Statistics
| Branch: | Revision:

root / hw / rtl8139.c @ 7267c094

History | View | Annotate | Download (100.2 kB)

1
/**
2
 * QEMU RTL8139 emulation
3
 *
4
 * Copyright (c) 2006 Igor Kovalenko
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23

24
 * Modifications:
25
 *  2006-Jan-28  Mark Malakanov :   TSAD and CSCR implementation (for Windows driver)
26
 *
27
 *  2006-Apr-28  Juergen Lock   :   EEPROM emulation changes for FreeBSD driver
28
 *                                  HW revision ID changes for FreeBSD driver
29
 *
30
 *  2006-Jul-01  Igor Kovalenko :   Implemented loopback mode for FreeBSD driver
31
 *                                  Corrected packet transfer reassembly routine for 8139C+ mode
32
 *                                  Rearranged debugging print statements
33
 *                                  Implemented PCI timer interrupt (disabled by default)
34
 *                                  Implemented Tally Counters, increased VM load/save version
35
 *                                  Implemented IP/TCP/UDP checksum task offloading
36
 *
37
 *  2006-Jul-04  Igor Kovalenko :   Implemented TCP segmentation offloading
38
 *                                  Fixed MTU=1500 for produced ethernet frames
39
 *
40
 *  2006-Jul-09  Igor Kovalenko :   Fixed TCP header length calculation while processing
41
 *                                  segmentation offloading
42
 *                                  Removed slirp.h dependency
43
 *                                  Added rx/tx buffer reset when enabling rx/tx operation
44
 *
45
 *  2010-Feb-04  Frediano Ziglio:   Rewrote timer support using QEMU timer only
46
 *                                  when strictly needed (required for for
47
 *                                  Darwin)
48
 *  2011-Mar-22  Benjamin Poirier:  Implemented VLAN offloading
49
 */
50

    
51
/* For crc32 */
52
#include <zlib.h>
53

    
54
#include "hw.h"
55
#include "pci.h"
56
#include "qemu-timer.h"
57
#include "net.h"
58
#include "loader.h"
59
#include "sysemu.h"
60
#include "iov.h"
61

    
62
/* debug RTL8139 card */
63
//#define DEBUG_RTL8139 1
64

    
65
#define PCI_FREQUENCY 33000000L
66

    
67
/* debug RTL8139 card C+ mode only */
68
//#define DEBUG_RTL8139CP 1
69

    
70
#define SET_MASKED(input, mask, curr) \
71
    ( ( (input) & ~(mask) ) | ( (curr) & (mask) ) )
72

    
73
/* arg % size for size which is a power of 2 */
74
#define MOD2(input, size) \
75
    ( ( input ) & ( size - 1 )  )
76

    
77
#define ETHER_ADDR_LEN 6
78
#define ETHER_TYPE_LEN 2
79
#define ETH_HLEN (ETHER_ADDR_LEN * 2 + ETHER_TYPE_LEN)
80
#define ETH_P_IP    0x0800      /* Internet Protocol packet */
81
#define ETH_P_8021Q 0x8100      /* 802.1Q VLAN Extended Header  */
82
#define ETH_MTU     1500
83

    
84
#define VLAN_TCI_LEN 2
85
#define VLAN_HLEN (ETHER_TYPE_LEN + VLAN_TCI_LEN)
86

    
87
#if defined (DEBUG_RTL8139)
88
#  define DPRINTF(fmt, ...) \
89
    do { fprintf(stderr, "RTL8139: " fmt, ## __VA_ARGS__); } while (0)
90
#else
91
static inline GCC_FMT_ATTR(1, 2) int DPRINTF(const char *fmt, ...)
92
{
93
    return 0;
94
}
95
#endif
96

    
97
/* Symbolic offsets to registers. */
98
enum RTL8139_registers {
99
    MAC0 = 0,        /* Ethernet hardware address. */
100
    MAR0 = 8,        /* Multicast filter. */
101
    TxStatus0 = 0x10,/* Transmit status (Four 32bit registers). C mode only */
102
                     /* Dump Tally Conter control register(64bit). C+ mode only */
103
    TxAddr0 = 0x20,  /* Tx descriptors (also four 32bit). */
104
    RxBuf = 0x30,
105
    ChipCmd = 0x37,
106
    RxBufPtr = 0x38,
107
    RxBufAddr = 0x3A,
108
    IntrMask = 0x3C,
109
    IntrStatus = 0x3E,
110
    TxConfig = 0x40,
111
    RxConfig = 0x44,
112
    Timer = 0x48,        /* A general-purpose counter. */
113
    RxMissed = 0x4C,    /* 24 bits valid, write clears. */
114
    Cfg9346 = 0x50,
115
    Config0 = 0x51,
116
    Config1 = 0x52,
117
    FlashReg = 0x54,
118
    MediaStatus = 0x58,
119
    Config3 = 0x59,
120
    Config4 = 0x5A,        /* absent on RTL-8139A */
121
    HltClk = 0x5B,
122
    MultiIntr = 0x5C,
123
    PCIRevisionID = 0x5E,
124
    TxSummary = 0x60, /* TSAD register. Transmit Status of All Descriptors*/
125
    BasicModeCtrl = 0x62,
126
    BasicModeStatus = 0x64,
127
    NWayAdvert = 0x66,
128
    NWayLPAR = 0x68,
129
    NWayExpansion = 0x6A,
130
    /* Undocumented registers, but required for proper operation. */
131
    FIFOTMS = 0x70,        /* FIFO Control and test. */
132
    CSCR = 0x74,        /* Chip Status and Configuration Register. */
133
    PARA78 = 0x78,
134
    PARA7c = 0x7c,        /* Magic transceiver parameter register. */
135
    Config5 = 0xD8,        /* absent on RTL-8139A */
136
    /* C+ mode */
137
    TxPoll        = 0xD9,    /* Tell chip to check Tx descriptors for work */
138
    RxMaxSize    = 0xDA, /* Max size of an Rx packet (8169 only) */
139
    CpCmd        = 0xE0, /* C+ Command register (C+ mode only) */
140
    IntrMitigate    = 0xE2,    /* rx/tx interrupt mitigation control */
141
    RxRingAddrLO    = 0xE4, /* 64-bit start addr of Rx ring */
142
    RxRingAddrHI    = 0xE8, /* 64-bit start addr of Rx ring */
143
    TxThresh    = 0xEC, /* Early Tx threshold */
144
};
145

