Statistics
| Branch: | Revision:

root / target-sparc / op_helper.c @ 714547bb

History | View | Annotate | Download (86.7 kB)

1
#include "exec.h"
2
#include "host-utils.h"
3
#include "helper.h"
4
#if !defined(CONFIG_USER_ONLY)
5
#include "softmmu_exec.h"
6
#endif /* !defined(CONFIG_USER_ONLY) */
7

    
8
//#define DEBUG_MMU
9
//#define DEBUG_MXCC
10
//#define DEBUG_UNALIGNED
11
//#define DEBUG_UNASSIGNED
12
//#define DEBUG_ASI
13

    
14
#ifdef DEBUG_MMU
15
#define DPRINTF_MMU(fmt, args...) \
16
do { printf("MMU: " fmt , ##args); } while (0)
17
#else
18
#define DPRINTF_MMU(fmt, args...) do {} while (0)
19
#endif
20

    
21
#ifdef DEBUG_MXCC
22
#define DPRINTF_MXCC(fmt, args...) \
23
do { printf("MXCC: " fmt , ##args); } while (0)
24
#else
25
#define DPRINTF_MXCC(fmt, args...) do {} while (0)
26
#endif
27

    
28
#ifdef DEBUG_ASI
29
#define DPRINTF_ASI(fmt, args...) \
30
do { printf("ASI: " fmt , ##args); } while (0)
31
#else
32
#define DPRINTF_ASI(fmt, args...) do {} while (0)
33
#endif
34

    
35
#ifdef TARGET_SPARC64
36
#ifndef TARGET_ABI32
37
#define AM_CHECK(env1) ((env1)->pstate & PS_AM)
38
#else
39
#define AM_CHECK(env1) (1)
40
#endif
41
#endif
42

    
43
static inline void address_mask(CPUState *env1, target_ulong *addr)
44
{
45
#ifdef TARGET_SPARC64
46
    if (AM_CHECK(env1))
47
        *addr &= 0xffffffffULL;
48
#endif
49
}
50

    
51
void raise_exception(int tt)
52
{
53
    env->exception_index = tt;
54
    cpu_loop_exit();
55
}
56

    
57
void helper_trap(target_ulong nb_trap)
58
{
59
    env->exception_index = TT_TRAP + (nb_trap & 0x7f);
60
    cpu_loop_exit();
61
}
62

    
63
void helper_trapcc(target_ulong nb_trap, target_ulong do_trap)
64
{
65
    if (do_trap) {
66
        env->exception_index = TT_TRAP + (nb_trap & 0x7f);
67
        cpu_loop_exit();
68
    }
69
}
70

    
71
static inline void set_cwp(int new_cwp)
72
{
73
    cpu_set_cwp(env, new_cwp);
74
}
75

    
76
void helper_check_align(target_ulong addr, uint32_t align)
77
{
78
    if (addr & align) {
79
#ifdef DEBUG_UNALIGNED
80
    printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
81
           "\n", addr, env->pc);
82
#endif
83
        raise_exception(TT_UNALIGNED);
84
    }
85
}
86

    
87
#define F_HELPER(name, p) void helper_f##name##p(void)
88

    
89
#define F_BINOP(name)                                           \
90
    float32 helper_f ## name ## s (float32 src1, float32 src2)  \
91
    {                                                           \
92
        return float32_ ## name (src1, src2, &env->fp_status);  \
93
    }                                                           \
94
    F_HELPER(name, d)                                           \
95
    {                                                           \
96
        DT0 = float64_ ## name (DT0, DT1, &env->fp_status);     \
97
    }                                                           \
98
    F_HELPER(name, q)                                           \
99
    {                                                           \
100
        QT0 = float128_ ## name (QT0, QT1, &env->fp_status);    \
101
    }
102

    
103
F_BINOP(add);
104
F_BINOP(sub);
105
F_BINOP(mul);
106
F_BINOP(div);
107
#undef F_BINOP
108

    
109
void helper_fsmuld(void)
110
{
111
    DT0 = float64_mul(float32_to_float64(FT0, &env->fp_status),
112
                      float32_to_float64(FT1, &env->fp_status),
113
                      &env->fp_status);
114
}
115

    
116
void helper_fdmulq(void)
117
{
118
    QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status),
119
                       float64_to_float128(DT1, &env->fp_status),
120
                       &env->fp_status);
121
}
122

    
123
float32 helper_fnegs(float32 src)
124
{
125
    return float32_chs(src);
126
}
127

    
128
#ifdef TARGET_SPARC64
129
F_HELPER(neg, d)
130
{
131
    DT0 = float64_chs(DT1);
132
}
133

    
134
F_HELPER(neg, q)
135
{
136
    QT0 = float128_chs(QT1);
137
}
138
#endif
139

    
140
/* Integer to float conversion.  */
141
float32 helper_fitos(int32_t src)
142
{
143
    return int32_to_float32(src, &env->fp_status);
144
}
145

    
146
F_HELPER(ito, d)
147
{
148
    DT0 = int32_to_float64(*((int32_t *)&FT1), &env->fp_status);
149
}
150

    
151
F_HELPER(ito, q)
152
{
153
    QT0 = int32_to_float128(*((int32_t *)&FT1), &env->fp_status);
154
}
155

    
156
#ifdef TARGET_SPARC64
157
F_HELPER(xto, s)
158
{
159
    FT0 = int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
160
}
161

    
162
F_HELPER(xto, d)
163
{
164
    DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
165
}
166

    
167
F_HELPER(xto, q)
168
{
169
    QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status);
170
}
171
#endif
172
#undef F_HELPER
173

    
174
/* floating point conversion */
175
void helper_fdtos(void)
176
{
177
    FT0 = float64_to_float32(DT1, &env->fp_status);
178
}
179

    
180
void helper_fstod(void)
181
{
182
    DT0 = float32_to_float64(FT1, &env->fp_status);
183
}
184

    
185
void helper_fqtos(void)
186
{
187
    FT0 = float128_to_float32(QT1, &env->fp_status);
188
}
189

    
190
void helper_fstoq(void)
191
{
192
    QT0 = float32_to_float128(FT1, &env->fp_status);
193
}
194

    
195
void helper_fqtod(void)
196
{
197
    DT0 = float128_to_float64(QT1, &env->fp_status);
198
}
199

    
200
void helper_fdtoq(void)
201
{
202
    QT0 = float64_to_float128(DT1, &env->fp_status);
203
}
204

    
205
/* Float to integer conversion.  */
206
int32_t helper_fstoi(float32 src)
207
{
208
    return float32_to_int32_round_to_zero(src, &env->fp_status);
209
}
210

    
211
void helper_fdtoi(void)
212
{
213
    *((int32_t *)&FT0) = float64_to_int32_round_to_zero(DT1, &env->fp_status);
214
}
215

    
216
void helper_fqtoi(void)
217
{
218
    *((int32_t *)&FT0) = float128_to_int32_round_to_zero(QT1, &env->fp_status);
219
}
220

    
221
#ifdef TARGET_SPARC64
222
void helper_fstox(void)
223
{
224
    *((int64_t *)&DT0) = float32_to_int64_round_to_zero(FT1, &env->fp_status);
225
}
226

    
227
void helper_fdtox(void)
228
{
229
    *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status);
230
}
231

    
232
void helper_fqtox(void)
233
{
234
    *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status);
235
}
236

    
237
void helper_faligndata(void)
238
{
239
    uint64_t tmp;
240

    
241
    tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8);
242
    /* on many architectures a shift of 64 does nothing */
243
    if ((env->gsr & 7) != 0) {
244
        tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8);
245
    }
246
    *((uint64_t *)&DT0) = tmp;
247
}
248

    
249
void helper_movl_FT0_0(void)
250
{
251
    *((uint32_t *)&FT0) = 0;
252
}
253

    
254
void helper_movl_DT0_0(void)
255
{
256
    *((uint64_t *)&DT0) = 0;
257
}
258

    
259
void helper_movl_FT0_1(void)
260
{
261
    *((uint32_t *)&FT0) = 0xffffffff;
262
}
263

    
264
void helper_movl_DT0_1(void)
265
{
266
    *((uint64_t *)&DT0) = 0xffffffffffffffffULL;
267
}
268

    
269
void helper_fnot(void)
270
{
271
    *(uint64_t *)&DT0 = ~*(uint64_t *)&DT1;
272
}
273

    
274
void helper_fnots(void)
275
{
276
    *(uint32_t *)&FT0 = ~*(uint32_t *)&FT1;
277
}
278

    
279
void helper_fnor(void)
280
{
281
    *(uint64_t *)&DT0 = ~(*(uint64_t *)&DT0 | *(uint64_t *)&DT1);
282
}
283

    
284
void helper_fnors(void)
285
{
286
    *(uint32_t *)&FT0 = ~(*(uint32_t *)&FT0 | *(uint32_t *)&FT1);
287
}
288

    
289
void helper_for(void)
290
{
291
    *(uint64_t *)&DT0 |= *(uint64_t *)&DT1;
292
}
293

    
294
void helper_fors(void)
295
{
296
    *(uint32_t *)&FT0 |= *(uint32_t *)&FT1;
297
}
298

    
299
void helper_fxor(void)
300
{
301
    *(uint64_t *)&DT0 ^= *(uint64_t *)&DT1;
302
}
303

    
304
void helper_fxors(void)
305
{
306
    *(uint32_t *)&FT0 ^= *(uint32_t *)&FT1;
307
}
308

    
309
void helper_fand(void)
310
{
311
    *(uint64_t *)&DT0 &= *(uint64_t *)&DT1;
312
}
313

    
314
void helper_fands(void)
315
{
316
    *(uint32_t *)&FT0 &= *(uint32_t *)&FT1;
317
}
318

    
319
void helper_fornot(void)
320
{
321
    *(uint64_t *)&DT0 = *(uint64_t *)&DT0 | ~*(uint64_t *)&DT1;
322
}
323

    
324
void helper_fornots(void)
325
{
326
    *(uint32_t *)&FT0 = *(uint32_t *)&FT0 | ~*(uint32_t *)&FT1;
327
}
328

    
329
void helper_fandnot(void)
330
{
331
    *(uint64_t *)&DT0 = *(uint64_t *)&DT0 & ~*(uint64_t *)&DT1;
332
}
333

    
334
void helper_fandnots(void)
335
{
336
    *(uint32_t *)&FT0 = *(uint32_t *)&FT0 & ~*(uint32_t *)&FT1;
337
}
338

    
339
void helper_fnand(void)
340
{
341
    *(uint64_t *)&DT0 = ~(*(uint64_t *)&DT0 & *(uint64_t *)&DT1);
342
}
343

    
344
void helper_fnands(void)
345
{
346
    *(uint32_t *)&FT0 = ~(*(uint32_t *)&FT0 & *(uint32_t *)&FT1);
347
}
348

    
349
void helper_fxnor(void)
350
{
351
    *(uint64_t *)&DT0 ^= ~*(uint64_t *)&DT1;
352
}
353

    
354
void helper_fxnors(void)
355
{
356
    *(uint32_t *)&FT0 ^= ~*(uint32_t *)&FT1;
357
}
358

    
359
#ifdef WORDS_BIGENDIAN
360
#define VIS_B64(n) b[7 - (n)]
361
#define VIS_W64(n) w[3 - (n)]
362
#define VIS_SW64(n) sw[3 - (n)]
363
#define VIS_L64(n) l[1 - (n)]
364
#define VIS_B32(n) b[3 - (n)]
365
#define VIS_W32(n) w[1 - (n)]
366
#else
367
#define VIS_B64(n) b[n]
368
#define VIS_W64(n) w[n]
369
#define VIS_SW64(n) sw[n]
370
#define VIS_L64(n) l[n]
371
#define VIS_B32(n) b[n]
372
#define VIS_W32(n) w[n]
373
#endif
374

    
375
typedef union {
376
    uint8_t b[8];
377
    uint16_t w[4];
378
    int16_t sw[4];
379
    uint32_t l[2];
380
    float64 d;
381
} vis64;
382

    
383
typedef union {
384
    uint8_t b[4];
385
    uint16_t w[2];
386
    uint32_t l;
387
    float32 f;
388
} vis32;
389

    
390
void helper_fpmerge(void)
391
{
392
    vis64 s, d;
393

    
394
    s.d = DT0;
395
    d.d = DT1;
396

    
397
    // Reverse calculation order to handle overlap
398
    d.VIS_B64(7) = s.VIS_B64(3);
399
    d.VIS_B64(6) = d.VIS_B64(3);
400
    d.VIS_B64(5) = s.VIS_B64(2);
401
    d.VIS_B64(4) = d.VIS_B64(2);
402
    d.VIS_B64(3) = s.VIS_B64(1);
403
    d.VIS_B64(2) = d.VIS_B64(1);
404
    d.VIS_B64(1) = s.VIS_B64(0);
405
    //d.VIS_B64(0) = d.VIS_B64(0);
406

    
407
    DT0 = d.d;
408
}
409

    
410
void helper_fmul8x16(void)
411
{
412
    vis64 s, d;
413
    uint32_t tmp;
414

