Statistics
| Branch: | Revision:

root / hw / sun4m.c @ 6f7e9aec

History | View | Annotate | Download (9.2 kB)

1
/*
2
 * QEMU Sun4m System Emulator
3
 * 
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25
#include "m48t08.h"
26

    
27
#define KERNEL_LOAD_ADDR     0x00004000
28
#define CMDLINE_ADDR         0x007ff000
29
#define INITRD_LOAD_ADDR     0x00800000
30
#define PROM_ADDR             0xffd00000
31
#define PROM_FILENAMEB             "proll.bin"
32
#define PROM_FILENAMEE             "proll.elf"
33
#define PHYS_JJ_EEPROM        0x71200000        /* m48t08 */
34
#define PHYS_JJ_IDPROM_OFF        0x1FD8
35
#define PHYS_JJ_EEPROM_SIZE        0x2000
36
// IRQs are not PIL ones, but master interrupt controller register
37
// bits
38
#define PHYS_JJ_IOMMU        0x10000000        /* I/O MMU */
39
#define PHYS_JJ_TCX_FB        0x50000000        /* TCX frame buffer */
40
#define PHYS_JJ_ESPDMA  0x78400000      /* ESP DMA controller */
41
#define PHYS_JJ_ESP     0x78800000      /* ESP SCSI */
42
#define PHYS_JJ_ESP_IRQ    18
43
#define PHYS_JJ_LEDMA   0x78400010      /* Lance DMA controller */
44
#define PHYS_JJ_LE      0x78C00000      /* Lance ethernet */
45
#define PHYS_JJ_LE_IRQ     16
46
#define PHYS_JJ_CLOCK        0x71D00000      /* Per-CPU timer/counter, L14 */
47
#define PHYS_JJ_CLOCK_IRQ  7
48
#define PHYS_JJ_CLOCK1        0x71D10000      /* System timer/counter, L10 */
49
#define PHYS_JJ_CLOCK1_IRQ 19
50
#define PHYS_JJ_INTR0        0x71E00000        /* Per-CPU interrupt control registers */
51
#define PHYS_JJ_INTR_G        0x71E10000        /* Master interrupt control registers */
52
#define PHYS_JJ_MS_KBD        0x71000000        /* Mouse and keyboard */
53
#define PHYS_JJ_MS_KBD_IRQ    14
54
#define PHYS_JJ_SER        0x71100000        /* Serial */
55
#define PHYS_JJ_SER_IRQ    15
56
#define PHYS_JJ_FDC        0x71400000        /* Floppy */
57
#define PHYS_JJ_FLOPPY_IRQ 22
58

    
59
/* TSC handling */
60

    
61
uint64_t cpu_get_tsc()
62
{
63
    return qemu_get_clock(vm_clock);
64
}
65

    
66
int DMA_get_channel_mode (int nchan)
67
{
68
    return 0;
69
}
70
int DMA_read_memory (int nchan, void *buf, int pos, int size)
71
{
72
    return 0;
73
}
74
int DMA_write_memory (int nchan, void *buf, int pos, int size)
75
{
76
    return 0;
77
}
78
void DMA_hold_DREQ (int nchan) {}
79
void DMA_release_DREQ (int nchan) {}
80
void DMA_schedule(int nchan) {}
81
void DMA_run (void) {}
82
void DMA_init (int high_page_enable) {}
83
void DMA_register_channel (int nchan,
84
                           DMA_transfer_handler transfer_handler,
85
                           void *opaque)
86
{
87
}
88

    
89
static void nvram_set_word (m48t08_t *nvram, uint32_t addr, uint16_t value)
90
{
91
    m48t08_write(nvram, addr++, (value >> 8) & 0xff);
92
    m48t08_write(nvram, addr++, value & 0xff);
93
}
94

    
95
static void nvram_set_lword (m48t08_t *nvram, uint32_t addr, uint32_t value)
96
{
97
    m48t08_write(nvram, addr++, value >> 24);
98
    m48t08_write(nvram, addr++, (value >> 16) & 0xff);
99
    m48t08_write(nvram, addr++, (value >> 8) & 0xff);
100
    m48t08_write(nvram, addr++, value & 0xff);
101
}
102

