Statistics
| Branch: | Revision:

root / target-sparc / op_helper.c @ 6f27aba6

History | View | Annotate | Download (49.5 kB)

1
#include "exec.h"
2

    
3
//#define DEBUG_PCALL
4
//#define DEBUG_MMU
5
//#define DEBUG_MXCC
6
//#define DEBUG_UNALIGNED
7
//#define DEBUG_UNASSIGNED
8

    
9
#ifdef DEBUG_MMU
10
#define DPRINTF_MMU(fmt, args...) \
11
do { printf("MMU: " fmt , ##args); } while (0)
12
#else
13
#define DPRINTF_MMU(fmt, args...)
14
#endif
15

    
16
#ifdef DEBUG_MXCC
17
#define DPRINTF_MXCC(fmt, args...) \
18
do { printf("MXCC: " fmt , ##args); } while (0)
19
#else
20
#define DPRINTF_MXCC(fmt, args...)
21
#endif
22

    
23
void raise_exception(int tt)
24
{
25
    env->exception_index = tt;
26
    cpu_loop_exit();
27
}
28

    
29
void check_ieee_exceptions()
30
{
31
     T0 = get_float_exception_flags(&env->fp_status);
32
     if (T0)
33
     {
34
        /* Copy IEEE 754 flags into FSR */
35
        if (T0 & float_flag_invalid)
36
            env->fsr |= FSR_NVC;
37
        if (T0 & float_flag_overflow)
38
            env->fsr |= FSR_OFC;
39
        if (T0 & float_flag_underflow)
40
            env->fsr |= FSR_UFC;
41
        if (T0 & float_flag_divbyzero)
42
            env->fsr |= FSR_DZC;
43
        if (T0 & float_flag_inexact)
44
            env->fsr |= FSR_NXC;
45

    
46
        if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23))
47
        {
48
            /* Unmasked exception, generate a trap */
49
            env->fsr |= FSR_FTT_IEEE_EXCP;
50
            raise_exception(TT_FP_EXCP);
51
        }
52
        else
53
        {
54
            /* Accumulate exceptions */
55
            env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
56
        }
57
     }
58
}
59

    
60
#ifdef USE_INT_TO_FLOAT_HELPERS
61
void do_fitos(void)
62
{
63
    set_float_exception_flags(0, &env->fp_status);
64
    FT0 = int32_to_float32(*((int32_t *)&FT1), &env->fp_status);
65
    check_ieee_exceptions();
66
}
67

    
68
void do_fitod(void)
69
{
70
    DT0 = int32_to_float64(*((int32_t *)&FT1), &env->fp_status);
71
}
72
#endif
73

    
74
void do_fabss(void)
75
{
76
    FT0 = float32_abs(FT1);
77
}
78

    
79
#ifdef TARGET_SPARC64
80
void do_fabsd(void)
81
{
82
    DT0 = float64_abs(DT1);
83
}
84
#endif
85

    
86
void do_fsqrts(void)
87
{
88
    set_float_exception_flags(0, &env->fp_status);
89
    FT0 = float32_sqrt(FT1, &env->fp_status);
90
    check_ieee_exceptions();
91
}
92

    
93
void do_fsqrtd(void)
94
{
95
    set_float_exception_flags(0, &env->fp_status);
96
    DT0 = float64_sqrt(DT1, &env->fp_status);
97
    check_ieee_exceptions();
98
}
99

    
100
#define GEN_FCMP(name, size, reg1, reg2, FS, TRAP)                      \
101
    void glue(do_, name) (void)                                         \
102
    {                                                                   \
103
        env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);                     \
104
        switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) {   \
105
        case float_relation_unordered:                                  \
106
            T0 = (FSR_FCC1 | FSR_FCC0) << FS;                           \
107
            if ((env->fsr & FSR_NVM) || TRAP) {                         \
108
                env->fsr |= T0;                                         \
109
                env->fsr |= FSR_NVC;                                    \
110
                env->fsr |= FSR_FTT_IEEE_EXCP;                          \
111
                raise_exception(TT_FP_EXCP);                            \
112
            } else {                                                    \
113
                env->fsr |= FSR_NVA;                                    \
114
            }                                                           \
115
            break;                                                      \
116
        case float_relation_less:                                       \
117
            T0 = FSR_FCC0 << FS;                                        \
118
            break;                                                      \
119
        case float_relation_greater:                                    \
120
            T0 = FSR_FCC1 << FS;                                        \
121
            break;                                                      \
122
        default:                                                        \
123
            T0 = 0;                                                     \
124
            break;                                                      \
125
        }                                                               \
126
        env->fsr |= T0;                                                 \
127
    }
128

    
129
GEN_FCMP(fcmps, float32, FT0, FT1, 0, 0);
130
GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
131

    
132
GEN_FCMP(fcmpes, float32, FT0, FT1, 0, 1);
133
GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
134

    
135
#ifdef TARGET_SPARC64
136
GEN_FCMP(fcmps_fcc1, float32, FT0, FT1, 22, 0);
137
GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
138

    
139
GEN_FCMP(fcmps_fcc2, float32, FT0, FT1, 24, 0);
140
GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
141

    
142
GEN_FCMP(fcmps_fcc3, float32, FT0, FT1, 26, 0);
143
GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
144

    
145
GEN_FCMP(fcmpes_fcc1, float32, FT0, FT1, 22, 1);
146
GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
147

    
148
GEN_FCMP(fcmpes_fcc2, float32, FT0, FT1, 24, 1);
149
GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
150

    
151
GEN_FCMP(fcmpes_fcc3, float32, FT0, FT1, 26, 1);
152
GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
153
#endif
154

    
155
#ifndef TARGET_SPARC64
156
#ifndef CONFIG_USER_ONLY
157

    
158
#ifdef DEBUG_MXCC
159
static void dump_mxcc(CPUState *env)
160
{
161
    printf("mxccdata: %016llx %016llx %016llx %016llx\n",
162
        env->mxccdata[0], env->mxccdata[1], env->mxccdata[2], env->mxccdata[3]);
163
    printf("mxccregs: %016llx %016llx %016llx %016llx\n"
164
           "          %016llx %016llx %016llx %016llx\n",
165
        env->mxccregs[0], env->mxccregs[1], env->mxccregs[2], env->mxccregs[3],
166
        env->mxccregs[4], env->mxccregs[5], env->mxccregs[6], env->mxccregs[7]);
167
}
168
#endif
169

    
170
void helper_ld_asi(int asi, int size, int sign)
171
{
172
    uint32_t ret = 0;
173
#ifdef DEBUG_MXCC
174
    uint32_t last_T0 = T0;
175
#endif
176

    
177
    switch (asi) {
178
    case 2: /* SuperSparc MXCC registers */
179
        switch (T0) {
180
        case 0x01c00a00: /* MXCC control register */
181
            if (size == 8) {
182
                ret = env->mxccregs[3];
183
                T0 = env->mxccregs[3] >> 32;
184
            } else
185
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
186
            break;
187
        case 0x01c00a04: /* MXCC control register */
188
            if (size == 4)
189
                ret = env->mxccregs[3];
190
            else
191
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
192
            break;
193
        case 0x01c00f00: /* MBus port address register */
194
            if (size == 8) {
195
                ret = env->mxccregs[7];
196
                T0 = env->mxccregs[7] >> 32;
197
            } else
198
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
199
            break;
200
        default:
201
            DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", T0, size);
202
            break;
203
        }
204
        DPRINTF_MXCC("asi = %d, size = %d, sign = %d, T0 = %08x -> ret = %08x,"
205
                     "T0 = %08x\n", asi, size, sign, last_T0, ret, T0);
206
#ifdef DEBUG_MXCC
207
        dump_mxcc(env);
208
#endif
209
        break;
210
    case 3: /* MMU probe */
211
        {
212
            int mmulev;
213