    
415
    s.d = DT0;
416
    d.d = DT1;
417

    
418
#define PMUL(r)                                                 \
419
    tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r);       \
420
    if ((tmp & 0xff) > 0x7f)                                    \
421
        tmp += 0x100;                                           \
422
    d.VIS_W64(r) = tmp >> 8;
423

    
424
    PMUL(0);
425
    PMUL(1);
426
    PMUL(2);
427
    PMUL(3);
428
#undef PMUL
429

    
430
    DT0 = d.d;
431
}
432

    
433
void helper_fmul8x16al(void)
434
{
435
    vis64 s, d;
436
    uint32_t tmp;
437

    
438
    s.d = DT0;
439
    d.d = DT1;
440

    
441
#define PMUL(r)                                                 \
442
    tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r);       \
443
    if ((tmp & 0xff) > 0x7f)                                    \
444
        tmp += 0x100;                                           \
445
    d.VIS_W64(r) = tmp >> 8;
446

    
447
    PMUL(0);
448
    PMUL(1);
449
    PMUL(2);
450
    PMUL(3);
451
#undef PMUL
452

    
453
    DT0 = d.d;
454
}
455

    
456
void helper_fmul8x16au(void)
457
{
458
    vis64 s, d;
459
    uint32_t tmp;
460

    
461
    s.d = DT0;
462
    d.d = DT1;
463

    
464
#define PMUL(r)                                                 \
465
    tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r);       \
466
    if ((tmp & 0xff) > 0x7f)                                    \
467
        tmp += 0x100;                                           \
468
    d.VIS_W64(r) = tmp >> 8;
469

    
470
    PMUL(0);
471
    PMUL(1);
472
    PMUL(2);
473
    PMUL(3);
474
#undef PMUL
475

    
476
    DT0 = d.d;
477
}
478

    
479
void helper_fmul8sux16(void)
480
{
481
    vis64 s, d;
482
    uint32_t tmp;
483

    
484
    s.d = DT0;
485
    d.d = DT1;
486

    
487
#define PMUL(r)                                                         \
488
    tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8);       \
489
    if ((tmp & 0xff) > 0x7f)                                            \
490
        tmp += 0x100;                                                   \
491
    d.VIS_W64(r) = tmp >> 8;
492

    
493
    PMUL(0);
494
    PMUL(1);
495
    PMUL(2);
496
    PMUL(3);
497
#undef PMUL
498

    
499
    DT0 = d.d;
500
}
501

    
502
void helper_fmul8ulx16(void)
503
{
504
    vis64 s, d;
505
    uint32_t tmp;
506

    
507
    s.d = DT0;
508
    d.d = DT1;
509

    
510
#define PMUL(r)                                                         \
511
    tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2));        \
512
    if ((tmp & 0xff) > 0x7f)                                            \
513
        tmp += 0x100;                                                   \
514
    d.VIS_W64(r) = tmp >> 8;
515

    
516
    PMUL(0);
517
    PMUL(1);
518
    PMUL(2);
519
    PMUL(3);
520
#undef PMUL
521

    
522
    DT0 = d.d;
523
}
524

    
525
void helper_fmuld8sux16(void)
526
{
527
    vis64 s, d;
528
    uint32_t tmp;
529

    
530
    s.d = DT0;
531
    d.d = DT1;
532

    
533
#define PMUL(r)                                                         \
534
    tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8);       \
535
    if ((tmp & 0xff) > 0x7f)                                            \
536
        tmp += 0x100;                                                   \
537
    d.VIS_L64(r) = tmp;
538

    
539
    // Reverse calculation order to handle overlap
540
    PMUL(1);
541
    PMUL(0);
542
#undef PMUL
543

    
544
    DT0 = d.d;
545
}
546

    
547
void helper_fmuld8ulx16(void)
548
{
549
    vis64 s, d;
550
    uint32_t tmp;
551

    
552
    s.d = DT0;
553
    d.d = DT1;
554

    
555
#define PMUL(r)                                                         \
556
    tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2));        \
557
    if ((tmp & 0xff) > 0x7f)                                            \
558
        tmp += 0x100;                                                   \
559
    d.VIS_L64(r) = tmp;
560

    
561
    // Reverse calculation order to handle overlap
562
    PMUL(1);
563
    PMUL(0);
564
#undef PMUL
565

    
566
    DT0 = d.d;
567
}
568

    
569
void helper_fexpand(void)
570
{
571
    vis32 s;
572
    vis64 d;
573

    
574
    s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
575
    d.d = DT1;
576
    d.VIS_L64(0) = s.VIS_W32(0) << 4;
577
    d.VIS_L64(1) = s.VIS_W32(1) << 4;
578
    d.VIS_L64(2) = s.VIS_W32(2) << 4;
579
    d.VIS_L64(3) = s.VIS_W32(3) << 4;
580

    
581
    DT0 = d.d;
582
}
583

    
584
#define VIS_HELPER(name, F)                             \
585
    void name##16(void)                                 \
586
    {                                                   \
587
        vis64 s, d;                                     \
588
                                                        \
589
        s.d = DT0;                                      \
590
        d.d = DT1;                                      \
591
                                                        \
592
        d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0));   \
593
        d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1));   \
594
        d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2));   \
595
        d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3));   \
596
                                                        \
597
        DT0 = d.d;                                      \
598
    }                                                   \
599
                                                        \
600
    void name##16s(void)                                \
601
    {                                                   \
602
        vis32 s, d;                                     \
603
                                                        \
604
        s.f = FT0;                                      \
605
        d.f = FT1;                                      \
606
                                                        \
607
        d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0));   \
608
        d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1));   \
609
                                                        \
610
        FT0 = d.f;                                      \
611
    }                                                   \
612
                                                        \
613
    void name##32(void)                                 \
614
    {                                                   \
615
        vis64 s, d;                                     \
616
                                                        \
617
        s.d = DT0;                                      \
618
        d.d = DT1;                                      \
619
                                                        \
620
        d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0));   \
621
        d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1));   \
622
                                                        \
623
        DT0 = d.d;                                      \
624
    }                                                   \
625
                                                        \
626
    void name##32s(void)                                \
627
    {                                                   \
628
        vis32 s, d;                                     \
629
                                                        \
630
        s.f = FT0;                                      \
631
        d.f = FT1;                                      \
632
                                                        \
633
        d.l = F(d.l, s.l);                              \
634
                                                        \
635
        FT0 = d.f;                                      \
636
    }
637

    
638
#define FADD(a, b) ((a) + (b))
639
#define FSUB(a, b) ((a) - (b))
640
VIS_HELPER(helper_fpadd, FADD)
641
VIS_HELPER(helper_fpsub, FSUB)
642

    
643
#define VIS_CMPHELPER(name, F)                                        \
644
    void name##16(void)                                           \
645
    {                                                             \
646
        vis64 s, d;                                               \
647
                                                                  \
648
        s.d = DT0;                                                \
649
        d.d = DT1;                                                \
650
                                                                  \
651
        d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0))? 1: 0;       \
652
        d.VIS_W64(0) |= F(d.VIS_W64(1), s.VIS_W64(1))? 2: 0;      \
653
        d.VIS_W64(0) |= F(d.VIS_W64(2), s.VIS_W64(2))? 4: 0;      \
654
        d.VIS_W64(0) |= F(d.VIS_W64(3), s.VIS_W64(3))? 8: 0;      \
655
                                                                  \
656
        DT0 = d.d;                                                \
657
    }                                                             \
658
                                                                  \
659
    void name##32(void)                                           \
660
    {                                                             \
661
        vis64 s, d;                                               \
662
                                                                  \
663
        s.d = DT0;                                                \
664
        d.d = DT1;                                                \
665
                                                                  \
666
        d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0))? 1: 0;       \
667
        d.VIS_L64(0) |= F(d.VIS_L64(1), s.VIS_L64(1))? 2: 0;      \
668
                                                                  \
669
        DT0 = d.d;                                                \
670
    }
671

    
672
#define FCMPGT(a, b) ((a) > (b))
673
#define FCMPEQ(a, b) ((a) == (b))
674
#define FCMPLE(a, b) ((a) <= (b))
675
#define FCMPNE(a, b) ((a) != (b))
676

    
677
VIS_CMPHELPER(helper_fcmpgt, FCMPGT)
678
VIS_CMPHELPER(helper_fcmpeq, FCMPEQ)
679
VIS_CMPHELPER(helper_fcmple, FCMPLE)
680
VIS_CMPHELPER(helper_fcmpne, FCMPNE)
681
#endif
682

    
683
void helper_check_ieee_exceptions(void)
684
{
685
    target_ulong status;
686

    
687
    status = get_float_exception_flags(&env->fp_status);
688
    if (status) {
689
        /* Copy IEEE 754 flags into FSR */
690
        if (status & float_flag_invalid)
691
            env->fsr |= FSR_NVC;
692
        if (status & float_flag_overflow)
693
            env->fsr |= FSR_OFC;
694
        if (status & float_flag_underflow)
695
            env->fsr |= FSR_UFC;
696
        if (status & float_flag_divbyzero)
697
            env->fsr |= FSR_DZC;
698
        if (status & float_flag_inexact)
699
            env->fsr |= FSR_NXC;
700

    
701
        if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
702
            /* Unmasked exception, generate a trap */
703
            env->fsr |= FSR_FTT_IEEE_EXCP;
704
            raise_exception(TT_FP_EXCP);
705
        } else {
706
            /* Accumulate exceptions */
707
            env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
708
        }
709
    }
710
}
711

    
712
void helper_clear_float_exceptions(void)
713
{
714
    set_float_exception_flags(0, &env->fp_status);
715
}
716

    
717
float32 helper_fabss(float32 src)
718
{
719
    return float32_abs(src);
720
}
721

    
722
#ifdef TARGET_SPARC64
723
void helper_fabsd(void)
724
{
725
    DT0 = float64_abs(DT1);
726
}
727

    
728
void helper_fabsq(void)
729
{
730
    QT0 = float128_abs(QT1);
731
}
732
#endif
733

    
734
float32 helper_fsqrts(float32 src)
735
{
736
    return float32_sqrt(src, &env->fp_status);
737
}
738

    
739
void helper_fsqrtd(void)
740
{
741
    DT0 = float64_sqrt(DT1, &env->fp_status);
742
}
743

    
744
void helper_fsqrtq(void)
745
{
746
    QT0 = float128_sqrt(QT1, &env->fp_status);
747
}
748

    
749
#define GEN_FCMP(name, size, reg1, reg2, FS, TRAP)                      \
750
    void glue(helper_, name) (void)                                     \
751
    {                                                                   \
752
        target_ulong new_fsr;                                           \
753
                                                                        \
754
        env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);                     \
755
        switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) {   \
756
        case float_relation_unordered:                                  \
757
            new_fsr = (FSR_FCC1 | FSR_FCC0) << FS;                      \
758
            if ((env->fsr & FSR_NVM) || TRAP) {                         \
759
                env->fsr |= new_fsr;                                    \
760
                env->fsr |= FSR_NVC;                                    \
761
                env->fsr |= FSR_FTT_IEEE_EXCP;                          \
762
                raise_exception(TT_FP_EXCP);                            \
763
            } else {                                                    \
764
                env->fsr |= FSR_NVA;                                    \
765
            }                                                           \
766
            break;                                                      \
767
        case float_relation_less:                                       \
768
            new_fsr = FSR_FCC0 << FS;                                   \
769
            break;                                                      \
770
        case float_relation_greater:                                    \
771
            new_fsr = FSR_FCC1 << FS;                                   \
772
            break;                                                      \
773
        default:                                                        \
774
            new_fsr = 0;                                                \
775
            break;                                                      \
776
        }                                                               \
777
        env->fsr |= new_fsr;                                            \
778
    }
779
#define GEN_FCMPS(name, size, FS, TRAP)                                 \
780
    void glue(helper_, name)(float32 src1, float32 src2)                \
781
    {                                                                   \
782
        target_ulong new_fsr;                                           \
783
                                                                        \
784
        env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);                     \
785
        switch (glue(size, _compare) (src1, src2, &env->fp_status)) {   \
786
        case float_relation_unordered:                                  \
787
            new_fsr = (FSR_FCC1 | FSR_FCC0) << FS;                      \
788
            if ((env->fsr & FSR_NVM) || TRAP) {                         \
789
                env->fsr |= new_fsr;                                    \
790
                env->fsr |= FSR_NVC;                                    \
791
                env->fsr |= FSR_FTT_IEEE_EXCP;                          \
792
                raise_exception(TT_FP_EXCP);                            \
793
            } else {                                                    \
794
                env->fsr |= FSR_NVA;                                    \
795
            }                                                           \
796
            break;                                                      \
797
        case float_relation_less:                                       \
798
            new_fsr = FSR_FCC0 << FS;                                   \
799
            break;                                                      \
800
        case float_relation_greater:                                    \
801
            new_fsr = FSR_FCC1 << FS;                                   \
802
            break;                                                      \
803
        default:                                                        \
804
            new_fsr = 0;                                                \
805
            break;                                                      \
806
        }                                                               \
807
        env->fsr |= new_fsr;                                            \
808
    }
809

    
810
GEN_FCMPS(fcmps, float32, 0, 0);
811
GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
812

    
813
GEN_FCMPS(fcmpes, float32, 0, 1);
814
GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
815

    
816
GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
817
GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
818