    
146
enum ClearBitMasks {
147
    MultiIntrClear = 0xF000,
148
    ChipCmdClear = 0xE2,
149
    Config1Clear = (1<<7)|(1<<6)|(1<<3)|(1<<2)|(1<<1),
150
};
151

    
152
enum ChipCmdBits {
153
    CmdReset = 0x10,
154
    CmdRxEnb = 0x08,
155
    CmdTxEnb = 0x04,
156
    RxBufEmpty = 0x01,
157
};
158

    
159
/* C+ mode */
160
enum CplusCmdBits {
161
    CPlusRxVLAN   = 0x0040, /* enable receive VLAN detagging */
162
    CPlusRxChkSum = 0x0020, /* enable receive checksum offloading */
163
    CPlusRxEnb    = 0x0002,
164
    CPlusTxEnb    = 0x0001,
165
};
166

    
167
/* Interrupt register bits, using my own meaningful names. */
168
enum IntrStatusBits {
169
    PCIErr = 0x8000,
170
    PCSTimeout = 0x4000,
171
    RxFIFOOver = 0x40,
172
    RxUnderrun = 0x20,
173
    RxOverflow = 0x10,
174
    TxErr = 0x08,
175
    TxOK = 0x04,
176
    RxErr = 0x02,
177
    RxOK = 0x01,
178

    
179
    RxAckBits = RxFIFOOver | RxOverflow | RxOK,
180
};
181

    
182
enum TxStatusBits {
183
    TxHostOwns = 0x2000,
184
    TxUnderrun = 0x4000,
185
    TxStatOK = 0x8000,
186
    TxOutOfWindow = 0x20000000,
187
    TxAborted = 0x40000000,
188
    TxCarrierLost = 0x80000000,
189
};
190
enum RxStatusBits {
191
    RxMulticast = 0x8000,
192
    RxPhysical = 0x4000,
193
    RxBroadcast = 0x2000,
194
    RxBadSymbol = 0x0020,
195
    RxRunt = 0x0010,
196
    RxTooLong = 0x0008,
197
    RxCRCErr = 0x0004,
198
    RxBadAlign = 0x0002,
199
    RxStatusOK = 0x0001,
200
};
201

    
202
/* Bits in RxConfig. */
203
enum rx_mode_bits {
204
    AcceptErr = 0x20,
205
    AcceptRunt = 0x10,
206
    AcceptBroadcast = 0x08,
207
    AcceptMulticast = 0x04,
208
    AcceptMyPhys = 0x02,
209
    AcceptAllPhys = 0x01,
210
};
211

    
212
/* Bits in TxConfig. */
213
enum tx_config_bits {
214

    
215
        /* Interframe Gap Time. Only TxIFG96 doesn't violate IEEE 802.3 */
216
        TxIFGShift = 24,
217
        TxIFG84 = (0 << TxIFGShift),    /* 8.4us / 840ns (10 / 100Mbps) */
218
        TxIFG88 = (1 << TxIFGShift),    /* 8.8us / 880ns (10 / 100Mbps) */
219
        TxIFG92 = (2 << TxIFGShift),    /* 9.2us / 920ns (10 / 100Mbps) */
220
        TxIFG96 = (3 << TxIFGShift),    /* 9.6us / 960ns (10 / 100Mbps) */
221

    
222
    TxLoopBack = (1 << 18) | (1 << 17), /* enable loopback test mode */
223
    TxCRC = (1 << 16),    /* DISABLE appending CRC to end of Tx packets */
224
    TxClearAbt = (1 << 0),    /* Clear abort (WO) */
225
    TxDMAShift = 8,        /* DMA burst value (0-7) is shifted this many bits */
226
    TxRetryShift = 4,    /* TXRR value (0-15) is shifted this many bits */
227

    
228
    TxVersionMask = 0x7C800000, /* mask out version bits 30-26, 23 */
229
};
230

    
231

    
232
/* Transmit Status of All Descriptors (TSAD) Register */
233
enum TSAD_bits {
234
 TSAD_TOK3 = 1<<15, // TOK bit of Descriptor 3
235
 TSAD_TOK2 = 1<<14, // TOK bit of Descriptor 2
236
 TSAD_TOK1 = 1<<13, // TOK bit of Descriptor 1
237
 TSAD_TOK0 = 1<<12, // TOK bit of Descriptor 0
238
 TSAD_TUN3 = 1<<11, // TUN bit of Descriptor 3
239
 TSAD_TUN2 = 1<<10, // TUN bit of Descriptor 2
240
 TSAD_TUN1 = 1<<9, // TUN bit of Descriptor 1
241
 TSAD_TUN0 = 1<<8, // TUN bit of Descriptor 0
242
 TSAD_TABT3 = 1<<07, // TABT bit of Descriptor 3
243
 TSAD_TABT2 = 1<<06, // TABT bit of Descriptor 2
244
 TSAD_TABT1 = 1<<05, // TABT bit of Descriptor 1
245
 TSAD_TABT0 = 1<<04, // TABT bit of Descriptor 0
246
 TSAD_OWN3 = 1<<03, // OWN bit of Descriptor 3
247
 TSAD_OWN2 = 1<<02, // OWN bit of Descriptor 2
248
 TSAD_OWN1 = 1<<01, // OWN bit of Descriptor 1
249
 TSAD_OWN0 = 1<<00, // OWN bit of Descriptor 0
250
};
251