    
214
            mmulev = (T0 >> 8) & 15;
215
            if (mmulev > 4)
216
                ret = 0;
217
            else {
218
                ret = mmu_probe(env, T0, mmulev);
219
                //bswap32s(&ret);
220
            }
221
            DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08x\n", T0, mmulev, ret);
222
        }
223
        break;
224
    case 4: /* read MMU regs */
225
        {
226
            int reg = (T0 >> 8) & 0xf;
227

    
228
            ret = env->mmuregs[reg];
229
            if (reg == 3) /* Fault status cleared on read */
230
                env->mmuregs[reg] = 0;
231
            DPRINTF_MMU("mmu_read: reg[%d] = 0x%08x\n", reg, ret);
232
        }
233
        break;
234
    case 9: /* Supervisor code access */
235
        switch(size) {
236
        case 1:
237
            ret = ldub_code(T0);
238
            break;
239
        case 2:
240
            ret = lduw_code(T0 & ~1);
241
            break;
242
        default:
243
        case 4:
244
            ret = ldl_code(T0 & ~3);
245
            break;
246
        case 8:
247
            ret = ldl_code(T0 & ~3);
248
            T0 = ldl_code((T0 + 4) & ~3);
249
            break;
250
        }
251
        break;
252
    case 0xa: /* User data access */
253
        switch(size) {
254
        case 1:
255
            ret = ldub_user(T0);
256
            break;
257
        case 2:
258
            ret = lduw_user(T0 & ~1);
259
            break;
260
        default:
261
        case 4:
262
            ret = ldl_user(T0 & ~3);
263
            break;
264
        case 8:
265
            ret = ldl_user(T0 & ~3);
266
            T0 = ldl_user((T0 + 4) & ~3);
267
            break;
268
        }
269
        break;
270
    case 0xb: /* Supervisor data access */
271
        switch(size) {
272
        case 1:
273
            ret = ldub_kernel(T0);
274
            break;
275
        case 2:
276
            ret = lduw_kernel(T0 & ~1);
277
            break;
278
        default:
279
        case 4:
280
            ret = ldl_kernel(T0 & ~3);
281
            break;
282
        case 8:
283
            ret = ldl_kernel(T0 & ~3);
284
            T0 = ldl_kernel((T0 + 4) & ~3);
285
            break;
286
        }
287
        break;
288
    case 0xc: /* I-cache tag */
289
    case 0xd: /* I-cache data */
290
    case 0xe: /* D-cache tag */
291
    case 0xf: /* D-cache data */
292
        break;
293
    case 0x20: /* MMU passthrough */
294
        switch(size) {
295
        case 1:
296
            ret = ldub_phys(T0);
297
            break;
298
        case 2:
299
            ret = lduw_phys(T0 & ~1);
300
            break;
301
        default:
302
        case 4:
303
            ret = ldl_phys(T0 & ~3);
304
            break;
305
        case 8:
306
            ret = ldl_phys(T0 & ~3);
307
            T0 = ldl_phys((T0 + 4) & ~3);
308
            break;
309
        }
310
        break;
311
    case 0x2e: /* MMU passthrough, 0xexxxxxxxx */
312
    case 0x2f: /* MMU passthrough, 0xfxxxxxxxx */
313
        switch(size) {
314
        case 1:
315
            ret = ldub_phys((target_phys_addr_t)T0
316
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
317
            break;
318
        case 2:
319
            ret = lduw_phys((target_phys_addr_t)(T0 & ~1)
320
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
321
            break;
322
        default:
323
        case 4:
324
            ret = ldl_phys((target_phys_addr_t)(T0 & ~3)
325
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
326
            break;
327
        case 8:
328
            ret = ldl_phys((target_phys_addr_t)(T0 & ~3)
329
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
330
            T0 = ldl_phys((target_phys_addr_t)((T0 + 4) & ~3)
331
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
332
            break;
333
        }
334
        break;
335
    case 0x21 ... 0x2d: /* MMU passthrough, unassigned */
336
    default:
337
        do_unassigned_access(T0, 0, 0, 1);
338
        ret = 0;
339
        break;
340
    }
341
    if (sign) {
342
        switch(size) {
343
        case 1:
344
            T1 = (int8_t) ret;
345
            break;
346
        case 2:
347
            T1 = (int16_t) ret;
348
            break;
349
        default:
350
            T1 = ret;
351
            break;
352
        }
353
    }
354
    else
355
        T1 = ret;
356
}
357

    
358
void helper_st_asi(int asi, int size)
359
{
360
    switch(asi) {
361
    case 2: /* SuperSparc MXCC registers */
362
        switch (T0) {
363
        case 0x01c00000: /* MXCC stream data register 0 */
364
            if (size == 8)
365
                env->mxccdata[0] = ((uint64_t)T1 << 32) | T2;
366
            else
367
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
368
            break;
369
        case 0x01c00008: /* MXCC stream data register 1 */
370
            if (size == 8)
371
                env->mxccdata[1] = ((uint64_t)T1 << 32) | T2;
372
            else
373
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
374
            break;
375
        case 0x01c00010: /* MXCC stream data register 2 */
376
            if (size == 8)
377
                env->mxccdata[2] = ((uint64_t)T1 << 32) | T2;
378
            else
379
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
380
            break;
381
        case 0x01c00018: /* MXCC stream data register 3 */
382
            if (size == 8)
383
                env->mxccdata[3] = ((uint64_t)T1 << 32) | T2;
384
            else
385
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
386
            break;
387
        case 0x01c00100: /* MXCC stream source */
388
            if (size == 8)
389
                env->mxccregs[0] = ((uint64_t)T1 << 32) | T2;
390
            else
391
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
392
            env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +  0);
393
            env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +  8);
394
            env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 16);
395
            env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 24);
396
            break;
397
        case 0x01c00200: /* MXCC stream destination */
398
            if (size == 8)
399
                env->mxccregs[1] = ((uint64_t)T1 << 32) | T2;
400
            else
401
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
402
            stq_phys((env->mxccregs[1] & 0xffffffffULL) +  0, env->mxccdata[0]);
403
            stq_phys((env->mxccregs[1] & 0xffffffffULL) +  8, env->mxccdata[1]);
404
            stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16, env->mxccdata[2]);
405
            stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24, env->mxccdata[3]);
406
            break;
407
        case 0x01c00a00: /* MXCC control register */
408
            if (size == 8)
409
                env->mxccregs[3] = ((uint64_t)T1 << 32) | T2;
410
            else
411
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
412
            break;
413
        case 0x01c00a04: /* MXCC control register */
414
            if (size == 4)
415
                env->mxccregs[3] = (env->mxccregs[0xa] & 0xffffffff00000000) | T1;
416
            else
417
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
418
            break;
419
        case 0x01c00e00: /* MXCC error register  */
420
            if (size == 8)
421
                env->mxccregs[6] = ((uint64_t)T1 << 32) | T2;
422
            else
423
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
424
            if (env->mxccregs[6] == 0xffffffffffffffffULL) {
425
                // this is probably a reset
426
            }
427
            break;
428
        case 0x01c00f00: /* MBus port address register */
429
            if (size == 8)
430
                env->mxccregs[7] = ((uint64_t)T1 << 32) | T2;
431
            else
432
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
433
            break;
434
        default:
435
            DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", T0, size);
436
            break;
437
        }
438
        DPRINTF_MXCC("asi = %d, size = %d, T0 = %08x, T1 = %08x\n", asi, size, T0, T1);
439
#ifdef DEBUG_MXCC
440
        dump_mxcc(env);
441
#endif
442
        break;
443
    case 3: /* MMU flush */
444
        {
445
            int mmulev;
446