    
819
#ifdef TARGET_SPARC64
820
GEN_FCMPS(fcmps_fcc1, float32, 22, 0);
821
GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
822
GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
823

    
824
GEN_FCMPS(fcmps_fcc2, float32, 24, 0);
825
GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
826
GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
827

    
828
GEN_FCMPS(fcmps_fcc3, float32, 26, 0);
829
GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
830
GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
831

    
832
GEN_FCMPS(fcmpes_fcc1, float32, 22, 1);
833
GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
834
GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
835

    
836
GEN_FCMPS(fcmpes_fcc2, float32, 24, 1);
837
GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
838
GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
839

    
840
GEN_FCMPS(fcmpes_fcc3, float32, 26, 1);
841
GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
842
GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
843
#endif
844
#undef GEN_FCMPS
845

    
846
#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
847
    defined(DEBUG_MXCC)
848
static void dump_mxcc(CPUState *env)
849
{
850
    printf("mxccdata: %016llx %016llx %016llx %016llx\n",
851
           env->mxccdata[0], env->mxccdata[1],
852
           env->mxccdata[2], env->mxccdata[3]);
853
    printf("mxccregs: %016llx %016llx %016llx %016llx\n"
854
           "          %016llx %016llx %016llx %016llx\n",
855
           env->mxccregs[0], env->mxccregs[1],
856
           env->mxccregs[2], env->mxccregs[3],
857
           env->mxccregs[4], env->mxccregs[5],
858
           env->mxccregs[6], env->mxccregs[7]);
859
}
860
#endif
861

    
862
#if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
863
    && defined(DEBUG_ASI)
864
static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
865
                     uint64_t r1)
866
{
867
    switch (size)
868
    {
869
    case 1:
870
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
871
                    addr, asi, r1 & 0xff);
872
        break;
873
    case 2:
874
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
875
                    addr, asi, r1 & 0xffff);
876
        break;
877
    case 4:
878
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
879
                    addr, asi, r1 & 0xffffffff);
880
        break;
881
    case 8:
882
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
883
                    addr, asi, r1);
884
        break;
885
    }
886
}
887
#endif
888

    
889
#ifndef TARGET_SPARC64
890
#ifndef CONFIG_USER_ONLY
891
uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
892
{
893
    uint64_t ret = 0;
894
#if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
895
    uint32_t last_addr = addr;
896
#endif
897

    
898
    helper_check_align(addr, size - 1);
899
    switch (asi) {
900
    case 2: /* SuperSparc MXCC registers */
901
        switch (addr) {
902
        case 0x01c00a00: /* MXCC control register */
903
            if (size == 8)
904
                ret = env->mxccregs[3];
905
            else
906
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
907
                             size);
908
            break;
909
        case 0x01c00a04: /* MXCC control register */
910
            if (size == 4)
911
                ret = env->mxccregs[3];
912
            else
913
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
914
                             size);
915
            break;
916
        case 0x01c00c00: /* Module reset register */
917
            if (size == 8) {
918
                ret = env->mxccregs[5];
919
                // should we do something here?
920
            } else
921
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
922
                             size);
923
            break;
924
        case 0x01c00f00: /* MBus port address register */
925
            if (size == 8)
926
                ret = env->mxccregs[7];
927
            else
928
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
929
                             size);
930
            break;
931
        default:
932
            DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
933
                         size);
934
            break;
935
        }
936
        DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
937
                     "addr = %08x -> ret = %08x,"
938
                     "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
939
#ifdef DEBUG_MXCC
940
        dump_mxcc(env);
941
#endif
942
        break;
943
    case 3: /* MMU probe */
944
        {
945
            int mmulev;
946

    
947
            mmulev = (addr >> 8) & 15;
948
            if (mmulev > 4)
949
                ret = 0;
950
            else
951
                ret = mmu_probe(env, addr, mmulev);
952
            DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
953
                        addr, mmulev, ret);
954
        }
955
        break;
956
    case 4: /* read MMU regs */
957
        {
958
            int reg = (addr >> 8) & 0x1f;
959

    
960
            ret = env->mmuregs[reg];
961
            if (reg == 3) /* Fault status cleared on read */
962
                env->mmuregs[3] = 0;
963
            else if (reg == 0x13) /* Fault status read */
964
                ret = env->mmuregs[3];
965
            else if (reg == 0x14) /* Fault address read */
966
                ret = env->mmuregs[4];
967
            DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
968
        }
969
        break;
970
    case 5: // Turbosparc ITLB Diagnostic
971
    case 6: // Turbosparc DTLB Diagnostic
972
    case 7: // Turbosparc IOTLB Diagnostic
973
        break;
974
    case 9: /* Supervisor code access */
975
        switch(size) {
976
        case 1:
977
            ret = ldub_code(addr);
978
            break;
979
        case 2:
980
            ret = lduw_code(addr);
981
            break;
982
        default:
983
        case 4:
984
            ret = ldl_code(addr);
985
            break;
986
        case 8:
987
            ret = ldq_code(addr);
988
            break;
989
        }
990
        break;
991
    case 0xa: /* User data access */
992
        switch(size) {
993
        case 1:
994
            ret = ldub_user(addr);
995
            break;
996
        case 2:
997
            ret = lduw_user(addr);
998
            break;
999
        default:
1000
        case 4:
1001
            ret = ldl_user(addr);
1002
            break;
1003
        case 8:
1004
            ret = ldq_user(addr);
1005
            break;
1006
        }
1007
        break;
1008
    case 0xb: /* Supervisor data access */
1009
        switch(size) {
1010
        case 1:
1011
            ret = ldub_kernel(addr);
1012
            break;
1013
        case 2:
1014
            ret = lduw_kernel(addr);
1015
            break;
1016
        default:
1017
        case 4:
1018
            ret = ldl_kernel(addr);
1019
            break;
1020
        case 8:
1021
            ret = ldq_kernel(addr);
1022
            break;
1023
        }
1024
        break;
1025
    case 0xc: /* I-cache tag */
1026
    case 0xd: /* I-cache data */
1027
    case 0xe: /* D-cache tag */
1028
    case 0xf: /* D-cache data */
1029
        break;
1030
    case 0x20: /* MMU passthrough */
1031
        switch(size) {
1032
        case 1:
1033
            ret = ldub_phys(addr);
1034
            break;
1035
        case 2:
1036
            ret = lduw_phys(addr);
1037
            break;
1038
        default:
1039
        case 4:
1040
            ret = ldl_phys(addr);
1041
            break;
1042
        case 8:
1043
            ret = ldq_phys(addr);
1044
            break;
1045
        }
1046
        break;
1047
    case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1048
        switch(size) {
1049
        case 1:
1050
            ret = ldub_phys((target_phys_addr_t)addr
1051
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
1052
            break;
1053
        case 2:
1054
            ret = lduw_phys((target_phys_addr_t)addr
1055
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
1056
            break;
1057
        default:
1058
        case 4:
1059
            ret = ldl_phys((target_phys_addr_t)addr
1060
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
1061
            break;
1062
        case 8:
1063
            ret = ldq_phys((target_phys_addr_t)addr
1064
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
1065
            break;
1066
        }
1067
        break;
1068
    case 0x30: // Turbosparc secondary cache diagnostic
1069
    case 0x31: // Turbosparc RAM snoop
1070
    case 0x32: // Turbosparc page table descriptor diagnostic
1071
    case 0x39: /* data cache diagnostic register */
1072
        ret = 0;
1073
        break;
1074
    case 8: /* User code access, XXX */
1075
    default:
1076
        do_unassigned_access(addr, 0, 0, asi);
1077
        ret = 0;
1078
        break;
1079
    }
1080
    if (sign) {
1081
        switch(size) {
1082
        case 1:
1083
            ret = (int8_t) ret;
1084
            break;
1085
        case 2:
1086
            ret = (int16_t) ret;
1087
            break;
1088
        case 4:
1089
            ret = (int32_t) ret;
1090
            break;
1091
        default:
1092
            break;
1093
        }
1094
    }
1095
#ifdef DEBUG_ASI
1096
    dump_asi("read ", last_addr, asi, size, ret);
1097
#endif
1098
    return ret;
1099
}
1100

    
1101
void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
1102
{
1103
    helper_check_align(addr, size - 1);
1104
    switch(asi) {
1105
    case 2: /* SuperSparc MXCC registers */
1106
        switch (addr) {
1107
        case 0x01c00000: /* MXCC stream data register 0 */
1108
            if (size == 8)
1109
                env->mxccdata[0] = val;
1110
            else
1111
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1112
                             size);
1113
            break;
1114
        case 0x01c00008: /* MXCC stream data register 1 */
1115
            if (size == 8)
1116
                env->mxccdata[1] = val;
1117
            else
1118
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1119
                             size);
1120
            break;
1121
        case 0x01c00010: /* MXCC stream data register 2 */
1122
            if (size == 8)
1123
                env->mxccdata[2] = val;
1124
            else
1125
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1126
                             size);
1127
            break;
1128
        case 0x01c00018: /* MXCC stream data register 3 */
1129
            if (size == 8)
1130
                env->mxccdata[3] = val;
1131
            else
1132
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1133
                             size);
1134
            break;
1135
        case 0x01c00100: /* MXCC stream source */
1136
            if (size == 8)
1137
                env->mxccregs[0] = val;
1138
            else
1139
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1140
                             size);
1141
            env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1142
                                        0);
1143
            env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1144
                                        8);
1145
            env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1146
                                        16);
1147
            env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1148
                                        24);
1149
            break;
1150
        case 0x01c00200: /* MXCC stream destination */
1151
            if (size == 8)
1152
                env->mxccregs[1] = val;
1153
            else
1154
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1155
                             size);
1156
            stq_phys((env->mxccregs[1] & 0xffffffffULL) +  0,
1157
                     env->mxccdata[0]);
1158
            stq_phys((env->mxccregs[1] & 0xffffffffULL) +  8,
1159
                     env->mxccdata[1]);
1160
            stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
1161
                     env->mxccdata[2]);
1162
            stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
1163
                     env->mxccdata[3]);
1164
            break;
1165
        case 0x01c00a00: /* MXCC control register */
1166
            if (size == 8)
1167
                env->mxccregs[3] = val;
1168
            else
1169
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1170
                             size);
1171
            break;
1172
        case 0x01c00a04: /* MXCC control register */
1173
            if (size == 4)
1174
                env->mxccregs[3] = (env->mxccregs[0xa] & 0xffffffff00000000ULL)
1175
                    | val;
1176
            else
1177
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1178
                             size);
1179
            break;
1180
        case 0x01c00e00: /* MXCC error register  */
1181
            // writing a 1 bit clears the error
1182
            if (size == 8)
1183
                env->mxccregs[6] &= ~val;
1184
            else
1185
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1186
                             size);
1187
            break;
1188
        case 0x01c00f00: /* MBus port address register */
1189
            if (size == 8)
1190
                env->mxccregs[7] = val;
1191
            else
1192
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1193
                             size);
1194
            break;
1195
        default:
1196
            DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1197
                         size);
1198
            break;
1199
        }
1200
        DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %08x\n", asi,
1201
                     size, addr, val);
1202
#ifdef DEBUG_MXCC
1203
        dump_mxcc(env);
1204
#endif
1205
        break;
1206
    case 3: /* MMU flush */
1207
        {
1208
            int mmulev;
1209

    
1210
            mmulev = (addr >> 8) & 15;
1211
            DPRINTF_MMU("mmu flush level %d\n", mmulev);
1212
            switch (mmulev) {
1213
            case 0: // flush page
1214
                tlb_flush_page(env, addr & 0xfffff000);
1215
                break;
1216
            case 1: // flush segment (256k)
1217
            case 2: // flush region (16M)
1218
            case 3: // flush context (4G)
1219
            case 4: // flush entire
1220
                tlb_flush(env, 1);
1221
                break;
1222
            default:
1223
                break;
1224
            }
1225
#ifdef DEBUG_MMU
1226
            dump_mmu(env);
1227
#endif
1228
        }
1229
        break;
1230
    case 4: /* write MMU regs */
1231
        {
1232
            int reg = (addr >> 8) & 0x1f;
1233
            uint32_t oldreg;
1234