    
252

    
253
/* Bits in Config1 */
254
enum Config1Bits {
255
    Cfg1_PM_Enable = 0x01,
256
    Cfg1_VPD_Enable = 0x02,
257
    Cfg1_PIO = 0x04,
258
    Cfg1_MMIO = 0x08,
259
    LWAKE = 0x10,        /* not on 8139, 8139A */
260
    Cfg1_Driver_Load = 0x20,
261
    Cfg1_LED0 = 0x40,
262
    Cfg1_LED1 = 0x80,
263
    SLEEP = (1 << 1),    /* only on 8139, 8139A */
264
    PWRDN = (1 << 0),    /* only on 8139, 8139A */
265
};
266

    
267
/* Bits in Config3 */
268
enum Config3Bits {
269
    Cfg3_FBtBEn    = (1 << 0), /* 1 = Fast Back to Back */
270
    Cfg3_FuncRegEn = (1 << 1), /* 1 = enable CardBus Function registers */
271
    Cfg3_CLKRUN_En = (1 << 2), /* 1 = enable CLKRUN */
272
    Cfg3_CardB_En  = (1 << 3), /* 1 = enable CardBus registers */
273
    Cfg3_LinkUp    = (1 << 4), /* 1 = wake up on link up */
274
    Cfg3_Magic     = (1 << 5), /* 1 = wake up on Magic Packet (tm) */
275
    Cfg3_PARM_En   = (1 << 6), /* 0 = software can set twister parameters */
276
    Cfg3_GNTSel    = (1 << 7), /* 1 = delay 1 clock from PCI GNT signal */
277
};
278

    
279
/* Bits in Config4 */
280
enum Config4Bits {
281
    LWPTN = (1 << 2),    /* not on 8139, 8139A */
282
};
283

    
284
/* Bits in Config5 */
285
enum Config5Bits {
286
    Cfg5_PME_STS     = (1 << 0), /* 1 = PCI reset resets PME_Status */
287
    Cfg5_LANWake     = (1 << 1), /* 1 = enable LANWake signal */
288
    Cfg5_LDPS        = (1 << 2), /* 0 = save power when link is down */
289
    Cfg5_FIFOAddrPtr = (1 << 3), /* Realtek internal SRAM testing */
290
    Cfg5_UWF         = (1 << 4), /* 1 = accept unicast wakeup frame */
291
    Cfg5_MWF         = (1 << 5), /* 1 = accept multicast wakeup frame */
292
    Cfg5_BWF         = (1 << 6), /* 1 = accept broadcast wakeup frame */
293
};
294

    
295
enum RxConfigBits {
296
    /* rx fifo threshold */
297
    RxCfgFIFOShift = 13,
298
    RxCfgFIFONone = (7 << RxCfgFIFOShift),
299

    
300
    /* Max DMA burst */
301
    RxCfgDMAShift = 8,
302
    RxCfgDMAUnlimited = (7 << RxCfgDMAShift),
303

    
304
    /* rx ring buffer length */
305
    RxCfgRcv8K = 0,
306
    RxCfgRcv16K = (1 << 11),
307
    RxCfgRcv32K = (1 << 12),
308
    RxCfgRcv64K = (1 << 11) | (1 << 12),
309

    
310
    /* Disable packet wrap at end of Rx buffer. (not possible with 64k) */
311
    RxNoWrap = (1 << 7),
312
};
313

    
314
/* Twister tuning parameters from RealTek.
315
   Completely undocumented, but required to tune bad links on some boards. */
316
/*
317
enum CSCRBits {
318
    CSCR_LinkOKBit = 0x0400,
319
    CSCR_LinkChangeBit = 0x0800,
320
    CSCR_LinkStatusBits = 0x0f000,
321
    CSCR_LinkDownOffCmd = 0x003c0,
322
    CSCR_LinkDownCmd = 0x0f3c0,
323
*/
324
enum CSCRBits {
325
    CSCR_Testfun = 1<<15, /* 1 = Auto-neg speeds up internal timer, WO, def 0 */
326
    CSCR_LD  = 1<<9,  /* Active low TPI link disable signal. When low, TPI still transmits link pulses and TPI stays in good link state. def 1*/
327
    CSCR_HEART_BIT = 1<<8,  /* 1 = HEART BEAT enable, 0 = HEART BEAT disable. HEART BEAT function is only valid in 10Mbps mode. def 1*/
328
    CSCR_JBEN = 1<<7,  /* 1 = enable jabber function. 0 = disable jabber function, def 1*/
329
    CSCR_F_LINK_100 = 1<<6, /* Used to login force good link in 100Mbps for diagnostic purposes. 1 = DISABLE, 0 = ENABLE. def 1*/
330
    CSCR_F_Connect  = 1<<5,  /* Assertion of this bit forces the disconnect function to be bypassed. def 0*/
331
    CSCR_Con_status = 1<<3, /* This bit indicates the status of the connection. 1 = valid connected link detected; 0 = disconnected link detected. RO def 0*/
332
    CSCR_Con_status_En = 1<<2, /* Assertion of this bit configures LED1 pin to indicate connection status. def 0*/
333
    CSCR_PASS_SCR = 1<<0, /* Bypass Scramble, def 0*/
334
};
335

    
336
enum Cfg9346Bits {
337
    Cfg9346_Lock = 0x00,
338
    Cfg9346_Unlock = 0xC0,
339
};
340

    
341
typedef enum {
342
    CH_8139 = 0,
343
    CH_8139_K,
344
    CH_8139A,
345
    CH_8139A_G,
346
    CH_8139B,
347
    CH_8130,
348
    CH_8139C,
349
    CH_8100,
350
    CH_8100B_8139D,
351
    CH_8101,
352
} chip_t;
353

    
354
enum chip_flags {
355
    HasHltClk = (1 << 0),
356
    HasLWake = (1 << 1),
357
};
358

    
359
#define HW_REVID(b30, b29, b28, b27, b26, b23, b22) \
360
    (b30<<30 | b29<<29 | b28<<28 | b27<<27 | b26<<26 | b23<<23 | b22<<22)
361
#define HW_REVID_MASK    HW_REVID(1, 1, 1, 1, 1, 1, 1)
362

