
#ifdef DEBUG_EXEC
|
573 |
if ((loglevel & CPU_LOG_TB_CPU)) {
|
574 |
/* restore flags in standard format */
|
575 |
regs_to_env(); |
576 |
#if defined(TARGET_I386)
|
577 |
env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK); |
578 |
cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP); |
579 |
env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); |
580 |
#elif defined(TARGET_ARM)
|
581 |
cpu_dump_state(env, logfile, fprintf, 0);
|
582 |
#elif defined(TARGET_SPARC)
|
583 |
REGWPTR = env->regbase + (env->cwp * 16);
|
584 |
env->regwptr = REGWPTR; |
585 |
cpu_dump_state(env, logfile, fprintf, 0);
|
586 |
#elif defined(TARGET_PPC)
|
587 |
cpu_dump_state(env, logfile, fprintf, 0);
|
588 |
#elif defined(TARGET_M68K)
|
589 |
cpu_m68k_flush_flags(env, env->cc_op); |
590 |
env->cc_op = CC_OP_FLAGS; |
591 |
env->sr = (env->sr & 0xffe0)
|
592 |
| env->cc_dest | (env->cc_x << 4);
|
593 |
cpu_dump_state(env, logfile, fprintf, 0);
|
594 |
#elif defined(TARGET_MIPS)
|
595 |
cpu_dump_state(env, logfile, fprintf, 0);
|
596 |
#elif defined(TARGET_SH4)
|
597 |
cpu_dump_state(env, logfile, fprintf, 0);
|
598 |
#elif defined(TARGET_ALPHA)
|
599 |
cpu_dump_state(env, logfile, fprintf, 0);
|
600 |
#elif defined(TARGET_CRIS)
|
601 |
cpu_dump_state(env, logfile, fprintf, 0);
|
602 |
#else
|
603 |
#error unsupported target CPU
|
604 |
#endif
|
605 |
} |
606 |
#endif
|
607 |
tb = tb_find_fast(); |
608 |
#ifdef DEBUG_EXEC
|
609 |
if ((loglevel & CPU_LOG_EXEC)) {
|
610 |
fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n", |
611 |
(long)tb->tc_ptr, tb->pc,
|
612 |
lookup_symbol(tb->pc)); |
613 |
} |
614 |
#endif
|
615 |
#if defined(__sparc__) && !defined(HOST_SOLARIS)
|
616 |
T0 = tmp_T0; |
617 |
#endif
|
618 |
/* see if we can patch the calling TB. When the TB
|
619 |
spans two pages, we cannot safely do a direct
|
620 |
jump. */
|
621 |
{ |
622 |
if (T0 != 0 && |
623 |
#if USE_KQEMU
|
624 |
(env->kqemu_enabled != 2) &&
|
625 |
#endif
|
626 |
tb->page_addr[1] == -1) { |
627 |
spin_lock(&tb_lock); |
628 |
tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb); |
629 |
spin_unlock(&tb_lock); |
630 |
} |
631 |
} |
632 |
tc_ptr = tb->tc_ptr; |
633 |
env->current_tb = tb; |
634 |
/* execute the generated code */
|
635 |
gen_func = (void *)tc_ptr;
|
636 |
#if defined(__sparc__)
|
637 |
__asm__ __volatile__("call %0\n\t"
|
638 |
"mov %%o7,%%i0"
|
639 |
: /* no outputs */
|
640 |
: "r" (gen_func)
|
641 |
: "i0", "i1", "i2", "i3", "i4", "i5", |
642 |
"o0", "o1", "o2", "o3", "o4", "o5", |
643 |
"l0", "l1", "l2", "l3", "l4", "l5", |
644 |
"l6", "l7"); |
645 |
#elif defined(__arm__)
|
646 |
asm volatile ("mov pc, %0\n\t" |
647 |
".global exec_loop\n\t"
|
648 |
"exec_loop:\n\t"
|
649 |
: /* no outputs */
|
650 |
: "r" (gen_func)
|
651 |
: "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14"); |
652 |
#elif defined(__ia64)
|
653 |
struct fptr {
|
654 |
void *ip;
|
655 |
void *gp;
|
656 |
} fp; |
657 |
|
658 |
fp.ip = tc_ptr; |
659 |
fp.gp = code_gen_buffer + 2 * (1 << 20); |
660 |
(*(void (*)(void)) &fp)(); |
661 |
#else
|
662 |
gen_func(); |
663 |
#endif
|
664 |
env->current_tb = NULL;
|
665 |
/* reset soft MMU for next block (it can currently
|
666 |
only be set by a memory fault) */
|
667 |
#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
|
668 |
if (env->hflags & HF_SOFTMMU_MASK) {
|
669 |
env->hflags &= ~HF_SOFTMMU_MASK; |
670 |
/* do not allow linking to another block */
|
671 |
T0 = 0;
|
672 |
} |
673 |
#endif
|
674 |
#if defined(USE_KQEMU)
|
675 |
#define MIN_CYCLE_BEFORE_SWITCH (100 * 1000) |
676 |
if (kqemu_is_ok(env) &&
|
677 |
(cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) { |
678 |
cpu_loop_exit(); |
679 |
} |
680 |
#endif
|
681 |
} /* for(;;) */