    
103
static void nvram_set_string (m48t08_t *nvram, uint32_t addr,
104
                       const unsigned char *str, uint32_t max)
105
{
106
    unsigned int i;
107

    
108
    for (i = 0; i < max && str[i] != '\0'; i++) {
109
        m48t08_write(nvram, addr + i, str[i]);
110
    }
111
    m48t08_write(nvram, addr + max - 1, '\0');
112
}
113

    
114
static m48t08_t *nvram;
115

    
116
extern int nographic;
117

    
118
static void nvram_init(m48t08_t *nvram, uint8_t *macaddr, const char *cmdline,
119
                       int boot_device, uint32_t RAM_size,
120
                       uint32_t kernel_size,
121
                       int width, int height, int depth)
122
{
123
    unsigned char tmp = 0;
124
    int i, j;
125

    
126
    // Try to match PPC NVRAM
127
    nvram_set_string(nvram, 0x00, "QEMU_BIOS", 16);
128
    nvram_set_lword(nvram,  0x10, 0x00000001); /* structure v1 */
129
    // NVRAM_size, arch not applicable
130
    m48t08_write(nvram, 0x2F, nographic & 0xff);
131
    nvram_set_lword(nvram,  0x30, RAM_size);
132
    m48t08_write(nvram, 0x34, boot_device & 0xff);
133
    nvram_set_lword(nvram,  0x38, KERNEL_LOAD_ADDR);
134
    nvram_set_lword(nvram,  0x3C, kernel_size);
135
    if (cmdline) {
136
        strcpy(phys_ram_base + CMDLINE_ADDR, cmdline);
137
        nvram_set_lword(nvram,  0x40, CMDLINE_ADDR);
138
        nvram_set_lword(nvram,  0x44, strlen(cmdline));
139
    }
140
    // initrd_image, initrd_size passed differently
141
    nvram_set_word(nvram,   0x54, width);
142
    nvram_set_word(nvram,   0x56, height);
143
    nvram_set_word(nvram,   0x58, depth);
144

    
145
    // Sun4m specific use
146
    i = 0x1fd8;
147
    m48t08_write(nvram, i++, 0x01);
148
    m48t08_write(nvram, i++, 0x80); /* Sun4m OBP */
149
    j = 0;
150
    m48t08_write(nvram, i++, macaddr[j++]);
151
    m48t08_write(nvram, i++, macaddr[j++]);
152
    m48t08_write(nvram, i++, macaddr[j++]);
153
    m48t08_write(nvram, i++, macaddr[j++]);
154
    m48t08_write(nvram, i++, macaddr[j++]);
155
    m48t08_write(nvram, i, macaddr[j]);
156

    
157
    /* Calculate checksum */
158
    for (i = 0x1fd8; i < 0x1fe7; i++) {
159
        tmp ^= m48t08_read(nvram, i);
160
    }
161
    m48t08_write(nvram, 0x1fe7, tmp);
162
}
163

    
164
static void *slavio_intctl;
165

    
166
void pic_info()
167
{
168
    slavio_pic_info(slavio_intctl);
169
}
170

    
171
void irq_info()
172
{
173
    slavio_irq_info(slavio_intctl);
174
}
175

    
176
void pic_set_irq(int irq, int level)
177
{
178
    slavio_pic_set_irq(slavio_intctl, irq, level);
179
}
180

    
181
static void *tcx;
182

    
183
void vga_update_display()
184
{
185
    tcx_update_display(tcx);
186
}
187

    
188
void vga_invalidate_display()
189
{
190
    tcx_invalidate_display(tcx);
191
}
192

    
193
void vga_screen_dump(const char *filename)
194
{
195
    tcx_screen_dump(tcx, filename);
196
}
197

    
198
static void *iommu;
199

    
200
uint32_t iommu_translate(uint32_t addr)
201
{
202
    return iommu_translate_local(iommu, addr);
203
}
204

