Statistics
| Branch: | Revision:

root / tests / test-i386.c @ 7058bfa6

History | View | Annotate | Download (70.1 kB)

1
/*
2
 *  x86 CPU test
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 *  This program is free software; you can redistribute it and/or modify
7
 *  it under the terms of the GNU General Public License as published by
8
 *  the Free Software Foundation; either version 2 of the License, or
9
 *  (at your option) any later version.
10
 *
11
 *  This program is distributed in the hope that it will be useful,
12
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
 *  GNU General Public License for more details.
15
 *
16
 *  You should have received a copy of the GNU General Public License
17
 *  along with this program; if not, write to the Free Software
18
 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19
 */
20
#define _GNU_SOURCE
21
#include <stdlib.h>
22
#include <stdio.h>
23
#include <string.h>
24
#include <inttypes.h>
25
#include <math.h>
26
#include <signal.h>
27
#include <setjmp.h>
28
#include <errno.h>
29
#include <sys/ucontext.h>
30
#include <sys/mman.h>
31

    
32
#if !defined(__x86_64__)
33
//#define TEST_VM86
34
#define TEST_SEGS
35
#endif
36
//#define LINUX_VM86_IOPL_FIX
37
//#define TEST_P4_FLAGS
38
#ifdef __SSE__
39
#define TEST_SSE
40
#define TEST_CMOV  1
41
#define TEST_FCOMI 1
42
#else
43
#undef TEST_SSE
44
#define TEST_CMOV  1
45
#define TEST_FCOMI 1
46
#endif
47

    
48
#if defined(__x86_64__)
49
#define FMT64X "%016lx"
50
#define FMTLX "%016lx"
51
#define X86_64_ONLY(x) x
52
#else
53
#define FMT64X "%016" PRIx64
54
#define FMTLX "%08lx"
55
#define X86_64_ONLY(x)
56
#endif
57

    
58
#ifdef TEST_VM86
59
#include <asm/vm86.h>
60
#endif
61

    
62
#define xglue(x, y) x ## y
63
#define glue(x, y) xglue(x, y)
64
#define stringify(s)        tostring(s)
65
#define tostring(s)        #s
66

    
67
#define CC_C           0x0001
68
#define CC_P         0x0004
69
#define CC_A        0x0010
70
#define CC_Z        0x0040
71
#define CC_S    0x0080
72
#define CC_O    0x0800
73

    
74
#define __init_call        __attribute__ ((unused,__section__ ("initcall")))
75

    
76
#define CC_MASK (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A)
77

    
78
#if defined(__x86_64__)
79
static inline long i2l(long v)
80
{
81
    return v | ((v ^ 0xabcd) << 32);
82
}
83
#else
84
static inline long i2l(long v)
85
{
86
    return v;
87
}
88
#endif
89

    
90
#define OP add
91
#include "test-i386.h"
92

    
93
#define OP sub
94
#include "test-i386.h"
95

    
96
#define OP xor
97
#include "test-i386.h"
98

    
99
#define OP and
100
#include "test-i386.h"
101

    
102
#define OP or
103
#include "test-i386.h"
104

    
105
#define OP cmp
106
#include "test-i386.h"
107

    
108
#define OP adc
109
#define OP_CC
110
#include "test-i386.h"
111

    
112
#define OP sbb
113
#define OP_CC
114
#include "test-i386.h"
115

    
116
#define OP inc
117
#define OP_CC
118
#define OP1
119
#include "test-i386.h"
120

    
121
#define OP dec
122
#define OP_CC
123
#define OP1
124
#include "test-i386.h"
125

    
126
#define OP neg
127
#define OP_CC
128
#define OP1
129
#include "test-i386.h"
130

    
131
#define OP not
132
#define OP_CC
133
#define OP1
134
#include "test-i386.h"
135

    
136
#undef CC_MASK
137
#define CC_MASK (CC_C | CC_P | CC_Z | CC_S | CC_O)
138

    
139
#define OP shl
140
#include "test-i386-shift.h"
141

    
142
#define OP shr
143
#include "test-i386-shift.h"
144

    
145
#define OP sar
146
#include "test-i386-shift.h"
147

    
148
#define OP rol
149
#include "test-i386-shift.h"
150

    
151
#define OP ror
152
#include "test-i386-shift.h"
153

    
154
#define OP rcr
155
#define OP_CC
156
#include "test-i386-shift.h"
157

    
158
#define OP rcl
159
#define OP_CC
160
#include "test-i386-shift.h"
161

    
162
#define OP shld
163
#define OP_SHIFTD
164
#define OP_NOBYTE
165
#include "test-i386-shift.h"
166

    
167
#define OP shrd
168
#define OP_SHIFTD
169
#define OP_NOBYTE
170
#include "test-i386-shift.h"
171

    
172
/* XXX: should be more precise ? */
173
#undef CC_MASK
174
#define CC_MASK (CC_C)
175

    
176
#define OP bt
177
#define OP_NOBYTE
178
#include "test-i386-shift.h"
179

    
180
#define OP bts
181
#define OP_NOBYTE
182
#include "test-i386-shift.h"
183

    
184
#define OP btr
185
#define OP_NOBYTE
186
#include "test-i386-shift.h"
187

    
188
#define OP btc
189
#define OP_NOBYTE
190
#include "test-i386-shift.h"
191

    
192
/* lea test (modrm support) */
193
#define TEST_LEAQ(STR)\
194
{\
195
    asm("lea " STR ", %0"\
196
        : "=r" (res)\
197
        : "a" (eax), "b" (ebx), "c" (ecx), "d" (edx), "S" (esi), "D" (edi));\
198
    printf("lea %s = " FMTLX "\n", STR, res);\
199
}
200

    
201
#define TEST_LEA(STR)\
202
{\
203
    asm("lea " STR ", %0"\
204
        : "=r" (res)\
205
        : "a" (eax), "b" (ebx), "c" (ecx), "d" (edx), "S" (esi), "D" (edi));\
206
    printf("lea %s = " FMTLX "\n", STR, res);\
207
}
208

    
209
#define TEST_LEA16(STR)\
210
{\
211
    asm(".code16 ; .byte 0x67 ; leal " STR ", %0 ; .code32"\
212
        : "=wq" (res)\
213
        : "a" (eax), "b" (ebx), "c" (ecx), "d" (edx), "S" (esi), "D" (edi));\
214
    printf("lea %s = %08lx\n", STR, res);\
215
}
216

    
217

    
218
void test_lea(void)
219
{
220
    long eax, ebx, ecx, edx, esi, edi, res;
221
    eax = i2l(0x0001);
222
    ebx = i2l(0x0002);
223
    ecx = i2l(0x0004);
224
    edx = i2l(0x0008);
225
    esi = i2l(0x0010);
226
    edi = i2l(0x0020);
227

    
228
    TEST_LEA("0x4000");
229

    
230
    TEST_LEA("(%%eax)");
231
    TEST_LEA("(%%ebx)");
232
    TEST_LEA("(%%ecx)");
233
    TEST_LEA("(%%edx)");
234
    TEST_LEA("(%%esi)");
235
    TEST_LEA("(%%edi)");
236

    
237
    TEST_LEA("0x40(%%eax)");
238
    TEST_LEA("0x40(%%ebx)");
239
    TEST_LEA("0x40(%%ecx)");
240
    TEST_LEA("0x40(%%edx)");
241
    TEST_LEA("0x40(%%esi)");
242
    TEST_LEA("0x40(%%edi)");
243

    
244
    TEST_LEA("0x4000(%%eax)");
245
    TEST_LEA("0x4000(%%ebx)");
246
    TEST_LEA("0x4000(%%ecx)");
247
    TEST_LEA("0x4000(%%edx)");
248
    TEST_LEA("0x4000(%%esi)");
249
    TEST_LEA("0x4000(%%edi)");
250

    
251
    TEST_LEA("(%%eax, %%ecx)");
252
    TEST_LEA("(%%ebx, %%edx)");
253
    TEST_LEA("(%%ecx, %%ecx)");
254
    TEST_LEA("(%%edx, %%ecx)");
255
    TEST_LEA("(%%esi, %%ecx)");
256
    TEST_LEA("(%%edi, %%ecx)");
257

    
258
    TEST_LEA("0x40(%%eax, %%ecx)");
259
    TEST_LEA("0x4000(%%ebx, %%edx)");
260

    
261
    TEST_LEA("(%%ecx, %%ecx, 2)");
262
    TEST_LEA("(%%edx, %%ecx, 4)");
263
    TEST_LEA("(%%esi, %%ecx, 8)");
264

    
265
    TEST_LEA("(,%%eax, 2)");
266
    TEST_LEA("(,%%ebx, 4)");
267
    TEST_LEA("(,%%ecx, 8)");
268

    
269
    TEST_LEA("0x40(,%%eax, 2)");
270
    TEST_LEA("0x40(,%%ebx, 4)");
271
    TEST_LEA("0x40(,%%ecx, 8)");
272

    
273

    
274
    TEST_LEA("-10(%%ecx, %%ecx, 2)");
275
    TEST_LEA("-10(%%edx, %%ecx, 4)");
276
    TEST_LEA("-10(%%esi, %%ecx, 8)");
277

    
278
    TEST_LEA("0x4000(%%ecx, %%ecx, 2)");
279
    TEST_LEA("0x4000(%%edx, %%ecx, 4)");
280
    TEST_LEA("0x4000(%%esi, %%ecx, 8)");
281

    
282
#if defined(__x86_64__)
283
    TEST_LEAQ("0x4000");
284
    TEST_LEAQ("0x4000(%%rip)");
285

    
286
    TEST_LEAQ("(%%rax)");
287
    TEST_LEAQ("(%%rbx)");
288
    TEST_LEAQ("(%%rcx)");
289
    TEST_LEAQ("(%%rdx)");
290
    TEST_LEAQ("(%%rsi)");
291
    TEST_LEAQ("(%%rdi)");
292

    
293
    TEST_LEAQ("0x40(%%rax)");
294
    TEST_LEAQ("0x40(%%rbx)");
295
    TEST_LEAQ("0x40(%%rcx)");
296
    TEST_LEAQ("0x40(%%rdx)");
297
    TEST_LEAQ("0x40(%%rsi)");
298
    TEST_LEAQ("0x40(%%rdi)");
299

    
300
    TEST_LEAQ("0x4000(%%rax)");
301
    TEST_LEAQ("0x4000(%%rbx)");
302
    TEST_LEAQ("0x4000(%%rcx)");
303
    TEST_LEAQ("0x4000(%%rdx)");
304
    TEST_LEAQ("0x4000(%%rsi)");
305
    TEST_LEAQ("0x4000(%%rdi)");
306

    
307
    TEST_LEAQ("(%%rax, %%rcx)");
308
    TEST_LEAQ("(%%rbx, %%rdx)");
309
    TEST_LEAQ("(%%rcx, %%rcx)");
310
    TEST_LEAQ("(%%rdx, %%rcx)");
311
    TEST_LEAQ("(%%rsi, %%rcx)");
312
    TEST_LEAQ("(%%rdi, %%rcx)");
313

    
314
    TEST_LEAQ("0x40(%%rax, %%rcx)");
315
    TEST_LEAQ("0x4000(%%rbx, %%rdx)");
316

    
317
    TEST_LEAQ("(%%rcx, %%rcx, 2)");
318
    TEST_LEAQ("(%%rdx, %%rcx, 4)");
319
    TEST_LEAQ("(%%rsi, %%rcx, 8)");
320

    
321
    TEST_LEAQ("(,%%rax, 2)");
322
    TEST_LEAQ("(,%%rbx, 4)");
323
    TEST_LEAQ("(,%%rcx, 8)");
324

    
325
    TEST_LEAQ("0x40(,%%rax, 2)");
326
    TEST_LEAQ("0x40(,%%rbx, 4)");
327
    TEST_LEAQ("0x40(,%%rcx, 8)");
328

    
329

    
330
    TEST_LEAQ("-10(%%rcx, %%rcx, 2)");
331
    TEST_LEAQ("-10(%%rdx, %%rcx, 4)");
332
    TEST_LEAQ("-10(%%rsi, %%rcx, 8)");
333

    
334
    TEST_LEAQ("0x4000(%%rcx, %%rcx, 2)");
335
    TEST_LEAQ("0x4000(%%rdx, %%rcx, 4)");
336
    TEST_LEAQ("0x4000(%%rsi, %%rcx, 8)");
337
#else
338
    /* limited 16 bit addressing test */
339
    TEST_LEA16("0x4000");
340
    TEST_LEA16("(%%bx)");
341
    TEST_LEA16("(%%si)");
342
    TEST_LEA16("(%%di)");
343
    TEST_LEA16("0x40(%%bx)");
344
    TEST_LEA16("0x40(%%si)");
345
    TEST_LEA16("0x40(%%di)");
346
    TEST_LEA16("0x4000(%%bx)");
347
    TEST_LEA16("0x4000(%%si)");
348
    TEST_LEA16("(%%bx,%%si)");
349
    TEST_LEA16("(%%bx,%%di)");
350
    TEST_LEA16("0x40(%%bx,%%si)");
351
    TEST_LEA16("0x40(%%bx,%%di)");
352
    TEST_LEA16("0x4000(%%bx,%%si)");
353
    TEST_LEA16("0x4000(%%bx,%%di)");
354
#endif
355
}
356

    
357
#define TEST_JCC(JCC, v1, v2)\
358
{\
359
    int res;\
360
    asm("movl $1, %0\n\t"\
361
        "cmpl %2, %1\n\t"\
362
        "j" JCC " 1f\n\t"\
363
        "movl $0, %0\n\t"\
364
        "1:\n\t"\
365
        : "=r" (res)\
366
        : "r" (v1), "r" (v2));\
367
    printf("%-10s %d\n", "j" JCC, res);\
368
\
369
    asm("movl $0, %0\n\t"\
370
        "cmpl %2, %1\n\t"\
371
        "set" JCC " %b0\n\t"\
372
        : "=r" (res)\
373
        : "r" (v1), "r" (v2));\
374
    printf("%-10s %d\n", "set" JCC, res);\
375
 if (TEST_CMOV) {\
376
    long val = i2l(1);\
377
    long res = i2l(0x12345678);\
378
X86_64_ONLY(\
379
    asm("cmpl %2, %1\n\t"\
380
        "cmov" JCC "q %3, %0\n\t"\
381
        : "=r" (res)\
382
        : "r" (v1), "r" (v2), "m" (val), "0" (res));\
383
        printf("%-10s R=" FMTLX "\n", "cmov" JCC "q", res);)\
384
    asm("cmpl %2, %1\n\t"\
385
        "cmov" JCC "l %k3, %k0\n\t"\
386
        : "=r" (res)\
387
        : "r" (v1), "r" (v2), "m" (val), "0" (res));\
388
        printf("%-10s R=" FMTLX "\n", "cmov" JCC "l", res);\
389
    asm("cmpl %2, %1\n\t"\
390
        "cmov" JCC "w %w3, %w0\n\t"\
391
        : "=r" (res)\
392
        : "r" (v1), "r" (v2), "r" (1), "0" (res));\
393
        printf("%-10s R=" FMTLX "\n", "cmov" JCC "w", res);\
394
 } \
395
}
396