    
447
            mmulev = (T0 >> 8) & 15;
448
            DPRINTF_MMU("mmu flush level %d\n", mmulev);
449
            switch (mmulev) {
450
            case 0: // flush page
451
                tlb_flush_page(env, T0 & 0xfffff000);
452
                break;
453
            case 1: // flush segment (256k)
454
            case 2: // flush region (16M)
455
            case 3: // flush context (4G)
456
            case 4: // flush entire
457
                tlb_flush(env, 1);
458
                break;
459
            default:
460
                break;
461
            }
462
#ifdef DEBUG_MMU
463
            dump_mmu(env);
464
#endif
465
            return;
466
        }
467
    case 4: /* write MMU regs */
468
        {
469
            int reg = (T0 >> 8) & 0xf;
470
            uint32_t oldreg;
471

    
472
            oldreg = env->mmuregs[reg];
473
            switch(reg) {
474
            case 0:
475
                env->mmuregs[reg] &= ~(MMU_E | MMU_NF | MMU_BM);
476
                env->mmuregs[reg] |= T1 & (MMU_E | MMU_NF | MMU_BM);
477
                // Mappings generated during no-fault mode or MMU
478
                // disabled mode are invalid in normal mode
479
                if (oldreg != env->mmuregs[reg])
480
                    tlb_flush(env, 1);
481
                break;
482
            case 2:
483
                env->mmuregs[reg] = T1;
484
                if (oldreg != env->mmuregs[reg]) {
485
                    /* we flush when the MMU context changes because
486
                       QEMU has no MMU context support */
487
                    tlb_flush(env, 1);
488
                }
489
                break;
490
            case 3:
491
            case 4:
492
                break;
493
            default:
494
                env->mmuregs[reg] = T1;
495
                break;
496
            }
497
            if (oldreg != env->mmuregs[reg]) {
498
                DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg, oldreg, env->mmuregs[reg]);
499
            }
500
#ifdef DEBUG_MMU
501
            dump_mmu(env);
502
#endif
503
            return;
504
        }
505
    case 0xa: /* User data access */
506
        switch(size) {
507
        case 1:
508
            stb_user(T0, T1);
509
            break;
510
        case 2:
511
            stw_user(T0 & ~1, T1);
512
            break;
513
        default:
514
        case 4:
515
            stl_user(T0 & ~3, T1);
516
            break;
517
        case 8:
518
            stl_user(T0 & ~3, T1);
519
            stl_user((T0 + 4) & ~3, T2);
520
            break;
521
        }
522
        break;
523
    case 0xb: /* Supervisor data access */
524
        switch(size) {
525
        case 1:
526
            stb_kernel(T0, T1);
527
            break;
528
        case 2:
529
            stw_kernel(T0 & ~1, T1);
530
            break;
531
        default:
532
        case 4:
533
            stl_kernel(T0 & ~3, T1);
534
            break;
535
        case 8:
536
            stl_kernel(T0 & ~3, T1);
537
            stl_kernel((T0 + 4) & ~3, T2);
538
            break;
539
        }
540
        break;
541
    case 0xc: /* I-cache tag */
542
    case 0xd: /* I-cache data */
543
    case 0xe: /* D-cache tag */
544
    case 0xf: /* D-cache data */
545
    case 0x10: /* I/D-cache flush page */
546
    case 0x11: /* I/D-cache flush segment */
547
    case 0x12: /* I/D-cache flush region */
548
    case 0x13: /* I/D-cache flush context */
549
    case 0x14: /* I/D-cache flush user */
550
        break;
551
    case 0x17: /* Block copy, sta access */
552
        {
553
            // value (T1) = src
554
            // address (T0) = dst
555
            // copy 32 bytes
556
            unsigned int i;
557
            uint32_t src = T1 & ~3, dst = T0 & ~3, temp;
558

    
559
            for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
560
                temp = ldl_kernel(src);
561
                stl_kernel(dst, temp);
562
            }
563
        }
564
        return;
565
    case 0x1f: /* Block fill, stda access */
566
        {
567
            // value (T1, T2)
568
            // address (T0) = dst
569
            // fill 32 bytes
570
            unsigned int i;
571
            uint32_t dst = T0 & 7;
572
            uint64_t val;
573

    
574
            val = (((uint64_t)T1) << 32) | T2;
575

    
576
            for (i = 0; i < 32; i += 8, dst += 8)
577
                stq_kernel(dst, val);
578
        }
579
        return;
580
    case 0x20: /* MMU passthrough */
581
        {
582
            switch(size) {
583
            case 1:
584
                stb_phys(T0, T1);
585
                break;
586
            case 2:
587
                stw_phys(T0 & ~1, T1);
588
                break;
589
            case 4:
590
            default:
591
                stl_phys(T0 & ~3, T1);
592
                break;
593
            case 8:
594
                stl_phys(T0 & ~3, T1);
595
                stl_phys((T0 + 4) & ~3, T2);
596
                break;
597
            }
598
        }
599
        return;
600
    case 0x2e: /* MMU passthrough, 0xexxxxxxxx */
601
    case 0x2f: /* MMU passthrough, 0xfxxxxxxxx */
602
        {
603
            switch(size) {
604
            case 1:
605
                stb_phys((target_phys_addr_t)T0
606
                         | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
607
                break;
608
            case 2:
609
                stw_phys((target_phys_addr_t)(T0 & ~1)
610
                            | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
611
                break;
612
            case 4:
613
            default:
614
                stl_phys((target_phys_addr_t)(T0 & ~3)
615
                           | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
616
                break;
617
            case 8:
618
                stl_phys((target_phys_addr_t)(T0 & ~3)
619
                           | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
620
                stl_phys((target_phys_addr_t)((T0 + 4) & ~3)
621
                           | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
622
                break;
623
            }
624
        }
625
        return;
626
    case 0x31: /* Ross RT620 I-cache flush */
627
    case 0x36: /* I-cache flash clear */
628
    case 0x37: /* D-cache flash clear */
629
        break;
630
    case 9: /* Supervisor code access, XXX */
631
    case 0x21 ... 0x2d: /* MMU passthrough, unassigned */
632
    default:
633
        do_unassigned_access(T0, 1, 0, 1);
634
        return;
635
    }
636
}
637

    
638
#endif /* CONFIG_USER_ONLY */
639
#else /* TARGET_SPARC64 */
640

    
641
#ifdef CONFIG_USER_ONLY
642
void helper_ld_asi(int asi, int size, int sign)
643
{
644
    uint64_t ret = 0;
645

    
646
    if (asi < 0x80)
647
        raise_exception(TT_PRIV_ACT);
648

    
649
    switch (asi) {
650
    case 0x80: // Primary
651
    case 0x82: // Primary no-fault
652
    case 0x88: // Primary LE
653
    case 0x8a: // Primary no-fault LE
654
        {
655
            switch(size) {
656
            case 1:
657
                ret = ldub_raw(T0);
658
                break;
659
            case 2:
660
                ret = lduw_raw(T0 & ~1);
661
                break;
662
            case 4:
663
                ret = ldl_raw(T0 & ~3);
664
                break;
665
            default:
666
            case 8:
667
                ret = ldq_raw(T0 & ~7);
668
                break;
669
            }
670
        }
671
        break;
672
    case 0x81: // Secondary
673
    case 0x83: // Secondary no-fault
674
    case 0x89: // Secondary LE
675
    case 0x8b: // Secondary no-fault LE
676
        // XXX
677
        break;
678
    default:
679
        break;
680
    }
681