    
205
/* Sun4m hardware initialisation */
206
void sun4m_init(int ram_size, int vga_ram_size, int boot_device,
207
             DisplayState *ds, const char **fd_filename, int snapshot,
208
             const char *kernel_filename, const char *kernel_cmdline,
209
             const char *initrd_filename)
210
{
211
    char buf[1024];
212
    int ret, linux_boot;
213
    unsigned int i;
214
    long vram_size = 0x100000, prom_offset, initrd_size, kernel_size;
215

    
216
    linux_boot = (kernel_filename != NULL);
217

    
218
    /* allocate RAM */
219
    cpu_register_physical_memory(0, ram_size, 0);
220

    
221
    iommu = iommu_init(PHYS_JJ_IOMMU);
222
    slavio_intctl = slavio_intctl_init(PHYS_JJ_INTR0, PHYS_JJ_INTR_G);
223
    tcx = tcx_init(ds, PHYS_JJ_TCX_FB, phys_ram_base + ram_size, ram_size, vram_size, graphic_width, graphic_height);
224
    lance_init(&nd_table[0], PHYS_JJ_LE_IRQ, PHYS_JJ_LE, PHYS_JJ_LEDMA);
225
    nvram = m48t08_init(PHYS_JJ_EEPROM, PHYS_JJ_EEPROM_SIZE);
226
    slavio_timer_init(PHYS_JJ_CLOCK, PHYS_JJ_CLOCK_IRQ, PHYS_JJ_CLOCK1, PHYS_JJ_CLOCK1_IRQ);
227
    slavio_serial_ms_kbd_init(PHYS_JJ_MS_KBD, PHYS_JJ_MS_KBD_IRQ);
228
    slavio_serial_init(PHYS_JJ_SER, PHYS_JJ_SER_IRQ, serial_hds[0], serial_hds[1]);
229
    fdctrl_init(PHYS_JJ_FLOPPY_IRQ, 0, 1, PHYS_JJ_FDC, fd_table);
230
    esp_init(bs_table, PHYS_JJ_ESP_IRQ, PHYS_JJ_ESP, PHYS_JJ_ESPDMA);
231

    
232
    prom_offset = ram_size + vram_size;
233

    
234
    snprintf(buf, sizeof(buf), "%s/%s", bios_dir, PROM_FILENAMEE);
235
    ret = load_elf(buf, phys_ram_base + prom_offset);
236
    if (ret < 0) {
237
        snprintf(buf, sizeof(buf), "%s/%s", bios_dir, PROM_FILENAMEB);
238
        ret = load_image(buf, phys_ram_base + prom_offset);
239
    }
240
    if (ret < 0) {
241
        fprintf(stderr, "qemu: could not load prom '%s'\n", 
242
                buf);
243
        exit(1);
244
    }
245
    cpu_register_physical_memory(PROM_ADDR, (ret + TARGET_PAGE_SIZE) & TARGET_PAGE_MASK, 
246
                                 prom_offset | IO_MEM_ROM);
247

    
248
    kernel_size = 0;
249
    if (linux_boot) {
250
        kernel_size = load_elf(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
251
        if (kernel_size < 0)
252
            kernel_size = load_aout(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
253
        if (kernel_size < 0)
254
            kernel_size = load_image(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
255
        if (kernel_size < 0) {
256
            fprintf(stderr, "qemu: could not load kernel '%s'\n", 
257
                    kernel_filename);
258
            exit(1);
259
        }
260

    
261
        /* load initrd */
262
        initrd_size = 0;
263
        if (initrd_filename) {
264
            initrd_size = load_image(initrd_filename, phys_ram_base + INITRD_LOAD_ADDR);
265
            if (initrd_size < 0) {
266
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n", 
267
                        initrd_filename);
268
                exit(1);
269
            }
270
        }
271
        if (initrd_size > 0) {
272
            for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
273
                if (ldl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i)
274
                    == 0x48647253) { // HdrS
275
                    stl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i + 16, INITRD_LOAD_ADDR);
276
                    stl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i + 20, initrd_size);
277
                    break;
278
                }
279
            }
280
        }
281
    }
282
    nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, kernel_cmdline, boot_device, ram_size, kernel_size, graphic_width, graphic_height, graphic_depth);
283
}