    
397
/* various jump tests */
398
void test_jcc(void)
399
{
400
    TEST_JCC("ne", 1, 1);
401
    TEST_JCC("ne", 1, 0);
402

    
403
    TEST_JCC("e", 1, 1);
404
    TEST_JCC("e", 1, 0);
405

    
406
    TEST_JCC("l", 1, 1);
407
    TEST_JCC("l", 1, 0);
408
    TEST_JCC("l", 1, -1);
409

    
410
    TEST_JCC("le", 1, 1);
411
    TEST_JCC("le", 1, 0);
412
    TEST_JCC("le", 1, -1);
413

    
414
    TEST_JCC("ge", 1, 1);
415
    TEST_JCC("ge", 1, 0);
416
    TEST_JCC("ge", -1, 1);
417

    
418
    TEST_JCC("g", 1, 1);
419
    TEST_JCC("g", 1, 0);
420
    TEST_JCC("g", 1, -1);
421

    
422
    TEST_JCC("b", 1, 1);
423
    TEST_JCC("b", 1, 0);
424
    TEST_JCC("b", 1, -1);
425

    
426
    TEST_JCC("be", 1, 1);
427
    TEST_JCC("be", 1, 0);
428
    TEST_JCC("be", 1, -1);
429

    
430
    TEST_JCC("ae", 1, 1);
431
    TEST_JCC("ae", 1, 0);
432
    TEST_JCC("ae", 1, -1);
433

    
434
    TEST_JCC("a", 1, 1);
435
    TEST_JCC("a", 1, 0);
436
    TEST_JCC("a", 1, -1);
437

    
438

    
439
    TEST_JCC("p", 1, 1);
440
    TEST_JCC("p", 1, 0);
441

    
442
    TEST_JCC("np", 1, 1);
443
    TEST_JCC("np", 1, 0);
444

    
445
    TEST_JCC("o", 0x7fffffff, 0);
446
    TEST_JCC("o", 0x7fffffff, -1);
447

    
448
    TEST_JCC("no", 0x7fffffff, 0);
449
    TEST_JCC("no", 0x7fffffff, -1);
450

    
451
    TEST_JCC("s", 0, 1);
452
    TEST_JCC("s", 0, -1);
453
    TEST_JCC("s", 0, 0);
454

    
455
    TEST_JCC("ns", 0, 1);
456
    TEST_JCC("ns", 0, -1);
457
    TEST_JCC("ns", 0, 0);
458
}
459

    
460
#define TEST_LOOP(insn) \
461
{\
462
    for(i = 0; i < sizeof(ecx_vals) / sizeof(long); i++) {\
463
        ecx = ecx_vals[i];\
464
        for(zf = 0; zf < 2; zf++) {\
465
    asm("test %2, %2\n\t"\
466
        "movl $1, %0\n\t"\
467
          insn " 1f\n\t" \
468
        "movl $0, %0\n\t"\
469
        "1:\n\t"\
470
        : "=a" (res)\
471
        : "c" (ecx), "b" (!zf)); \
472
    printf("%-10s ECX=" FMTLX " ZF=%ld r=%d\n", insn, ecx, zf, res);      \
473
        }\
474
   }\
475
}
476

    
477
void test_loop(void)
478
{
479
    long ecx, zf;
480
    const long ecx_vals[] = {
481
        0,
482
        1,
483
        0x10000,
484
        0x10001,
485
#if defined(__x86_64__)
486
        0x100000000L,
487
        0x100000001L,
488
#endif
489
    };
490
    int i, res;
491

    
492
#if !defined(__x86_64__)
493
    TEST_LOOP("jcxz");
494
    TEST_LOOP("loopw");
495
    TEST_LOOP("loopzw");
496
    TEST_LOOP("loopnzw");
497
#endif
498

    
499
    TEST_LOOP("jecxz");
500
    TEST_LOOP("loopl");
501
    TEST_LOOP("loopzl");
502
    TEST_LOOP("loopnzl");
503
}
504

    
505
#undef CC_MASK
506
#ifdef TEST_P4_FLAGS
507
#define CC_MASK (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A)
508
#else
509
#define CC_MASK (CC_O | CC_C)
510
#endif
511

    
512
#define OP mul
513
#include "test-i386-muldiv.h"
514

    
515
#define OP imul
516
#include "test-i386-muldiv.h"
517

    
518
void test_imulw2(long op0, long op1)
519
{
520
    long res, s1, s0, flags;
521
    s0 = op0;
522
    s1 = op1;
523
    res = s0;
524
    flags = 0;
525
    asm volatile ("push %4\n\t"
526
         "popf\n\t"
527
         "imulw %w2, %w0\n\t"
528
         "pushf\n\t"
529
         "pop %1\n\t"
530
         : "=q" (res), "=g" (flags)
531
         : "q" (s1), "0" (res), "1" (flags));
532
    printf("%-10s A=" FMTLX " B=" FMTLX " R=" FMTLX " CC=%04lx\n",
533
           "imulw", s0, s1, res, flags & CC_MASK);
534
}
535

    
536
void test_imull2(long op0, long op1)
537
{
538
    long res, s1, s0, flags;
539
    s0 = op0;
540
    s1 = op1;
541
    res = s0;
542
    flags = 0;
543
    asm volatile ("push %4\n\t"
544
         "popf\n\t"
545
         "imull %k2, %k0\n\t"
546
         "pushf\n\t"
547
         "pop %1\n\t"
548
         : "=q" (res), "=g" (flags)
549
         : "q" (s1), "0" (res), "1" (flags));
550
    printf("%-10s A=" FMTLX " B=" FMTLX " R=" FMTLX " CC=%04lx\n",
551
           "imull", s0, s1, res, flags & CC_MASK);
552
}
553

    
554
#if defined(__x86_64__)
555
void test_imulq2(long op0, long op1)
556
{
557
    long res, s1, s0, flags;
558
    s0 = op0;
559
    s1 = op1;
560
    res = s0;
561
    flags = 0;
562
    asm volatile ("push %4\n\t"
563
         "popf\n\t"
564
         "imulq %2, %0\n\t"
565
         "pushf\n\t"
566
         "pop %1\n\t"
567
         : "=q" (res), "=g" (flags)
568
         : "q" (s1), "0" (res), "1" (flags));
569
    printf("%-10s A=" FMTLX " B=" FMTLX " R=" FMTLX " CC=%04lx\n",
570
           "imulq", s0, s1, res, flags & CC_MASK);
571
}
572
#endif
573

    
574
#define TEST_IMUL_IM(size, rsize, op0, op1)\
575
{\
576
    long res, flags, s1;\
577
    flags = 0;\
578
    res = 0;\
579
    s1 = op1;\
580
    asm volatile ("push %3\n\t"\
581
         "popf\n\t"\
582
         "imul" size " $" #op0 ", %" rsize "2, %" rsize "0\n\t" \
583
         "pushf\n\t"\
584
         "pop %1\n\t"\
585
         : "=r" (res), "=g" (flags)\
586
         : "r" (s1), "1" (flags), "0" (res));\
587
    printf("%-10s A=" FMTLX " B=" FMTLX " R=" FMTLX " CC=%04lx\n",\
588
           "imul" size " im", (long)op0, (long)op1, res, flags & CC_MASK);\
589
}
590

    
591

    
592
#undef CC_MASK
593
#define CC_MASK (0)
594

    
595
#define OP div
596
#include "test-i386-muldiv.h"
597

    
598
#define OP idiv
599
#include "test-i386-muldiv.h"
600

    
601
void test_mul(void)
602
{
603
    test_imulb(0x1234561d, 4);
604
    test_imulb(3, -4);
605
    test_imulb(0x80, 0x80);
606
    test_imulb(0x10, 0x10);
607

    
608
    test_imulw(0, 0x1234001d, 45);
609
    test_imulw(0, 23, -45);
610
    test_imulw(0, 0x8000, 0x8000);
611
    test_imulw(0, 0x100, 0x100);
612

    
613
    test_imull(0, 0x1234001d, 45);
614
    test_imull(0, 23, -45);
615
    test_imull(0, 0x80000000, 0x80000000);
616
    test_imull(0, 0x10000, 0x10000);
617

    
618
    test_mulb(0x1234561d, 4);
619
    test_mulb(3, -4);
620
    test_mulb(0x80, 0x80);
621
    test_mulb(0x10, 0x10);
622

    
623
    test_mulw(0, 0x1234001d, 45);
624
    test_mulw(0, 23, -45);
625
    test_mulw(0, 0x8000, 0x8000);
626
    test_mulw(0, 0x100, 0x100);
627

    
628
    test_mull(0, 0x1234001d, 45);
629
    test_mull(0, 23, -45);
630
    test_mull(0, 0x80000000, 0x80000000);
631
    test_mull(0, 0x10000, 0x10000);
632

    
633
    test_imulw2(0x1234001d, 45);
634
    test_imulw2(23, -45);
635
    test_imulw2(0x8000, 0x8000);
636
    test_imulw2(0x100, 0x100);
637

    
638
    test_imull2(0x1234001d, 45);
639
    test_imull2(23, -45);
640
    test_imull2(0x80000000, 0x80000000);
641
    test_imull2(0x10000, 0x10000);
642

    
643
    TEST_IMUL_IM("w", "w", 45, 0x1234);
644
    TEST_IMUL_IM("w", "w", -45, 23);
645
    TEST_IMUL_IM("w", "w", 0x8000, 0x80000000);
646
    TEST_IMUL_IM("w", "w", 0x7fff, 0x1000);
647

    
648
    TEST_IMUL_IM("l", "k", 45, 0x1234);
649
    TEST_IMUL_IM("l", "k", -45, 23);
650
    TEST_IMUL_IM("l", "k", 0x8000, 0x80000000);
651
    TEST_IMUL_IM("l", "k", 0x7fff, 0x1000);
652

    
653
    test_idivb(0x12341678, 0x127e);
654
    test_idivb(0x43210123, -5);
655
    test_idivb(0x12340004, -1);
656

    
657
    test_idivw(0, 0x12345678, 12347);
658
    test_idivw(0, -23223, -45);
659
    test_idivw(0, 0x12348000, -1);
660
    test_idivw(0x12343, 0x12345678, 0x81238567);
661

    
662
    test_idivl(0, 0x12345678, 12347);
663
    test_idivl(0, -233223, -45);
664
    test_idivl(0, 0x80000000, -1);
665
    test_idivl(0x12343, 0x12345678, 0x81234567);
666

    
667
    test_divb(0x12341678, 0x127e);
668
    test_divb(0x43210123, -5);
669
    test_divb(0x12340004, -1);
670

    
671
    test_divw(0, 0x12345678, 12347);
672
    test_divw(0, -23223, -45);
673
    test_divw(0, 0x12348000, -1);
674
    test_divw(0x12343, 0x12345678, 0x81238567);
675

    
676
    test_divl(0, 0x12345678, 12347);
677
    test_divl(0, -233223, -45);
678
    test_divl(0, 0x80000000, -1);
679
    test_divl(0x12343, 0x12345678, 0x81234567);
680

    
681
#if defined(__x86_64__)
682
    test_imulq(0, 0x1234001d1234001d, 45);
683
    test_imulq(0, 23, -45);
684
    test_imulq(0, 0x8000000000000000, 0x8000000000000000);
685
    test_imulq(0, 0x100000000, 0x100000000);
686

    
687
    test_mulq(0, 0x1234001d1234001d, 45);
688
    test_mulq(0, 23, -45);
689
    test_mulq(0, 0x8000000000000000, 0x8000000000000000);
690
    test_mulq(0, 0x100000000, 0x100000000);
691

    
692
    test_imulq2(0x1234001d1234001d, 45);
693
    test_imulq2(23, -45);
694
    test_imulq2(0x8000000000000000, 0x8000000000000000);
695
    test_imulq2(0x100000000, 0x100000000);
696

    
697
    TEST_IMUL_IM("q", "", 45, 0x12341234);
698
    TEST_IMUL_IM("q", "", -45, 23);
699
    TEST_IMUL_IM("q", "", 0x8000, 0x8000000000000000);
700
    TEST_IMUL_IM("q", "", 0x7fff, 0x10000000);
701

    
702
    test_idivq(0, 0x12345678abcdef, 12347);
703
    test_idivq(0, -233223, -45);
704
    test_idivq(0, 0x8000000000000000, -1);
705
    test_idivq(0x12343, 0x12345678, 0x81234567);
706

    
707
    test_divq(0, 0x12345678abcdef, 12347);
708
    test_divq(0, -233223, -45);
709
    test_divq(0, 0x8000000000000000, -1);
710
    test_divq(0x12343, 0x12345678, 0x81234567);
711
#endif
712
}
713

    
714
#define TEST_BSX(op, size, op0)\
715
{\
716
    long res, val, resz;\
717
    val = op0;\
718
    asm("xor %1, %1\n"\
719
        "mov $0x12345678, %0\n"\
720
        #op " %" size "2, %" size "0 ; setz %b1" \
721
        : "=&r" (res), "=&q" (resz)\
722
        : "r" (val));\
723
    printf("%-10s A=" FMTLX " R=" FMTLX " %ld\n", #op, val, res, resz);\
724
}
725

    
726
void test_bsx(void)
727
{
728
    TEST_BSX(bsrw, "w", 0);
729
    TEST_BSX(bsrw, "w", 0x12340128);
730
    TEST_BSX(bsfw, "w", 0);
731
    TEST_BSX(bsfw, "w", 0x12340128);
732
    TEST_BSX(bsrl, "k", 0);
733
    TEST_BSX(bsrl, "k", 0x00340128);
734
    TEST_BSX(bsfl, "k", 0);
735
    TEST_BSX(bsfl, "k", 0x00340128);
736
#if defined(__x86_64__)
737
    TEST_BSX(bsrq, "", 0);
738
    TEST_BSX(bsrq, "", 0x003401281234);
739
    TEST_BSX(bsfq, "", 0);
740
    TEST_BSX(bsfq, "", 0x003401281234);
741
#endif
742
}
743