    
682
    /* Convert from little endian */
683
    switch (asi) {
684
    case 0x88: // Primary LE
685
    case 0x89: // Secondary LE
686
    case 0x8a: // Primary no-fault LE
687
    case 0x8b: // Secondary no-fault LE
688
        switch(size) {
689
        case 2:
690
            ret = bswap16(ret);
691
            break;
692
        case 4:
693
            ret = bswap32(ret);
694
            break;
695
        case 8:
696
            ret = bswap64(ret);
697
            break;
698
        default:
699
            break;
700
        }
701
    default:
702
        break;
703
    }
704

    
705
    /* Convert to signed number */
706
    if (sign) {
707
        switch(size) {
708
        case 1:
709
            ret = (int8_t) ret;
710
            break;
711
        case 2:
712
            ret = (int16_t) ret;
713
            break;
714
        case 4:
715
            ret = (int32_t) ret;
716
            break;
717
        default:
718
            break;
719
        }
720
    }
721
    T1 = ret;
722
}
723

    
724
void helper_st_asi(int asi, int size)
725
{
726
    if (asi < 0x80)
727
        raise_exception(TT_PRIV_ACT);
728

    
729
    /* Convert to little endian */
730
    switch (asi) {
731
    case 0x88: // Primary LE
732
    case 0x89: // Secondary LE
733
        switch(size) {
734
        case 2:
735
            T0 = bswap16(T0);
736
            break;
737
        case 4:
738
            T0 = bswap32(T0);
739
            break;
740
        case 8:
741
            T0 = bswap64(T0);
742
            break;
743
        default:
744
            break;
745
        }
746
    default:
747
        break;
748
    }
749

    
750
    switch(asi) {
751
    case 0x80: // Primary
752
    case 0x88: // Primary LE
753
        {
754
            switch(size) {
755
            case 1:
756
                stb_raw(T0, T1);
757
                break;
758
            case 2:
759
                stw_raw(T0 & ~1, T1);
760
                break;
761
            case 4:
762
                stl_raw(T0 & ~3, T1);
763
                break;
764
            case 8:
765
            default:
766
                stq_raw(T0 & ~7, T1);
767
                break;
768
            }
769
        }
770
        break;
771
    case 0x81: // Secondary
772
    case 0x89: // Secondary LE
773
        // XXX
774
        return;
775

    
776
    case 0x82: // Primary no-fault, RO
777
    case 0x83: // Secondary no-fault, RO
778
    case 0x8a: // Primary no-fault LE, RO
779
    case 0x8b: // Secondary no-fault LE, RO
780
    default:
781
        do_unassigned_access(T0, 1, 0, 1);
782
        return;
783
    }
784
}
785

    
786
#else /* CONFIG_USER_ONLY */
787

    
788
void helper_ld_asi(int asi, int size, int sign)
789
{
790
    uint64_t ret = 0;
791

    
792
    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
793
        || (asi >= 0x30 && asi < 0x80) && !(env->hpstate & HS_PRIV))
794
        raise_exception(TT_PRIV_ACT);
795

    
796
    switch (asi) {
797
    case 0x10: // As if user primary
798
    case 0x18: // As if user primary LE
799
    case 0x80: // Primary
800
    case 0x82: // Primary no-fault
801
    case 0x88: // Primary LE
802
    case 0x8a: // Primary no-fault LE
803
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
804
            if (env->hpstate & HS_PRIV) {
805
                switch(size) {
806
                case 1:
807
                    ret = ldub_hypv(T0);
808
                    break;
809
                case 2:
810
                    ret = lduw_hypv(T0 & ~1);
811
                    break;
812
                case 4:
813
                    ret = ldl_hypv(T0 & ~3);
814
                    break;
815
                default:
816
                case 8:
817
                    ret = ldq_hypv(T0 & ~7);
818
                    break;
819
                }
820
            } else {
821
                switch(size) {
822
                case 1:
823
                    ret = ldub_kernel(T0);
824
                    break;
825
                case 2:
826
                    ret = lduw_kernel(T0 & ~1);
827
                    break;
828
                case 4:
829
                    ret = ldl_kernel(T0 & ~3);
830
                    break;
831
                default:
832
                case 8:
833
                    ret = ldq_kernel(T0 & ~7);
834
                    break;
835
                }
836
            }
837
        } else {
838
            switch(size) {
839
            case 1:
840
                ret = ldub_user(T0);
841
                break;
842
            case 2:
843
                ret = lduw_user(T0 & ~1);
844
                break;
845
            case 4:
846
                ret = ldl_user(T0 & ~3);
847
                break;
848
            default:
849
            case 8:
850
                ret = ldq_user(T0 & ~7);
851
                break;
852
            }
853
        }
854
        break;
855
    case 0x14: // Bypass
856
    case 0x15: // Bypass, non-cacheable
857
    case 0x1c: // Bypass LE
858
    case 0x1d: // Bypass, non-cacheable LE
859
        {
860
            switch(size) {
861
            case 1:
862
                ret = ldub_phys(T0);
863
                break;
864
            case 2:
865
                ret = lduw_phys(T0 & ~1);
866
                break;
867
            case 4:
868
                ret = ldl_phys(T0 & ~3);
869
                break;
870
            default:
871
            case 8:
872
                ret = ldq_phys(T0 & ~7);
873
                break;
874
            }
875
            break;
876
        }
877
    case 0x04: // Nucleus
878
    case 0x0c: // Nucleus Little Endian (LE)
879
    case 0x11: // As if user secondary
880
    case 0x19: // As if user secondary LE
881
    case 0x24: // Nucleus quad LDD 128 bit atomic
882
    case 0x2c: // Nucleus quad LDD 128 bit atomic
883
    case 0x4a: // UPA config
884
    case 0x81: // Secondary
885
    case 0x83: // Secondary no-fault
886
    case 0x89: // Secondary LE
887
    case 0x8b: // Secondary no-fault LE
888
        // XXX
889
        break;
890
    case 0x45: // LSU
891
        ret = env->lsu;
892
        break;
893
    case 0x50: // I-MMU regs
894
        {
895
            int reg = (T0 >> 3) & 0xf;
896

    
897
            ret = env->immuregs[reg];
898
            break;
899
        }
900
    case 0x51: // I-MMU 8k TSB pointer
901
    case 0x52: // I-MMU 64k TSB pointer
902
    case 0x55: // I-MMU data access
903
        // XXX
904
        break;
905
    case 0x56: // I-MMU tag read
906
        {
907
            unsigned int i;
908

    
909
            for (i = 0; i < 64; i++) {
910
                // Valid, ctx match, vaddr match
911
                if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0 &&
912
                    env->itlb_tag[i] == T0) {
913
                    ret = env->itlb_tag[i];
914
                    break;
915
                }
916
            }
917
            break;
918
        }
919
    case 0x58: // D-MMU regs
920
        {
921
            int reg = (T0 >> 3) & 0xf;
922

    
923
            ret = env->dmmuregs[reg];
924
            break;
925
        }
926
    case 0x5e: // D-MMU tag read
927
        {
928
            unsigned int i;
929