    
1235
            oldreg = env->mmuregs[reg];
1236
            switch(reg) {
1237
            case 0: // Control Register
1238
                env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1239
                                    (val & 0x00ffffff);
1240
                // Mappings generated during no-fault mode or MMU
1241
                // disabled mode are invalid in normal mode
1242
                if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
1243
                    (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm)))
1244
                    tlb_flush(env, 1);
1245
                break;
1246
            case 1: // Context Table Pointer Register
1247
                env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
1248
                break;
1249
            case 2: // Context Register
1250
                env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
1251
                if (oldreg != env->mmuregs[reg]) {
1252
                    /* we flush when the MMU context changes because
1253
                       QEMU has no MMU context support */
1254
                    tlb_flush(env, 1);
1255
                }
1256
                break;
1257
            case 3: // Synchronous Fault Status Register with Clear
1258
            case 4: // Synchronous Fault Address Register
1259
                break;
1260
            case 0x10: // TLB Replacement Control Register
1261
                env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
1262
                break;
1263
            case 0x13: // Synchronous Fault Status Register with Read and Clear
1264
                env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
1265
                break;
1266
            case 0x14: // Synchronous Fault Address Register
1267
                env->mmuregs[4] = val;
1268
                break;
1269
            default:
1270
                env->mmuregs[reg] = val;
1271
                break;
1272
            }
1273
            if (oldreg != env->mmuregs[reg]) {
1274
                DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1275
                            reg, oldreg, env->mmuregs[reg]);
1276
            }
1277
#ifdef DEBUG_MMU
1278
            dump_mmu(env);
1279
#endif
1280
        }
1281
        break;
1282
    case 5: // Turbosparc ITLB Diagnostic
1283
    case 6: // Turbosparc DTLB Diagnostic
1284
    case 7: // Turbosparc IOTLB Diagnostic
1285
        break;
1286
    case 0xa: /* User data access */
1287
        switch(size) {
1288
        case 1:
1289
            stb_user(addr, val);
1290
            break;
1291
        case 2:
1292
            stw_user(addr, val);
1293
            break;
1294
        default:
1295
        case 4:
1296
            stl_user(addr, val);
1297
            break;
1298
        case 8:
1299
            stq_user(addr, val);
1300
            break;
1301
        }
1302
        break;
1303
    case 0xb: /* Supervisor data access */
1304
        switch(size) {
1305
        case 1:
1306
            stb_kernel(addr, val);
1307
            break;
1308
        case 2:
1309
            stw_kernel(addr, val);
1310
            break;
1311
        default:
1312
        case 4:
1313
            stl_kernel(addr, val);
1314
            break;
1315
        case 8:
1316
            stq_kernel(addr, val);
1317
            break;
1318
        }
1319
        break;
1320
    case 0xc: /* I-cache tag */
1321
    case 0xd: /* I-cache data */
1322
    case 0xe: /* D-cache tag */
1323
    case 0xf: /* D-cache data */
1324
    case 0x10: /* I/D-cache flush page */
1325
    case 0x11: /* I/D-cache flush segment */
1326
    case 0x12: /* I/D-cache flush region */
1327
    case 0x13: /* I/D-cache flush context */
1328
    case 0x14: /* I/D-cache flush user */
1329
        break;
1330
    case 0x17: /* Block copy, sta access */
1331
        {
1332
            // val = src
1333
            // addr = dst
1334
            // copy 32 bytes
1335
            unsigned int i;
1336
            uint32_t src = val & ~3, dst = addr & ~3, temp;
1337

    
1338
            for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
1339
                temp = ldl_kernel(src);
1340
                stl_kernel(dst, temp);
1341
            }
1342
        }
1343
        break;
1344
    case 0x1f: /* Block fill, stda access */
1345
        {
1346
            // addr = dst
1347
            // fill 32 bytes with val
1348
            unsigned int i;
1349
            uint32_t dst = addr & 7;
1350

    
1351
            for (i = 0; i < 32; i += 8, dst += 8)
1352
                stq_kernel(dst, val);
1353
        }
1354
        break;
1355
    case 0x20: /* MMU passthrough */
1356
        {
1357
            switch(size) {
1358
            case 1:
1359
                stb_phys(addr, val);
1360
                break;
1361
            case 2:
1362
                stw_phys(addr, val);
1363
                break;
1364
            case 4:
1365
            default:
1366
                stl_phys(addr, val);
1367
                break;
1368
            case 8:
1369
                stq_phys(addr, val);
1370
                break;
1371
            }
1372
        }
1373
        break;
1374
    case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1375
        {
1376
            switch(size) {
1377
            case 1:
1378
                stb_phys((target_phys_addr_t)addr
1379
                         | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1380
                break;
1381
            case 2:
1382
                stw_phys((target_phys_addr_t)addr
1383
                         | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1384
                break;
1385
            case 4:
1386
            default:
1387
                stl_phys((target_phys_addr_t)addr
1388
                         | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1389
                break;
1390
            case 8:
1391
                stq_phys((target_phys_addr_t)addr
1392
                         | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1393
                break;
1394
            }
1395
        }
1396
        break;
1397
    case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
1398
    case 0x31: // store buffer data, Ross RT620 I-cache flush or
1399
               // Turbosparc snoop RAM
1400
    case 0x32: // store buffer control or Turbosparc page table
1401
               // descriptor diagnostic
1402
    case 0x36: /* I-cache flash clear */
1403
    case 0x37: /* D-cache flash clear */
1404
    case 0x38: /* breakpoint diagnostics */
1405
    case 0x4c: /* breakpoint action */
1406
        break;
1407
    case 8: /* User code access, XXX */
1408
    case 9: /* Supervisor code access, XXX */
1409
    default:
1410
        do_unassigned_access(addr, 1, 0, asi);
1411
        break;
1412
    }
1413
#ifdef DEBUG_ASI
1414
    dump_asi("write", addr, asi, size, val);
1415
#endif
1416
}
1417

    
1418
#endif /* CONFIG_USER_ONLY */
1419
#else /* TARGET_SPARC64 */
1420

    
1421
#ifdef CONFIG_USER_ONLY
1422
uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1423
{
1424
    uint64_t ret = 0;
1425
#if defined(DEBUG_ASI)
1426
    target_ulong last_addr = addr;
1427
#endif
1428

    
1429
    if (asi < 0x80)
1430
        raise_exception(TT_PRIV_ACT);
1431

    
1432
    helper_check_align(addr, size - 1);
1433
    address_mask(env, &addr);
1434

    
1435
    switch (asi) {
1436
    case 0x82: // Primary no-fault
1437
    case 0x8a: // Primary no-fault LE
1438
        if (page_check_range(addr, size, PAGE_READ) == -1) {
1439
#ifdef DEBUG_ASI
1440
            dump_asi("read ", last_addr, asi, size, ret);
1441
#endif
1442
            return 0;
1443
        }
1444
        // Fall through
1445
    case 0x80: // Primary
1446
    case 0x88: // Primary LE
1447
        {
1448
            switch(size) {
1449
            case 1:
1450
                ret = ldub_raw(addr);
1451
                break;
1452
            case 2:
1453
                ret = lduw_raw(addr);
1454
                break;
1455
            case 4:
1456
                ret = ldl_raw(addr);
1457
                break;
1458
            default:
1459
            case 8:
1460
                ret = ldq_raw(addr);
1461
                break;
1462
            }
1463
        }
1464
        break;
1465
    case 0x83: // Secondary no-fault
1466
    case 0x8b: // Secondary no-fault LE
1467
        if (page_check_range(addr, size, PAGE_READ) == -1) {
1468
#ifdef DEBUG_ASI
1469
            dump_asi("read ", last_addr, asi, size, ret);
1470
#endif
1471
            return 0;
1472
        }
1473
        // Fall through
1474
    case 0x81: // Secondary
1475
    case 0x89: // Secondary LE
1476
        // XXX
1477
        break;
1478
    default:
1479
        break;
1480
    }
1481

    
1482
    /* Convert from little endian */
1483
    switch (asi) {
1484
    case 0x88: // Primary LE
1485
    case 0x89: // Secondary LE
1486
    case 0x8a: // Primary no-fault LE
1487
    case 0x8b: // Secondary no-fault LE
1488
        switch(size) {
1489
        case 2:
1490
            ret = bswap16(ret);
1491
            break;
1492
        case 4:
1493
            ret = bswap32(ret);
1494
            break;
1495
        case 8:
1496
            ret = bswap64(ret);
1497
            break;
1498
        default:
1499
            break;
1500
        }
1501
    default:
1502
        break;
1503
    }
1504

    
1505
    /* Convert to signed number */
1506
    if (sign) {
1507
        switch(size) {
1508
        case 1:
1509
            ret = (int8_t) ret;
1510
            break;
1511
        case 2:
1512
            ret = (int16_t) ret;
1513
            break;
1514
        case 4:
1515
            ret = (int32_t) ret;
1516
            break;
1517
        default:
1518
            break;
1519
        }
1520
    }
1521
#ifdef DEBUG_ASI
1522
    dump_asi("read ", last_addr, asi, size, ret);
1523
#endif
1524
    return ret;
1525
}
1526

    
1527
void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
1528
{
1529
#ifdef DEBUG_ASI
1530
    dump_asi("write", addr, asi, size, val);
1531
#endif
1532
    if (asi < 0x80)
1533
        raise_exception(TT_PRIV_ACT);
1534

    
1535
    helper_check_align(addr, size - 1);
1536
    address_mask(env, &addr);
1537

    
1538
    /* Convert to little endian */
1539
    switch (asi) {
1540
    case 0x88: // Primary LE
1541
    case 0x89: // Secondary LE
1542
        switch(size) {
1543
        case 2:
1544
            addr = bswap16(addr);
1545
            break;
1546
        case 4:
1547
            addr = bswap32(addr);
1548
            break;
1549
        case 8:
1550
            addr = bswap64(addr);
1551
            break;
1552
        default:
1553
            break;
1554
        }
1555
    default:
1556
        break;
1557
    }
1558

    
1559
    switch(asi) {
1560
    case 0x80: // Primary
1561
    case 0x88: // Primary LE
1562
        {
1563
            switch(size) {
1564
            case 1:
1565
                stb_raw(addr, val);
1566
                break;
1567
            case 2:
1568
                stw_raw(addr, val);
1569
                break;
1570
            case 4:
1571
                stl_raw(addr, val);
1572
                break;
1573
            case 8:
1574
            default:
1575
                stq_raw(addr, val);
1576
                break;
1577
            }
1578
        }
1579
        break;
1580
    case 0x81: // Secondary
1581
    case 0x89: // Secondary LE
1582
        // XXX
1583
        return;
1584

    
1585
    case 0x82: // Primary no-fault, RO
1586
    case 0x83: // Secondary no-fault, RO
1587
    case 0x8a: // Primary no-fault LE, RO
1588
    case 0x8b: // Secondary no-fault LE, RO
1589
    default:
1590
        do_unassigned_access(addr, 1, 0, 1);
1591
        return;
1592
    }
1593
}
1594

    
1595
#else /* CONFIG_USER_ONLY */
1596

    
1597
uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1598
{
1599
    uint64_t ret = 0;
1600
#if defined(DEBUG_ASI)
1601
    target_ulong last_addr = addr;
1602
#endif
1603

    
1604
    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1605
        || ((env->def->features & CPU_FEATURE_HYPV)
1606
            && asi >= 0x30 && asi < 0x80
1607
            && !(env->hpstate & HS_PRIV)))
1608
        raise_exception(TT_PRIV_ACT);
1609

    
1610
    helper_check_align(addr, size - 1);
1611
    switch (asi) {
1612
    case 0x82: // Primary no-fault
1613
    case 0x8a: // Primary no-fault LE
1614
        if (cpu_get_phys_page_debug(env, addr) == -1ULL) {
1615
#ifdef DEBUG_ASI
1616
            dump_asi("read ", last_addr, asi, size, ret);
1617
#endif
1618
            return 0;
1619
        }
1620
        // Fall through
1621
    case 0x10: // As if user primary
1622
    case 0x18: // As if user primary LE
1623
    case 0x80: // Primary
1624
    case 0x88: // Primary LE
1625
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1626
            if ((env->def->features & CPU_FEATURE_HYPV)
1627
                && env->hpstate & HS_PRIV) {
1628
                switch(size) {
1629
                case 1:
1630
                    ret = ldub_hypv(addr);
1631
                    break;
1632
                case 2:
1633
                    ret = lduw_hypv(addr);
1634
                    break;
1635
                case 4:
1636
                    ret = ldl_hypv(addr);
1637
                    break;
1638
                default:
1639
                case 8:
1640
                    ret = ldq_hypv(addr);
1641
                    break;
1642
                }
1643
            } else {
1644
                switch(size) {
1645
                case 1:
1646
                    ret = ldub_kernel(addr);
1647
                    break;
1648
                case 2:
1649
                    ret = lduw_kernel(addr);
1650
                    break;
1651
                case 4:
1652
                    ret = ldl_kernel(addr);
1653
                    break;
1654
                default:
1655
                case 8:
1656
                    ret = ldq_kernel(addr);
1657
                    break;
1658
                }
1659
            }
1660
        } else {
1661
            switch(size) {
1662
            case 1:
1663
                ret = ldub_user(addr);
1664
                break;
1665
            case 2:
1666
                ret = lduw_user(addr);
1667
                break;
1668
            case 4:
1669
                ret = ldl_user(addr);
1670
                break;
1671
            default:
1672
            case 8:
1673
                ret = ldq_user(addr);
1674
                break;
1675
            }
1676
        }
1677
        break;
1678
    case 0x14: // Bypass
1679
    case 0x15: // Bypass, non-cacheable
1680
    case 0x1c: // Bypass LE
1681
    case 0x1d: // Bypass, non-cacheable LE
1682
        {
1683
            switch(size) {
1684
            case 1:
1685
                ret = ldub_phys(addr);
1686
                break;
1687
            case 2:
1688
                ret = lduw_phys(addr);
1689
                break;
1690
            case 4:
1691
                ret = ldl_phys(addr);
1692
                break;
1693
            default:
1694
            case 8:
1695
                ret = ldq_phys(addr);
1696
                break;
1697
            }
1698
            break;
1699
        }
1700
    case 0x24: // Nucleus quad LDD 128 bit atomic
1701
    case 0x2c: // Nucleus quad LDD 128 bit atomic LE
1702
        //  Only ldda allowed
1703
        raise_exception(TT_ILL_INSN);
1704
        return 0;
1705
    case 0x83: // Secondary no-fault
1706
    case 0x8b: // Secondary no-fault LE
1707
        if (cpu_get_phys_page_debug(env, addr) == -1ULL) {
1708
#ifdef DEBUG_ASI
1709
            dump_asi("read ", last_addr, asi, size, ret);
1710
#endif
1711
            return 0;
1712
        }
1713
        // Fall through
1714
    case 0x04: // Nucleus
1715
    case 0x0c: // Nucleus Little Endian (LE)
1716
    case 0x11: // As if user secondary
1717
    case 0x19: // As if user secondary LE
1718
    case 0x4a: // UPA config
1719
    case 0x81: // Secondary
1720
    case 0x89: // Secondary LE
1721
        // XXX
1722
        break;
1723
    case 0x45: // LSU
1724
        ret = env->lsu;
1725
        break;
1726
    case 0x50: // I-MMU regs
1727
        {
1728
            int reg = (addr >> 3) & 0xf;
1729