    
744
/**********************************************/
745

    
746
union float64u {
747
    double d;
748
    uint64_t l;
749
};
750

    
751
union float64u q_nan = { .l = 0xFFF8000000000000LL };
752
union float64u s_nan = { .l = 0xFFF0000000000000LL };
753

    
754
void test_fops(double a, double b)
755
{
756
    printf("a=%f b=%f a+b=%f\n", a, b, a + b);
757
    printf("a=%f b=%f a-b=%f\n", a, b, a - b);
758
    printf("a=%f b=%f a*b=%f\n", a, b, a * b);
759
    printf("a=%f b=%f a/b=%f\n", a, b, a / b);
760
    printf("a=%f b=%f fmod(a, b)=%f\n", a, b, fmod(a, b));
761
    printf("a=%f sqrt(a)=%f\n", a, sqrt(a));
762
    printf("a=%f sin(a)=%f\n", a, sin(a));
763
    printf("a=%f cos(a)=%f\n", a, cos(a));
764
    printf("a=%f tan(a)=%f\n", a, tan(a));
765
    printf("a=%f log(a)=%f\n", a, log(a));
766
    printf("a=%f exp(a)=%f\n", a, exp(a));
767
    printf("a=%f b=%f atan2(a, b)=%f\n", a, b, atan2(a, b));
768
    /* just to test some op combining */
769
    printf("a=%f asin(sin(a))=%f\n", a, asin(sin(a)));
770
    printf("a=%f acos(cos(a))=%f\n", a, acos(cos(a)));
771
    printf("a=%f atan(tan(a))=%f\n", a, atan(tan(a)));
772

    
773
}
774

    
775
void fpu_clear_exceptions(void)
776
{
777
    struct __attribute__((packed)) {
778
        uint16_t fpuc;
779
        uint16_t dummy1;
780
        uint16_t fpus;
781
        uint16_t dummy2;
782
        uint16_t fptag;
783
        uint16_t dummy3;
784
        uint32_t ignored[4];
785
        long double fpregs[8];
786
    } float_env32;
787

    
788
    asm volatile ("fnstenv %0\n" : : "m" (float_env32));
789
    float_env32.fpus &= ~0x7f;
790
    asm volatile ("fldenv %0\n" : : "m" (float_env32));
791
}
792

    
793
/* XXX: display exception bits when supported */
794
#define FPUS_EMASK 0x0000
795
//#define FPUS_EMASK 0x007f
796

    
797
void test_fcmp(double a, double b)
798
{
799
    long eflags, fpus;
800

    
801
    fpu_clear_exceptions();
802
    asm("fcom %2\n"
803
        "fstsw %%ax\n"
804
        : "=a" (fpus)
805
        : "t" (a), "u" (b));
806
    printf("fcom(%f %f)=%04lx \n",
807
           a, b, fpus & (0x4500 | FPUS_EMASK));
808
    fpu_clear_exceptions();
809
    asm("fucom %2\n"
810
        "fstsw %%ax\n"
811
        : "=a" (fpus)
812
        : "t" (a), "u" (b));
813
    printf("fucom(%f %f)=%04lx\n",
814
           a, b, fpus & (0x4500 | FPUS_EMASK));
815
    if (TEST_FCOMI) {
816
        /* test f(u)comi instruction */
817
        fpu_clear_exceptions();
818
        asm("fcomi %3, %2\n"
819
            "fstsw %%ax\n"
820
            "pushf\n"
821
            "pop %0\n"
822
            : "=r" (eflags), "=a" (fpus)
823
            : "t" (a), "u" (b));
824
        printf("fcomi(%f %f)=%04lx %02lx\n",
825
               a, b, fpus & FPUS_EMASK, eflags & (CC_Z | CC_P | CC_C));
826
        fpu_clear_exceptions();
827
        asm("fucomi %3, %2\n"
828
            "fstsw %%ax\n"
829
            "pushf\n"
830
            "pop %0\n"
831
            : "=r" (eflags), "=a" (fpus)
832
            : "t" (a), "u" (b));
833
        printf("fucomi(%f %f)=%04lx %02lx\n",
834
               a, b, fpus & FPUS_EMASK, eflags & (CC_Z | CC_P | CC_C));
835
    }
836
    fpu_clear_exceptions();
837
    asm volatile("fxam\n"
838
                 "fstsw %%ax\n"
839
                 : "=a" (fpus)
840
                 : "t" (a));
841
    printf("fxam(%f)=%04lx\n", a, fpus & 0x4700);
842
    fpu_clear_exceptions();
843
}
844

    
845
void test_fcvt(double a)
846
{
847
    float fa;
848
    long double la;
849
    int16_t fpuc;
850
    int i;
851
    int64_t lla;
852
    int ia;
853
    int16_t wa;
854
    double ra;
855

    
856
    fa = a;
857
    la = a;
858
    printf("(float)%f = %f\n", a, fa);
859
    printf("(long double)%f = %Lf\n", a, la);
860
    printf("a=" FMT64X "\n", *(uint64_t *)&a);
861
    printf("la=" FMT64X " %04x\n", *(uint64_t *)&la,
862
           *(unsigned short *)((char *)(&la) + 8));
863

    
864
    /* test all roundings */
865
    asm volatile ("fstcw %0" : "=m" (fpuc));
866
    for(i=0;i<4;i++) {
867
        uint16_t val16;
868
        val16 = (fpuc & ~0x0c00) | (i << 10);
869
        asm volatile ("fldcw %0" : : "m" (val16));
870
        asm volatile ("fist %0" : "=m" (wa) : "t" (a));
871
        asm volatile ("fistl %0" : "=m" (ia) : "t" (a));
872
        asm volatile ("fistpll %0" : "=m" (lla) : "t" (a) : "st");
873
        asm volatile ("frndint ; fstl %0" : "=m" (ra) : "t" (a));
874
        asm volatile ("fldcw %0" : : "m" (fpuc));
875
        printf("(short)a = %d\n", wa);
876
        printf("(int)a = %d\n", ia);
877
        printf("(int64_t)a = " FMT64X "\n", lla);
878
        printf("rint(a) = %f\n", ra);
879
    }
880
}
881

    
882
#define TEST(N) \
883
    asm("fld" #N : "=t" (a)); \
884
    printf("fld" #N "= %f\n", a);
885

    
886
void test_fconst(void)
887
{
888
    double a;
889
    TEST(1);
890
    TEST(l2t);
891
    TEST(l2e);
892
    TEST(pi);
893
    TEST(lg2);
894
    TEST(ln2);
895
    TEST(z);
896
}
897

    
898
void test_fbcd(double a)
899
{
900
    unsigned short bcd[5];
901
    double b;
902

    
903
    asm("fbstp %0" : "=m" (bcd[0]) : "t" (a) : "st");
904
    asm("fbld %1" : "=t" (b) : "m" (bcd[0]));
905
    printf("a=%f bcd=%04x%04x%04x%04x%04x b=%f\n",
906
           a, bcd[4], bcd[3], bcd[2], bcd[1], bcd[0], b);
907
}
908

    
909
#define TEST_ENV(env, save, restore)\
910
{\
911
    memset((env), 0xaa, sizeof(*(env)));\
912
    for(i=0;i<5;i++)\
913
        asm volatile ("fldl %0" : : "m" (dtab[i]));\
914
    asm volatile (save " %0\n" : : "m" (*(env)));\
915
    asm volatile (restore " %0\n": : "m" (*(env)));\
916
    for(i=0;i<5;i++)\
917
        asm volatile ("fstpl %0" : "=m" (rtab[i]));\
918
    for(i=0;i<5;i++)\
919
        printf("res[%d]=%f\n", i, rtab[i]);\
920
    printf("fpuc=%04x fpus=%04x fptag=%04x\n",\
921
           (env)->fpuc,\
922
           (env)->fpus & 0xff00,\
923
           (env)->fptag);\
924
}
925

    
926
void test_fenv(void)
927
{
928
    struct __attribute__((packed)) {
929
        uint16_t fpuc;
930
        uint16_t dummy1;
931
        uint16_t fpus;
932
        uint16_t dummy2;
933
        uint16_t fptag;
934
        uint16_t dummy3;
935
        uint32_t ignored[4];
936
        long double fpregs[8];
937
    } float_env32;
938
    struct __attribute__((packed)) {
939
        uint16_t fpuc;
940
        uint16_t fpus;
941
        uint16_t fptag;
942
        uint16_t ignored[4];
943
        long double fpregs[8];
944
    } float_env16;
945
    double dtab[8];
946
    double rtab[8];
947
    int i;
948

    
949
    for(i=0;i<8;i++)
950
        dtab[i] = i + 1;
951

    
952
    TEST_ENV(&float_env16, "data16 fnstenv", "data16 fldenv");
953
    TEST_ENV(&float_env16, "data16 fnsave", "data16 frstor");
954
    TEST_ENV(&float_env32, "fnstenv", "fldenv");
955
    TEST_ENV(&float_env32, "fnsave", "frstor");
956

    
957
    /* test for ffree */
958
    for(i=0;i<5;i++)
959
        asm volatile ("fldl %0" : : "m" (dtab[i]));
960
    asm volatile("ffree %st(2)");
961
    asm volatile ("fnstenv %0\n" : : "m" (float_env32));
962
    asm volatile ("fninit");
963
    printf("fptag=%04x\n", float_env32.fptag);
964
}
965

    
966

    
967
#define TEST_FCMOV(a, b, eflags, CC)\
968
{\
969
    double res;\
970
    asm("push %3\n"\
971
        "popf\n"\
972
        "fcmov" CC " %2, %0\n"\
973
        : "=t" (res)\
974
        : "0" (a), "u" (b), "g" (eflags));\
975
    printf("fcmov%s eflags=0x%04lx-> %f\n", \
976
           CC, (long)eflags, res);\
977
}
978

    
979
void test_fcmov(void)
980
{
981
    double a, b;
982
    long eflags, i;
983

    
984
    a = 1.0;
985
    b = 2.0;
986
    for(i = 0; i < 4; i++) {
987
        eflags = 0;
988
        if (i & 1)
989
            eflags |= CC_C;
990
        if (i & 2)
991
            eflags |= CC_Z;
992
        TEST_FCMOV(a, b, eflags, "b");
993
        TEST_FCMOV(a, b, eflags, "e");
994
        TEST_FCMOV(a, b, eflags, "be");
995
        TEST_FCMOV(a, b, eflags, "nb");
996
        TEST_FCMOV(a, b, eflags, "ne");
997
        TEST_FCMOV(a, b, eflags, "nbe");
998
    }
999
    TEST_FCMOV(a, b, 0, "u");
1000
    TEST_FCMOV(a, b, CC_P, "u");
1001
    TEST_FCMOV(a, b, 0, "nu");
1002
    TEST_FCMOV(a, b, CC_P, "nu");
1003
}
1004

    
1005
void test_floats(void)
1006
{
1007
    test_fops(2, 3);
1008
    test_fops(1.4, -5);
1009
    test_fcmp(2, -1);
1010
    test_fcmp(2, 2);
1011
    test_fcmp(2, 3);
1012
    test_fcmp(2, q_nan.d);
1013
    test_fcmp(q_nan.d, -1);
1014
    test_fcmp(-1.0/0.0, -1);
1015
    test_fcmp(1.0/0.0, -1);
1016
    test_fcvt(0.5);
1017
    test_fcvt(-0.5);
1018
    test_fcvt(1.0/7.0);
1019
    test_fcvt(-1.0/9.0);
1020
    test_fcvt(32768);
1021
    test_fcvt(-1e20);
1022
    test_fcvt(-1.0/0.0);
1023
    test_fcvt(1.0/0.0);
1024
    test_fcvt(q_nan.d);
1025
    test_fconst();
1026
    test_fbcd(1234567890123456.0);
1027
    test_fbcd(-123451234567890.0);
1028
    test_fenv();
1029
    if (TEST_CMOV) {
1030
        test_fcmov();
1031
    }
1032
}
1033

    
1034
/**********************************************/
1035
#if !defined(__x86_64__)
1036

    
1037
#define TEST_BCD(op, op0, cc_in, cc_mask)\
1038
{\
1039
    int res, flags;\
1040
    res = op0;\
1041
    flags = cc_in;\
1042
    asm ("push %3\n\t"\
1043
         "popf\n\t"\
1044
         #op "\n\t"\
1045
         "pushf\n\t"\
1046
         "pop %1\n\t"\
1047
        : "=a" (res), "=g" (flags)\
1048
        : "0" (res), "1" (flags));\
1049
    printf("%-10s A=%08x R=%08x CCIN=%04x CC=%04x\n",\
1050
           #op, op0, res, cc_in, flags & cc_mask);\
1051
}
1052

    
1053
void test_bcd(void)
1054
{
1055
    TEST_BCD(daa, 0x12340503, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1056
    TEST_BCD(daa, 0x12340506, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1057
    TEST_BCD(daa, 0x12340507, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1058
    TEST_BCD(daa, 0x12340559, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1059
    TEST_BCD(daa, 0x12340560, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1060
    TEST_BCD(daa, 0x1234059f, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1061
    TEST_BCD(daa, 0x123405a0, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1062
    TEST_BCD(daa, 0x12340503, 0, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1063
    TEST_BCD(daa, 0x12340506, 0, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1064
    TEST_BCD(daa, 0x12340503, CC_C, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1065
    TEST_BCD(daa, 0x12340506, CC_C, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1066
    TEST_BCD(daa, 0x12340503, CC_C | CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1067
    TEST_BCD(daa, 0x12340506, CC_C | CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1068

    
1069
    TEST_BCD(das, 0x12340503, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1070
    TEST_BCD(das, 0x12340506, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1071
    TEST_BCD(das, 0x12340507, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1072
    TEST_BCD(das, 0x12340559, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1073
    TEST_BCD(das, 0x12340560, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1074
    TEST_BCD(das, 0x1234059f, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1075
    TEST_BCD(das, 0x123405a0, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1076
    TEST_BCD(das, 0x12340503, 0, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1077
    TEST_BCD(das, 0x12340506, 0, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1078
    TEST_BCD(das, 0x12340503, CC_C, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1079
    TEST_BCD(das, 0x12340506, CC_C, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1080
    TEST_BCD(das, 0x12340503, CC_C | CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1081
    TEST_BCD(das, 0x12340506, CC_C | CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1082