|
682 |
} else {
|
683 |
env_to_regs(); |
684 |
} |
685 |
} /* for(;;) */
|
686 |
|
687 |
|
688 |
#if defined(TARGET_I386)
|
689 |
/* restore flags in standard format */
|
690 |
env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK); |
691 |
#elif defined(TARGET_ARM)
|
692 |
/* XXX: Save/restore host fpu exception state?. */
|
693 |
#elif defined(TARGET_SPARC)
|
694 |
#if defined(reg_REGWPTR)
|
695 |
REGWPTR = saved_regwptr; |
696 |
#endif
|
697 |
#elif defined(TARGET_PPC)
|
698 |
#elif defined(TARGET_M68K)
|
699 |
cpu_m68k_flush_flags(env, env->cc_op); |
700 |
env->cc_op = CC_OP_FLAGS; |
701 |
env->sr = (env->sr & 0xffe0)
|
702 |
| env->cc_dest | (env->cc_x << 4);
|
703 |
#elif defined(TARGET_MIPS)
|
704 |
#elif defined(TARGET_SH4)
|
705 |
#elif defined(TARGET_ALPHA)
|
706 |
#elif defined(TARGET_CRIS)
|
707 |
/* XXXXX */
|
708 |
#else
|
709 |
#error unsupported target CPU
|
710 |
#endif
|
711 |
|
712 |
/* restore global registers */
|
713 |
#if defined(__sparc__) && !defined(HOST_SOLARIS)
|
714 |
asm volatile ("mov %0, %%i7" : : "r" (saved_i7)); |
715 |
#endif
|
716 |
#include "hostregs_helper.h" |
717 |
|
718 |
/* fail safe : never use cpu_single_env outside cpu_exec() */
|
719 |
cpu_single_env = NULL;
|
720 |
return ret;
|
721 |
} |
722 |
|
723 |
/* must only be called from the generated code as an exception can be
|
724 |
generated */
|
725 |
void tb_invalidate_page_range(target_ulong start, target_ulong end)
|
726 |
{ |
727 |
/* XXX: cannot enable it yet because it yields to MMU exception
|
728 |
where NIP != read address on PowerPC */
|
729 |
#if 0
|
730 |
target_ulong phys_addr;
|
731 |
phys_addr = get_phys_addr_code(env, start);
|
732 |
tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
|
733 |
#endif
|
734 |
} |
735 |
|
736 |
#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
|
737 |
|
738 |
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector) |
739 |
{ |
740 |
CPUX86State *saved_env; |
741 |
|
742 |
saved_env = env; |
743 |
env = s; |
744 |
if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) { |
745 |
selector &= 0xffff;
|
746 |
cpu_x86_load_seg_cache(env, seg_reg, selector, |
747 |
(selector << 4), 0xffff, 0); |
748 |
} else {
|
749 |
load_seg(seg_reg, selector); |
750 |
} |
751 |
env = saved_env; |
752 |
} |
753 |
|
754 |
void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32) |
755 |
{ |
756 |
CPUX86State *saved_env; |
757 |
|
758 |
saved_env = env; |
759 |
env = s; |
760 |
|
761 |
helper_fsave(ptr, data32); |
762 |
|
763 |
env = saved_env; |
764 |
} |
765 |
|
766 |
void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32) |
767 |
{ |
768 |
CPUX86State *saved_env; |
769 |
|
770 |
saved_env = env; |
771 |
env = s; |
772 |
|
773 |
helper_frstor(ptr, data32); |
774 |
|
775 |
env = saved_env; |
776 |
} |
777 |
|
778 |
#endif /* TARGET_I386 */ |
779 |
|
780 |
#if !defined(CONFIG_SOFTMMU)
|
781 |
|
782 |
#if defined(TARGET_I386)
|
783 |
|
784 |
/* 'pc' is the host PC at which the exception was raised. 'address' is
|
785 |
the effective address of the memory exception. 'is_write' is 1 if a
|
786 |
write caused the exception and otherwise 0'. 'old_set' is the
|
787 |
signal set which should be restored */
|
788 |
static inline int handle_cpu_signal(unsigned long pc, unsigned long address, |
789 |
int is_write, sigset_t *old_set,
|
790 |
void *puc)
|
791 |
{ |
792 |
TranslationBlock *tb; |
793 |
int ret;
|
794 |
|
795 |
if (cpu_single_env)
|
796 |
env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
797 |
#if defined(DEBUG_SIGNAL)
|
798 |
qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
799 |
pc, address, is_write, *(unsigned long *)old_set); |
800 |
#endif
|
801 |
/* XXX: locking issue */
|
802 |