    
363
#define RTL8139_PCI_REVID_8139      0x10
364
#define RTL8139_PCI_REVID_8139CPLUS 0x20
365

    
366
#define RTL8139_PCI_REVID           RTL8139_PCI_REVID_8139CPLUS
367

    
368
/* Size is 64 * 16bit words */
369
#define EEPROM_9346_ADDR_BITS 6
370
#define EEPROM_9346_SIZE  (1 << EEPROM_9346_ADDR_BITS)
371
#define EEPROM_9346_ADDR_MASK (EEPROM_9346_SIZE - 1)
372

    
373
enum Chip9346Operation
374
{
375
    Chip9346_op_mask = 0xc0,          /* 10 zzzzzz */
376
    Chip9346_op_read = 0x80,          /* 10 AAAAAA */
377
    Chip9346_op_write = 0x40,         /* 01 AAAAAA D(15)..D(0) */
378
    Chip9346_op_ext_mask = 0xf0,      /* 11 zzzzzz */
379
    Chip9346_op_write_enable = 0x30,  /* 00 11zzzz */
380
    Chip9346_op_write_all = 0x10,     /* 00 01zzzz */
381
    Chip9346_op_write_disable = 0x00, /* 00 00zzzz */
382
};
383

    
384
enum Chip9346Mode
385
{
386
    Chip9346_none = 0,
387
    Chip9346_enter_command_mode,
388
    Chip9346_read_command,
389
    Chip9346_data_read,      /* from output register */
390
    Chip9346_data_write,     /* to input register, then to contents at specified address */
391
    Chip9346_data_write_all, /* to input register, then filling contents */
392
};
393

    
394
typedef struct EEprom9346
395
{
396
    uint16_t contents[EEPROM_9346_SIZE];
397
    int      mode;
398
    uint32_t tick;
399
    uint8_t  address;
400
    uint16_t input;
401
    uint16_t output;
402

    
403
    uint8_t eecs;
404
    uint8_t eesk;
405
    uint8_t eedi;
406
    uint8_t eedo;
407
} EEprom9346;
408

    
409
typedef struct RTL8139TallyCounters
410
{
411
    /* Tally counters */
412
    uint64_t   TxOk;
413
    uint64_t   RxOk;
414
    uint64_t   TxERR;
415
    uint32_t   RxERR;
416
    uint16_t   MissPkt;
417
    uint16_t   FAE;
418
    uint32_t   Tx1Col;
419
    uint32_t   TxMCol;
420
    uint64_t   RxOkPhy;
421
    uint64_t   RxOkBrd;
422
    uint32_t   RxOkMul;
423
    uint16_t   TxAbt;
424
    uint16_t   TxUndrn;
425
} RTL8139TallyCounters;
426

    
427
/* Clears all tally counters */
428
static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters);
429

    
430
/* Writes tally counters to specified physical memory address */
431
static void RTL8139TallyCounters_physical_memory_write(target_phys_addr_t tc_addr, RTL8139TallyCounters* counters);
432

    
433
typedef struct RTL8139State {
434
    PCIDevice dev;
435
    uint8_t phys[8]; /* mac address */
436
    uint8_t mult[8]; /* multicast mask array */
437

    
438
    uint32_t TxStatus[4]; /* TxStatus0 in C mode*/ /* also DTCCR[0] and DTCCR[1] in C+ mode */
439
    uint32_t TxAddr[4];   /* TxAddr0 */
440
    uint32_t RxBuf;       /* Receive buffer */
441
    uint32_t RxBufferSize;/* internal variable, receive ring buffer size in C mode */
442
    uint32_t RxBufPtr;
443
    uint32_t RxBufAddr;
444

    
445
    uint16_t IntrStatus;
446
    uint16_t IntrMask;
447

    
448
    uint32_t TxConfig;
449
    uint32_t RxConfig;
450
    uint32_t RxMissed;
451

    
452
    uint16_t CSCR;
453

    
454
    uint8_t  Cfg9346;
455
    uint8_t  Config0;
456
    uint8_t  Config1;
457
    uint8_t  Config3;
458
    uint8_t  Config4;
459
    uint8_t  Config5;
460

    
461
    uint8_t  clock_enabled;
462
    uint8_t  bChipCmdState;
463

    
464
    uint16_t MultiIntr;
465

    
466
    uint16_t BasicModeCtrl;
467
    uint16_t BasicModeStatus;
468
    uint16_t NWayAdvert;
469
    uint16_t NWayLPAR;
470
    uint16_t NWayExpansion;
471

    
472
    uint16_t CpCmd;
473
    uint8_t  TxThresh;
474

    
475
    NICState *nic;
476
    NICConf conf;
477

    
478
    /* C ring mode */
479
    uint32_t   currTxDesc;
480

    
481
    /* C+ mode */
482
    uint32_t   cplus_enabled;
483

    
484
    uint32_t   currCPlusRxDesc;
485
    uint32_t   currCPlusTxDesc;
486

    
487
    uint32_t   RxRingAddrLO;
488
    uint32_t   RxRingAddrHI;
489

    
490
    EEprom9346 eeprom;
491

    
492
    uint32_t   TCTR;
493
    uint32_t   TimerInt;
494
    int64_t    TCTR_base;
495

    
496
    /* Tally counters */
497
    RTL8139TallyCounters tally_counters;
498

    
499
    /* Non-persistent data */
500
    uint8_t   *cplus_txbuffer;
501
    int        cplus_txbuffer_len;
502
    int        cplus_txbuffer_offset;
503

    
504
    /* PCI interrupt timer */
505
    QEMUTimer *timer;
506
    int64_t TimerExpire;
507

    
508
    MemoryRegion bar_io;
509
    MemoryRegion bar_mem;
510

    
511
    /* Support migration to/from old versions */
512
    int rtl8139_mmio_io_addr_dummy;
513
} RTL8139State;
514