    
1730
            ret = env->immuregs[reg];
1731
            break;
1732
        }
1733
    case 0x51: // I-MMU 8k TSB pointer
1734
    case 0x52: // I-MMU 64k TSB pointer
1735
        // XXX
1736
        break;
1737
    case 0x55: // I-MMU data access
1738
        {
1739
            int reg = (addr >> 3) & 0x3f;
1740

    
1741
            ret = env->itlb_tte[reg];
1742
            break;
1743
        }
1744
    case 0x56: // I-MMU tag read
1745
        {
1746
            int reg = (addr >> 3) & 0x3f;
1747

    
1748
            ret = env->itlb_tag[reg];
1749
            break;
1750
        }
1751
    case 0x58: // D-MMU regs
1752
        {
1753
            int reg = (addr >> 3) & 0xf;
1754

    
1755
            ret = env->dmmuregs[reg];
1756
            break;
1757
        }
1758
    case 0x5d: // D-MMU data access
1759
        {
1760
            int reg = (addr >> 3) & 0x3f;
1761

    
1762
            ret = env->dtlb_tte[reg];
1763
            break;
1764
        }
1765
    case 0x5e: // D-MMU tag read
1766
        {
1767
            int reg = (addr >> 3) & 0x3f;
1768

    
1769
            ret = env->dtlb_tag[reg];
1770
            break;
1771
        }
1772
    case 0x46: // D-cache data
1773
    case 0x47: // D-cache tag access
1774
    case 0x4b: // E-cache error enable
1775
    case 0x4c: // E-cache asynchronous fault status
1776
    case 0x4d: // E-cache asynchronous fault address
1777
    case 0x4e: // E-cache tag data
1778
    case 0x66: // I-cache instruction access
1779
    case 0x67: // I-cache tag access
1780
    case 0x6e: // I-cache predecode
1781
    case 0x6f: // I-cache LRU etc.
1782
    case 0x76: // E-cache tag
1783
    case 0x7e: // E-cache tag
1784
        break;
1785
    case 0x59: // D-MMU 8k TSB pointer
1786
    case 0x5a: // D-MMU 64k TSB pointer
1787
    case 0x5b: // D-MMU data pointer
1788
    case 0x48: // Interrupt dispatch, RO
1789
    case 0x49: // Interrupt data receive
1790
    case 0x7f: // Incoming interrupt vector, RO
1791
        // XXX
1792
        break;
1793
    case 0x54: // I-MMU data in, WO
1794
    case 0x57: // I-MMU demap, WO
1795
    case 0x5c: // D-MMU data in, WO
1796
    case 0x5f: // D-MMU demap, WO
1797
    case 0x77: // Interrupt vector, WO
1798
    default:
1799
        do_unassigned_access(addr, 0, 0, 1);
1800
        ret = 0;
1801
        break;
1802
    }
1803

    
1804
    /* Convert from little endian */
1805
    switch (asi) {
1806
    case 0x0c: // Nucleus Little Endian (LE)
1807
    case 0x18: // As if user primary LE
1808
    case 0x19: // As if user secondary LE
1809
    case 0x1c: // Bypass LE
1810
    case 0x1d: // Bypass, non-cacheable LE
1811
    case 0x88: // Primary LE
1812
    case 0x89: // Secondary LE
1813
    case 0x8a: // Primary no-fault LE
1814
    case 0x8b: // Secondary no-fault LE
1815
        switch(size) {
1816
        case 2:
1817
            ret = bswap16(ret);
1818
            break;
1819
        case 4:
1820
            ret = bswap32(ret);
1821
            break;
1822
        case 8:
1823
            ret = bswap64(ret);
1824
            break;
1825
        default:
1826
            break;
1827
        }
1828
    default:
1829
        break;
1830
    }
1831

    
1832
    /* Convert to signed number */
1833
    if (sign) {
1834
        switch(size) {
1835
        case 1:
1836
            ret = (int8_t) ret;
1837
            break;
1838
        case 2:
1839
            ret = (int16_t) ret;
1840
            break;
1841
        case 4:
1842
            ret = (int32_t) ret;
1843
            break;
1844
        default:
1845
            break;
1846
        }
1847
    }
1848
#ifdef DEBUG_ASI
1849
    dump_asi("read ", last_addr, asi, size, ret);
1850
#endif
1851
    return ret;
1852
}
1853

    
1854
void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
1855
{
1856
#ifdef DEBUG_ASI
1857
    dump_asi("write", addr, asi, size, val);
1858
#endif
1859
    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1860
        || ((env->def->features & CPU_FEATURE_HYPV)
1861
            && asi >= 0x30 && asi < 0x80
1862
            && !(env->hpstate & HS_PRIV)))
1863
        raise_exception(TT_PRIV_ACT);
1864

    
1865
    helper_check_align(addr, size - 1);
1866
    /* Convert to little endian */
1867
    switch (asi) {
1868
    case 0x0c: // Nucleus Little Endian (LE)
1869
    case 0x18: // As if user primary LE
1870
    case 0x19: // As if user secondary LE
1871
    case 0x1c: // Bypass LE
1872
    case 0x1d: // Bypass, non-cacheable LE
1873
    case 0x88: // Primary LE
1874
    case 0x89: // Secondary LE
1875
        switch(size) {
1876
        case 2:
1877
            addr = bswap16(addr);
1878
            break;
1879
        case 4:
1880
            addr = bswap32(addr);
1881
            break;
1882
        case 8:
1883
            addr = bswap64(addr);
1884
            break;
1885
        default:
1886
            break;
1887
        }
1888
    default:
1889
        break;
1890
    }
1891

    
1892
    switch(asi) {
1893
    case 0x10: // As if user primary
1894
    case 0x18: // As if user primary LE
1895
    case 0x80: // Primary
1896
    case 0x88: // Primary LE
1897
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1898
            if ((env->def->features & CPU_FEATURE_HYPV)
1899
                && env->hpstate & HS_PRIV) {
1900
                switch(size) {
1901
                case 1:
1902
                    stb_hypv(addr, val);
1903
                    break;
1904
                case 2:
1905
                    stw_hypv(addr, val);
1906
                    break;
1907
                case 4:
1908
                    stl_hypv(addr, val);
1909
                    break;
1910
                case 8:
1911
                default:
1912
                    stq_hypv(addr, val);
1913
                    break;
1914
                }
1915
            } else {
1916
                switch(size) {
1917
                case 1:
1918
                    stb_kernel(addr, val);
1919
                    break;
1920
                case 2:
1921
                    stw_kernel(addr, val);
1922
                    break;
1923
                case 4:
1924
                    stl_kernel(addr, val);
1925
                    break;
1926
                case 8:
1927
                default:
1928
                    stq_kernel(addr, val);
1929
                    break;
1930
                }
1931
            }
1932
        } else {
1933
            switch(size) {
1934
            case 1:
1935
                stb_user(addr, val);
1936
                break;
1937
            case 2:
1938
                stw_user(addr, val);
1939
                break;
1940
            case 4:
1941
                stl_user(addr, val);
1942
                break;
1943
            case 8:
1944
            default:
1945
                stq_user(addr, val);
1946
                break;
1947
            }
1948
        }
1949
        break;
1950
    case 0x14: // Bypass
1951
    case 0x15: // Bypass, non-cacheable
1952
    case 0x1c: // Bypass LE
1953
    case 0x1d: // Bypass, non-cacheable LE
1954
        {
1955
            switch(size) {
1956
            case 1:
1957
                stb_phys(addr, val);
1958
                break;
1959
            case 2:
1960
                stw_phys(addr, val);
1961
                break;
1962
            case 4:
1963
                stl_phys(addr, val);
1964
                break;
1965
            case 8:
1966
            default:
1967
                stq_phys(addr, val);
1968
                break;
1969
            }
1970
        }
1971
        return;
1972
    case 0x24: // Nucleus quad LDD 128 bit atomic
1973
    case 0x2c: // Nucleus quad LDD 128 bit atomic LE
1974
        //  Only ldda allowed
1975
        raise_exception(TT_ILL_INSN);
1976
        return;
1977
    case 0x04: // Nucleus
1978
    case 0x0c: // Nucleus Little Endian (LE)
1979
    case 0x11: // As if user secondary
1980
    case 0x19: // As if user secondary LE
1981
    case 0x4a: // UPA config
1982
    case 0x81: // Secondary
1983
    case 0x89: // Secondary LE
1984
        // XXX
1985
        return;
1986
    case 0x45: // LSU
1987
        {
1988
            uint64_t oldreg;
1989

    
1990
            oldreg = env->lsu;
1991
            env->lsu = val & (DMMU_E | IMMU_E);
1992
            // Mappings generated during D/I MMU disabled mode are
1993
            // invalid in normal mode
1994
            if (oldreg != env->lsu) {
1995
                DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
1996
                            oldreg, env->lsu);
1997
#ifdef DEBUG_MMU
1998
                dump_mmu(env);
1999
#endif
2000
                tlb_flush(env, 1);
2001
            }
2002
            return;
2003
        }
2004
    case 0x50: // I-MMU regs
2005
        {
2006
            int reg = (addr >> 3) & 0xf;
2007
            uint64_t oldreg;
2008

    
2009
            oldreg = env->immuregs[reg];
2010
            switch(reg) {
2011
            case 0: // RO
2012
            case 4:
2013
                return;
2014
            case 1: // Not in I-MMU
2015
            case 2:
2016
            case 7:
2017
            case 8:
2018
                return;
2019
            case 3: // SFSR
2020
                if ((val & 1) == 0)
2021
                    val = 0; // Clear SFSR
2022
                break;
2023
            case 5: // TSB access
2024
            case 6: // Tag access
2025
            default:
2026
                break;
2027
            }
2028
            env->immuregs[reg] = val;
2029
            if (oldreg != env->immuregs[reg]) {
2030
                DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08"
2031
                            PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
2032
            }
2033
#ifdef DEBUG_MMU
2034
            dump_mmu(env);
2035
#endif
2036
            return;
2037
        }
2038
    case 0x54: // I-MMU data in
2039
        {
2040
            unsigned int i;
2041

    
2042
            // Try finding an invalid entry
2043
            for (i = 0; i < 64; i++) {
2044
                if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
2045
                    env->itlb_tag[i] = env->immuregs[6];
2046
                    env->itlb_tte[i] = val;
2047
                    return;
2048
                }
2049
            }
2050
            // Try finding an unlocked entry
2051
            for (i = 0; i < 64; i++) {
2052
                if ((env->itlb_tte[i] & 0x40) == 0) {
2053
                    env->itlb_tag[i] = env->immuregs[6];
2054
                    env->itlb_tte[i] = val;
2055
                    return;
2056
                }
2057
            }
2058
            // error state?
2059
            return;
2060
        }
2061
    case 0x55: // I-MMU data access
2062
        {
2063
            unsigned int i = (addr >> 3) & 0x3f;
2064

    
2065
            env->itlb_tag[i] = env->immuregs[6];
2066
            env->itlb_tte[i] = val;
2067
            return;
2068
        }
2069
    case 0x57: // I-MMU demap
2070
        // XXX
2071
        return;
2072
    case 0x58: // D-MMU regs
2073
        {
2074
            int reg = (addr >> 3) & 0xf;
2075
            uint64_t oldreg;
2076