    
930
            for (i = 0; i < 64; i++) {
931
                // Valid, ctx match, vaddr match
932
                if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0 &&
933
                    env->dtlb_tag[i] == T0) {
934
                    ret = env->dtlb_tag[i];
935
                    break;
936
                }
937
            }
938
            break;
939
        }
940
    case 0x59: // D-MMU 8k TSB pointer
941
    case 0x5a: // D-MMU 64k TSB pointer
942
    case 0x5b: // D-MMU data pointer
943
    case 0x5d: // D-MMU data access
944
    case 0x48: // Interrupt dispatch, RO
945
    case 0x49: // Interrupt data receive
946
    case 0x7f: // Incoming interrupt vector, RO
947
        // XXX
948
        break;
949
    case 0x54: // I-MMU data in, WO
950
    case 0x57: // I-MMU demap, WO
951
    case 0x5c: // D-MMU data in, WO
952
    case 0x5f: // D-MMU demap, WO
953
    case 0x77: // Interrupt vector, WO
954
    default:
955
        do_unassigned_access(T0, 0, 0, 1);
956
        ret = 0;
957
        break;
958
    }
959

    
960
    /* Convert from little endian */
961
    switch (asi) {
962
    case 0x0c: // Nucleus Little Endian (LE)
963
    case 0x18: // As if user primary LE
964
    case 0x19: // As if user secondary LE
965
    case 0x1c: // Bypass LE
966
    case 0x1d: // Bypass, non-cacheable LE
967
    case 0x88: // Primary LE
968
    case 0x89: // Secondary LE
969
    case 0x8a: // Primary no-fault LE
970
    case 0x8b: // Secondary no-fault LE
971
        switch(size) {
972
        case 2:
973
            ret = bswap16(ret);
974
            break;
975
        case 4:
976
            ret = bswap32(ret);
977
            break;
978
        case 8:
979
            ret = bswap64(ret);
980
            break;
981
        default:
982
            break;
983
        }
984
    default:
985
        break;
986
    }
987

    
988
    /* Convert to signed number */
989
    if (sign) {
990
        switch(size) {
991
        case 1:
992
            ret = (int8_t) ret;
993
            break;
994
        case 2:
995
            ret = (int16_t) ret;
996
            break;
997
        case 4:
998
            ret = (int32_t) ret;
999
            break;
1000
        default:
1001
            break;
1002
        }
1003
    }
1004
    T1 = ret;
1005
}
1006

    
1007
void helper_st_asi(int asi, int size)
1008
{
1009
    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1010
        || (asi >= 0x30 && asi < 0x80) && !(env->hpstate & HS_PRIV))
1011
        raise_exception(TT_PRIV_ACT);
1012

    
1013
    /* Convert to little endian */
1014
    switch (asi) {
1015
    case 0x0c: // Nucleus Little Endian (LE)
1016
    case 0x18: // As if user primary LE
1017
    case 0x19: // As if user secondary LE
1018
    case 0x1c: // Bypass LE
1019
    case 0x1d: // Bypass, non-cacheable LE
1020
    case 0x88: // Primary LE
1021
    case 0x89: // Secondary LE
1022
        switch(size) {
1023
        case 2:
1024
            T0 = bswap16(T0);
1025
            break;
1026
        case 4:
1027
            T0 = bswap32(T0);
1028
            break;
1029
        case 8:
1030
            T0 = bswap64(T0);
1031
            break;
1032
        default:
1033
            break;
1034
        }
1035
    default:
1036
        break;
1037
    }
1038

    
1039
    switch(asi) {
1040
    case 0x10: // As if user primary
1041
    case 0x18: // As if user primary LE
1042
    case 0x80: // Primary
1043
    case 0x88: // Primary LE
1044
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1045
            if (env->hpstate & HS_PRIV) {
1046
                switch(size) {
1047
                case 1:
1048
                    stb_hypv(T0, T1);
1049
                    break;
1050
                case 2:
1051
                    stw_hypv(T0 & ~1, T1);
1052
                    break;
1053
                case 4:
1054
                    stl_hypv(T0 & ~3, T1);
1055
                    break;
1056
                case 8:
1057
                default:
1058
                    stq_hypv(T0 & ~7, T1);
1059
                    break;
1060
                }
1061
            } else {
1062
                switch(size) {
1063
                case 1:
1064
                    stb_kernel(T0, T1);
1065
                    break;
1066
                case 2:
1067
                    stw_kernel(T0 & ~1, T1);
1068
                    break;
1069
                case 4:
1070
                    stl_kernel(T0 & ~3, T1);
1071
                    break;
1072
                case 8:
1073
                default:
1074
                    stq_kernel(T0 & ~7, T1);
1075
                    break;
1076
                }
1077
            }
1078
        } else {
1079
            switch(size) {
1080
            case 1:
1081
                stb_user(T0, T1);
1082
                break;
1083
            case 2:
1084
                stw_user(T0 & ~1, T1);
1085
                break;
1086
            case 4:
1087
                stl_user(T0 & ~3, T1);
1088
                break;
1089
            case 8:
1090
            default:
1091
                stq_user(T0 & ~7, T1);
1092
                break;
1093
            }
1094
        }
1095
        break;
1096
    case 0x14: // Bypass
1097
    case 0x15: // Bypass, non-cacheable
1098
    case 0x1c: // Bypass LE
1099
    case 0x1d: // Bypass, non-cacheable LE
1100
        {
1101
            switch(size) {
1102
            case 1:
1103
                stb_phys(T0, T1);
1104
                break;
1105
            case 2:
1106
                stw_phys(T0 & ~1, T1);
1107
                break;
1108
            case 4:
1109
                stl_phys(T0 & ~3, T1);
1110
                break;
1111
            case 8:
1112
            default:
1113
                stq_phys(T0 & ~7, T1);
1114
                break;
1115
            }
1116
        }
1117
        return;
1118
    case 0x04: // Nucleus
1119
    case 0x0c: // Nucleus Little Endian (LE)
1120
    case 0x11: // As if user secondary
1121
    case 0x19: // As if user secondary LE
1122
    case 0x24: // Nucleus quad LDD 128 bit atomic
1123
    case 0x2c: // Nucleus quad LDD 128 bit atomic
1124
    case 0x4a: // UPA config
1125
    case 0x81: // Secondary
1126
    case 0x89: // Secondary LE
1127
        // XXX
1128
        return;
1129
    case 0x45: // LSU
1130
        {
1131
            uint64_t oldreg;
1132

    
1133
            oldreg = env->lsu;
1134
            env->lsu = T1 & (DMMU_E | IMMU_E);
1135
            // Mappings generated during D/I MMU disabled mode are
1136
            // invalid in normal mode
1137
            if (oldreg != env->lsu) {
1138
                DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n", oldreg, env->lsu);
1139
#ifdef DEBUG_MMU
1140
                dump_mmu(env);
1141
#endif
1142
                tlb_flush(env, 1);
1143
            }
1144
            return;
1145
        }
1146
    case 0x50: // I-MMU regs
1147
        {
1148
            int reg = (T0 >> 3) & 0xf;
1149
            uint64_t oldreg;
1150

    
1151
            oldreg = env->immuregs[reg];
1152
            switch(reg) {
1153
            case 0: // RO
1154
            case 4:
1155
                return;
1156
            case 1: // Not in I-MMU
1157
            case 2:
1158
            case 7:
1159
            case 8:
1160
                return;
1161
            case 3: // SFSR
1162
                if ((T1 & 1) == 0)
1163
                    T1 = 0; // Clear SFSR
1164
                break;
1165
            case 5: // TSB access
1166
            case 6: // Tag access
1167
            default:
1168
                break;
1169
            }
1170
            env->immuregs[reg] = T1;
1171
            if (oldreg != env->immuregs[reg]) {
1172
                DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1173
            }
1174
#ifdef DEBUG_MMU
1175
            dump_mmu(env);
1176
#endif
1177
            return;
1178
        }
1179
    case 0x54: // I-MMU data in
1180
        {
1181
            unsigned int i;
1182