if (is_write && page_unprotect(h2g(address), pc, puc)) {
|
803 |
return 1; |
804 |
} |
805 |
|
806 |
/* see if it is an MMU fault */
|
807 |
ret = cpu_x86_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
|
808 |
if (ret < 0) |
809 |
return 0; /* not an MMU fault */ |
810 |
if (ret == 0) |
811 |
return 1; /* the MMU fault was handled without causing real CPU fault */ |
812 |
/* now we have a real cpu fault */
|
813 |
tb = tb_find_pc(pc); |
814 |
if (tb) {
|
815 |
/* the PC is inside the translated code. It means that we have
|
816 |
a virtual CPU fault */
|
817 |
cpu_restore_state(tb, env, pc, puc); |
818 |
} |
819 |
if (ret == 1) { |
820 |
#if 0
|
821 |
printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
|
822 |
env->eip, env->cr[2], env->error_code);
|
823 |
#endif
|
824 |
/* we restore the process signal mask as the sigreturn should
|
825 |
do it (XXX: use sigsetjmp) */
|
826 |
sigprocmask(SIG_SETMASK, old_set, NULL);
|
827 |
raise_exception_err(env->exception_index, env->error_code); |
828 |
} else {
|
829 |
/* activate soft MMU for this block */
|
830 |
env->hflags |= HF_SOFTMMU_MASK; |
831 |
cpu_resume_from_signal(env, puc); |
832 |
} |
833 |
/* never comes here */
|
834 |
return 1; |
835 |
} |
836 |
|
837 |
#elif defined(TARGET_ARM)
|
838 |
static inline int handle_cpu_signal(unsigned long pc, unsigned long address, |
839 |
int is_write, sigset_t *old_set,
|
840 |
void *puc)
|
841 |
{ |
842 |
TranslationBlock *tb; |
843 |
int ret;
|
844 |
|
845 |
if (cpu_single_env)
|
846 |
env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
847 |
#if defined(DEBUG_SIGNAL)
|
848 |
printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
849 |
pc, address, is_write, *(unsigned long *)old_set); |
850 |
#endif
|
851 |
/* XXX: locking issue */
|
852 |
if (is_write && page_unprotect(h2g(address), pc, puc)) {
|
853 |
return 1; |
854 |
} |
855 |
/* see if it is an MMU fault */
|
856 |
ret = cpu_arm_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
|
857 |
if (ret < 0) |
858 |
return 0; /* not an MMU fault */ |
859 |
if (ret == 0) |
860 |
return 1; /* the MMU fault was handled without causing real CPU fault */ |
861 |
/* now we have a real cpu fault */
|
862 |
tb = tb_find_pc(pc); |
863 |
if (tb) {
|
864 |
/* the PC is inside the translated code. It means that we have
|
865 |
a virtual CPU fault */
|
866 |
cpu_restore_state(tb, env, pc, puc); |
867 |
} |
868 |
/* we restore the process signal mask as the sigreturn should
|
869 |
do it (XXX: use sigsetjmp) */
|
870 |
sigprocmask(SIG_SETMASK, old_set, NULL);
|
871 |
cpu_loop_exit(); |
872 |
} |
873 |
#elif defined(TARGET_SPARC)
|
874 |
static inline int handle_cpu_signal(unsigned long pc, unsigned long address, |
875 |
int is_write, sigset_t *old_set,
|
876 |
void *puc)
|
877 |
{ |
878 |
TranslationBlock *tb; |
879 |
int ret;
|
880 |
|
881 |
if (cpu_single_env)
|
882 |
env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
883 |
#if defined(DEBUG_SIGNAL)
|
884 |
printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
885 |
pc, address, is_write, *(unsigned long *)old_set); |
886 |
#endif
|
887 |
/* XXX: locking issue */
|
888 |
if (is_write && page_unprotect(h2g(address), pc, puc)) {
|
889 |
return 1; |
890 |
} |
891 |
/* see if it is an MMU fault */
|
892 |
ret = cpu_sparc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
|
893 |
if (ret < 0) |
894 |
return 0; /* not an MMU fault */ |
895 |
if (ret == 0) |
896 |
return 1; /* the MMU fault was handled without causing real CPU fault */ |
897 |
/* now we have a real cpu fault */
|
898 |
tb = tb_find_pc(pc); |
899 |
if (tb) {
|
900 |
/* the PC is inside the translated code. It means that we have
|
901 |
a virtual CPU fault */
|
902 |