    
2077
            oldreg = env->dmmuregs[reg];
2078
            switch(reg) {
2079
            case 0: // RO
2080
            case 4:
2081
                return;
2082
            case 3: // SFSR
2083
                if ((val & 1) == 0) {
2084
                    val = 0; // Clear SFSR, Fault address
2085
                    env->dmmuregs[4] = 0;
2086
                }
2087
                env->dmmuregs[reg] = val;
2088
                break;
2089
            case 1: // Primary context
2090
            case 2: // Secondary context
2091
            case 5: // TSB access
2092
            case 6: // Tag access
2093
            case 7: // Virtual Watchpoint
2094
            case 8: // Physical Watchpoint
2095
            default:
2096
                break;
2097
            }
2098
            env->dmmuregs[reg] = val;
2099
            if (oldreg != env->dmmuregs[reg]) {
2100
                DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08"
2101
                            PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
2102
            }
2103
#ifdef DEBUG_MMU
2104
            dump_mmu(env);
2105
#endif
2106
            return;
2107
        }
2108
    case 0x5c: // D-MMU data in
2109
        {
2110
            unsigned int i;
2111

    
2112
            // Try finding an invalid entry
2113
            for (i = 0; i < 64; i++) {
2114
                if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
2115
                    env->dtlb_tag[i] = env->dmmuregs[6];
2116
                    env->dtlb_tte[i] = val;
2117
                    return;
2118
                }
2119
            }
2120
            // Try finding an unlocked entry
2121
            for (i = 0; i < 64; i++) {
2122
                if ((env->dtlb_tte[i] & 0x40) == 0) {
2123
                    env->dtlb_tag[i] = env->dmmuregs[6];
2124
                    env->dtlb_tte[i] = val;
2125
                    return;
2126
                }
2127
            }
2128
            // error state?
2129
            return;
2130
        }
2131
    case 0x5d: // D-MMU data access
2132
        {
2133
            unsigned int i = (addr >> 3) & 0x3f;
2134

    
2135
            env->dtlb_tag[i] = env->dmmuregs[6];
2136
            env->dtlb_tte[i] = val;
2137
            return;
2138
        }
2139
    case 0x5f: // D-MMU demap
2140
    case 0x49: // Interrupt data receive
2141
        // XXX
2142
        return;
2143
    case 0x46: // D-cache data
2144
    case 0x47: // D-cache tag access
2145
    case 0x4b: // E-cache error enable
2146
    case 0x4c: // E-cache asynchronous fault status
2147
    case 0x4d: // E-cache asynchronous fault address
2148
    case 0x4e: // E-cache tag data
2149
    case 0x66: // I-cache instruction access
2150
    case 0x67: // I-cache tag access
2151
    case 0x6e: // I-cache predecode
2152
    case 0x6f: // I-cache LRU etc.
2153
    case 0x76: // E-cache tag
2154
    case 0x7e: // E-cache tag
2155
        return;
2156
    case 0x51: // I-MMU 8k TSB pointer, RO
2157
    case 0x52: // I-MMU 64k TSB pointer, RO
2158
    case 0x56: // I-MMU tag read, RO
2159
    case 0x59: // D-MMU 8k TSB pointer, RO
2160
    case 0x5a: // D-MMU 64k TSB pointer, RO
2161
    case 0x5b: // D-MMU data pointer, RO
2162
    case 0x5e: // D-MMU tag read, RO
2163
    case 0x48: // Interrupt dispatch, RO
2164
    case 0x7f: // Incoming interrupt vector, RO
2165
    case 0x82: // Primary no-fault, RO
2166
    case 0x83: // Secondary no-fault, RO
2167
    case 0x8a: // Primary no-fault LE, RO
2168
    case 0x8b: // Secondary no-fault LE, RO
2169
    default:
2170
        do_unassigned_access(addr, 1, 0, 1);
2171
        return;
2172
    }
2173
}
2174
#endif /* CONFIG_USER_ONLY */
2175

    
2176
void helper_ldda_asi(target_ulong addr, int asi, int rd)
2177
{
2178
    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2179
        || ((env->def->features & CPU_FEATURE_HYPV)
2180
            && asi >= 0x30 && asi < 0x80
2181
            && !(env->hpstate & HS_PRIV)))
2182
        raise_exception(TT_PRIV_ACT);
2183

    
2184
    switch (asi) {
2185
    case 0x24: // Nucleus quad LDD 128 bit atomic
2186
    case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2187
        helper_check_align(addr, 0xf);
2188
        if (rd == 0) {
2189
            env->gregs[1] = ldq_kernel(addr + 8);
2190
            if (asi == 0x2c)
2191
                bswap64s(&env->gregs[1]);
2192
        } else if (rd < 8) {
2193
            env->gregs[rd] = ldq_kernel(addr);
2194
            env->gregs[rd + 1] = ldq_kernel(addr + 8);
2195
            if (asi == 0x2c) {
2196
                bswap64s(&env->gregs[rd]);
2197
                bswap64s(&env->gregs[rd + 1]);
2198
            }
2199
        } else {
2200
            env->regwptr[rd] = ldq_kernel(addr);
2201
            env->regwptr[rd + 1] = ldq_kernel(addr + 8);
2202
            if (asi == 0x2c) {
2203
                bswap64s(&env->regwptr[rd]);
2204
                bswap64s(&env->regwptr[rd + 1]);
2205
            }
2206
        }
2207
        break;
2208
    default:
2209
        helper_check_align(addr, 0x3);
2210
        if (rd == 0)
2211
            env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0);
2212
        else if (rd < 8) {
2213
            env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0);
2214
            env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
2215
        } else {
2216
            env->regwptr[rd] = helper_ld_asi(addr, asi, 4, 0);
2217
            env->regwptr[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
2218
        }
2219
        break;
2220
    }
2221
}
2222

    
2223
void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
2224
{
2225
    unsigned int i;
2226
    target_ulong val;
2227

    
2228
    helper_check_align(addr, 3);
2229
    switch (asi) {
2230
    case 0xf0: // Block load primary
2231
    case 0xf1: // Block load secondary
2232
    case 0xf8: // Block load primary LE
2233
    case 0xf9: // Block load secondary LE
2234
        if (rd & 7) {
2235
            raise_exception(TT_ILL_INSN);
2236
            return;
2237
        }
2238
        helper_check_align(addr, 0x3f);
2239
        for (i = 0; i < 16; i++) {
2240
            *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4,
2241
                                                         0);
2242
            addr += 4;
2243
        }
2244

    
2245
        return;
2246
    default:
2247
        break;
2248
    }
2249

    
2250
    val = helper_ld_asi(addr, asi, size, 0);
2251
    switch(size) {
2252
    default:
2253
    case 4:
2254
        *((uint32_t *)&env->fpr[rd]) = val;
2255
        break;
2256
    case 8:
2257
        *((int64_t *)&DT0) = val;
2258
        break;
2259
    case 16:
2260
        // XXX
2261
        break;
2262
    }
2263
}
2264

    
2265
void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
2266
{
2267
    unsigned int i;
2268
    target_ulong val = 0;
2269

    
2270
    helper_check_align(addr, 3);
2271
    switch (asi) {
2272
    case 0xf0: // Block store primary
2273
    case 0xf1: // Block store secondary
2274
    case 0xf8: // Block store primary LE
2275
    case 0xf9: // Block store secondary LE
2276
        if (rd & 7) {
2277
            raise_exception(TT_ILL_INSN);
2278
            return;
2279
        }
2280
        helper_check_align(addr, 0x3f);
2281
        for (i = 0; i < 16; i++) {
2282
            val = *(uint32_t *)&env->fpr[rd++];
2283
            helper_st_asi(addr, val, asi & 0x8f, 4);
2284
            addr += 4;
2285
        }
2286

    
2287
        return;
2288
    default:
2289
        break;
2290
    }
2291

    
2292
    switch(size) {
2293
    default:
2294
    case 4:
2295
        val = *((uint32_t *)&env->fpr[rd]);
2296
        break;
2297
    case 8:
2298
        val = *((int64_t *)&DT0);
2299
        break;
2300
    case 16:
2301
        // XXX
2302
        break;
2303
    }
2304
    helper_st_asi(addr, val, asi, size);
2305
}
2306

    
2307
target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
2308
                            target_ulong val2, uint32_t asi)
2309
{
2310
    target_ulong ret;
2311

    
2312
    val1 &= 0xffffffffUL;
2313
    ret = helper_ld_asi(addr, asi, 4, 0);
2314
    ret &= 0xffffffffUL;
2315
    if (val1 == ret)
2316
        helper_st_asi(addr, val2 & 0xffffffffUL, asi, 4);
2317
    return ret;
2318
}
2319

    
2320
target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
2321
                             target_ulong val2, uint32_t asi)
2322
{
2323
    target_ulong ret;
2324

    
2325
    ret = helper_ld_asi(addr, asi, 8, 0);
2326
    if (val1 == ret)
2327
        helper_st_asi(addr, val2, asi, 8);
2328
    return ret;
2329
}
2330
#endif /* TARGET_SPARC64 */
2331

    
2332
#ifndef TARGET_SPARC64
2333
void helper_rett(void)
2334
{
2335
    unsigned int cwp;
2336

    
2337
    if (env->psret == 1)
2338
        raise_exception(TT_ILL_INSN);
2339

    
2340
    env->psret = 1;
2341
    cwp = cpu_cwp_inc(env, env->cwp + 1) ;
2342
    if (env->wim & (1 << cwp)) {
2343
        raise_exception(TT_WIN_UNF);
2344
    }
2345
    set_cwp(cwp);
2346
    env->psrs = env->psrps;
2347
}
2348
#endif
2349

    
2350
target_ulong helper_udiv(target_ulong a, target_ulong b)
2351
{
2352
    uint64_t x0;
2353
    uint32_t x1;
2354

    
2355
    x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
2356
    x1 = b;
2357

    
2358
    if (x1 == 0) {
2359
        raise_exception(TT_DIV_ZERO);
2360
    }
2361

    
2362
    x0 = x0 / x1;
2363
    if (x0 > 0xffffffff) {
2364
        env->cc_src2 = 1;
2365
        return 0xffffffff;
2366
    } else {
2367
        env->cc_src2 = 0;
2368
        return x0;
2369
    }
2370
}
2371

    
2372
target_ulong helper_sdiv(target_ulong a, target_ulong b)
2373
{
2374
    int64_t x0;
2375
    int32_t x1;
2376

    
2377
    x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
2378
    x1 = b;
2379

    
2380
    if (x1 == 0) {
2381
        raise_exception(TT_DIV_ZERO);
2382
    }
2383

    
2384
    x0 = x0 / x1;
2385
    if ((int32_t) x0 != x0) {
2386
        env->cc_src2 = 1;
2387
        return x0 < 0? 0x80000000: 0x7fffffff;
2388
    } else {
2389
        env->cc_src2 = 0;
2390
        return x0;
2391
    }
2392
}
2393

    
2394
uint64_t helper_pack64(target_ulong high, target_ulong low)
2395
{
2396
    return ((uint64_t)high << 32) | (uint64_t)(low & 0xffffffff);
2397
}
2398

    
2399
void helper_stdf(target_ulong addr, int mem_idx)
2400
{
2401
    helper_check_align(addr, 7);
2402
#if !defined(CONFIG_USER_ONLY)
2403
    switch (mem_idx) {
2404
    case 0:
2405
        stfq_user(addr, DT0);
2406
        break;
2407
    case 1:
2408
        stfq_kernel(addr, DT0);
2409
        break;
2410
#ifdef TARGET_SPARC64
2411
    case 2:
2412
        stfq_hypv(addr, DT0);
2413
        break;
2414
#endif
2415
    default:
2416
        break;
2417
    }
2418
#else
2419
    address_mask(env, &addr);
2420
    stfq_raw(addr, DT0);
2421
#endif
2422
}
2423

    
2424
void helper_lddf(target_ulong addr, int mem_idx)
2425
{
2426
    helper_check_align(addr, 7);
2427
#if !defined(CONFIG_USER_ONLY)
2428
    switch (mem_idx) {
2429
    case 0:
2430
        DT0 = ldfq_user(addr);
2431
        break;
2432
    case 1:
2433
        DT0 = ldfq_kernel(addr);
2434
        break;
2435
#ifdef TARGET_SPARC64
2436
    case 2:
2437
        DT0 = ldfq_hypv(addr);
2438
        break;
2439
#endif
2440
    default:
2441
        break;
2442
    }
2443
#else
2444
    address_mask(env, &addr);
2445
    DT0 = ldfq_raw(addr);
2446
#endif
2447
}
2448

    
2449
void helper_ldqf(target_ulong addr, int mem_idx)
2450
{
2451
    // XXX add 128 bit load
2452
    CPU_QuadU u;
2453

    
2454
    helper_check_align(addr, 7);
2455
#if !defined(CONFIG_USER_ONLY)
2456
    switch (mem_idx) {
2457
    case 0:
2458
        u.ll.upper = ldq_user(addr);
2459
        u.ll.lower = ldq_user(addr + 8);
2460
        QT0 = u.q;
2461
        break;
2462
    case 1:
2463
        u.ll.upper = ldq_kernel(addr);
2464
        u.ll.lower = ldq_kernel(addr + 8);
2465
        QT0 = u.q;
2466
        break;
2467
#ifdef TARGET_SPARC64
2468
    case 2:
2469
        u.ll.upper = ldq_hypv(addr);
2470
        u.ll.lower = ldq_hypv(addr + 8);
2471
        QT0 = u.q;
2472
        break;
2473
#endif
2474
    default:
2475
        break;
2476
    }
2477
#else
2478
    address_mask(env, &addr);
2479
    u.ll.upper = ldq_raw(addr);
2480
    u.ll.lower = ldq_raw((addr + 8) & 0xffffffffULL);
2481
    QT0 = u.q;
2482
#endif
2483
}
2484