    
1083
    TEST_BCD(aaa, 0x12340205, CC_A, (CC_C | CC_A));
1084
    TEST_BCD(aaa, 0x12340306, CC_A, (CC_C | CC_A));
1085
    TEST_BCD(aaa, 0x1234040a, CC_A, (CC_C | CC_A));
1086
    TEST_BCD(aaa, 0x123405fa, CC_A, (CC_C | CC_A));
1087
    TEST_BCD(aaa, 0x12340205, 0, (CC_C | CC_A));
1088
    TEST_BCD(aaa, 0x12340306, 0, (CC_C | CC_A));
1089
    TEST_BCD(aaa, 0x1234040a, 0, (CC_C | CC_A));
1090
    TEST_BCD(aaa, 0x123405fa, 0, (CC_C | CC_A));
1091

    
1092
    TEST_BCD(aas, 0x12340205, CC_A, (CC_C | CC_A));
1093
    TEST_BCD(aas, 0x12340306, CC_A, (CC_C | CC_A));
1094
    TEST_BCD(aas, 0x1234040a, CC_A, (CC_C | CC_A));
1095
    TEST_BCD(aas, 0x123405fa, CC_A, (CC_C | CC_A));
1096
    TEST_BCD(aas, 0x12340205, 0, (CC_C | CC_A));
1097
    TEST_BCD(aas, 0x12340306, 0, (CC_C | CC_A));
1098
    TEST_BCD(aas, 0x1234040a, 0, (CC_C | CC_A));
1099
    TEST_BCD(aas, 0x123405fa, 0, (CC_C | CC_A));
1100

    
1101
    TEST_BCD(aam, 0x12340547, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A));
1102
    TEST_BCD(aad, 0x12340407, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A));
1103
}
1104
#endif
1105

    
1106
#define TEST_XCHG(op, size, opconst)\
1107
{\
1108
    long op0, op1;\
1109
    op0 = i2l(0x12345678);\
1110
    op1 = i2l(0xfbca7654);\
1111
    asm(#op " %" size "0, %" size "1" \
1112
        : "=q" (op0), opconst (op1) \
1113
        : "0" (op0));\
1114
    printf("%-10s A=" FMTLX " B=" FMTLX "\n",\
1115
           #op, op0, op1);\
1116
}
1117

    
1118
#define TEST_CMPXCHG(op, size, opconst, eax)\
1119
{\
1120
    long op0, op1, op2;\
1121
    op0 = i2l(0x12345678);\
1122
    op1 = i2l(0xfbca7654);\
1123
    op2 = i2l(eax);\
1124
    asm(#op " %" size "0, %" size "1" \
1125
        : "=q" (op0), opconst (op1) \
1126
        : "0" (op0), "a" (op2));\
1127
    printf("%-10s EAX=" FMTLX " A=" FMTLX " C=" FMTLX "\n",\
1128
           #op, op2, op0, op1);\
1129
}
1130

    
1131
void test_xchg(void)
1132
{
1133
#if defined(__x86_64__)
1134
    TEST_XCHG(xchgq, "", "+q");
1135
#endif
1136
    TEST_XCHG(xchgl, "k", "+q");
1137
    TEST_XCHG(xchgw, "w", "+q");
1138
    TEST_XCHG(xchgb, "b", "+q");
1139

    
1140
#if defined(__x86_64__)
1141
    TEST_XCHG(xchgq, "", "=m");
1142
#endif
1143
    TEST_XCHG(xchgl, "k", "+m");
1144
    TEST_XCHG(xchgw, "w", "+m");
1145
    TEST_XCHG(xchgb, "b", "+m");
1146

    
1147
#if defined(__x86_64__)
1148
    TEST_XCHG(xaddq, "", "+q");
1149
#endif
1150
    TEST_XCHG(xaddl, "k", "+q");
1151
    TEST_XCHG(xaddw, "w", "+q");
1152
    TEST_XCHG(xaddb, "b", "+q");
1153

    
1154
    {
1155
        int res;
1156
        res = 0x12345678;
1157
        asm("xaddl %1, %0" : "=r" (res) : "0" (res));
1158
        printf("xaddl same res=%08x\n", res);
1159
    }
1160

    
1161
#if defined(__x86_64__)
1162
    TEST_XCHG(xaddq, "", "+m");
1163
#endif
1164
    TEST_XCHG(xaddl, "k", "+m");
1165
    TEST_XCHG(xaddw, "w", "+m");
1166
    TEST_XCHG(xaddb, "b", "+m");
1167

    
1168
#if defined(__x86_64__)
1169
    TEST_CMPXCHG(cmpxchgq, "", "+q", 0xfbca7654);
1170
#endif
1171
    TEST_CMPXCHG(cmpxchgl, "k", "+q", 0xfbca7654);
1172
    TEST_CMPXCHG(cmpxchgw, "w", "+q", 0xfbca7654);
1173
    TEST_CMPXCHG(cmpxchgb, "b", "+q", 0xfbca7654);
1174

    
1175
#if defined(__x86_64__)
1176
    TEST_CMPXCHG(cmpxchgq, "", "+q", 0xfffefdfc);
1177
#endif
1178
    TEST_CMPXCHG(cmpxchgl, "k", "+q", 0xfffefdfc);
1179
    TEST_CMPXCHG(cmpxchgw, "w", "+q", 0xfffefdfc);
1180
    TEST_CMPXCHG(cmpxchgb, "b", "+q", 0xfffefdfc);
1181

    
1182
#if defined(__x86_64__)
1183
    TEST_CMPXCHG(cmpxchgq, "", "+m", 0xfbca7654);
1184
#endif
1185
    TEST_CMPXCHG(cmpxchgl, "k", "+m", 0xfbca7654);
1186
    TEST_CMPXCHG(cmpxchgw, "w", "+m", 0xfbca7654);
1187
    TEST_CMPXCHG(cmpxchgb, "b", "+m", 0xfbca7654);
1188

    
1189
#if defined(__x86_64__)
1190
    TEST_CMPXCHG(cmpxchgq, "", "+m", 0xfffefdfc);
1191
#endif
1192
    TEST_CMPXCHG(cmpxchgl, "k", "+m", 0xfffefdfc);
1193
    TEST_CMPXCHG(cmpxchgw, "w", "+m", 0xfffefdfc);
1194
    TEST_CMPXCHG(cmpxchgb, "b", "+m", 0xfffefdfc);
1195

    
1196
    {
1197
        uint64_t op0, op1, op2;
1198
        long eax, edx;
1199
        long i, eflags;
1200

    
1201
        for(i = 0; i < 2; i++) {
1202
            op0 = 0x123456789abcdLL;
1203
            eax = i2l(op0 & 0xffffffff);
1204
            edx = i2l(op0 >> 32);
1205
            if (i == 0)
1206
                op1 = 0xfbca765423456LL;
1207
            else
1208
                op1 = op0;
1209
            op2 = 0x6532432432434LL;
1210
            asm("cmpxchg8b %2\n"
1211
                "pushf\n"
1212
                "pop %3\n"
1213
                : "=a" (eax), "=d" (edx), "=m" (op1), "=g" (eflags)
1214
                : "0" (eax), "1" (edx), "m" (op1), "b" ((int)op2), "c" ((int)(op2 >> 32)));
1215
            printf("cmpxchg8b: eax=" FMTLX " edx=" FMTLX " op1=" FMT64X " CC=%02lx\n",
1216
                   eax, edx, op1, eflags & CC_Z);
1217
        }
1218
    }
1219
}
1220

    
1221
#ifdef TEST_SEGS
1222
/**********************************************/
1223
/* segmentation tests */
1224

    
1225
#include <sys/syscall.h>
1226
#include <unistd.h>
1227
#include <asm/ldt.h>
1228
#include <linux/version.h>
1229

    
1230
static inline int modify_ldt(int func, void * ptr, unsigned long bytecount)
1231
{
1232
    return syscall(__NR_modify_ldt, func, ptr, bytecount);
1233
}
1234

    
1235
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 5, 66)
1236
#define modify_ldt_ldt_s user_desc
1237
#endif
1238

    
1239
#define MK_SEL(n) (((n) << 3) | 7)
1240

    
1241
uint8_t seg_data1[4096];
1242
uint8_t seg_data2[4096];
1243

    
1244
#define TEST_LR(op, size, seg, mask)\
1245
{\
1246
    int res, res2;\
1247
    uint16_t mseg = seg;\
1248
    res = 0x12345678;\
1249
    asm (op " %" size "2, %" size "0\n" \
1250
         "movl $0, %1\n"\
1251
         "jnz 1f\n"\
1252
         "movl $1, %1\n"\
1253
         "1:\n"\
1254
         : "=r" (res), "=r" (res2) : "m" (mseg), "0" (res));\
1255
    printf(op ": Z=%d %08x\n", res2, res & ~(mask));\
1256
}
1257

    
1258
#define TEST_ARPL(op, size, op1, op2)\
1259
{\
1260
    long a, b, c;                               \
1261
    a = (op1);                                  \
1262
    b = (op2);                                  \
1263
    asm volatile(op " %" size "3, %" size "0\n"\
1264
                 "movl $0,%1\n"\
1265
                 "jnz 1f\n"\
1266
                 "movl $1,%1\n"\
1267
                 "1:\n"\
1268
                 : "=r" (a), "=r" (c) : "0" (a), "r" (b));    \
1269
    printf(op size " A=" FMTLX " B=" FMTLX " R=" FMTLX " z=%ld\n",\
1270
           (long)(op1), (long)(op2), a, c);\
1271
}
1272

    
1273
/* NOTE: we use Linux modify_ldt syscall */
1274
void test_segs(void)
1275
{
1276
    struct modify_ldt_ldt_s ldt;
1277
    long long ldt_table[3];
1278
    int res, res2;
1279
    char tmp;
1280
    struct {
1281
        uint32_t offset;
1282
        uint16_t seg;
1283
    } __attribute__((packed)) segoff;
1284

    
1285
    ldt.entry_number = 1;
1286
    ldt.base_addr = (unsigned long)&seg_data1;
1287
    ldt.limit = (sizeof(seg_data1) + 0xfff) >> 12;
1288
    ldt.seg_32bit = 1;
1289
    ldt.contents = MODIFY_LDT_CONTENTS_DATA;
1290
    ldt.read_exec_only = 0;
1291
    ldt.limit_in_pages = 1;
1292
    ldt.seg_not_present = 0;
1293
    ldt.useable = 1;
1294
    modify_ldt(1, &ldt, sizeof(ldt)); /* write ldt entry */
1295

    
1296
    ldt.entry_number = 2;
1297
    ldt.base_addr = (unsigned long)&seg_data2;
1298
    ldt.limit = (sizeof(seg_data2) + 0xfff) >> 12;
1299
    ldt.seg_32bit = 1;
1300
    ldt.contents = MODIFY_LDT_CONTENTS_DATA;
1301
    ldt.read_exec_only = 0;
1302
    ldt.limit_in_pages = 1;
1303
    ldt.seg_not_present = 0;
1304
    ldt.useable = 1;
1305
    modify_ldt(1, &ldt, sizeof(ldt)); /* write ldt entry */
1306

    
1307
    modify_ldt(0, &ldt_table, sizeof(ldt_table)); /* read ldt entries */
1308
#if 0
1309
    {
1310
        int i;
1311
        for(i=0;i<3;i++)
1312
            printf("%d: %016Lx\n", i, ldt_table[i]);
1313
    }
1314
#endif
1315
    /* do some tests with fs or gs */
1316
    asm volatile ("movl %0, %%fs" : : "r" (MK_SEL(1)));
1317

    
1318
    seg_data1[1] = 0xaa;
1319
    seg_data2[1] = 0x55;
1320

    
1321
    asm volatile ("fs movzbl 0x1, %0" : "=r" (res));
1322
    printf("FS[1] = %02x\n", res);
1323

    
1324
    asm volatile ("pushl %%gs\n"
1325
                  "movl %1, %%gs\n"
1326
                  "gs movzbl 0x1, %0\n"
1327
                  "popl %%gs\n"
1328
                  : "=r" (res)
1329
                  : "r" (MK_SEL(2)));
1330
    printf("GS[1] = %02x\n", res);
1331

    
1332
    /* tests with ds/ss (implicit segment case) */
1333
    tmp = 0xa5;
1334
    asm volatile ("pushl %%ebp\n\t"
1335
                  "pushl %%ds\n\t"
1336
                  "movl %2, %%ds\n\t"
1337
                  "movl %3, %%ebp\n\t"
1338
                  "movzbl 0x1, %0\n\t"
1339
                  "movzbl (%%ebp), %1\n\t"
1340
                  "popl %%ds\n\t"
1341
                  "popl %%ebp\n\t"
1342
                  : "=r" (res), "=r" (res2)
1343
                  : "r" (MK_SEL(1)), "r" (&tmp));
1344
    printf("DS[1] = %02x\n", res);
1345
    printf("SS[tmp] = %02x\n", res2);
1346

    
1347
    segoff.seg = MK_SEL(2);
1348
    segoff.offset = 0xabcdef12;
1349
    asm volatile("lfs %2, %0\n\t"
1350
                 "movl %%fs, %1\n\t"
1351
                 : "=r" (res), "=g" (res2)
1352
                 : "m" (segoff));
1353
    printf("FS:reg = %04x:%08x\n", res2, res);
1354

    
1355
    TEST_LR("larw", "w", MK_SEL(2), 0x0100);
1356
    TEST_LR("larl", "", MK_SEL(2), 0x0100);
1357
    TEST_LR("lslw", "w", MK_SEL(2), 0);
1358
    TEST_LR("lsll", "", MK_SEL(2), 0);
1359

    
1360
    TEST_LR("larw", "w", 0xfff8, 0);
1361
    TEST_LR("larl", "", 0xfff8, 0);
1362
    TEST_LR("lslw", "w", 0xfff8, 0);
1363
    TEST_LR("lsll", "", 0xfff8, 0);
1364

    
1365
    TEST_ARPL("arpl", "w", 0x12345678 | 3, 0x762123c | 1);
1366
    TEST_ARPL("arpl", "w", 0x12345678 | 1, 0x762123c | 3);
1367
    TEST_ARPL("arpl", "w", 0x12345678 | 1, 0x762123c | 1);
1368
}
1369

    
1370
/* 16 bit code test */
1371
extern char code16_start, code16_end;
1372
extern char code16_func1;
1373
extern char code16_func2;
1374
extern char code16_func3;
1375