cpu_restore_state(tb, env, pc, puc); |
903 |
} |
904 |
/* we restore the process signal mask as the sigreturn should
|
905 |
do it (XXX: use sigsetjmp) */
|
906 |
sigprocmask(SIG_SETMASK, old_set, NULL);
|
907 |
cpu_loop_exit(); |
908 |
} |
909 |
#elif defined (TARGET_PPC)
|
910 |
static inline int handle_cpu_signal(unsigned long pc, unsigned long address, |
911 |
int is_write, sigset_t *old_set,
|
912 |
void *puc)
|
913 |
{ |
914 |
TranslationBlock *tb; |
915 |
int ret;
|
916 |
|
917 |
if (cpu_single_env)
|
918 |
env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
919 |
#if defined(DEBUG_SIGNAL)
|
920 |
printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
921 |
pc, address, is_write, *(unsigned long *)old_set); |
922 |
#endif
|
923 |
/* XXX: locking issue */
|
924 |
if (is_write && page_unprotect(h2g(address), pc, puc)) {
|
925 |
return 1; |
926 |
} |
927 |
|
928 |
/* see if it is an MMU fault */
|
929 |
ret = cpu_ppc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
|
930 |
if (ret < 0) |
931 |
return 0; /* not an MMU fault */ |
932 |
if (ret == 0) |
933 |
return 1; /* the MMU fault was handled without causing real CPU fault */ |
934 |
|
935 |
/* now we have a real cpu fault */
|
936 |
tb = tb_find_pc(pc); |
937 |
if (tb) {
|
938 |
/* the PC is inside the translated code. It means that we have
|
939 |
a virtual CPU fault */
|
940 |
cpu_restore_state(tb, env, pc, puc); |
941 |
} |
942 |
if (ret == 1) { |
943 |
#if 0
|
944 |
printf("PF exception: NIP=0x%08x error=0x%x %p\n",
|
945 |
env->nip, env->error_code, tb);
|
946 |
#endif
|
947 |
/* we restore the process signal mask as the sigreturn should
|
948 |
do it (XXX: use sigsetjmp) */
|
949 |
sigprocmask(SIG_SETMASK, old_set, NULL);
|
950 |
do_raise_exception_err(env->exception_index, env->error_code); |
951 |
} else {
|
952 |
/* activate soft MMU for this block */
|
953 |
cpu_resume_from_signal(env, puc); |
954 |
} |
955 |
/* never comes here */
|
956 |
return 1; |
957 |
} |
958 |
|
959 |
#elif defined(TARGET_M68K)
|
960 |
static inline int handle_cpu_signal(unsigned long pc, unsigned long address, |
961 |
int is_write, sigset_t *old_set,
|
962 |
void *puc)
|
963 |
{ |
964 |
TranslationBlock *tb; |
965 |
int ret;
|
966 |
|
967 |
if (cpu_single_env)
|
968 |
env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
969 |
#if defined(DEBUG_SIGNAL)
|
970 |
printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
971 |
pc, address, is_write, *(unsigned long *)old_set); |
972 |
#endif
|
973 |
/* XXX: locking issue */
|
974 |
if (is_write && page_unprotect(address, pc, puc)) {
|
975 |
return 1; |
976 |
} |
977 |
/* see if it is an MMU fault */
|
978 |
ret = cpu_m68k_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
|
979 |
if (ret < 0) |
980 |
return 0; /* not an MMU fault */ |
981 |
if (ret == 0) |
982 |
return 1; /* the MMU fault was handled without causing real CPU fault */ |
983 |
/* now we have a real cpu fault */
|
984 |
tb = tb_find_pc(pc); |
985 |
if (tb) {
|
986 |
/* the PC is inside the translated code. It means that we have
|
987 |
a virtual CPU fault */
|
988 |
cpu_restore_state(tb, env, pc, puc); |
989 |
} |
990 |
/* we restore the process signal mask as the sigreturn should
|
991 |
do it (XXX: use sigsetjmp) */
|
992 |
sigprocmask(SIG_SETMASK, old_set, NULL);
|
993 |
cpu_loop_exit(); |
994 |
/* never comes here */
|
995 |
return 1; |
996 |
} |
997 |
|
998 |
#elif defined (TARGET_MIPS)
|
999 |
static inline int handle_cpu_signal(unsigned long pc, unsigned long address, |
1000 |
int is_write, sigset_t *old_set,
|
1001 |
void *puc)
|
1002 |
{ |
1003 |
TranslationBlock *tb; |
1004 |
int ret;
|
1005 |
|
1006 |
if (cpu_single_env)
|
1007 |
env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
1008 |