    
2485
void helper_stqf(target_ulong addr, int mem_idx)
2486
{
2487
    // XXX add 128 bit store
2488
    CPU_QuadU u;
2489

    
2490
    helper_check_align(addr, 7);
2491
#if !defined(CONFIG_USER_ONLY)
2492
    switch (mem_idx) {
2493
    case 0:
2494
        u.q = QT0;
2495
        stq_user(addr, u.ll.upper);
2496
        stq_user(addr + 8, u.ll.lower);
2497
        break;
2498
    case 1:
2499
        u.q = QT0;
2500
        stq_kernel(addr, u.ll.upper);
2501
        stq_kernel(addr + 8, u.ll.lower);
2502
        break;
2503
#ifdef TARGET_SPARC64
2504
    case 2:
2505
        u.q = QT0;
2506
        stq_hypv(addr, u.ll.upper);
2507
        stq_hypv(addr + 8, u.ll.lower);
2508
        break;
2509
#endif
2510
    default:
2511
        break;
2512
    }
2513
#else
2514
    u.q = QT0;
2515
    address_mask(env, &addr);
2516
    stq_raw(addr, u.ll.upper);
2517
    stq_raw((addr + 8) & 0xffffffffULL, u.ll.lower);
2518
#endif
2519
}
2520

    
2521
static inline void set_fsr(void)
2522
{
2523
    int rnd_mode;
2524

    
2525
    switch (env->fsr & FSR_RD_MASK) {
2526
    case FSR_RD_NEAREST:
2527
        rnd_mode = float_round_nearest_even;
2528
        break;
2529
    default:
2530
    case FSR_RD_ZERO:
2531
        rnd_mode = float_round_to_zero;
2532
        break;
2533
    case FSR_RD_POS:
2534
        rnd_mode = float_round_up;
2535
        break;
2536
    case FSR_RD_NEG:
2537
        rnd_mode = float_round_down;
2538
        break;
2539
    }
2540
    set_float_rounding_mode(rnd_mode, &env->fp_status);
2541
}
2542

    
2543
void helper_ldfsr(uint32_t new_fsr)
2544
{
2545
    env->fsr = (new_fsr & FSR_LDFSR_MASK) | (env->fsr & FSR_LDFSR_OLDMASK);
2546
    set_fsr();
2547
}
2548

    
2549
#ifdef TARGET_SPARC64
2550
void helper_ldxfsr(uint64_t new_fsr)
2551
{
2552
    env->fsr = (new_fsr & FSR_LDXFSR_MASK) | (env->fsr & FSR_LDXFSR_OLDMASK);
2553
    set_fsr();
2554
}
2555
#endif
2556

    
2557
void helper_debug(void)
2558
{
2559
    env->exception_index = EXCP_DEBUG;
2560
    cpu_loop_exit();
2561
}
2562

    
2563
#ifndef TARGET_SPARC64
2564
/* XXX: use another pointer for %iN registers to avoid slow wrapping
2565
   handling ? */
2566
void helper_save(void)
2567
{
2568
    uint32_t cwp;
2569

    
2570
    cwp = cpu_cwp_dec(env, env->cwp - 1);
2571
    if (env->wim & (1 << cwp)) {
2572
        raise_exception(TT_WIN_OVF);
2573
    }
2574
    set_cwp(cwp);
2575
}
2576

    
2577
void helper_restore(void)
2578
{
2579
    uint32_t cwp;
2580

    
2581
    cwp = cpu_cwp_inc(env, env->cwp + 1);
2582
    if (env->wim & (1 << cwp)) {
2583
        raise_exception(TT_WIN_UNF);
2584
    }
2585
    set_cwp(cwp);
2586
}
2587

    
2588
void helper_wrpsr(target_ulong new_psr)
2589
{
2590
    if ((new_psr & PSR_CWP) >= env->nwindows)
2591
        raise_exception(TT_ILL_INSN);
2592
    else
2593
        PUT_PSR(env, new_psr);
2594
}
2595

    
2596
target_ulong helper_rdpsr(void)
2597
{
2598
    return GET_PSR(env);
2599
}
2600

    
2601
#else
2602
/* XXX: use another pointer for %iN registers to avoid slow wrapping
2603
   handling ? */
2604
void helper_save(void)
2605
{
2606
    uint32_t cwp;
2607

    
2608
    cwp = cpu_cwp_dec(env, env->cwp - 1);
2609
    if (env->cansave == 0) {
2610
        raise_exception(TT_SPILL | (env->otherwin != 0 ?
2611
                                    (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2612
                                    ((env->wstate & 0x7) << 2)));
2613
    } else {
2614
        if (env->cleanwin - env->canrestore == 0) {
2615
            // XXX Clean windows without trap
2616
            raise_exception(TT_CLRWIN);
2617
        } else {
2618
            env->cansave--;
2619
            env->canrestore++;
2620
            set_cwp(cwp);
2621
        }
2622
    }
2623
}
2624

    
2625
void helper_restore(void)
2626
{
2627
    uint32_t cwp;
2628

    
2629
    cwp = cpu_cwp_inc(env, env->cwp + 1);
2630
    if (env->canrestore == 0) {
2631
        raise_exception(TT_FILL | (env->otherwin != 0 ?
2632
                                   (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2633
                                   ((env->wstate & 0x7) << 2)));
2634
    } else {
2635
        env->cansave++;
2636
        env->canrestore--;
2637
        set_cwp(cwp);
2638
    }
2639
}
2640

    
2641
void helper_flushw(void)
2642
{
2643
    if (env->cansave != env->nwindows - 2) {
2644
        raise_exception(TT_SPILL | (env->otherwin != 0 ?
2645
                                    (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2646
                                    ((env->wstate & 0x7) << 2)));
2647
    }
2648
}
2649

    
2650
void helper_saved(void)
2651
{
2652
    env->cansave++;
2653
    if (env->otherwin == 0)
2654
        env->canrestore--;
2655
    else
2656
        env->otherwin--;
2657
}
2658

    
2659
void helper_restored(void)
2660
{
2661
    env->canrestore++;
2662
    if (env->cleanwin < env->nwindows - 1)
2663
        env->cleanwin++;
2664
    if (env->otherwin == 0)
2665
        env->cansave--;
2666
    else
2667
        env->otherwin--;
2668
}
2669

    
2670
target_ulong helper_rdccr(void)
2671
{
2672
    return GET_CCR(env);
2673
}
2674

    
2675
void helper_wrccr(target_ulong new_ccr)
2676
{
2677
    PUT_CCR(env, new_ccr);
2678
}
2679

    
2680
// CWP handling is reversed in V9, but we still use the V8 register
2681
// order.
2682
target_ulong helper_rdcwp(void)
2683
{
2684
    return GET_CWP64(env);
2685
}
2686

    
2687
void helper_wrcwp(target_ulong new_cwp)
2688
{
2689
    PUT_CWP64(env, new_cwp);
2690
}
2691

    
2692
// This function uses non-native bit order
2693
#define GET_FIELD(X, FROM, TO)                                  \
2694
    ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
2695

    
2696
// This function uses the order in the manuals, i.e. bit 0 is 2^0
2697
#define GET_FIELD_SP(X, FROM, TO)               \
2698
    GET_FIELD(X, 63 - (TO), 63 - (FROM))
2699

    
2700
target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize)
2701
{
2702
    return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) |
2703
        (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) |
2704
        (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) |
2705
        (GET_FIELD_SP(pixel_addr, 56, 59) << 13) |
2706
        (GET_FIELD_SP(pixel_addr, 35, 38) << 9) |
2707
        (GET_FIELD_SP(pixel_addr, 13, 16) << 5) |
2708
        (((pixel_addr >> 55) & 1) << 4) |
2709
        (GET_FIELD_SP(pixel_addr, 33, 34) << 2) |
2710
        GET_FIELD_SP(pixel_addr, 11, 12);
2711
}
2712

    
2713
target_ulong helper_alignaddr(target_ulong addr, target_ulong offset)
2714
{
2715
    uint64_t tmp;
2716

    
2717
    tmp = addr + offset;
2718
    env->gsr &= ~7ULL;
2719
    env->gsr |= tmp & 7ULL;
2720
    return tmp & ~7ULL;
2721
}
2722

    
2723
target_ulong helper_popc(target_ulong val)
2724
{
2725
    return ctpop64(val);
2726
}
2727

    
2728
static inline uint64_t *get_gregset(uint64_t pstate)
2729
{
2730
    switch (pstate) {
2731
    default:
2732
    case 0:
2733
        return env->bgregs;
2734
    case PS_AG:
2735
        return env->agregs;
2736
    case PS_MG:
2737
        return env->mgregs;
2738
    case PS_IG:
2739
        return env->igregs;
2740
    }
2741
}
2742

    
2743
static inline void change_pstate(uint64_t new_pstate)
2744
{
2745
    uint64_t pstate_regs, new_pstate_regs;
2746
    uint64_t *src, *dst;
2747

    
2748
    pstate_regs = env->pstate & 0xc01;
2749
    new_pstate_regs = new_pstate & 0xc01;
2750
    if (new_pstate_regs != pstate_regs) {
2751
        // Switch global register bank
2752
        src = get_gregset(new_pstate_regs);
2753
        dst = get_gregset(pstate_regs);
2754
        memcpy32(dst, env->gregs);
2755
        memcpy32(env->gregs, src);
2756
    }
2757
    env->pstate = new_pstate;
2758
}
2759

    
2760
void helper_wrpstate(target_ulong new_state)
2761
{
2762
    if (!(env->def->features & CPU_FEATURE_GL))
2763
        change_pstate(new_state & 0xf3f);
2764
}
2765

    
2766
void helper_done(void)
2767
{
2768
    env->pc = env->tsptr->tpc;
2769
    env->npc = env->tsptr->tnpc + 4;
2770
    PUT_CCR(env, env->tsptr->tstate >> 32);
2771
    env->asi = (env->tsptr->tstate >> 24) & 0xff;
2772
    change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
2773
    PUT_CWP64(env, env->tsptr->tstate & 0xff);
2774
    env->tl--;
2775
    env->tsptr = &env->ts[env->tl & MAXTL_MASK];
2776
}
2777

    
2778
void helper_retry(void)
2779
{
2780
    env->pc = env->tsptr->tpc;
2781
    env->npc = env->tsptr->tnpc;
2782
    PUT_CCR(env, env->tsptr->tstate >> 32);
2783
    env->asi = (env->tsptr->tstate >> 24) & 0xff;
2784
    change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
2785
    PUT_CWP64(env, env->tsptr->tstate & 0xff);
2786
    env->tl--;
2787
    env->tsptr = &env->ts[env->tl & MAXTL_MASK];
2788
}
2789
#endif
2790

    
2791
void helper_flush(target_ulong addr)
2792
{
2793
    addr &= ~7;
2794
    tb_invalidate_page_range(addr, addr + 8);
2795
}
2796

    
2797
#ifdef TARGET_SPARC64
2798
#ifdef DEBUG_PCALL
2799
static const char * const excp_names[0x80] = {
2800
    [TT_TFAULT] = "Instruction Access Fault",
2801
    [TT_TMISS] = "Instruction Access MMU Miss",
2802
    [TT_CODE_ACCESS] = "Instruction Access Error",
2803
    [TT_ILL_INSN] = "Illegal Instruction",
2804
    [TT_PRIV_INSN] = "Privileged Instruction",
2805
    [TT_NFPU_INSN] = "FPU Disabled",
2806
    [TT_FP_EXCP] = "FPU Exception",
2807
    [TT_TOVF] = "Tag Overflow",
2808
    [TT_CLRWIN] = "Clean Windows",
2809
    [TT_DIV_ZERO] = "Division By Zero",
2810
    [TT_DFAULT] = "Data Access Fault",
2811
    [TT_DMISS] = "Data Access MMU Miss",
2812
    [TT_DATA_ACCESS] = "Data Access Error",
2813
    [TT_DPROT] = "Data Protection Error",
2814
    [TT_UNALIGNED] = "Unaligned Memory Access",
2815
    [TT_PRIV_ACT] = "Privileged Action",
2816
    [TT_EXTINT | 0x1] = "External Interrupt 1",
2817
    [TT_EXTINT | 0x2] = "External Interrupt 2",
2818
    [TT_EXTINT | 0x3] = "External Interrupt 3",
2819
    [TT_EXTINT | 0x4] = "External Interrupt 4",
2820
    [TT_EXTINT | 0x5] = "External Interrupt 5",
2821
    [TT_EXTINT | 0x6] = "External Interrupt 6",
2822
    [TT_EXTINT | 0x7] = "External Interrupt 7",
2823
    [TT_EXTINT | 0x8] = "External Interrupt 8",
2824
    [TT_EXTINT | 0x9] = "External Interrupt 9",
2825
    [TT_EXTINT | 0xa] = "External Interrupt 10",
2826
    [TT_EXTINT | 0xb] = "External Interrupt 11",
2827
    [TT_EXTINT | 0xc] = "External Interrupt 12",
2828
    [TT_EXTINT | 0xd] = "External Interrupt 13",
2829
    [TT_EXTINT | 0xe] = "External Interrupt 14",
2830
    [TT_EXTINT | 0xf] = "External Interrupt 15",
2831
};
2832
#endif
2833