    
1376
void test_code16(void)
1377
{
1378
    struct modify_ldt_ldt_s ldt;
1379
    int res, res2;
1380

    
1381
    /* build a code segment */
1382
    ldt.entry_number = 1;
1383
    ldt.base_addr = (unsigned long)&code16_start;
1384
    ldt.limit = &code16_end - &code16_start;
1385
    ldt.seg_32bit = 0;
1386
    ldt.contents = MODIFY_LDT_CONTENTS_CODE;
1387
    ldt.read_exec_only = 0;
1388
    ldt.limit_in_pages = 0;
1389
    ldt.seg_not_present = 0;
1390
    ldt.useable = 1;
1391
    modify_ldt(1, &ldt, sizeof(ldt)); /* write ldt entry */
1392

    
1393
    /* call the first function */
1394
    asm volatile ("lcall %1, %2"
1395
                  : "=a" (res)
1396
                  : "i" (MK_SEL(1)), "i" (&code16_func1): "memory", "cc");
1397
    printf("func1() = 0x%08x\n", res);
1398
    asm volatile ("lcall %2, %3"
1399
                  : "=a" (res), "=c" (res2)
1400
                  : "i" (MK_SEL(1)), "i" (&code16_func2): "memory", "cc");
1401
    printf("func2() = 0x%08x spdec=%d\n", res, res2);
1402
    asm volatile ("lcall %1, %2"
1403
                  : "=a" (res)
1404
                  : "i" (MK_SEL(1)), "i" (&code16_func3): "memory", "cc");
1405
    printf("func3() = 0x%08x\n", res);
1406
}
1407
#endif
1408

    
1409
#if defined(__x86_64__)
1410
asm(".globl func_lret\n"
1411
    "func_lret:\n"
1412
    "movl $0x87654641, %eax\n"
1413
    "lretq\n");
1414
#else
1415
asm(".globl func_lret\n"
1416
    "func_lret:\n"
1417
    "movl $0x87654321, %eax\n"
1418
    "lret\n"
1419

    
1420
    ".globl func_iret\n"
1421
    "func_iret:\n"
1422
    "movl $0xabcd4321, %eax\n"
1423
    "iret\n");
1424
#endif
1425

    
1426
extern char func_lret;
1427
extern char func_iret;
1428

    
1429
void test_misc(void)
1430
{
1431
    char table[256];
1432
    long res, i;
1433

    
1434
    for(i=0;i<256;i++) table[i] = 256 - i;
1435
    res = 0x12345678;
1436
    asm ("xlat" : "=a" (res) : "b" (table), "0" (res));
1437
    printf("xlat: EAX=" FMTLX "\n", res);
1438

    
1439
#if defined(__x86_64__)
1440
#if 0
1441
    {
1442
        /* XXX: see if Intel Core2 and AMD64 behavior really
1443
           differ. Here we implemented the Intel way which is not
1444
           compatible yet with QEMU. */
1445
        static struct __attribute__((packed)) {
1446
            uint64_t offset;
1447
            uint16_t seg;
1448
        } desc;
1449
        long cs_sel;
1450

1451
        asm volatile ("mov %%cs, %0" : "=r" (cs_sel));
1452

1453
        asm volatile ("push %1\n"
1454
                      "call func_lret\n"
1455
                      : "=a" (res)
1456
                      : "r" (cs_sel) : "memory", "cc");
1457
        printf("func_lret=" FMTLX "\n", res);
1458

1459
        desc.offset = (long)&func_lret;
1460
        desc.seg = cs_sel;
1461

1462
        asm volatile ("xor %%rax, %%rax\n"
1463
                      "rex64 lcall *(%%rcx)\n"
1464
                      : "=a" (res)
1465
                      : "c" (&desc)
1466
                      : "memory", "cc");
1467
        printf("func_lret2=" FMTLX "\n", res);
1468

1469
        asm volatile ("push %2\n"
1470
                      "mov $ 1f, %%rax\n"
1471
                      "push %%rax\n"
1472
                      "rex64 ljmp *(%%rcx)\n"
1473
                      "1:\n"
1474
                      : "=a" (res)
1475
                      : "c" (&desc), "b" (cs_sel)
1476
                      : "memory", "cc");
1477
        printf("func_lret3=" FMTLX "\n", res);
1478
    }
1479
#endif
1480
#else
1481
    asm volatile ("push %%cs ; call %1"
1482
                  : "=a" (res)
1483
                  : "m" (func_lret): "memory", "cc");
1484
    printf("func_lret=" FMTLX "\n", res);
1485

    
1486
    asm volatile ("pushf ; push %%cs ; call %1"
1487
                  : "=a" (res)
1488
                  : "m" (func_iret): "memory", "cc");
1489
    printf("func_iret=" FMTLX "\n", res);
1490
#endif
1491

    
1492
#if defined(__x86_64__)
1493
    /* specific popl test */
1494
    asm volatile ("push $12345432 ; push $0x9abcdef ; pop (%%rsp) ; pop %0"
1495
                  : "=g" (res));
1496
    printf("popl esp=" FMTLX "\n", res);
1497
#else
1498
    /* specific popl test */
1499
    asm volatile ("pushl $12345432 ; pushl $0x9abcdef ; popl (%%esp) ; popl %0"
1500
                  : "=g" (res));
1501
    printf("popl esp=" FMTLX "\n", res);
1502

    
1503
    /* specific popw test */
1504
    asm volatile ("pushl $12345432 ; pushl $0x9abcdef ; popw (%%esp) ; addl $2, %%esp ; popl %0"
1505
                  : "=g" (res));
1506
    printf("popw esp=" FMTLX "\n", res);
1507
#endif
1508
}
1509

    
1510
uint8_t str_buffer[4096];
1511

    
1512
#define TEST_STRING1(OP, size, DF, REP)\
1513
{\
1514
    long esi, edi, eax, ecx, eflags;\
1515
\
1516
    esi = (long)(str_buffer + sizeof(str_buffer) / 2);\
1517
    edi = (long)(str_buffer + sizeof(str_buffer) / 2) + 16;\
1518
    eax = i2l(0x12345678);\
1519
    ecx = 17;\
1520
\
1521
    asm volatile ("push $0\n\t"\
1522
                  "popf\n\t"\
1523
                  DF "\n\t"\
1524
                  REP #OP size "\n\t"\
1525
                  "cld\n\t"\
1526
                  "pushf\n\t"\
1527
                  "pop %4\n\t"\
1528
                  : "=S" (esi), "=D" (edi), "=a" (eax), "=c" (ecx), "=g" (eflags)\
1529
                  : "0" (esi), "1" (edi), "2" (eax), "3" (ecx));\
1530
    printf("%-10s ESI=" FMTLX " EDI=" FMTLX " EAX=" FMTLX " ECX=" FMTLX " EFL=%04x\n",\
1531
           REP #OP size, esi, edi, eax, ecx,\
1532
           (int)(eflags & (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A)));\
1533
}
1534

    
1535
#define TEST_STRING(OP, REP)\
1536
    TEST_STRING1(OP, "b", "", REP);\
1537
    TEST_STRING1(OP, "w", "", REP);\
1538
    TEST_STRING1(OP, "l", "", REP);\
1539
    X86_64_ONLY(TEST_STRING1(OP, "q", "", REP));\
1540
    TEST_STRING1(OP, "b", "std", REP);\
1541
    TEST_STRING1(OP, "w", "std", REP);\
1542
    TEST_STRING1(OP, "l", "std", REP);\
1543
    X86_64_ONLY(TEST_STRING1(OP, "q", "std", REP))
1544

    
1545
void test_string(void)
1546
{
1547
    int i;
1548
    for(i = 0;i < sizeof(str_buffer); i++)
1549
        str_buffer[i] = i + 0x56;
1550
   TEST_STRING(stos, "");
1551
   TEST_STRING(stos, "rep ");
1552
   TEST_STRING(lods, ""); /* to verify stos */
1553
   TEST_STRING(lods, "rep ");
1554
   TEST_STRING(movs, "");
1555
   TEST_STRING(movs, "rep ");
1556
   TEST_STRING(lods, ""); /* to verify stos */
1557

    
1558
   /* XXX: better tests */
1559
   TEST_STRING(scas, "");
1560
   TEST_STRING(scas, "repz ");
1561
   TEST_STRING(scas, "repnz ");
1562
   TEST_STRING(cmps, "");
1563
   TEST_STRING(cmps, "repz ");
1564
   TEST_STRING(cmps, "repnz ");
1565
}
1566

    
1567
#ifdef TEST_VM86
1568
/* VM86 test */
1569

    
1570
static inline void set_bit(uint8_t *a, unsigned int bit)
1571
{
1572
    a[bit / 8] |= (1 << (bit % 8));
1573
}
1574

    
1575
static inline uint8_t *seg_to_linear(unsigned int seg, unsigned int reg)
1576
{
1577
    return (uint8_t *)((seg << 4) + (reg & 0xffff));
1578
}
1579

    
1580
static inline void pushw(struct vm86_regs *r, int val)
1581
{
1582
    r->esp = (r->esp & ~0xffff) | ((r->esp - 2) & 0xffff);
1583
    *(uint16_t *)seg_to_linear(r->ss, r->esp) = val;
1584
}
1585

    
1586
static inline int vm86(int func, struct vm86plus_struct *v86)
1587
{
1588
    return syscall(__NR_vm86, func, v86);
1589
}
1590

    
1591
extern char vm86_code_start;
1592
extern char vm86_code_end;
1593

    
1594
#define VM86_CODE_CS 0x100
1595
#define VM86_CODE_IP 0x100
1596

    
1597
void test_vm86(void)
1598
{
1599
    struct vm86plus_struct ctx;
1600
    struct vm86_regs *r;
1601
    uint8_t *vm86_mem;
1602
    int seg, ret;
1603

    
1604
    vm86_mem = mmap((void *)0x00000000, 0x110000,
1605
                    PROT_WRITE | PROT_READ | PROT_EXEC,
1606
                    MAP_FIXED | MAP_ANON | MAP_PRIVATE, -1, 0);
1607
    if (vm86_mem == MAP_FAILED) {
1608
        printf("ERROR: could not map vm86 memory");
1609
        return;
1610
    }
1611
    memset(&ctx, 0, sizeof(ctx));
1612

    
1613
    /* init basic registers */
1614
    r = &ctx.regs;
1615
    r->eip = VM86_CODE_IP;
1616
    r->esp = 0xfffe;
1617
    seg = VM86_CODE_CS;
1618
    r->cs = seg;
1619
    r->ss = seg;
1620
    r->ds = seg;
1621
    r->es = seg;
1622
    r->fs = seg;
1623
    r->gs = seg;
1624
    r->eflags = VIF_MASK;
1625

    
1626
    /* move code to proper address. We use the same layout as a .com
1627
       dos program. */
1628
    memcpy(vm86_mem + (VM86_CODE_CS << 4) + VM86_CODE_IP,
1629
           &vm86_code_start, &vm86_code_end - &vm86_code_start);
1630

    
1631
    /* mark int 0x21 as being emulated */
1632
    set_bit((uint8_t *)&ctx.int_revectored, 0x21);
1633

    
1634
    for(;;) {
1635
        ret = vm86(VM86_ENTER, &ctx);
1636
        switch(VM86_TYPE(ret)) {
1637
        case VM86_INTx:
1638
            {
1639
                int int_num, ah, v;
1640

    
1641
                int_num = VM86_ARG(ret);
1642
                if (int_num != 0x21)
1643
                    goto unknown_int;
1644
                ah = (r->eax >> 8) & 0xff;
1645
                switch(ah) {
1646
                case 0x00: /* exit */
1647
                    goto the_end;
1648
                case 0x02: /* write char */
1649
                    {
1650
                        uint8_t c = r->edx;
1651
                        putchar(c);
1652
                    }
1653
                    break;
1654
                case 0x09: /* write string */
1655
                    {
1656
                        uint8_t c, *ptr;
1657
                        ptr = seg_to_linear(r->ds, r->edx);
1658
                        for(;;) {
1659
                            c = *ptr++;
1660
                            if (c == '$')
1661
                                break;
1662
                            putchar(c);
1663
                        }
1664
                        r->eax = (r->eax & ~0xff) | '$';
1665
                    }
1666
                    break;
1667
                case 0xff: /* extension: write eflags number in edx */
1668
                    v = (int)r->edx;
1669
#ifndef LINUX_VM86_IOPL_FIX
1670
                    v &= ~0x3000;
1671
#endif
1672
                    printf("%08x\n", v);
1673
                    break;
1674
                default:
1675
                unknown_int:
1676
                    printf("unsupported int 0x%02x\n", int_num);
1677
                    goto the_end;
1678
                }
1679
            }
1680
            break;
1681
        case VM86_SIGNAL:
1682
            /* a signal came, we just ignore that */
1683
            break;
1684
        case VM86_STI:
1685
            break;
1686
        default:
1687
            printf("ERROR: unhandled vm86 return code (0x%x)\n", ret);
1688
            goto the_end;
1689
        }
1690
    }
1691
 the_end:
1692
    printf("VM86 end\n");
1693
    munmap(vm86_mem, 0x110000);
1694
}
1695
#endif
1696

    
1697
/* exception tests */
1698
#if defined(__i386__) && !defined(REG_EAX)
1699
#define REG_EAX EAX
1700
#define REG_EBX EBX
1701
#define REG_ECX ECX
1702
#define REG_EDX EDX
1703
#define REG_ESI ESI
1704
#define REG_EDI EDI
1705
#define REG_EBP EBP
1706
#define REG_ESP ESP
1707
#define REG_EIP EIP
1708
#define REG_EFL EFL
1709
#define REG_TRAPNO TRAPNO
1710
#define REG_ERR ERR
1711
#endif
1712

    
1713
#if defined(__x86_64__)
1714
#define REG_EIP REG_RIP
1715
#endif
1716

    
1717
jmp_buf jmp_env;
1718
int v1;
1719
int tab[2];
1720

    
1721
void sig_handler(int sig, siginfo_t *info, void *puc)
1722
{
1723
    struct ucontext *uc = puc;
1724

    
1725
    printf("si_signo=%d si_errno=%d si_code=%d",
1726
           info->si_signo, info->si_errno, info->si_code);
1727
    printf(" si_addr=0x%08lx",
1728
           (unsigned long)info->si_addr);
1729
    printf("\n");
1730