    
515
static void rtl8139_set_next_tctr_time(RTL8139State *s, int64_t current_time);
516

    
517
static void prom9346_decode_command(EEprom9346 *eeprom, uint8_t command)
518
{
519
    DPRINTF("eeprom command 0x%02x\n", command);
520

    
521
    switch (command & Chip9346_op_mask)
522
    {
523
        case Chip9346_op_read:
524
        {
525
            eeprom->address = command & EEPROM_9346_ADDR_MASK;
526
            eeprom->output = eeprom->contents[eeprom->address];
527
            eeprom->eedo = 0;
528
            eeprom->tick = 0;
529
            eeprom->mode = Chip9346_data_read;
530
            DPRINTF("eeprom read from address 0x%02x data=0x%04x\n",
531
                eeprom->address, eeprom->output);
532
        }
533
        break;
534

    
535
        case Chip9346_op_write:
536
        {
537
            eeprom->address = command & EEPROM_9346_ADDR_MASK;
538
            eeprom->input = 0;
539
            eeprom->tick = 0;
540
            eeprom->mode = Chip9346_none; /* Chip9346_data_write */
541
            DPRINTF("eeprom begin write to address 0x%02x\n",
542
                eeprom->address);
543
        }
544
        break;
545
        default:
546
            eeprom->mode = Chip9346_none;
547
            switch (command & Chip9346_op_ext_mask)
548
            {
549
                case Chip9346_op_write_enable:
550
                    DPRINTF("eeprom write enabled\n");
551
                    break;
552
                case Chip9346_op_write_all:
553
                    DPRINTF("eeprom begin write all\n");
554
                    break;
555
                case Chip9346_op_write_disable:
556
                    DPRINTF("eeprom write disabled\n");
557
                    break;
558
            }
559
            break;
560
    }
561
}
562

    
563
static void prom9346_shift_clock(EEprom9346 *eeprom)
564
{
565
    int bit = eeprom->eedi?1:0;
566

    
567
    ++ eeprom->tick;
568

    
569
    DPRINTF("eeprom: tick %d eedi=%d eedo=%d\n", eeprom->tick, eeprom->eedi,
570
        eeprom->eedo);
571

    
572
    switch (eeprom->mode)
573
    {
574
        case Chip9346_enter_command_mode:
575
            if (bit)
576
            {
577
                eeprom->mode = Chip9346_read_command;
578
                eeprom->tick = 0;
579
                eeprom->input = 0;
580
                DPRINTF("eeprom: +++ synchronized, begin command read\n");
581
            }
582
            break;
583

    
584
        case Chip9346_read_command:
585
            eeprom->input = (eeprom->input << 1) | (bit & 1);
586
            if (eeprom->tick == 8)
587
            {
588
                prom9346_decode_command(eeprom, eeprom->input & 0xff);
589
            }
590
            break;
591

    
592
        case Chip9346_data_read:
593
            eeprom->eedo = (eeprom->output & 0x8000)?1:0;
594
            eeprom->output <<= 1;
595
            if (eeprom->tick == 16)
596
            {
597
#if 1
598
        // the FreeBSD drivers (rl and re) don't explicitly toggle
599
        // CS between reads (or does setting Cfg9346 to 0 count too?),
600
        // so we need to enter wait-for-command state here
601
                eeprom->mode = Chip9346_enter_command_mode;
602
                eeprom->input = 0;
603
                eeprom->tick = 0;
604

    
605
                DPRINTF("eeprom: +++ end of read, awaiting next command\n");
606
#else
607
        // original behaviour
608
                ++eeprom->address;
609
                eeprom->address &= EEPROM_9346_ADDR_MASK;
610
                eeprom->output = eeprom->contents[eeprom->address];
611
                eeprom->tick = 0;
612

    
613
                DPRINTF("eeprom: +++ read next address 0x%02x data=0x%04x\n",
614
                    eeprom->address, eeprom->output);
615
#endif
616
            }
617
            break;
618

    
619
        case Chip9346_data_write:
620
            eeprom->input = (eeprom->input << 1) | (bit & 1);
621
            if (eeprom->tick == 16)
622
            {
623
                DPRINTF("eeprom write to address 0x%02x data=0x%04x\n",
624
                    eeprom->address, eeprom->input);
625

    
626
                eeprom->contents[eeprom->address] = eeprom->input;
627
                eeprom->mode = Chip9346_none; /* waiting for next command after CS cycle */
628
                eeprom->tick = 0;
629
                eeprom->input = 0;
630
            }
631
            break;
632

    
633
        case Chip9346_data_write_all:
634
            eeprom->input = (eeprom->input << 1) | (bit & 1);
635
            if (eeprom->tick == 16)
636
            {
637
                int i;
638
                for (i = 0; i < EEPROM_9346_SIZE; i++)
639
                {
640
                    eeprom->contents[i] = eeprom->input;
641
                }
642
                DPRINTF("eeprom filled with data=0x%04x\n", eeprom->input);
643

    
644
                eeprom->mode = Chip9346_enter_command_mode;
645
                eeprom->tick = 0;
646
                eeprom->input = 0;
647
            }
648
            break;
649

    
650
        default:
651
            break;
652
    }
653
}
654

    
655
static int prom9346_get_wire(RTL8139State *s)
656
{
657
    EEprom9346 *eeprom = &s->eeprom;
658
    if (!eeprom->eecs)
659
        return 0;
660

    
661
    return eeprom->eedo;
662
}
663

    
664
/* FIXME: This should be merged into/replaced by eeprom93xx.c.  */
665
static void prom9346_set_wire(RTL8139State *s, int eecs, int eesk, int eedi)
666
{
667
    EEprom9346 *eeprom = &s->eeprom;
668
    uint8_t old_eecs = eeprom->eecs;
669
    uint8_t old_eesk = eeprom->eesk;
670

    
671
    eeprom->eecs = eecs;
672
    eeprom->eesk = eesk;
673
    eeprom->eedi = eedi;
674