    
1183
            // Try finding an invalid entry
1184
            for (i = 0; i < 64; i++) {
1185
                if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
1186
                    env->itlb_tag[i] = env->immuregs[6];
1187
                    env->itlb_tte[i] = T1;
1188
                    return;
1189
                }
1190
            }
1191
            // Try finding an unlocked entry
1192
            for (i = 0; i < 64; i++) {
1193
                if ((env->itlb_tte[i] & 0x40) == 0) {
1194
                    env->itlb_tag[i] = env->immuregs[6];
1195
                    env->itlb_tte[i] = T1;
1196
                    return;
1197
                }
1198
            }
1199
            // error state?
1200
            return;
1201
        }
1202
    case 0x55: // I-MMU data access
1203
        {
1204
            unsigned int i = (T0 >> 3) & 0x3f;
1205

    
1206
            env->itlb_tag[i] = env->immuregs[6];
1207
            env->itlb_tte[i] = T1;
1208
            return;
1209
        }
1210
    case 0x57: // I-MMU demap
1211
        // XXX
1212
        return;
1213
    case 0x58: // D-MMU regs
1214
        {
1215
            int reg = (T0 >> 3) & 0xf;
1216
            uint64_t oldreg;
1217

    
1218
            oldreg = env->dmmuregs[reg];
1219
            switch(reg) {
1220
            case 0: // RO
1221
            case 4:
1222
                return;
1223
            case 3: // SFSR
1224
                if ((T1 & 1) == 0) {
1225
                    T1 = 0; // Clear SFSR, Fault address
1226
                    env->dmmuregs[4] = 0;
1227
                }
1228
                env->dmmuregs[reg] = T1;
1229
                break;
1230
            case 1: // Primary context
1231
            case 2: // Secondary context
1232
            case 5: // TSB access
1233
            case 6: // Tag access
1234
            case 7: // Virtual Watchpoint
1235
            case 8: // Physical Watchpoint
1236
            default:
1237
                break;
1238
            }
1239
            env->dmmuregs[reg] = T1;
1240
            if (oldreg != env->dmmuregs[reg]) {
1241
                DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
1242
            }
1243
#ifdef DEBUG_MMU
1244
            dump_mmu(env);
1245
#endif
1246
            return;
1247
        }
1248
    case 0x5c: // D-MMU data in
1249
        {
1250
            unsigned int i;
1251

    
1252
            // Try finding an invalid entry
1253
            for (i = 0; i < 64; i++) {
1254
                if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
1255
                    env->dtlb_tag[i] = env->dmmuregs[6];
1256
                    env->dtlb_tte[i] = T1;
1257
                    return;
1258
                }
1259
            }
1260
            // Try finding an unlocked entry
1261
            for (i = 0; i < 64; i++) {
1262
                if ((env->dtlb_tte[i] & 0x40) == 0) {
1263
                    env->dtlb_tag[i] = env->dmmuregs[6];
1264
                    env->dtlb_tte[i] = T1;
1265
                    return;
1266
                }
1267
            }
1268
            // error state?
1269
            return;
1270
        }
1271
    case 0x5d: // D-MMU data access
1272
        {
1273
            unsigned int i = (T0 >> 3) & 0x3f;
1274

    
1275
            env->dtlb_tag[i] = env->dmmuregs[6];
1276
            env->dtlb_tte[i] = T1;
1277
            return;
1278
        }
1279
    case 0x5f: // D-MMU demap
1280
    case 0x49: // Interrupt data receive
1281
        // XXX
1282
        return;
1283
    case 0x51: // I-MMU 8k TSB pointer, RO
1284
    case 0x52: // I-MMU 64k TSB pointer, RO
1285
    case 0x56: // I-MMU tag read, RO
1286
    case 0x59: // D-MMU 8k TSB pointer, RO
1287
    case 0x5a: // D-MMU 64k TSB pointer, RO
1288
    case 0x5b: // D-MMU data pointer, RO
1289
    case 0x5e: // D-MMU tag read, RO
1290
    case 0x48: // Interrupt dispatch, RO
1291
    case 0x7f: // Incoming interrupt vector, RO
1292
    case 0x82: // Primary no-fault, RO
1293
    case 0x83: // Secondary no-fault, RO
1294
    case 0x8a: // Primary no-fault LE, RO
1295
    case 0x8b: // Secondary no-fault LE, RO
1296
    default:
1297
        do_unassigned_access(T0, 1, 0, 1);
1298
        return;
1299
    }
1300
}
1301
#endif /* CONFIG_USER_ONLY */
1302

    
1303
void helper_ldf_asi(int asi, int size, int rd)
1304
{
1305
    target_ulong tmp_T0 = T0, tmp_T1 = T1;
1306
    unsigned int i;
1307

    
1308
    switch (asi) {
1309
    case 0xf0: // Block load primary
1310
    case 0xf1: // Block load secondary
1311
    case 0xf8: // Block load primary LE
1312
    case 0xf9: // Block load secondary LE
1313
        if (rd & 7) {
1314
            raise_exception(TT_ILL_INSN);
1315
            return;
1316
        }
1317
        if (T0 & 0x3f) {
1318
            raise_exception(TT_UNALIGNED);
1319
            return;
1320
        }
1321
        for (i = 0; i < 16; i++) {
1322
            helper_ld_asi(asi & 0x8f, 4, 0);
1323
            *(uint32_t *)&env->fpr[rd++] = T1;
1324
            T0 += 4;
1325
        }
1326
        T0 = tmp_T0;
1327
        T1 = tmp_T1;
1328

    
1329
        return;
1330
    default:
1331
        break;
1332
    }
1333

    
1334
    helper_ld_asi(asi, size, 0);
1335
    switch(size) {
1336
    default:
1337
    case 4:
1338
        *((uint32_t *)&FT0) = T1;
1339
        break;
1340
    case 8:
1341
        *((int64_t *)&DT0) = T1;
1342
        break;
1343
    }
1344
    T1 = tmp_T1;
1345
}
1346

    
1347
void helper_stf_asi(int asi, int size, int rd)
1348
{
1349
    target_ulong tmp_T0 = T0, tmp_T1 = T1;
1350
    unsigned int i;
1351

    
1352
    switch (asi) {
1353
    case 0xf0: // Block store primary
1354
    case 0xf1: // Block store secondary
1355
    case 0xf8: // Block store primary LE
1356
    case 0xf9: // Block store secondary LE
1357
        if (rd & 7) {
1358
            raise_exception(TT_ILL_INSN);
1359
            return;
1360
        }
1361
        if (T0 & 0x3f) {
1362
            raise_exception(TT_UNALIGNED);
1363
            return;
1364
        }
1365
        for (i = 0; i < 16; i++) {
1366
            T1 = *(uint32_t *)&env->fpr[rd++];
1367
            helper_st_asi(asi & 0x8f, 4);
1368
            T0 += 4;
1369
        }
1370
        T0 = tmp_T0;
1371
        T1 = tmp_T1;
1372

    
1373
        return;
1374
    default:
1375
        break;
1376
    }
1377

    
1378
    switch(size) {
1379
    default:
1380
    case 4:
1381
        T1 = *((uint32_t *)&FT0);
1382
        break;
1383
    case 8:
1384
        T1 = *((int64_t *)&DT0);
1385
        break;
1386
    }
1387
    helper_st_asi(asi, size);
1388
    T1 = tmp_T1;
1389
}
1390

    
1391
#endif /* TARGET_SPARC64 */
1392

    
1393
#ifndef TARGET_SPARC64
1394
void helper_rett()
1395
{
1396
    unsigned int cwp;
1397