    
1731
    printf("trapno=" FMTLX " err=" FMTLX,
1732
           (long)uc->uc_mcontext.gregs[REG_TRAPNO],
1733
           (long)uc->uc_mcontext.gregs[REG_ERR]);
1734
    printf(" EIP=" FMTLX, (long)uc->uc_mcontext.gregs[REG_EIP]);
1735
    printf("\n");
1736
    longjmp(jmp_env, 1);
1737
}
1738

    
1739
void test_exceptions(void)
1740
{
1741
    struct sigaction act;
1742
    volatile int val;
1743

    
1744
    act.sa_sigaction = sig_handler;
1745
    sigemptyset(&act.sa_mask);
1746
    act.sa_flags = SA_SIGINFO | SA_NODEFER;
1747
    sigaction(SIGFPE, &act, NULL);
1748
    sigaction(SIGILL, &act, NULL);
1749
    sigaction(SIGSEGV, &act, NULL);
1750
    sigaction(SIGBUS, &act, NULL);
1751
    sigaction(SIGTRAP, &act, NULL);
1752

    
1753
    /* test division by zero reporting */
1754
    printf("DIVZ exception:\n");
1755
    if (setjmp(jmp_env) == 0) {
1756
        /* now divide by zero */
1757
        v1 = 0;
1758
        v1 = 2 / v1;
1759
    }
1760

    
1761
#if !defined(__x86_64__)
1762
    printf("BOUND exception:\n");
1763
    if (setjmp(jmp_env) == 0) {
1764
        /* bound exception */
1765
        tab[0] = 1;
1766
        tab[1] = 10;
1767
        asm volatile ("bound %0, %1" : : "r" (11), "m" (tab[0]));
1768
    }
1769
#endif
1770

    
1771
#ifdef TEST_SEGS
1772
    printf("segment exceptions:\n");
1773
    if (setjmp(jmp_env) == 0) {
1774
        /* load an invalid segment */
1775
        asm volatile ("movl %0, %%fs" : : "r" ((0x1234 << 3) | 1));
1776
    }
1777
    if (setjmp(jmp_env) == 0) {
1778
        /* null data segment is valid */
1779
        asm volatile ("movl %0, %%fs" : : "r" (3));
1780
        /* null stack segment */
1781
        asm volatile ("movl %0, %%ss" : : "r" (3));
1782
    }
1783

    
1784
    {
1785
        struct modify_ldt_ldt_s ldt;
1786
        ldt.entry_number = 1;
1787
        ldt.base_addr = (unsigned long)&seg_data1;
1788
        ldt.limit = (sizeof(seg_data1) + 0xfff) >> 12;
1789
        ldt.seg_32bit = 1;
1790
        ldt.contents = MODIFY_LDT_CONTENTS_DATA;
1791
        ldt.read_exec_only = 0;
1792
        ldt.limit_in_pages = 1;
1793
        ldt.seg_not_present = 1;
1794
        ldt.useable = 1;
1795
        modify_ldt(1, &ldt, sizeof(ldt)); /* write ldt entry */
1796

    
1797
        if (setjmp(jmp_env) == 0) {
1798
            /* segment not present */
1799
            asm volatile ("movl %0, %%fs" : : "r" (MK_SEL(1)));
1800
        }
1801
    }
1802
#endif
1803

    
1804
    /* test SEGV reporting */
1805
    printf("PF exception:\n");
1806
    if (setjmp(jmp_env) == 0) {
1807
        val = 1;
1808
        /* we add a nop to test a weird PC retrieval case */
1809
        asm volatile ("nop");
1810
        /* now store in an invalid address */
1811
        *(char *)0x1234 = 1;
1812
    }
1813

    
1814
    /* test SEGV reporting */
1815
    printf("PF exception:\n");
1816
    if (setjmp(jmp_env) == 0) {
1817
        val = 1;
1818
        /* read from an invalid address */
1819
        v1 = *(char *)0x1234;
1820
    }
1821

    
1822
    /* test illegal instruction reporting */
1823
    printf("UD2 exception:\n");
1824
    if (setjmp(jmp_env) == 0) {
1825
        /* now execute an invalid instruction */
1826
        asm volatile("ud2");
1827
    }
1828
    printf("lock nop exception:\n");
1829
    if (setjmp(jmp_env) == 0) {
1830
        /* now execute an invalid instruction */
1831
        asm volatile("lock nop");
1832
    }
1833

    
1834
    printf("INT exception:\n");
1835
    if (setjmp(jmp_env) == 0) {
1836
        asm volatile ("int $0xfd");
1837
    }
1838
    if (setjmp(jmp_env) == 0) {
1839
        asm volatile ("int $0x01");
1840
    }
1841
    if (setjmp(jmp_env) == 0) {
1842
        asm volatile (".byte 0xcd, 0x03");
1843
    }
1844
    if (setjmp(jmp_env) == 0) {
1845
        asm volatile ("int $0x04");
1846
    }
1847
    if (setjmp(jmp_env) == 0) {
1848
        asm volatile ("int $0x05");
1849
    }
1850

    
1851
    printf("INT3 exception:\n");
1852
    if (setjmp(jmp_env) == 0) {
1853
        asm volatile ("int3");
1854
    }
1855

    
1856
    printf("CLI exception:\n");
1857
    if (setjmp(jmp_env) == 0) {
1858
        asm volatile ("cli");
1859
    }
1860

    
1861
    printf("STI exception:\n");
1862
    if (setjmp(jmp_env) == 0) {
1863
        asm volatile ("cli");
1864
    }
1865

    
1866
#if !defined(__x86_64__)
1867
    printf("INTO exception:\n");
1868
    if (setjmp(jmp_env) == 0) {
1869
        /* overflow exception */
1870
        asm volatile ("addl $1, %0 ; into" : : "r" (0x7fffffff));
1871
    }
1872
#endif
1873

    
1874
    printf("OUTB exception:\n");
1875
    if (setjmp(jmp_env) == 0) {
1876
        asm volatile ("outb %%al, %%dx" : : "d" (0x4321), "a" (0));
1877
    }
1878

    
1879
    printf("INB exception:\n");
1880
    if (setjmp(jmp_env) == 0) {
1881
        asm volatile ("inb %%dx, %%al" : "=a" (val) : "d" (0x4321));
1882
    }
1883

    
1884
    printf("REP OUTSB exception:\n");
1885
    if (setjmp(jmp_env) == 0) {
1886
        asm volatile ("rep outsb" : : "d" (0x4321), "S" (tab), "c" (1));
1887
    }
1888

    
1889
    printf("REP INSB exception:\n");
1890
    if (setjmp(jmp_env) == 0) {
1891
        asm volatile ("rep insb" : : "d" (0x4321), "D" (tab), "c" (1));
1892
    }
1893

    
1894
    printf("HLT exception:\n");
1895
    if (setjmp(jmp_env) == 0) {
1896
        asm volatile ("hlt");
1897
    }
1898

    
1899
    printf("single step exception:\n");
1900
    val = 0;
1901
    if (setjmp(jmp_env) == 0) {
1902
        asm volatile ("pushf\n"
1903
                      "orl $0x00100, (%%esp)\n"
1904
                      "popf\n"
1905
                      "movl $0xabcd, %0\n"
1906
                      "movl $0x0, %0\n" : "=m" (val) : : "cc", "memory");
1907
    }
1908
    printf("val=0x%x\n", val);
1909
}
1910

    
1911
#if !defined(__x86_64__)
1912
/* specific precise single step test */
1913
void sig_trap_handler(int sig, siginfo_t *info, void *puc)
1914
{
1915
    struct ucontext *uc = puc;
1916
    printf("EIP=" FMTLX "\n", (long)uc->uc_mcontext.gregs[REG_EIP]);
1917
}
1918

    
1919
const uint8_t sstep_buf1[4] = { 1, 2, 3, 4};
1920
uint8_t sstep_buf2[4];
1921

    
1922
void test_single_step(void)
1923
{
1924
    struct sigaction act;
1925
    volatile int val;
1926
    int i;
1927

    
1928
    val = 0;
1929
    act.sa_sigaction = sig_trap_handler;
1930
    sigemptyset(&act.sa_mask);
1931
    act.sa_flags = SA_SIGINFO;
1932
    sigaction(SIGTRAP, &act, NULL);
1933
    asm volatile ("pushf\n"
1934
                  "orl $0x00100, (%%esp)\n"
1935
                  "popf\n"
1936
                  "movl $0xabcd, %0\n"
1937

    
1938
                  /* jmp test */
1939
                  "movl $3, %%ecx\n"
1940
                  "1:\n"
1941
                  "addl $1, %0\n"
1942
                  "decl %%ecx\n"
1943
                  "jnz 1b\n"
1944

    
1945
                  /* movsb: the single step should stop at each movsb iteration */
1946
                  "movl $sstep_buf1, %%esi\n"
1947
                  "movl $sstep_buf2, %%edi\n"
1948
                  "movl $0, %%ecx\n"
1949
                  "rep movsb\n"
1950
                  "movl $3, %%ecx\n"
1951
                  "rep movsb\n"
1952
                  "movl $1, %%ecx\n"
1953
                  "rep movsb\n"
1954

    
1955
                  /* cmpsb: the single step should stop at each cmpsb iteration */
1956
                  "movl $sstep_buf1, %%esi\n"
1957
                  "movl $sstep_buf2, %%edi\n"
1958
                  "movl $0, %%ecx\n"
1959
                  "rep cmpsb\n"
1960
                  "movl $4, %%ecx\n"
1961
                  "rep cmpsb\n"
1962

    
1963
                  /* getpid() syscall: single step should skip one
1964
                     instruction */
1965
                  "movl $20, %%eax\n"
1966
                  "int $0x80\n"
1967
                  "movl $0, %%eax\n"
1968

    
1969
                  /* when modifying SS, trace is not done on the next
1970
                     instruction */
1971
                  "movl %%ss, %%ecx\n"
1972
                  "movl %%ecx, %%ss\n"
1973
                  "addl $1, %0\n"
1974
                  "movl $1, %%eax\n"
1975
                  "movl %%ecx, %%ss\n"
1976
                  "jmp 1f\n"
1977
                  "addl $1, %0\n"
1978
                  "1:\n"
1979
                  "movl $1, %%eax\n"
1980
                  "pushl %%ecx\n"
1981
                  "popl %%ss\n"
1982
                  "addl $1, %0\n"
1983
                  "movl $1, %%eax\n"
1984

    
1985
                  "pushf\n"
1986
                  "andl $~0x00100, (%%esp)\n"
1987
                  "popf\n"
1988
                  : "=m" (val)
1989
                  :
1990
                  : "cc", "memory", "eax", "ecx", "esi", "edi");
1991
    printf("val=%d\n", val);
1992
    for(i = 0; i < 4; i++)
1993
        printf("sstep_buf2[%d] = %d\n", i, sstep_buf2[i]);
1994
}
1995

    
1996
/* self modifying code test */
1997
uint8_t code[] = {
1998
    0xb8, 0x1, 0x00, 0x00, 0x00, /* movl $1, %eax */
1999
    0xc3, /* ret */
2000
};
2001

    
2002
asm(".section \".data\"\n"
2003
    "smc_code2:\n"
2004
    "movl 4(%esp), %eax\n"
2005
    "movl %eax, smc_patch_addr2 + 1\n"
2006
    "nop\n"
2007
    "nop\n"
2008
    "nop\n"
2009
    "nop\n"
2010
    "nop\n"
2011
    "nop\n"
2012
    "nop\n"
2013
    "nop\n"
2014
    "smc_patch_addr2:\n"
2015
    "movl $1, %eax\n"
2016
    "ret\n"
2017
    ".previous\n"
2018
    );
2019

    
2020
typedef int FuncType(void);
2021
extern int smc_code2(int);
2022
void test_self_modifying_code(void)
2023
{
2024
    int i;
2025
    printf("self modifying code:\n");
2026
    printf("func1 = 0x%x\n", ((FuncType *)code)());
2027
    for(i = 2; i <= 4; i++) {
2028
        code[1] = i;
2029
        printf("func%d = 0x%x\n", i, ((FuncType *)code)());
2030
    }
2031

    
2032
    /* more difficult test : the modified code is just after the
2033
       modifying instruction. It is forbidden in Intel specs, but it
2034
       is used by old DOS programs */
2035
    for(i = 2; i <= 4; i++) {
2036
        printf("smc_code2(%d) = %d\n", i, smc_code2(i));
2037
    }
2038
}
2039
#endif
2040

    
2041
long enter_stack[4096];
2042

    
2043
#if defined(__x86_64__)
2044
#define RSP "%%rsp"
2045
#define RBP "%%rbp"
2046
#else
2047
#define RSP "%%esp"
2048
#define RBP "%%ebp"
2049
#endif
2050

    
2051
#define TEST_ENTER(size, stack_type, level)\
2052
{\
2053
    long esp_save, esp_val, ebp_val, ebp_save, i;\
2054
    stack_type *ptr, *stack_end, *stack_ptr;\
2055
    memset(enter_stack, 0, sizeof(enter_stack));\
2056
    stack_end = stack_ptr = (stack_type *)(enter_stack + 4096);\
2057
    ebp_val = (long)stack_ptr;\
2058
    for(i=1;i<=32;i++)\
2059
       *--stack_ptr = i;\
2060
    esp_val = (long)stack_ptr;\
2061
    asm("mov " RSP ", %[esp_save]\n"\
2062
        "mov " RBP ", %[ebp_save]\n"\
2063
        "mov %[esp_val], " RSP "\n"\
2064
        "mov %[ebp_val], " RBP "\n"\
2065
        "enter" size " $8, $" #level "\n"\
2066
        "mov " RSP ", %[esp_val]\n"\
2067
        "mov " RBP ", %[ebp_val]\n"\
2068
        "mov %[esp_save], " RSP "\n"\
2069
        "mov %[ebp_save], " RBP "\n"\
2070
        : [esp_save] "=r" (esp_save),\
2071
        [ebp_save] "=r" (ebp_save),\
2072
        [esp_val] "=r" (esp_val),\
2073
        [ebp_val] "=r" (ebp_val)\
2074
        :  "[esp_val]" (esp_val),\
2075
        "[ebp_val]" (ebp_val));\
2076
    printf("level=%d:\n", level);\
2077
    printf("esp_val=" FMTLX "\n", esp_val - (long)stack_end);\
2078
    printf("ebp_val=" FMTLX "\n", ebp_val - (long)stack_end);\
2079
    for(ptr = (stack_type *)esp_val; ptr < stack_end; ptr++)\
2080
        printf(FMTLX "\n", (long)ptr[0]);\
2081
}
2082