#if defined(DEBUG_SIGNAL)
|
1009 |
printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
1010 |
pc, address, is_write, *(unsigned long *)old_set); |
1011 |
#endif
|
1012 |
/* XXX: locking issue */
|
1013 |
if (is_write && page_unprotect(h2g(address), pc, puc)) {
|
1014 |
return 1; |
1015 |
} |
1016 |
|
1017 |
/* see if it is an MMU fault */
|
1018 |
ret = cpu_mips_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
|
1019 |
if (ret < 0) |
1020 |
return 0; /* not an MMU fault */ |
1021 |
if (ret == 0) |
1022 |
return 1; /* the MMU fault was handled without causing real CPU fault */ |
1023 |
|
1024 |
/* now we have a real cpu fault */
|
1025 |
tb = tb_find_pc(pc); |
1026 |
if (tb) {
|
1027 |
/* the PC is inside the translated code. It means that we have
|
1028 |
a virtual CPU fault */
|
1029 |
cpu_restore_state(tb, env, pc, puc); |
1030 |
} |
1031 |
if (ret == 1) { |
1032 |
#if 0
|
1033 |
printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n",
|
1034 |
env->PC, env->error_code, tb);
|
1035 |
#endif
|
1036 |
/* we restore the process signal mask as the sigreturn should
|
1037 |
do it (XXX: use sigsetjmp) */
|
1038 |
sigprocmask(SIG_SETMASK, old_set, NULL);
|
1039 |
do_raise_exception_err(env->exception_index, env->error_code); |
1040 |
} else {
|
1041 |
/* activate soft MMU for this block */
|
1042 |
cpu_resume_from_signal(env, puc); |
1043 |
} |
1044 |
/* never comes here */
|
1045 |
return 1; |
1046 |
} |
1047 |
|
1048 |
#elif defined (TARGET_SH4)
|
1049 |
static inline int handle_cpu_signal(unsigned long pc, unsigned long address, |
1050 |
int is_write, sigset_t *old_set,
|
1051 |
void *puc)
|
1052 |
{ |
1053 |
TranslationBlock *tb; |
1054 |
int ret;
|
1055 |
|
1056 |
if (cpu_single_env)
|
1057 |
env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
1058 |
#if defined(DEBUG_SIGNAL)
|
1059 |
printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
1060 |
pc, address, is_write, *(unsigned long *)old_set); |
1061 |
#endif
|
1062 |
/* XXX: locking issue */
|
1063 |
if (is_write && page_unprotect(h2g(address), pc, puc)) {
|
1064 |
return 1; |
1065 |
} |
1066 |
|
1067 |
/* see if it is an MMU fault */
|
1068 |
ret = cpu_sh4_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
|
1069 |
if (ret < 0) |
1070 |
return 0; /* not an MMU fault */ |
1071 |
if (ret == 0) |
1072 |
return 1; /* the MMU fault was handled without causing real CPU fault */ |
1073 |
|
1074 |
/* now we have a real cpu fault */
|
1075 |
tb = tb_find_pc(pc); |
1076 |
if (tb) {
|
1077 |
/* the PC is inside the translated code. It means that we have
|
1078 |
a virtual CPU fault */
|
1079 |
cpu_restore_state(tb, env, pc, puc); |
1080 |
} |
1081 |
#if 0
|
1082 |
printf("PF exception: NIP=0x%08x error=0x%x %p\n",
|
1083 |
env->nip, env->error_code, tb);
|
1084 |
#endif
|
1085 |
/* we restore the process signal mask as the sigreturn should
|
1086 |
do it (XXX: use sigsetjmp) */
|
1087 |
sigprocmask(SIG_SETMASK, old_set, NULL);
|
1088 |
cpu_loop_exit(); |
1089 |
/* never comes here */
|
1090 |
return 1; |
1091 |
} |
1092 |
|
1093 |
#elif defined (TARGET_ALPHA)
|
1094 |
static inline int handle_cpu_signal(unsigned long pc, unsigned long address, |
1095 |
int is_write, sigset_t *old_set,
|
1096 |
void *puc)
|
1097 |
{ |
1098 |
TranslationBlock *tb; |
1099 |
int ret;
|
1100 |
|
1101 |
if (cpu_single_env)
|
1102 |
env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
1103 |
#if defined(DEBUG_SIGNAL)
|
1104 |
printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
1105 |
pc, address, is_write, *(unsigned long *)old_set); |
1106 |
#endif
|
1107 |
/* XXX: locking issue */
|
1108 |
if (is_write && page_unprotect(h2g(address), pc, puc)) {
|
1109 |
return 1; |
1110 |
} |
1111 |
|
1112 |