    
2834
void do_interrupt(CPUState *env)
2835
{
2836
    int intno = env->exception_index;
2837

    
2838
#ifdef DEBUG_PCALL
2839
    if (loglevel & CPU_LOG_INT) {
2840
        static int count;
2841
        const char *name;
2842

    
2843
        if (intno < 0 || intno >= 0x180)
2844
            name = "Unknown";
2845
        else if (intno >= 0x100)
2846
            name = "Trap Instruction";
2847
        else if (intno >= 0xc0)
2848
            name = "Window Fill";
2849
        else if (intno >= 0x80)
2850
            name = "Window Spill";
2851
        else {
2852
            name = excp_names[intno];
2853
            if (!name)
2854
                name = "Unknown";
2855
        }
2856

    
2857
        fprintf(logfile, "%6d: %s (v=%04x) pc=%016" PRIx64 " npc=%016" PRIx64
2858
                " SP=%016" PRIx64 "\n",
2859
                count, name, intno,
2860
                env->pc,
2861
                env->npc, env->regwptr[6]);
2862
        cpu_dump_state(env, logfile, fprintf, 0);
2863
#if 0
2864
        {
2865
            int i;
2866
            uint8_t *ptr;
2867

2868
            fprintf(logfile, "       code=");
2869
            ptr = (uint8_t *)env->pc;
2870
            for(i = 0; i < 16; i++) {
2871
                fprintf(logfile, " %02x", ldub(ptr + i));
2872
            }
2873
            fprintf(logfile, "\n");
2874
        }
2875
#endif
2876
        count++;
2877
    }
2878
#endif
2879
#if !defined(CONFIG_USER_ONLY)
2880
    if (env->tl >= env->maxtl) {
2881
        cpu_abort(env, "Trap 0x%04x while trap level (%d) >= MAXTL (%d),"
2882
                  " Error state", env->exception_index, env->tl, env->maxtl);
2883
        return;
2884
    }
2885
#endif
2886
    if (env->tl < env->maxtl - 1) {
2887
        env->tl++;
2888
    } else {
2889
        env->pstate |= PS_RED;
2890
        if (env->tl < env->maxtl)
2891
            env->tl++;
2892
    }
2893
    env->tsptr = &env->ts[env->tl & MAXTL_MASK];
2894
    env->tsptr->tstate = ((uint64_t)GET_CCR(env) << 32) |
2895
        ((env->asi & 0xff) << 24) | ((env->pstate & 0xf3f) << 8) |
2896
        GET_CWP64(env);
2897
    env->tsptr->tpc = env->pc;
2898
    env->tsptr->tnpc = env->npc;
2899
    env->tsptr->tt = intno;
2900
    if (!(env->def->features & CPU_FEATURE_GL)) {
2901
        switch (intno) {
2902
        case TT_IVEC:
2903
            change_pstate(PS_PEF | PS_PRIV | PS_IG);
2904
            break;
2905
        case TT_TFAULT:
2906
        case TT_TMISS:
2907
        case TT_DFAULT:
2908
        case TT_DMISS:
2909
        case TT_DPROT:
2910
            change_pstate(PS_PEF | PS_PRIV | PS_MG);
2911
            break;
2912
        default:
2913
            change_pstate(PS_PEF | PS_PRIV | PS_AG);
2914
            break;
2915
        }
2916
    }
2917
    if (intno == TT_CLRWIN)
2918
        cpu_set_cwp(env, cpu_cwp_dec(env, env->cwp - 1));
2919
    else if ((intno & 0x1c0) == TT_SPILL)
2920
        cpu_set_cwp(env, cpu_cwp_dec(env, env->cwp - env->cansave - 2));
2921
    else if ((intno & 0x1c0) == TT_FILL)
2922
        cpu_set_cwp(env, cpu_cwp_inc(env, env->cwp + 1));
2923
    env->tbr &= ~0x7fffULL;
2924
    env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
2925
    env->pc = env->tbr;
2926
    env->npc = env->pc + 4;
2927
    env->exception_index = 0;
2928
}
2929
#else
2930
#ifdef DEBUG_PCALL
2931
static const char * const excp_names[0x80] = {
2932
    [TT_TFAULT] = "Instruction Access Fault",
2933
    [TT_ILL_INSN] = "Illegal Instruction",
2934
    [TT_PRIV_INSN] = "Privileged Instruction",
2935
    [TT_NFPU_INSN] = "FPU Disabled",
2936
    [TT_WIN_OVF] = "Window Overflow",
2937
    [TT_WIN_UNF] = "Window Underflow",
2938
    [TT_UNALIGNED] = "Unaligned Memory Access",
2939
    [TT_FP_EXCP] = "FPU Exception",
2940
    [TT_DFAULT] = "Data Access Fault",
2941
    [TT_TOVF] = "Tag Overflow",
2942
    [TT_EXTINT | 0x1] = "External Interrupt 1",
2943
    [TT_EXTINT | 0x2] = "External Interrupt 2",
2944
    [TT_EXTINT | 0x3] = "External Interrupt 3",
2945
    [TT_EXTINT | 0x4] = "External Interrupt 4",
2946
    [TT_EXTINT | 0x5] = "External Interrupt 5",
2947
    [TT_EXTINT | 0x6] = "External Interrupt 6",
2948
    [TT_EXTINT | 0x7] = "External Interrupt 7",
2949
    [TT_EXTINT | 0x8] = "External Interrupt 8",
2950
    [TT_EXTINT | 0x9] = "External Interrupt 9",
2951
    [TT_EXTINT | 0xa] = "External Interrupt 10",
2952
    [TT_EXTINT | 0xb] = "External Interrupt 11",
2953
    [TT_EXTINT | 0xc] = "External Interrupt 12",
2954
    [TT_EXTINT | 0xd] = "External Interrupt 13",
2955
    [TT_EXTINT | 0xe] = "External Interrupt 14",
2956
    [TT_EXTINT | 0xf] = "External Interrupt 15",
2957
    [TT_TOVF] = "Tag Overflow",
2958
    [TT_CODE_ACCESS] = "Instruction Access Error",
2959
    [TT_DATA_ACCESS] = "Data Access Error",
2960
    [TT_DIV_ZERO] = "Division By Zero",
2961
    [TT_NCP_INSN] = "Coprocessor Disabled",
2962
};
2963
#endif
2964

    
2965
void do_interrupt(CPUState *env)
2966
{
2967
    int cwp, intno = env->exception_index;
2968

    
2969
#ifdef DEBUG_PCALL
2970
    if (loglevel & CPU_LOG_INT) {
2971
        static int count;
2972
        const char *name;
2973

    
2974
        if (intno < 0 || intno >= 0x100)
2975
            name = "Unknown";
2976
        else if (intno >= 0x80)
2977
            name = "Trap Instruction";
2978
        else {
2979
            name = excp_names[intno];
2980
            if (!name)
2981
                name = "Unknown";
2982
        }
2983

    
2984
        fprintf(logfile, "%6d: %s (v=%02x) pc=%08x npc=%08x SP=%08x\n",
2985
                count, name, intno,
2986
                env->pc,
2987
                env->npc, env->regwptr[6]);
2988
        cpu_dump_state(env, logfile, fprintf, 0);
2989
#if 0
2990
        {
2991
            int i;
2992
            uint8_t *ptr;
2993

2994
            fprintf(logfile, "       code=");
2995
            ptr = (uint8_t *)env->pc;
2996
            for(i = 0; i < 16; i++) {
2997
                fprintf(logfile, " %02x", ldub(ptr + i));
2998
            }
2999
            fprintf(logfile, "\n");
3000
        }
3001
#endif
3002
        count++;
3003
    }
3004
#endif
3005
#if !defined(CONFIG_USER_ONLY)
3006
    if (env->psret == 0) {
3007
        cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state",
3008
                  env->exception_index);
3009
        return;
3010
    }
3011
#endif
3012
    env->psret = 0;
3013
    cwp = cpu_cwp_dec(env, env->cwp - 1);
3014
    cpu_set_cwp(env, cwp);
3015
    env->regwptr[9] = env->pc;
3016
    env->regwptr[10] = env->npc;
3017
    env->psrps = env->psrs;
3018
    env->psrs = 1;
3019
    env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
3020
    env->pc = env->tbr;
3021
    env->npc = env->pc + 4;
3022
    env->exception_index = 0;
3023
}
3024
#endif
3025

    
3026
#if !defined(CONFIG_USER_ONLY)
3027

    
3028
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
3029
                                void *retaddr);
3030

    
3031
#define MMUSUFFIX _mmu
3032
#define ALIGNED_ONLY
3033

    
3034
#define SHIFT 0
3035
#include "softmmu_template.h"
3036

    
3037
#define SHIFT 1
3038
#include "softmmu_template.h"
3039

    
3040
#define SHIFT 2
3041
#include "softmmu_template.h"
3042

    
3043
#define SHIFT 3
3044
#include "softmmu_template.h"
3045

    
3046
/* XXX: make it generic ? */
3047
static void cpu_restore_state2(void *retaddr)
3048
{
3049
    TranslationBlock *tb;
3050
    unsigned long pc;
3051

    
3052
    if (retaddr) {
3053
        /* now we have a real cpu fault */
3054
        pc = (unsigned long)retaddr;
3055
        tb = tb_find_pc(pc);
3056
        if (tb) {
3057
            /* the PC is inside the translated code. It means that we have
3058
               a virtual CPU fault */
3059
            cpu_restore_state(tb, env, pc, (void *)(long)env->cond);
3060
        }
3061
    }
3062
}
3063

    
3064
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
3065
                                void *retaddr)
3066
{
3067
#ifdef DEBUG_UNALIGNED
3068
    printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
3069
           "\n", addr, env->pc);
3070
#endif
3071
    cpu_restore_state2(retaddr);
3072
    raise_exception(TT_UNALIGNED);
3073
}
3074

    
3075
/* try to fill the TLB and return an exception if error. If retaddr is
3076
   NULL, it means that the function was called in C code (i.e. not
3077
   from generated code or from helper.c) */
3078
/* XXX: fix it to restore all registers */
3079
void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
3080
{
3081
    int ret;
3082
    CPUState *saved_env;
3083

    
3084
    /* XXX: hack to restore env in all cases, even if not called from
3085
       generated code */
3086
    saved_env = env;
3087
    env = cpu_single_env;
3088

    
3089
    ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
3090
    if (ret) {
3091
        cpu_restore_state2(retaddr);
3092
        cpu_loop_exit();
3093
    }
3094
    env = saved_env;
3095
}
3096

    
3097
#endif
3098

    
3099
#ifndef TARGET_SPARC64
3100
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
3101
                          int is_asi)
3102
{
3103
    CPUState *saved_env;
3104

    
3105
    /* XXX: hack to restore env in all cases, even if not called from
3106
       generated code */
3107
    saved_env = env;
3108
    env = cpu_single_env;
3109
#ifdef DEBUG_UNASSIGNED
3110
    if (is_asi)
3111
        printf("Unassigned mem %s access to " TARGET_FMT_plx
3112
               " asi 0x%02x from " TARGET_FMT_lx "\n",
3113
               is_exec ? "exec" : is_write ? "write" : "read", addr, is_asi,
3114
               env->pc);
3115
    else
3116
        printf("Unassigned mem %s access to " TARGET_FMT_plx " from "
3117
               TARGET_FMT_lx "\n",
3118
               is_exec ? "exec" : is_write ? "write" : "read", addr, env->pc);
3119
#endif
3120
    if (env->mmuregs[3]) /* Fault status register */
3121
        env->mmuregs[3] = 1; /* overflow (not read before another fault) */
3122
    if (is_asi)
3123
        env->mmuregs[3] |= 1 << 16;
3124
    if (env->psrs)
3125
        env->mmuregs[3] |= 1 << 5;
3126
    if (is_exec)
3127
        env->mmuregs[3] |= 1 << 6;
3128
    if (is_write)
3129
        env->mmuregs[3] |= 1 << 7;
3130
    env->mmuregs[3] |= (5 << 2) | 2;
3131
    env->mmuregs[4] = addr; /* Fault address register */
3132
    if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
3133
        if (is_exec)
3134
            raise_exception(TT_CODE_ACCESS);
3135
        else
3136
            raise_exception(TT_DATA_ACCESS);
3137
    }
3138
    env = saved_env;
3139
}
3140
#else
3141
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
3142
                          int is_asi)
3143
{
3144
#ifdef DEBUG_UNASSIGNED
3145
    CPUState *saved_env;
3146

    
3147
    /* XXX: hack to restore env in all cases, even if not called from
3148
       generated code */
3149
    saved_env = env;
3150
    env = cpu_single_env;
3151
    printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
3152
           "\n", addr, env->pc);
3153
    env = saved_env;
3154
#endif
3155
    if (is_exec)
3156
        raise_exception(TT_CODE_ACCESS);
3157
    else
3158
        raise_exception(TT_DATA_ACCESS);
3159
}
3160
#endif
3161