    
1398
    if (env->psret == 1)
1399
        raise_exception(TT_ILL_INSN);
1400

    
1401
    env->psret = 1;
1402
    cwp = (env->cwp + 1) & (NWINDOWS - 1);
1403
    if (env->wim & (1 << cwp)) {
1404
        raise_exception(TT_WIN_UNF);
1405
    }
1406
    set_cwp(cwp);
1407
    env->psrs = env->psrps;
1408
}
1409
#endif
1410

    
1411
void helper_ldfsr(void)
1412
{
1413
    int rnd_mode;
1414
    switch (env->fsr & FSR_RD_MASK) {
1415
    case FSR_RD_NEAREST:
1416
        rnd_mode = float_round_nearest_even;
1417
        break;
1418
    default:
1419
    case FSR_RD_ZERO:
1420
        rnd_mode = float_round_to_zero;
1421
        break;
1422
    case FSR_RD_POS:
1423
        rnd_mode = float_round_up;
1424
        break;
1425
    case FSR_RD_NEG:
1426
        rnd_mode = float_round_down;
1427
        break;
1428
    }
1429
    set_float_rounding_mode(rnd_mode, &env->fp_status);
1430
}
1431

    
1432
void helper_debug()
1433
{
1434
    env->exception_index = EXCP_DEBUG;
1435
    cpu_loop_exit();
1436
}
1437

    
1438
#ifndef TARGET_SPARC64
1439
void do_wrpsr()
1440
{
1441
    if ((T0 & PSR_CWP) >= NWINDOWS)
1442
        raise_exception(TT_ILL_INSN);
1443
    else
1444
        PUT_PSR(env, T0);
1445
}
1446

    
1447
void do_rdpsr()
1448
{
1449
    T0 = GET_PSR(env);
1450
}
1451

    
1452
#else
1453

    
1454
void do_popc()
1455
{
1456
    T0 = (T1 & 0x5555555555555555ULL) + ((T1 >> 1) & 0x5555555555555555ULL);
1457
    T0 = (T0 & 0x3333333333333333ULL) + ((T0 >> 2) & 0x3333333333333333ULL);
1458
    T0 = (T0 & 0x0f0f0f0f0f0f0f0fULL) + ((T0 >> 4) & 0x0f0f0f0f0f0f0f0fULL);
1459
    T0 = (T0 & 0x00ff00ff00ff00ffULL) + ((T0 >> 8) & 0x00ff00ff00ff00ffULL);
1460
    T0 = (T0 & 0x0000ffff0000ffffULL) + ((T0 >> 16) & 0x0000ffff0000ffffULL);
1461
    T0 = (T0 & 0x00000000ffffffffULL) + ((T0 >> 32) & 0x00000000ffffffffULL);
1462
}
1463

    
1464
static inline uint64_t *get_gregset(uint64_t pstate)
1465
{
1466
    switch (pstate) {
1467
    default:
1468
    case 0:
1469
        return env->bgregs;
1470
    case PS_AG:
1471
        return env->agregs;
1472
    case PS_MG:
1473
        return env->mgregs;
1474
    case PS_IG:
1475
        return env->igregs;
1476
    }
1477
}
1478

    
1479
static inline void change_pstate(uint64_t new_pstate)
1480
{
1481
    uint64_t pstate_regs, new_pstate_regs;
1482
    uint64_t *src, *dst;
1483

    
1484
    pstate_regs = env->pstate & 0xc01;
1485
    new_pstate_regs = new_pstate & 0xc01;
1486
    if (new_pstate_regs != pstate_regs) {
1487
        // Switch global register bank
1488
        src = get_gregset(new_pstate_regs);
1489
        dst = get_gregset(pstate_regs);
1490
        memcpy32(dst, env->gregs);
1491
        memcpy32(env->gregs, src);
1492
    }
1493
    env->pstate = new_pstate;
1494
}
1495

    
1496
void do_wrpstate(void)
1497
{
1498
    change_pstate(T0 & 0xf3f);
1499
}
1500

    
1501
void do_done(void)
1502
{
1503
    env->tl--;
1504
    env->pc = env->tnpc[env->tl];
1505
    env->npc = env->tnpc[env->tl] + 4;
1506
    PUT_CCR(env, env->tstate[env->tl] >> 32);
1507
    env->asi = (env->tstate[env->tl] >> 24) & 0xff;
1508
    change_pstate((env->tstate[env->tl] >> 8) & 0xf3f);
1509
    PUT_CWP64(env, env->tstate[env->tl] & 0xff);
1510
}
1511

    
1512
void do_retry(void)
1513
{
1514
    env->tl--;
1515
    env->pc = env->tpc[env->tl];
1516
    env->npc = env->tnpc[env->tl];
1517
    PUT_CCR(env, env->tstate[env->tl] >> 32);
1518
    env->asi = (env->tstate[env->tl] >> 24) & 0xff;
1519
    change_pstate((env->tstate[env->tl] >> 8) & 0xf3f);
1520
    PUT_CWP64(env, env->tstate[env->tl] & 0xff);
1521
}
1522
#endif
1523

    
1524
void set_cwp(int new_cwp)
1525
{
1526
    /* put the modified wrap registers at their proper location */
1527
    if (env->cwp == (NWINDOWS - 1))
1528
        memcpy32(env->regbase, env->regbase + NWINDOWS * 16);
1529
    env->cwp = new_cwp;
1530
    /* put the wrap registers at their temporary location */
1531
    if (new_cwp == (NWINDOWS - 1))
1532
        memcpy32(env->regbase + NWINDOWS * 16, env->regbase);
1533
    env->regwptr = env->regbase + (new_cwp * 16);
1534
    REGWPTR = env->regwptr;
1535
}
1536

    
1537
void cpu_set_cwp(CPUState *env1, int new_cwp)
1538
{
1539
    CPUState *saved_env;
1540
#ifdef reg_REGWPTR
1541
    target_ulong *saved_regwptr;
1542
#endif
1543

    
1544
    saved_env = env;
1545
#ifdef reg_REGWPTR
1546
    saved_regwptr = REGWPTR;
1547
#endif
1548
    env = env1;
1549
    set_cwp(new_cwp);
1550
    env = saved_env;
1551
#ifdef reg_REGWPTR
1552
    REGWPTR = saved_regwptr;
1553
#endif
1554
}
1555

    
1556
#ifdef TARGET_SPARC64
1557
void do_interrupt(int intno)
1558
{
1559
#ifdef DEBUG_PCALL
1560
    if (loglevel & CPU_LOG_INT) {
1561
        static int count;
1562
        fprintf(logfile, "%6d: v=%04x pc=%016" PRIx64 " npc=%016" PRIx64 " SP=%016" PRIx64 "\n",
1563
                count, intno,
1564
                env->pc,
1565
                env->npc, env->regwptr[6]);
1566
        cpu_dump_state(env, logfile, fprintf, 0);
1567
#if 0
1568
        {
1569
            int i;
1570
            uint8_t *ptr;
1571

1572
            fprintf(logfile, "       code=");
1573
            ptr = (uint8_t *)env->pc;
1574
            for(i = 0; i < 16; i++) {
1575
                fprintf(logfile, " %02x", ldub(ptr + i));
1576
            }
1577
            fprintf(logfile, "\n");
1578
        }
1579
#endif
1580
        count++;
1581
    }
1582
#endif
1583
#if !defined(CONFIG_USER_ONLY)
1584
    if (env->tl == MAXTL) {
1585
        cpu_abort(env, "Trap 0x%04x while trap level is MAXTL, Error state", env->exception_index);
1586
        return;
1587
    }
1588
#endif
1589
    env->tstate[env->tl] = ((uint64_t)GET_CCR(env) << 32) | ((env->asi & 0xff) << 24) |
1590
        ((env->pstate & 0xf3f) << 8) | GET_CWP64(env);
1591
    env->tpc[env->tl] = env->pc;
1592
    env->tnpc[env->tl] = env->npc;
1593
    env->tt[env->tl] = intno;
1594
    change_pstate(PS_PEF | PS_PRIV | PS_AG);
1595