/* see if it is an MMU fault */
|
1113 |
ret = cpu_alpha_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
|
1114 |
if (ret < 0) |
1115 |
return 0; /* not an MMU fault */ |
1116 |
if (ret == 0) |
1117 |
return 1; /* the MMU fault was handled without causing real CPU fault */ |
1118 |
|
1119 |
/* now we have a real cpu fault */
|
1120 |
tb = tb_find_pc(pc); |
1121 |
if (tb) {
|
1122 |
/* the PC is inside the translated code. It means that we have
|
1123 |
a virtual CPU fault */
|
1124 |
cpu_restore_state(tb, env, pc, puc); |
1125 |
} |
1126 |
#if 0
|
1127 |
printf("PF exception: NIP=0x%08x error=0x%x %p\n",
|
1128 |
env->nip, env->error_code, tb);
|
1129 |
#endif
|
1130 |
/* we restore the process signal mask as the sigreturn should
|
1131 |
do it (XXX: use sigsetjmp) */
|
1132 |
sigprocmask(SIG_SETMASK, old_set, NULL);
|
1133 |
cpu_loop_exit(); |
1134 |
/* never comes here */
|
1135 |
return 1; |
1136 |
} |
1137 |
#elif defined (TARGET_CRIS)
|
1138 |
static inline int handle_cpu_signal(unsigned long pc, unsigned long address, |
1139 |
int is_write, sigset_t *old_set,
|
1140 |
void *puc)
|
1141 |
{ |
1142 |
TranslationBlock *tb; |
1143 |
int ret;
|
1144 |
|
1145 |
if (cpu_single_env)
|
1146 |
env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
1147 |
#if defined(DEBUG_SIGNAL)
|
1148 |
printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
1149 |
pc, address, is_write, *(unsigned long *)old_set); |
1150 |
#endif
|
1151 |
/* XXX: locking issue */
|
1152 |
if (is_write && page_unprotect(h2g(address), pc, puc)) {
|
1153 |
return 1; |
1154 |
} |
1155 |
|
1156 |
/* see if it is an MMU fault */
|
1157 |
ret = cpu_cris_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
|
1158 |
if (ret < 0) |
1159 |
return 0; /* not an MMU fault */ |
1160 |
if (ret == 0) |
1161 |
return 1; /* the MMU fault was handled without causing real CPU fault */ |
1162 |
|
1163 |
/* now we have a real cpu fault */
|
1164 |
tb = tb_find_pc(pc); |
1165 |
if (tb) {
|
1166 |
/* the PC is inside the translated code. It means that we have
|
1167 |
a virtual CPU fault */
|
1168 |
cpu_restore_state(tb, env, pc, puc); |
1169 |
} |
1170 |
#if 0
|
1171 |
printf("PF exception: NIP=0x%08x error=0x%x %p\n",
|
1172 |
env->nip, env->error_code, tb);
|
1173 |
#endif
|
1174 |
/* we restore the process signal mask as the sigreturn should
|
1175 |
do it (XXX: use sigsetjmp) */
|
1176 |
sigprocmask(SIG_SETMASK, old_set, NULL);
|
1177 |
cpu_loop_exit(); |
1178 |
/* never comes here */
|
1179 |
return 1; |
1180 |
} |
1181 |
|
1182 |
#else
|
1183 |
#error unsupported target CPU
|
1184 |
#endif
|
1185 |
|
1186 |
#if defined(__i386__)
|
1187 |
|
1188 |
#if defined(__APPLE__)
|
1189 |
# include <sys/ucontext.h> |
1190 |
|
1191 |
# define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip)) |
1192 |
# define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
|
1193 |
# define ERROR_sig(context) ((context)->uc_mcontext->es.err)
|
1194 |
#else
|
1195 |
# define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
|
1196 |
# define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
|
1197 |
# define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
|
1198 |
#endif
|
1199 |
|
1200 |
int cpu_signal_handler(int host_signum, void *pinfo, |
1201 |
void *puc)
|
1202 |
{ |
1203 |
siginfo_t *info = pinfo; |
1204 |
struct ucontext *uc = puc;
|
1205 |
unsigned long pc; |
1206 |
int trapno;
|
1207 |
|
1208 |
#ifndef REG_EIP
|
1209 |
/* for glibc 2.1 */
|
1210 |
#define REG_EIP EIP
|
1211 |
#define REG_ERR ERR
|
1212 |
#define REG_TRAPNO TRAPNO
|
1213 |
#endif
|
1214 |
pc = EIP_sig(uc); |
1215 |
trapno = TRAP_sig(uc); |
1216 |
return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
1217 |
trapno == 0xe ?