    
2083
static void test_enter(void)
2084
{
2085
#if defined(__x86_64__)
2086
    TEST_ENTER("q", uint64_t, 0);
2087
    TEST_ENTER("q", uint64_t, 1);
2088
    TEST_ENTER("q", uint64_t, 2);
2089
    TEST_ENTER("q", uint64_t, 31);
2090
#else
2091
    TEST_ENTER("l", uint32_t, 0);
2092
    TEST_ENTER("l", uint32_t, 1);
2093
    TEST_ENTER("l", uint32_t, 2);
2094
    TEST_ENTER("l", uint32_t, 31);
2095
#endif
2096

    
2097
    TEST_ENTER("w", uint16_t, 0);
2098
    TEST_ENTER("w", uint16_t, 1);
2099
    TEST_ENTER("w", uint16_t, 2);
2100
    TEST_ENTER("w", uint16_t, 31);
2101
}
2102

    
2103
#ifdef TEST_SSE
2104

    
2105
typedef int __m64 __attribute__ ((__mode__ (__V2SI__)));
2106
typedef float __m128 __attribute__ ((__mode__(__V4SF__)));
2107

    
2108
typedef union {
2109
    double d[2];
2110
    float s[4];
2111
    uint32_t l[4];
2112
    uint64_t q[2];
2113
    __m128 dq;
2114
} XMMReg;
2115

    
2116
static uint64_t __attribute__((aligned(16))) test_values[4][2] = {
2117
    { 0x456723c698694873, 0xdc515cff944a58ec },
2118
    { 0x1f297ccd58bad7ab, 0x41f21efba9e3e146 },
2119
    { 0x007c62c2085427f8, 0x231be9e8cde7438d },
2120
    { 0x0f76255a085427f8, 0xc233e9e8c4c9439a },
2121
};
2122

    
2123
#define SSE_OP(op)\
2124
{\
2125
    asm volatile (#op " %2, %0" : "=x" (r.dq) : "0" (a.dq), "x" (b.dq));\
2126
    printf("%-9s: a=" FMT64X "" FMT64X " b=" FMT64X "" FMT64X " r=" FMT64X "" FMT64X "\n",\
2127
           #op,\
2128
           a.q[1], a.q[0],\
2129
           b.q[1], b.q[0],\
2130
           r.q[1], r.q[0]);\
2131
}
2132

    
2133
#define SSE_OP2(op)\
2134
{\
2135
    int i;\
2136
    for(i=0;i<2;i++) {\
2137
    a.q[0] = test_values[2*i][0];\
2138
    a.q[1] = test_values[2*i][1];\
2139
    b.q[0] = test_values[2*i+1][0];\
2140
    b.q[1] = test_values[2*i+1][1];\
2141
    SSE_OP(op);\
2142
    }\
2143
}
2144

    
2145
#define MMX_OP2(op)\
2146
{\
2147
    int i;\
2148
    for(i=0;i<2;i++) {\
2149
    a.q[0] = test_values[2*i][0];\
2150
    b.q[0] = test_values[2*i+1][0];\
2151
    asm volatile (#op " %2, %0" : "=y" (r.q[0]) : "0" (a.q[0]), "y" (b.q[0]));\
2152
    printf("%-9s: a=" FMT64X " b=" FMT64X " r=" FMT64X "\n",\
2153
           #op,\
2154
           a.q[0],\
2155
           b.q[0],\
2156
           r.q[0]);\
2157
    }\
2158
    SSE_OP2(op);\
2159
}
2160

    
2161
#define SHUF_OP(op, ib)\
2162
{\
2163
    a.q[0] = test_values[0][0];\
2164
    a.q[1] = test_values[0][1];\
2165
    b.q[0] = test_values[1][0];\
2166
    b.q[1] = test_values[1][1];\
2167
    asm volatile (#op " $" #ib ", %2, %0" : "=x" (r.dq) : "0" (a.dq), "x" (b.dq));\
2168
    printf("%-9s: a=" FMT64X "" FMT64X " b=" FMT64X "" FMT64X " ib=%02x r=" FMT64X "" FMT64X "\n",\
2169
           #op,\
2170
           a.q[1], a.q[0],\
2171
           b.q[1], b.q[0],\
2172
           ib,\
2173
           r.q[1], r.q[0]);\
2174
}
2175

    
2176
#define PSHUF_OP(op, ib)\
2177
{\
2178
    int i;\
2179
    for(i=0;i<2;i++) {\
2180
    a.q[0] = test_values[2*i][0];\
2181
    a.q[1] = test_values[2*i][1];\
2182
    asm volatile (#op " $" #ib ", %1, %0" : "=x" (r.dq) : "x" (a.dq));\
2183
    printf("%-9s: a=" FMT64X "" FMT64X " ib=%02x r=" FMT64X "" FMT64X "\n",\
2184
           #op,\
2185
           a.q[1], a.q[0],\
2186
           ib,\
2187
           r.q[1], r.q[0]);\
2188
    }\
2189
}
2190

    
2191
#define SHIFT_IM(op, ib)\
2192
{\
2193
    int i;\
2194
    for(i=0;i<2;i++) {\
2195
    a.q[0] = test_values[2*i][0];\
2196
    a.q[1] = test_values[2*i][1];\
2197
    asm volatile (#op " $" #ib ", %0" : "=x" (r.dq) : "0" (a.dq));\
2198
    printf("%-9s: a=" FMT64X "" FMT64X " ib=%02x r=" FMT64X "" FMT64X "\n",\
2199
           #op,\
2200
           a.q[1], a.q[0],\
2201
           ib,\
2202
           r.q[1], r.q[0]);\
2203
    }\
2204
}
2205

    
2206
#define SHIFT_OP(op, ib)\
2207
{\
2208
    int i;\
2209
    SHIFT_IM(op, ib);\
2210
    for(i=0;i<2;i++) {\
2211
    a.q[0] = test_values[2*i][0];\
2212
    a.q[1] = test_values[2*i][1];\
2213
    b.q[0] = ib;\
2214
    b.q[1] = 0;\
2215
    asm volatile (#op " %2, %0" : "=x" (r.dq) : "0" (a.dq), "x" (b.dq));\
2216
    printf("%-9s: a=" FMT64X "" FMT64X " b=" FMT64X "" FMT64X " r=" FMT64X "" FMT64X "\n",\
2217
           #op,\
2218
           a.q[1], a.q[0],\
2219
           b.q[1], b.q[0],\
2220
           r.q[1], r.q[0]);\
2221
    }\
2222
}
2223

    
2224
#define MOVMSK(op)\
2225
{\
2226
    int i, reg;\
2227
    for(i=0;i<2;i++) {\
2228
    a.q[0] = test_values[2*i][0];\
2229
    a.q[1] = test_values[2*i][1];\
2230
    asm volatile (#op " %1, %0" : "=r" (reg) : "x" (a.dq));\
2231
    printf("%-9s: a=" FMT64X "" FMT64X " r=%08x\n",\
2232
           #op,\
2233
           a.q[1], a.q[0],\
2234
           reg);\
2235
    }\
2236
}
2237

    
2238
#define SSE_OPS(a) \
2239
SSE_OP(a ## ps);\
2240
SSE_OP(a ## ss);
2241

    
2242
#define SSE_OPD(a) \
2243
SSE_OP(a ## pd);\
2244
SSE_OP(a ## sd);
2245

    
2246
#define SSE_COMI(op, field)\
2247
{\
2248
    unsigned int eflags;\
2249
    XMMReg a, b;\
2250
    a.field[0] = a1;\
2251
    b.field[0] = b1;\
2252
    asm volatile (#op " %2, %1\n"\
2253
        "pushf\n"\
2254
        "pop %0\n"\
2255
        : "=m" (eflags)\
2256
        : "x" (a.dq), "x" (b.dq));\
2257
    printf("%-9s: a=%f b=%f cc=%04x\n",\
2258
           #op, a1, b1,\
2259
           eflags & (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A));\
2260
}
2261

    
2262
void test_sse_comi(double a1, double b1)
2263
{
2264
    SSE_COMI(ucomiss, s);
2265
    SSE_COMI(ucomisd, d);
2266
    SSE_COMI(comiss, s);
2267
    SSE_COMI(comisd, d);
2268
}
2269

    
2270
#define CVT_OP_XMM(op)\
2271
{\
2272
    asm volatile (#op " %1, %0" : "=x" (r.dq) : "x" (a.dq));\
2273
    printf("%-9s: a=" FMT64X "" FMT64X " r=" FMT64X "" FMT64X "\n",\
2274
           #op,\
2275
           a.q[1], a.q[0],\
2276
           r.q[1], r.q[0]);\
2277
}
2278

    
2279
/* Force %xmm0 usage to avoid the case where both register index are 0
2280
   to test intruction decoding more extensively */
2281
#define CVT_OP_XMM2MMX(op)\
2282
{\
2283
    asm volatile (#op " %1, %0" : "=y" (r.q[0]) : "x" (a.dq) \
2284
                  : "%xmm0"); \
2285
    asm volatile("emms\n"); \
2286
    printf("%-9s: a=" FMT64X "" FMT64X " r=" FMT64X "\n",\
2287
           #op,\
2288
           a.q[1], a.q[0],\
2289
           r.q[0]);\
2290
}
2291

    
2292
#define CVT_OP_MMX2XMM(op)\
2293
{\
2294
    asm volatile (#op " %1, %0" : "=x" (r.dq) : "y" (a.q[0]));\
2295
    asm volatile("emms\n"); \
2296
    printf("%-9s: a=" FMT64X " r=" FMT64X "" FMT64X "\n",\
2297
           #op,\
2298
           a.q[0],\
2299
           r.q[1], r.q[0]);\
2300
}
2301

    
2302
#define CVT_OP_REG2XMM(op)\
2303
{\
2304
    asm volatile (#op " %1, %0" : "=x" (r.dq) : "r" (a.l[0]));\
2305
    printf("%-9s: a=%08x r=" FMT64X "" FMT64X "\n",\
2306
           #op,\
2307
           a.l[0],\
2308
           r.q[1], r.q[0]);\
2309
}
2310

    
2311
#define CVT_OP_XMM2REG(op)\
2312
{\
2313
    asm volatile (#op " %1, %0" : "=r" (r.l[0]) : "x" (a.dq));\
2314
    printf("%-9s: a=" FMT64X "" FMT64X " r=%08x\n",\
2315
           #op,\
2316
           a.q[1], a.q[0],\
2317
           r.l[0]);\
2318
}
2319

    
2320
struct fpxstate {
2321
    uint16_t fpuc;
2322
    uint16_t fpus;
2323
    uint16_t fptag;
2324
    uint16_t fop;
2325
    uint32_t fpuip;
2326
    uint16_t cs_sel;
2327
    uint16_t dummy0;
2328
    uint32_t fpudp;
2329
    uint16_t ds_sel;
2330
    uint16_t dummy1;
2331
    uint32_t mxcsr;
2332
    uint32_t mxcsr_mask;
2333
    uint8_t fpregs1[8 * 16];
2334
    uint8_t xmm_regs[8 * 16];
2335
    uint8_t dummy2[224];
2336
};
2337

    
2338
static struct fpxstate fpx_state __attribute__((aligned(16)));
2339
static struct fpxstate fpx_state2 __attribute__((aligned(16)));
2340

    
2341
void test_fxsave(void)
2342
{
2343
    struct fpxstate *fp = &fpx_state;
2344
    struct fpxstate *fp2 = &fpx_state2;
2345
    int i, nb_xmm;
2346
    XMMReg a, b;
2347
    a.q[0] = test_values[0][0];
2348
    a.q[1] = test_values[0][1];
2349
    b.q[0] = test_values[1][0];
2350
    b.q[1] = test_values[1][1];
2351

    
2352
    asm("movdqa %2, %%xmm0\n"
2353
        "movdqa %3, %%xmm7\n"
2354
#if defined(__x86_64__)
2355
        "movdqa %2, %%xmm15\n"
2356
#endif
2357
        " fld1\n"
2358
        " fldpi\n"
2359
        " fldln2\n"
2360
        " fxsave %0\n"
2361
        " fxrstor %0\n"
2362
        " fxsave %1\n"
2363
        " fninit\n"
2364
        : "=m" (*(uint32_t *)fp2), "=m" (*(uint32_t *)fp)
2365
        : "m" (a), "m" (b));
2366
    printf("fpuc=%04x\n", fp->fpuc);
2367
    printf("fpus=%04x\n", fp->fpus);
2368
    printf("fptag=%04x\n", fp->fptag);
2369
    for(i = 0; i < 3; i++) {
2370
        printf("ST%d: " FMT64X " %04x\n",
2371
               i,
2372
               *(uint64_t *)&fp->fpregs1[i * 16],
2373
               *(uint16_t *)&fp->fpregs1[i * 16 + 8]);
2374
    }
2375
    printf("mxcsr=%08x\n", fp->mxcsr & 0x1f80);
2376
#if defined(__x86_64__)
2377
    nb_xmm = 16;
2378
#else
2379
    nb_xmm = 8;
2380
#endif
2381
    for(i = 0; i < nb_xmm; i++) {
2382
        printf("xmm%d: " FMT64X "" FMT64X "\n",
2383
               i,
2384
               *(uint64_t *)&fp->xmm_regs[i * 16],
2385
               *(uint64_t *)&fp->xmm_regs[i * 16 + 8]);
2386
    }
2387
}
2388

    
2389
void test_sse(void)
2390
{
2391
    XMMReg r, a, b;
2392
    int i;
2393

    
2394
    MMX_OP2(punpcklbw);
2395
    MMX_OP2(punpcklwd);
2396
    MMX_OP2(punpckldq);
2397
    MMX_OP2(packsswb);
2398
    MMX_OP2(pcmpgtb);
2399
    MMX_OP2(pcmpgtw);
2400
    MMX_OP2(pcmpgtd);
2401
    MMX_OP2(packuswb);
2402
    MMX_OP2(punpckhbw);
2403
    MMX_OP2(punpckhwd);
2404
    MMX_OP2(punpckhdq);
2405
    MMX_OP2(packssdw);
2406
    MMX_OP2(pcmpeqb);
2407
    MMX_OP2(pcmpeqw);
2408
    MMX_OP2(pcmpeqd);
2409

    
2410
    MMX_OP2(paddq);
2411
    MMX_OP2(pmullw);
2412
    MMX_OP2(psubusb);
2413
    MMX_OP2(psubusw);
2414
    MMX_OP2(pminub);
2415
    MMX_OP2(pand);
2416
    MMX_OP2(paddusb);
2417
    MMX_OP2(paddusw);
2418
    MMX_OP2(pmaxub);
2419
    MMX_OP2(pandn);
2420