    
675
    DPRINTF("eeprom: +++ wires CS=%d SK=%d DI=%d DO=%d\n", eeprom->eecs,
676
        eeprom->eesk, eeprom->eedi, eeprom->eedo);
677

    
678
    if (!old_eecs && eecs)
679
    {
680
        /* Synchronize start */
681
        eeprom->tick = 0;
682
        eeprom->input = 0;
683
        eeprom->output = 0;
684
        eeprom->mode = Chip9346_enter_command_mode;
685

    
686
        DPRINTF("=== eeprom: begin access, enter command mode\n");
687
    }
688

    
689
    if (!eecs)
690
    {
691
        DPRINTF("=== eeprom: end access\n");
692
        return;
693
    }
694

    
695
    if (!old_eesk && eesk)
696
    {
697
        /* SK front rules */
698
        prom9346_shift_clock(eeprom);
699
    }
700
}
701

    
702
static void rtl8139_update_irq(RTL8139State *s)
703
{
704
    int isr;
705
    isr = (s->IntrStatus & s->IntrMask) & 0xffff;
706

    
707
    DPRINTF("Set IRQ to %d (%04x %04x)\n", isr ? 1 : 0, s->IntrStatus,
708
        s->IntrMask);
709

    
710
    qemu_set_irq(s->dev.irq[0], (isr != 0));
711
}
712

    
713
#define POLYNOMIAL 0x04c11db6
714

    
715
/* From FreeBSD */
716
/* XXX: optimize */
717
static int compute_mcast_idx(const uint8_t *ep)
718
{
719
    uint32_t crc;
720
    int carry, i, j;
721
    uint8_t b;
722

    
723
    crc = 0xffffffff;
724
    for (i = 0; i < 6; i++) {
725
        b = *ep++;
726
        for (j = 0; j < 8; j++) {
727
            carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
728
            crc <<= 1;
729
            b >>= 1;
730
            if (carry)
731
                crc = ((crc ^ POLYNOMIAL) | carry);
732
        }
733
    }
734
    return (crc >> 26);
735
}
736

    
737
static int rtl8139_RxWrap(RTL8139State *s)
738
{
739
    /* wrapping enabled; assume 1.5k more buffer space if size < 65536 */
740
    return (s->RxConfig & (1 << 7));
741
}
742

    
743
static int rtl8139_receiver_enabled(RTL8139State *s)
744
{
745
    return s->bChipCmdState & CmdRxEnb;
746
}
747

    
748
static int rtl8139_transmitter_enabled(RTL8139State *s)
749
{
750
    return s->bChipCmdState & CmdTxEnb;
751
}
752

    
753
static int rtl8139_cp_receiver_enabled(RTL8139State *s)
754
{
755
    return s->CpCmd & CPlusRxEnb;
756
}
757

    
758
static int rtl8139_cp_transmitter_enabled(RTL8139State *s)
759
{
760
    return s->CpCmd & CPlusTxEnb;
761
}
762

    
763
static void rtl8139_write_buffer(RTL8139State *s, const void *buf, int size)
764
{
765
    if (s->RxBufAddr + size > s->RxBufferSize)
766
    {
767
        int wrapped = MOD2(s->RxBufAddr + size, s->RxBufferSize);
768

    
769
        /* write packet data */
770
        if (wrapped && !(s->RxBufferSize < 65536 && rtl8139_RxWrap(s)))
771
        {
772
            DPRINTF(">>> rx packet wrapped in buffer at %d\n", size - wrapped);
773

    
774
            if (size > wrapped)
775
            {
776
                cpu_physical_memory_write( s->RxBuf + s->RxBufAddr,
777
                                           buf, size-wrapped );
778
            }
779

    
780
            /* reset buffer pointer */
781
            s->RxBufAddr = 0;
782

    
783
            cpu_physical_memory_write( s->RxBuf + s->RxBufAddr,
784
                                       buf + (size-wrapped), wrapped );
785

    
786
            s->RxBufAddr = wrapped;
787

    
788
            return;
789
        }
790
    }
791

    
792
    /* non-wrapping path or overwrapping enabled */
793
    cpu_physical_memory_write( s->RxBuf + s->RxBufAddr, buf, size );
794

    
795
    s->RxBufAddr += size;
796
}
797

    
798
#define MIN_BUF_SIZE 60
799
static inline target_phys_addr_t rtl8139_addr64(uint32_t low, uint32_t high)
800
{
801
#if TARGET_PHYS_ADDR_BITS > 32
802
    return low | ((target_phys_addr_t)high << 32);
803
#else
804
    return low;
805
#endif
806
}
807

    
808
static int rtl8139_can_receive(VLANClientState *nc)
809
{
810
    RTL8139State *s = DO_UPCAST(NICState, nc, nc)->opaque;
811
    int avail;
812

    
813
    /* Receive (drop) packets if card is disabled.  */
814
    if (!s->clock_enabled)
815
      return 1;
816
    if (!rtl8139_receiver_enabled(s))
817
      return 1;
818

    
819
    if (rtl8139_cp_receiver_enabled(s)) {
820
        /* ??? Flow control not implemented in c+ mode.
821
           This is a hack to work around slirp deficiencies anyway.  */
822
        return 1;
823
    } else {
824
        avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr,
825
                     s->RxBufferSize);
826
        return (avail == 0 || avail >= 1514);
827
    }
828
}
829

    
830
static ssize_t rtl8139_do_receive(VLANClientState *nc, const uint8_t *buf, size_t size_, int do_interrupt)
831
{
832
    RTL8139State *s = DO_UPCAST(NICState, nc, nc)->opaque;
833
    /* size is the length of the buffer passed to the driver */
834
    int size = size_;
835
    const uint8_t *dot1q_buf = NULL;
836

    
837
    uint32_t packet_header = 0;
838

    
839
    uint8_t buf1[MIN_BUF_SIZE + VLAN_HLEN];
840
    static const uint8_t broadcast_macaddr[6] =
841
        { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
842