|
1218 |
(ERROR_sig(uc) >> 1) & 1 : 0, |
1219 |
&uc->uc_sigmask, puc); |
1220 |
} |
1221 |
|
1222 |
#elif defined(__x86_64__)
|
1223 |
|
1224 |
int cpu_signal_handler(int host_signum, void *pinfo, |
1225 |
void *puc)
|
1226 |
{ |
1227 |
siginfo_t *info = pinfo; |
1228 |
struct ucontext *uc = puc;
|
1229 |
unsigned long pc; |
1230 |
|
1231 |
pc = uc->uc_mcontext.gregs[REG_RIP]; |
1232 |
return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
1233 |
uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
|
1234 |
(uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0, |
1235 |
&uc->uc_sigmask, puc); |
1236 |
} |
1237 |
|
1238 |
#elif defined(__powerpc__)
|
1239 |
|
1240 |
/***********************************************************************
|
1241 |
* signal context platform-specific definitions
|
1242 |
* From Wine
|
1243 |
*/
|
1244 |
#ifdef linux
|
1245 |
/* All Registers access - only for local access */
|
1246 |
# define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
|
1247 |
/* Gpr Registers access */
|
1248 |
# define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
|
1249 |
# define IAR_sig(context) REG_sig(nip, context) /* Program counter */ |
1250 |
# define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */ |
1251 |
# define CTR_sig(context) REG_sig(ctr, context) /* Count register */ |
1252 |
# define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */ |
1253 |
# define LR_sig(context) REG_sig(link, context) /* Link register */ |
1254 |
# define CR_sig(context) REG_sig(ccr, context) /* Condition register */ |
1255 |
/* Float Registers access */
|
1256 |
# define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num]) |
1257 |
# define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4))) |
1258 |
/* Exception Registers access */
|
1259 |
# define DAR_sig(context) REG_sig(dar, context)
|
1260 |
# define DSISR_sig(context) REG_sig(dsisr, context)
|
1261 |
# define TRAP_sig(context) REG_sig(trap, context)
|
1262 |
#endif /* linux */ |
1263 |
|
1264 |
#ifdef __APPLE__
|
1265 |
# include <sys/ucontext.h> |
1266 |
typedef struct ucontext SIGCONTEXT; |
1267 |
/* All Registers access - only for local access */
|
1268 |
# define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
|
1269 |
# define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
|
1270 |
# define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
|
1271 |
# define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
|
1272 |
/* Gpr Registers access */
|
1273 |
# define GPR_sig(reg_num, context) REG_sig(r##reg_num, context) |
1274 |
# define IAR_sig(context) REG_sig(srr0, context) /* Program counter */ |
1275 |
# define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */ |
1276 |
# define CTR_sig(context) REG_sig(ctr, context)
|
1277 |
# define XER_sig(context) REG_sig(xer, context) /* Link register */ |
1278 |
# define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */ |
1279 |
# define CR_sig(context) REG_sig(cr, context) /* Condition register */ |
1280 |
/* Float Registers access */
|
1281 |
# define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
|
1282 |
# define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context)) |
1283 |
/* Exception Registers access */
|
1284 |
# define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */ |
1285 |
# define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
|
1286 |
# define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */ |
1287 |
#endif /* __APPLE__ */ |
1288 |
|
1289 |
int cpu_signal_handler(int host_signum, void *pinfo, |
1290 |
void *puc)
|
1291 |
{ |
1292 |
siginfo_t *info = pinfo; |
1293 |
struct ucontext *uc = puc;
|
1294 |
unsigned long pc; |
1295 |
int is_write;
|
1296 |
|
1297 |
pc = IAR_sig(uc); |
1298 |
is_write = 0;
|
1299 |
#if 0
|
1300 |
/* ppc 4xx case */
|
1301 |
if (DSISR_sig(uc) & 0x00800000)
|
1302 |
is_write = 1;
|
1303 |
#else
|
1304 |
if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000)) |
1305 |
is_write = 1;
|
1306 |
#endif
|
1307 |
return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
1308 |
is_write, &uc->uc_sigmask, puc); |
1309 |
} |
1310 |
|
1311 |
#elif defined(__alpha__)
|
1312 |
|
1313 |
int cpu_signal_handler(int host_signum, void *pinfo, |
1314 |
void *puc)
|
1315 |
{ |
1316 |
siginfo_t *info = pinfo; |
1317 |
struct ucontext *uc = puc;
|
1318 |
uint32_t *pc = uc->uc_mcontext.sc_pc; |
1319 |
uint32_t insn = *pc; |
1320 |
int is_write = 0; |
1321 |
|
1322 |
/* XXX: need kernel patch to get write flag faster */
|
1323 |
switch (insn >> 26) { |