    
1596
    if (intno == TT_CLRWIN)
1597
        set_cwp((env->cwp - 1) & (NWINDOWS - 1));
1598
    else if ((intno & 0x1c0) == TT_SPILL)
1599
        set_cwp((env->cwp - env->cansave - 2) & (NWINDOWS - 1));
1600
    else if ((intno & 0x1c0) == TT_FILL)
1601
        set_cwp((env->cwp + 1) & (NWINDOWS - 1));
1602
    env->tbr &= ~0x7fffULL;
1603
    env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
1604
    if (env->tl < MAXTL - 1) {
1605
        env->tl++;
1606
    } else {
1607
        env->pstate |= PS_RED;
1608
        if (env->tl != MAXTL)
1609
            env->tl++;
1610
    }
1611
    env->pc = env->tbr;
1612
    env->npc = env->pc + 4;
1613
    env->exception_index = 0;
1614
}
1615
#else
1616
void do_interrupt(int intno)
1617
{
1618
    int cwp;
1619

    
1620
#ifdef DEBUG_PCALL
1621
    if (loglevel & CPU_LOG_INT) {
1622
        static int count;
1623
        fprintf(logfile, "%6d: v=%02x pc=%08x npc=%08x SP=%08x\n",
1624
                count, intno,
1625
                env->pc,
1626
                env->npc, env->regwptr[6]);
1627
        cpu_dump_state(env, logfile, fprintf, 0);
1628
#if 0
1629
        {
1630
            int i;
1631
            uint8_t *ptr;
1632

1633
            fprintf(logfile, "       code=");
1634
            ptr = (uint8_t *)env->pc;
1635
            for(i = 0; i < 16; i++) {
1636
                fprintf(logfile, " %02x", ldub(ptr + i));
1637
            }
1638
            fprintf(logfile, "\n");
1639
        }
1640
#endif
1641
        count++;
1642
    }
1643
#endif
1644
#if !defined(CONFIG_USER_ONLY)
1645
    if (env->psret == 0) {
1646
        cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state", env->exception_index);
1647
        return;
1648
    }
1649
#endif
1650
    env->psret = 0;
1651
    cwp = (env->cwp - 1) & (NWINDOWS - 1);
1652
    set_cwp(cwp);
1653
    env->regwptr[9] = env->pc;
1654
    env->regwptr[10] = env->npc;
1655
    env->psrps = env->psrs;
1656
    env->psrs = 1;
1657
    env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
1658
    env->pc = env->tbr;
1659
    env->npc = env->pc + 4;
1660
    env->exception_index = 0;
1661
}
1662
#endif
1663

    
1664
#if !defined(CONFIG_USER_ONLY)
1665

    
1666
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
1667
                                void *retaddr);
1668

    
1669
#define MMUSUFFIX _mmu
1670
#define ALIGNED_ONLY
1671
#define GETPC() (__builtin_return_address(0))
1672

    
1673
#define SHIFT 0
1674
#include "softmmu_template.h"
1675

    
1676
#define SHIFT 1
1677
#include "softmmu_template.h"
1678

    
1679
#define SHIFT 2
1680
#include "softmmu_template.h"
1681

    
1682
#define SHIFT 3
1683
#include "softmmu_template.h"
1684

    
1685
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
1686
                                void *retaddr)
1687
{
1688
#ifdef DEBUG_UNALIGNED
1689
    printf("Unaligned access to 0x%x from 0x%x\n", addr, env->pc);
1690
#endif
1691
    raise_exception(TT_UNALIGNED);
1692
}
1693

    
1694
/* try to fill the TLB and return an exception if error. If retaddr is
1695
   NULL, it means that the function was called in C code (i.e. not
1696
   from generated code or from helper.c) */
1697
/* XXX: fix it to restore all registers */
1698
void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
1699
{
1700
    TranslationBlock *tb;
1701
    int ret;
1702
    unsigned long pc;
1703
    CPUState *saved_env;
1704

    
1705
    /* XXX: hack to restore env in all cases, even if not called from
1706
       generated code */
1707
    saved_env = env;
1708
    env = cpu_single_env;
1709

    
1710
    ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
1711
    if (ret) {
1712
        if (retaddr) {
1713
            /* now we have a real cpu fault */
1714
            pc = (unsigned long)retaddr;
1715
            tb = tb_find_pc(pc);
1716
            if (tb) {
1717
                /* the PC is inside the translated code. It means that we have
1718
                   a virtual CPU fault */
1719
                cpu_restore_state(tb, env, pc, (void *)T2);
1720
            }
1721
        }
1722
        cpu_loop_exit();
1723
    }
1724
    env = saved_env;
1725
}
1726

    
1727
#endif
1728

    
1729
#ifndef TARGET_SPARC64
1730
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
1731
                          int is_asi)
1732
{
1733
    CPUState *saved_env;
1734

    
1735
    /* XXX: hack to restore env in all cases, even if not called from
1736
       generated code */
1737
    saved_env = env;
1738
    env = cpu_single_env;
1739
    if (env->mmuregs[3]) /* Fault status register */
1740
        env->mmuregs[3] = 1; /* overflow (not read before another fault) */
1741
    if (is_asi)
1742
        env->mmuregs[3] |= 1 << 16;
1743
    if (env->psrs)
1744
        env->mmuregs[3] |= 1 << 5;
1745
    if (is_exec)
1746
        env->mmuregs[3] |= 1 << 6;
1747
    if (is_write)
1748
        env->mmuregs[3] |= 1 << 7;
1749
    env->mmuregs[3] |= (5 << 2) | 2;
1750
    env->mmuregs[4] = addr; /* Fault address register */
1751
    if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
1752
#ifdef DEBUG_UNASSIGNED
1753
        printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
1754
               "\n", addr, env->pc);
1755
#endif
1756
        if (is_exec)
1757
            raise_exception(TT_CODE_ACCESS);
1758
        else
1759
            raise_exception(TT_DATA_ACCESS);
1760
    }
1761
    env = saved_env;
1762
}
1763
#else
1764
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
1765
                          int is_asi)
1766
{
1767
#ifdef DEBUG_UNASSIGNED
1768
    CPUState *saved_env;
1769

    
1770
    /* XXX: hack to restore env in all cases, even if not called from
1771
       generated code */
1772
    saved_env = env;
1773
    env = cpu_single_env;
1774
    printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx "\n",
1775
           addr, env->pc);
1776
    env = saved_env;
1777
#endif
1778
    if (is_exec)
1779
        raise_exception(TT_CODE_ACCESS);
1780
    else
1781
        raise_exception(TT_DATA_ACCESS);
1782
}
1783
#endif
1784

    
1785
#ifdef TARGET_SPARC64
1786
void do_tick_set_count(void *opaque, uint64_t count)
1787
{
1788
#if !defined(CONFIG_USER_ONLY)
1789
    ptimer_set_count(opaque, -count);
1790
#endif
1791
}
1792

    
1793
uint64_t do_tick_get_count(void *opaque)
1794
{
1795
#if !defined(CONFIG_USER_ONLY)
1796
    return -ptimer_get_count(opaque);
1797
#else
1798
    return 0;
1799
#endif
1800
}
1801

    
1802
void do_tick_set_limit(void *opaque, uint64_t limit)
1803
{
1804
#if !defined(CONFIG_USER_ONLY)
1805
    ptimer_set_limit(opaque, -limit, 0);
1806
#endif
1807
}
1808
#endif