    
843
    DPRINTF(">>> received len=%d\n", size);
844

    
845
    /* test if board clock is stopped */
846
    if (!s->clock_enabled)
847
    {
848
        DPRINTF("stopped ==========================\n");
849
        return -1;
850
    }
851

    
852
    /* first check if receiver is enabled */
853

    
854
    if (!rtl8139_receiver_enabled(s))
855
    {
856
        DPRINTF("receiver disabled ================\n");
857
        return -1;
858
    }
859

    
860
    /* XXX: check this */
861
    if (s->RxConfig & AcceptAllPhys) {
862
        /* promiscuous: receive all */
863
        DPRINTF(">>> packet received in promiscuous mode\n");
864

    
865
    } else {
866
        if (!memcmp(buf,  broadcast_macaddr, 6)) {
867
            /* broadcast address */
868
            if (!(s->RxConfig & AcceptBroadcast))
869
            {
870
                DPRINTF(">>> broadcast packet rejected\n");
871

    
872
                /* update tally counter */
873
                ++s->tally_counters.RxERR;
874

    
875
                return size;
876
            }
877

    
878
            packet_header |= RxBroadcast;
879

    
880
            DPRINTF(">>> broadcast packet received\n");
881

    
882
            /* update tally counter */
883
            ++s->tally_counters.RxOkBrd;
884

    
885
        } else if (buf[0] & 0x01) {
886
            /* multicast */
887
            if (!(s->RxConfig & AcceptMulticast))
888
            {
889
                DPRINTF(">>> multicast packet rejected\n");
890

    
891
                /* update tally counter */
892
                ++s->tally_counters.RxERR;
893

    
894
                return size;
895
            }
896

    
897
            int mcast_idx = compute_mcast_idx(buf);
898

    
899
            if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
900
            {
901
                DPRINTF(">>> multicast address mismatch\n");
902

    
903
                /* update tally counter */
904
                ++s->tally_counters.RxERR;
905

    
906
                return size;
907
            }
908

    
909
            packet_header |= RxMulticast;
910

    
911
            DPRINTF(">>> multicast packet received\n");
912

    
913
            /* update tally counter */
914
            ++s->tally_counters.RxOkMul;
915

    
916
        } else if (s->phys[0] == buf[0] &&
917
                   s->phys[1] == buf[1] &&
918
                   s->phys[2] == buf[2] &&
919
                   s->phys[3] == buf[3] &&
920
                   s->phys[4] == buf[4] &&
921
                   s->phys[5] == buf[5]) {
922
            /* match */
923
            if (!(s->RxConfig & AcceptMyPhys))
924
            {
925
                DPRINTF(">>> rejecting physical address matching packet\n");
926

    
927
                /* update tally counter */
928
                ++s->tally_counters.RxERR;
929

    
930
                return size;
931
            }
932

    
933
            packet_header |= RxPhysical;
934

    
935
            DPRINTF(">>> physical address matching packet received\n");
936

    
937
            /* update tally counter */
938
            ++s->tally_counters.RxOkPhy;
939

    
940
        } else {
941

    
942
            DPRINTF(">>> unknown packet\n");
943

    
944
            /* update tally counter */
945
            ++s->tally_counters.RxERR;
946

    
947
            return size;
948
        }
949
    }
950

    
951
    /* if too small buffer, then expand it
952
     * Include some tailroom in case a vlan tag is later removed. */
953
    if (size < MIN_BUF_SIZE + VLAN_HLEN) {
954
        memcpy(buf1, buf, size);
955
        memset(buf1 + size, 0, MIN_BUF_SIZE + VLAN_HLEN - size);
956
        buf = buf1;
957
        if (size < MIN_BUF_SIZE) {
958
            size = MIN_BUF_SIZE;
959
        }
960
    }
961

    
962
    if (rtl8139_cp_receiver_enabled(s))
963
    {
964
        DPRINTF("in C+ Rx mode ================\n");
965

    
966
        /* begin C+ receiver mode */
967

    
968
/* w0 ownership flag */
969
#define CP_RX_OWN (1<<31)
970
/* w0 end of ring flag */
971
#define CP_RX_EOR (1<<30)
972
/* w0 bits 0...12 : buffer size */
973
#define CP_RX_BUFFER_SIZE_MASK ((1<<13) - 1)
974
/* w1 tag available flag */
975
#define CP_RX_TAVA (1<<16)
976
/* w1 bits 0...15 : VLAN tag */
977
#define CP_RX_VLAN_TAG_MASK ((1<<16) - 1)
978
/* w2 low  32bit of Rx buffer ptr */
979
/* w3 high 32bit of Rx buffer ptr */
980

    
981
        int descriptor = s->currCPlusRxDesc;
982
        target_phys_addr_t cplus_rx_ring_desc;
983

    
984
        cplus_rx_ring_desc = rtl8139_addr64(s->RxRingAddrLO, s->RxRingAddrHI);
985
        cplus_rx_ring_desc += 16 * descriptor;
986

    
987
        DPRINTF("+++ C+ mode reading RX descriptor %d from host memory at "
988
            "%08x %08x = "TARGET_FMT_plx"\n", descriptor, s->RxRingAddrHI,
989
            s->RxRingAddrLO, cplus_rx_ring_desc);
990

    
991
        uint32_t val, rxdw0,rxdw1,rxbufLO,rxbufHI;
992

    
993
        cpu_physical_memory_read(cplus_rx_ring_desc,    (uint8_t *)&val, 4);
994
        rxdw0 = le32_to_cpu(val);
995
        cpu_physical_memory_read(cplus_rx_ring_desc+4,  (uint8_t *)&val, 4);
996
        rxdw1 = le32_to_cpu(val);
997
        cpu_physical_memory_read(cplus_rx_ring_desc+8,  (uint8_t *)&val, 4);
998
        rxbufLO = le32_to_cpu(val);
999
        cpu_physical_memory_read(cplus_rx_ring_desc+12, (uint8_t *)&val, 4);
1000
        rxbufHI = le32_to_cpu(val);
1001