1324 |
case 0x0d: // stw |
1325 |
case 0x0e: // stb |
1326 |
case 0x0f: // stq_u |
1327 |
case 0x24: // stf |
1328 |
case 0x25: // stg |
1329 |
case 0x26: // sts |
1330 |
case 0x27: // stt |
1331 |
case 0x2c: // stl |
1332 |
case 0x2d: // stq |
1333 |
case 0x2e: // stl_c |
1334 |
case 0x2f: // stq_c |
1335 |
is_write = 1;
|
1336 |
} |
1337 |
|
1338 |
return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
1339 |
is_write, &uc->uc_sigmask, puc); |
1340 |
} |
1341 |
#elif defined(__sparc__)
|
1342 |
|
1343 |
int cpu_signal_handler(int host_signum, void *pinfo, |
1344 |
void *puc)
|
1345 |
{ |
1346 |
siginfo_t *info = pinfo; |
1347 |
uint32_t *regs = (uint32_t *)(info + 1);
|
1348 |
void *sigmask = (regs + 20); |
1349 |
unsigned long pc; |
1350 |
int is_write;
|
1351 |
uint32_t insn; |
1352 |
|
1353 |
/* XXX: is there a standard glibc define ? */
|
1354 |
pc = regs[1];
|
1355 |
/* XXX: need kernel patch to get write flag faster */
|
1356 |
is_write = 0;
|
1357 |
insn = *(uint32_t *)pc; |
1358 |
if ((insn >> 30) == 3) { |
1359 |
switch((insn >> 19) & 0x3f) { |
1360 |
case 0x05: // stb |
1361 |
case 0x06: // sth |
1362 |
case 0x04: // st |
1363 |
case 0x07: // std |
1364 |
case 0x24: // stf |
1365 |
case 0x27: // stdf |
1366 |
case 0x25: // stfsr |
1367 |
is_write = 1;
|
1368 |
break;
|
1369 |
} |
1370 |
} |
1371 |
return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
1372 |
is_write, sigmask, NULL);
|
1373 |
} |
1374 |
|
1375 |
#elif defined(__arm__)
|
1376 |
|
1377 |
int cpu_signal_handler(int host_signum, void *pinfo, |
1378 |
void *puc)
|
1379 |
{ |
1380 |
siginfo_t *info = pinfo; |
1381 |
struct ucontext *uc = puc;
|
1382 |
unsigned long pc; |
1383 |
int is_write;
|
1384 |
|
1385 |
pc = uc->uc_mcontext.gregs[R15]; |
1386 |
/* XXX: compute is_write */
|
1387 |
is_write = 0;
|
1388 |
return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
1389 |
is_write, |
1390 |
&uc->uc_sigmask, puc); |
1391 |
} |
1392 |
|
1393 |
#elif defined(__mc68000)
|
1394 |
|
1395 |
int cpu_signal_handler(int host_signum, void *pinfo, |
1396 |
void *puc)
|
1397 |
{ |
1398 |
siginfo_t *info = pinfo; |
1399 |
struct ucontext *uc = puc;
|
1400 |
unsigned long pc; |
1401 |
int is_write;
|
1402 |
|
1403 |
pc = uc->uc_mcontext.gregs[16];
|
1404 |
/* XXX: compute is_write */
|
1405 |
is_write = 0;
|
1406 |
return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
1407 |
is_write, |
1408 |
&uc->uc_sigmask, puc); |
1409 |
} |
1410 |
|
1411 |
#elif defined(__ia64)
|
1412 |
|
1413 |
#ifndef __ISR_VALID
|
1414 |
/* This ought to be in <bits/siginfo.h>... */
|
1415 |
# define __ISR_VALID 1 |
1416 |
#endif
|
1417 |
|
1418 |
int cpu_signal_handler(int host_signum, void *pinfo, void *puc) |
1419 |
{ |
1420 |
siginfo_t *info = pinfo; |
1421 |
struct ucontext *uc = puc;
|
1422 |
unsigned long ip; |
1423 |
int is_write = 0; |
1424 |
|
1425 |
ip = uc->uc_mcontext.sc_ip; |
1426 |
switch (host_signum) {
|
1427 |
case SIGILL:
|
1428 |
case SIGFPE:
|
1429 |
case SIGSEGV:
|
1430 |
case SIGBUS:
|
1431 |
case SIGTRAP:
|
1432 |
if (info->si_code && (info->si_segvflags & __ISR_VALID))
|
1433 |
/* ISR.W (write-access) is bit 33: */
|
1434 |
is_write = (info->si_isr >> 33) & 1; |
1435 |
break;
|
1436 |
|
1437 |
default:
|
1438 |
break;
|
1439 |
} |
1440 |
return handle_cpu_signal(ip, (unsigned long)info->si_addr, |
1441 |
is_write, |
1442 |
&uc->uc_sigmask, puc); |
1443 |
} |
1444 |
|
1445 |
#elif defined(__s390__)
|
1446 |
|
1447 |
int cpu_signal_handler(int host_signum, void *pinfo, |
1448 |
void *puc)
|
1449 |
{ |
1450 |
siginfo_t *info = pinfo; |
1451 |
struct ucontext *uc = puc;
|
1452 |
unsigned long pc; |
1453 |
int is_write;
|
1454 |
|
1455 |
pc = uc->uc_mcontext.psw.addr; |
1456 |
/* XXX: compute is_write */
|
1457 |
is_write = 0;
|
1458 |
return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
1459 |
is_write, &uc->uc_sigmask, puc); |
1460 |
} |
1461 |
|
1462 |
#elif defined(__mips__)
|
1463 |
|
1464 |
int cpu_signal_handler(int host_signum, void *pinfo, |
1465 |
void *puc)
|
1466 |
{ |
1467 |
siginfo_t *info = pinfo; |
1468 |
struct ucontext *uc = puc;
|
1469 |
greg_t pc = uc->uc_mcontext.pc; |
1470 |
int is_write;
|
1471 |
|
1472 |
/* XXX: compute is_write */
|
1473 |
is_write = 0;
|
1474 |
return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
1475 |
is_write, &uc->uc_sigmask, puc); |
1476 |
} |
1477 |
|
1478 |
#else
|
1479 |
|
1480 |
#error host CPU specific signal handler needed
|
1481 |
|
1482 |
#endif
|
1483 |
|
1484 |
#endif /* !defined(CONFIG_SOFTMMU) */ |