    
2421
    MMX_OP2(pmulhuw);
2422
    MMX_OP2(pmulhw);
2423

    
2424
    MMX_OP2(psubsb);
2425
    MMX_OP2(psubsw);
2426
    MMX_OP2(pminsw);
2427
    MMX_OP2(por);
2428
    MMX_OP2(paddsb);
2429
    MMX_OP2(paddsw);
2430
    MMX_OP2(pmaxsw);
2431
    MMX_OP2(pxor);
2432
    MMX_OP2(pmuludq);
2433
    MMX_OP2(pmaddwd);
2434
    MMX_OP2(psadbw);
2435
    MMX_OP2(psubb);
2436
    MMX_OP2(psubw);
2437
    MMX_OP2(psubd);
2438
    MMX_OP2(psubq);
2439
    MMX_OP2(paddb);
2440
    MMX_OP2(paddw);
2441
    MMX_OP2(paddd);
2442

    
2443
    MMX_OP2(pavgb);
2444
    MMX_OP2(pavgw);
2445

    
2446
    asm volatile ("pinsrw $1, %1, %0" : "=y" (r.q[0]) : "r" (0x12345678));
2447
    printf("%-9s: r=" FMT64X "\n", "pinsrw", r.q[0]);
2448

    
2449
    asm volatile ("pinsrw $5, %1, %0" : "=x" (r.dq) : "r" (0x12345678));
2450
    printf("%-9s: r=" FMT64X "" FMT64X "\n", "pinsrw", r.q[1], r.q[0]);
2451

    
2452
    a.q[0] = test_values[0][0];
2453
    a.q[1] = test_values[0][1];
2454
    asm volatile ("pextrw $1, %1, %0" : "=r" (r.l[0]) : "y" (a.q[0]));
2455
    printf("%-9s: r=%08x\n", "pextrw", r.l[0]);
2456

    
2457
    asm volatile ("pextrw $5, %1, %0" : "=r" (r.l[0]) : "x" (a.dq));
2458
    printf("%-9s: r=%08x\n", "pextrw", r.l[0]);
2459

    
2460
    asm volatile ("pmovmskb %1, %0" : "=r" (r.l[0]) : "y" (a.q[0]));
2461
    printf("%-9s: r=%08x\n", "pmovmskb", r.l[0]);
2462

    
2463
    asm volatile ("pmovmskb %1, %0" : "=r" (r.l[0]) : "x" (a.dq));
2464
    printf("%-9s: r=%08x\n", "pmovmskb", r.l[0]);
2465

    
2466
    {
2467
        r.q[0] = -1;
2468
        r.q[1] = -1;
2469

    
2470
        a.q[0] = test_values[0][0];
2471
        a.q[1] = test_values[0][1];
2472
        b.q[0] = test_values[1][0];
2473
        b.q[1] = test_values[1][1];
2474
        asm volatile("maskmovq %1, %0" :
2475
                     : "y" (a.q[0]), "y" (b.q[0]), "D" (&r)
2476
                     : "memory");
2477
        printf("%-9s: r=" FMT64X " a=" FMT64X " b=" FMT64X "\n",
2478
               "maskmov",
2479
               r.q[0],
2480
               a.q[0],
2481
               b.q[0]);
2482
        asm volatile("maskmovdqu %1, %0" :
2483
                     : "x" (a.dq), "x" (b.dq), "D" (&r)
2484
                     : "memory");
2485
        printf("%-9s: r=" FMT64X "" FMT64X " a=" FMT64X "" FMT64X " b=" FMT64X "" FMT64X "\n",
2486
               "maskmov",
2487
               r.q[1], r.q[0],
2488
               a.q[1], a.q[0],
2489
               b.q[1], b.q[0]);
2490
    }
2491

    
2492
    asm volatile ("emms");
2493

    
2494
    SSE_OP2(punpcklqdq);
2495
    SSE_OP2(punpckhqdq);
2496
    SSE_OP2(andps);
2497
    SSE_OP2(andpd);
2498
    SSE_OP2(andnps);
2499
    SSE_OP2(andnpd);
2500
    SSE_OP2(orps);
2501
    SSE_OP2(orpd);
2502
    SSE_OP2(xorps);
2503
    SSE_OP2(xorpd);
2504

    
2505
    SSE_OP2(unpcklps);
2506
    SSE_OP2(unpcklpd);
2507
    SSE_OP2(unpckhps);
2508
    SSE_OP2(unpckhpd);
2509

    
2510
    SHUF_OP(shufps, 0x78);
2511
    SHUF_OP(shufpd, 0x02);
2512

    
2513
    PSHUF_OP(pshufd, 0x78);
2514
    PSHUF_OP(pshuflw, 0x78);
2515
    PSHUF_OP(pshufhw, 0x78);
2516

    
2517
    SHIFT_OP(psrlw, 7);
2518
    SHIFT_OP(psrlw, 16);
2519
    SHIFT_OP(psraw, 7);
2520
    SHIFT_OP(psraw, 16);
2521
    SHIFT_OP(psllw, 7);
2522
    SHIFT_OP(psllw, 16);
2523

    
2524
    SHIFT_OP(psrld, 7);
2525
    SHIFT_OP(psrld, 32);
2526
    SHIFT_OP(psrad, 7);
2527
    SHIFT_OP(psrad, 32);
2528
    SHIFT_OP(pslld, 7);
2529
    SHIFT_OP(pslld, 32);
2530

    
2531
    SHIFT_OP(psrlq, 7);
2532
    SHIFT_OP(psrlq, 32);
2533
    SHIFT_OP(psllq, 7);
2534
    SHIFT_OP(psllq, 32);
2535

    
2536
    SHIFT_IM(psrldq, 16);
2537
    SHIFT_IM(psrldq, 7);
2538
    SHIFT_IM(pslldq, 16);
2539
    SHIFT_IM(pslldq, 7);
2540

    
2541
    MOVMSK(movmskps);
2542
    MOVMSK(movmskpd);
2543

    
2544
    /* FPU specific ops */
2545

    
2546
    {
2547
        uint32_t mxcsr;
2548
        asm volatile("stmxcsr %0" : "=m" (mxcsr));
2549
        printf("mxcsr=%08x\n", mxcsr & 0x1f80);
2550
        asm volatile("ldmxcsr %0" : : "m" (mxcsr));
2551
    }
2552

    
2553
    test_sse_comi(2, -1);
2554
    test_sse_comi(2, 2);
2555
    test_sse_comi(2, 3);
2556
    test_sse_comi(2, q_nan.d);
2557
    test_sse_comi(q_nan.d, -1);
2558

    
2559
    for(i = 0; i < 2; i++) {
2560
        a.s[0] = 2.7;
2561
        a.s[1] = 3.4;
2562
        a.s[2] = 4;
2563
        a.s[3] = -6.3;
2564
        b.s[0] = 45.7;
2565
        b.s[1] = 353.4;
2566
        b.s[2] = 4;
2567
        b.s[3] = 56.3;
2568
        if (i == 1) {
2569
            a.s[0] = q_nan.d;
2570
            b.s[3] = q_nan.d;
2571
        }
2572

    
2573
        SSE_OPS(add);
2574
        SSE_OPS(mul);
2575
        SSE_OPS(sub);
2576
        SSE_OPS(min);
2577
        SSE_OPS(div);
2578
        SSE_OPS(max);
2579
        SSE_OPS(sqrt);
2580
        SSE_OPS(cmpeq);
2581
        SSE_OPS(cmplt);
2582
        SSE_OPS(cmple);
2583
        SSE_OPS(cmpunord);
2584
        SSE_OPS(cmpneq);
2585
        SSE_OPS(cmpnlt);
2586
        SSE_OPS(cmpnle);
2587
        SSE_OPS(cmpord);
2588

    
2589

    
2590
        a.d[0] = 2.7;
2591
        a.d[1] = -3.4;
2592
        b.d[0] = 45.7;
2593
        b.d[1] = -53.4;
2594
        if (i == 1) {
2595
            a.d[0] = q_nan.d;
2596
            b.d[1] = q_nan.d;
2597
        }
2598
        SSE_OPD(add);
2599
        SSE_OPD(mul);
2600
        SSE_OPD(sub);
2601
        SSE_OPD(min);
2602
        SSE_OPD(div);
2603
        SSE_OPD(max);
2604
        SSE_OPD(sqrt);
2605
        SSE_OPD(cmpeq);
2606
        SSE_OPD(cmplt);
2607
        SSE_OPD(cmple);
2608
        SSE_OPD(cmpunord);
2609
        SSE_OPD(cmpneq);
2610
        SSE_OPD(cmpnlt);
2611
        SSE_OPD(cmpnle);
2612
        SSE_OPD(cmpord);
2613
    }
2614

    
2615
    /* float to float/int */
2616
    a.s[0] = 2.7;
2617
    a.s[1] = 3.4;
2618
    a.s[2] = 4;
2619
    a.s[3] = -6.3;
2620
    CVT_OP_XMM(cvtps2pd);
2621
    CVT_OP_XMM(cvtss2sd);
2622
    CVT_OP_XMM2MMX(cvtps2pi);
2623
    CVT_OP_XMM2MMX(cvttps2pi);
2624
    CVT_OP_XMM2REG(cvtss2si);
2625
    CVT_OP_XMM2REG(cvttss2si);
2626
    CVT_OP_XMM(cvtps2dq);
2627
    CVT_OP_XMM(cvttps2dq);
2628

    
2629
    a.d[0] = 2.6;
2630
    a.d[1] = -3.4;
2631
    CVT_OP_XMM(cvtpd2ps);
2632
    CVT_OP_XMM(cvtsd2ss);
2633
    CVT_OP_XMM2MMX(cvtpd2pi);
2634
    CVT_OP_XMM2MMX(cvttpd2pi);
2635
    CVT_OP_XMM2REG(cvtsd2si);
2636
    CVT_OP_XMM2REG(cvttsd2si);
2637
    CVT_OP_XMM(cvtpd2dq);
2638
    CVT_OP_XMM(cvttpd2dq);
2639

    
2640
    /* sse/mmx moves */
2641
    CVT_OP_XMM2MMX(movdq2q);
2642
    CVT_OP_MMX2XMM(movq2dq);
2643

    
2644
    /* int to float */
2645
    a.l[0] = -6;
2646
    a.l[1] = 2;
2647
    a.l[2] = 100;
2648
    a.l[3] = -60000;
2649
    CVT_OP_MMX2XMM(cvtpi2ps);
2650
    CVT_OP_MMX2XMM(cvtpi2pd);
2651
    CVT_OP_REG2XMM(cvtsi2ss);
2652
    CVT_OP_REG2XMM(cvtsi2sd);
2653
    CVT_OP_XMM(cvtdq2ps);
2654
    CVT_OP_XMM(cvtdq2pd);
2655

    
2656
    /* XXX: test PNI insns */
2657
#if 0
2658
    SSE_OP2(movshdup);
2659
#endif
2660
    asm volatile ("emms");
2661
}
2662

    
2663
#endif
2664

    
2665
#define TEST_CONV_RAX(op)\
2666
{\
2667
    unsigned long a, r;\
2668
    a = i2l(0x8234a6f8);\
2669
    r = a;\
2670
    asm volatile(#op : "=a" (r) : "0" (r));\
2671
    printf("%-10s A=" FMTLX " R=" FMTLX "\n", #op, a, r);\
2672
}
2673

    
2674
#define TEST_CONV_RAX_RDX(op)\
2675
{\
2676
    unsigned long a, d, r, rh;                   \
2677
    a = i2l(0x8234a6f8);\
2678
    d = i2l(0x8345a1f2);\
2679
    r = a;\
2680
    rh = d;\
2681
    asm volatile(#op : "=a" (r), "=d" (rh) : "0" (r), "1" (rh));   \
2682
    printf("%-10s A=" FMTLX " R=" FMTLX ":" FMTLX "\n", #op, a, r, rh);  \
2683
}
2684

    
2685
void test_conv(void)
2686
{
2687
    TEST_CONV_RAX(cbw);
2688
    TEST_CONV_RAX(cwde);
2689
#if defined(__x86_64__)
2690
    TEST_CONV_RAX(cdqe);
2691
#endif
2692

    
2693
    TEST_CONV_RAX_RDX(cwd);
2694
    TEST_CONV_RAX_RDX(cdq);
2695
#if defined(__x86_64__)
2696
    TEST_CONV_RAX_RDX(cqo);
2697
#endif
2698

    
2699
    {
2700
        unsigned long a, r;
2701
        a = i2l(0x12345678);
2702
        asm volatile("bswapl %k0" : "=r" (r) : "0" (a));
2703
        printf("%-10s: A=" FMTLX " R=" FMTLX "\n", "bswapl", a, r);
2704
    }
2705
#if defined(__x86_64__)
2706
    {
2707
        unsigned long a, r;
2708
        a = i2l(0x12345678);
2709
        asm volatile("bswapq %0" : "=r" (r) : "0" (a));
2710
        printf("%-10s: A=" FMTLX " R=" FMTLX "\n", "bswapq", a, r);
2711
    }
2712
#endif
2713
}
2714

    
2715
extern void *__start_initcall;
2716
extern void *__stop_initcall;
2717

    
2718

    
2719
int main(int argc, char **argv)
2720
{
2721
    void **ptr;
2722
    void (*func)(void);
2723

    
2724
    ptr = &__start_initcall;
2725
    while (ptr != &__stop_initcall) {
2726
        func = *ptr++;
2727
        func();
2728
    }
2729
    test_bsx();
2730
    test_mul();
2731
    test_jcc();
2732
    test_loop();
2733
    test_floats();
2734
#if !defined(__x86_64__)
2735
    test_bcd();
2736
#endif
2737
    test_xchg();
2738
    test_string();
2739
    test_misc();
2740
    test_lea();
2741
#ifdef TEST_SEGS
2742
    test_segs();
2743
    test_code16();
2744
#endif
2745
#ifdef TEST_VM86
2746
    test_vm86();
2747
#endif
2748
#if !defined(__x86_64__)
2749
    test_exceptions();
2750
    test_self_modifying_code();
2751
    test_single_step();
2752
#endif
2753
    test_enter();
2754
    test_conv();
2755
#ifdef TEST_SSE
2756
    test_sse();
2757
    test_fxsave();
2758
#endif
2759
    return 0;
2760
}