    
1002
        DPRINTF("+++ C+ mode RX descriptor %d %08x %08x %08x %08x\n",
1003
            descriptor, rxdw0, rxdw1, rxbufLO, rxbufHI);
1004

    
1005
        if (!(rxdw0 & CP_RX_OWN))
1006
        {
1007
            DPRINTF("C+ Rx mode : descriptor %d is owned by host\n",
1008
                descriptor);
1009

    
1010
            s->IntrStatus |= RxOverflow;
1011
            ++s->RxMissed;
1012

    
1013
            /* update tally counter */
1014
            ++s->tally_counters.RxERR;
1015
            ++s->tally_counters.MissPkt;
1016

    
1017
            rtl8139_update_irq(s);
1018
            return size_;
1019
        }
1020

    
1021
        uint32_t rx_space = rxdw0 & CP_RX_BUFFER_SIZE_MASK;
1022

    
1023
        /* write VLAN info to descriptor variables. */
1024
        if (s->CpCmd & CPlusRxVLAN && be16_to_cpup((uint16_t *)
1025
                &buf[ETHER_ADDR_LEN * 2]) == ETH_P_8021Q) {
1026
            dot1q_buf = &buf[ETHER_ADDR_LEN * 2];
1027
            size -= VLAN_HLEN;
1028
            /* if too small buffer, use the tailroom added duing expansion */
1029
            if (size < MIN_BUF_SIZE) {
1030
                size = MIN_BUF_SIZE;
1031
            }
1032

    
1033
            rxdw1 &= ~CP_RX_VLAN_TAG_MASK;
1034
            /* BE + ~le_to_cpu()~ + cpu_to_le() = BE */
1035
            rxdw1 |= CP_RX_TAVA | le16_to_cpup((uint16_t *)
1036
                &dot1q_buf[ETHER_TYPE_LEN]);
1037

    
1038
            DPRINTF("C+ Rx mode : extracted vlan tag with tci: ""%u\n",
1039
                be16_to_cpup((uint16_t *)&dot1q_buf[ETHER_TYPE_LEN]));
1040
        } else {
1041
            /* reset VLAN tag flag */
1042
            rxdw1 &= ~CP_RX_TAVA;
1043
        }
1044

    
1045
        /* TODO: scatter the packet over available receive ring descriptors space */
1046

    
1047
        if (size+4 > rx_space)
1048
        {
1049
            DPRINTF("C+ Rx mode : descriptor %d size %d received %d + 4\n",
1050
                descriptor, rx_space, size);
1051

    
1052
            s->IntrStatus |= RxOverflow;
1053
            ++s->RxMissed;
1054

    
1055
            /* update tally counter */
1056
            ++s->tally_counters.RxERR;
1057
            ++s->tally_counters.MissPkt;
1058

    
1059
            rtl8139_update_irq(s);
1060
            return size_;
1061
        }
1062

    
1063
        target_phys_addr_t rx_addr = rtl8139_addr64(rxbufLO, rxbufHI);
1064

    
1065
        /* receive/copy to target memory */
1066
        if (dot1q_buf) {
1067
            cpu_physical_memory_write(rx_addr, buf, 2 * ETHER_ADDR_LEN);
1068
            cpu_physical_memory_write(rx_addr + 2 * ETHER_ADDR_LEN,
1069
                buf + 2 * ETHER_ADDR_LEN + VLAN_HLEN,
1070
                size - 2 * ETHER_ADDR_LEN);
1071
        } else {
1072
            cpu_physical_memory_write(rx_addr, buf, size);
1073
        }
1074

    
1075
        if (s->CpCmd & CPlusRxChkSum)
1076
        {
1077
            /* do some packet checksumming */
1078
        }
1079

    
1080
        /* write checksum */
1081
        val = cpu_to_le32(crc32(0, buf, size_));
1082
        cpu_physical_memory_write( rx_addr+size, (uint8_t *)&val, 4);
1083

    
1084
/* first segment of received packet flag */
1085
#define CP_RX_STATUS_FS (1<<29)
1086
/* last segment of received packet flag */
1087
#define CP_RX_STATUS_LS (1<<28)
1088
/* multicast packet flag */
1089
#define CP_RX_STATUS_MAR (1<<26)
1090
/* physical-matching packet flag */
1091
#define CP_RX_STATUS_PAM (1<<25)
1092
/* broadcast packet flag */
1093
#define CP_RX_STATUS_BAR (1<<24)
1094
/* runt packet flag */
1095
#define CP_RX_STATUS_RUNT (1<<19)
1096
/* crc error flag */
1097
#define CP_RX_STATUS_CRC (1<<18)
1098
/* IP checksum error flag */
1099
#define CP_RX_STATUS_IPF (1<<15)
1100
/* UDP checksum error flag */
1101
#define CP_RX_STATUS_UDPF (1<<14)
1102
/* TCP checksum error flag */
1103
#define CP_RX_STATUS_TCPF (1<<13)
1104

    
1105
        /* transfer ownership to target */
1106
        rxdw0 &= ~CP_RX_OWN;
1107

    
1108
        /* set first segment bit */
1109
        rxdw0 |= CP_RX_STATUS_FS;
1110

    
1111
        /* set last segment bit */
1112
        rxdw0 |= CP_RX_STATUS_LS;
1113

    
1114
        /* set received packet type flags */
1115
        if (packet_header & RxBroadcast)
1116
            rxdw0 |= CP_RX_STATUS_BAR;
1117
        if (packet_header & RxMulticast)
1118
            rxdw0 |= CP_RX_STATUS_MAR;
1119
        if (packet_header & RxPhysical)
1120
            rxdw0 |= CP_RX_STATUS_PAM;
1121

    
1122
        /* set received size */
1123
        rxdw0 &= ~CP_RX_BUFFER_SIZE_MASK;
1124
        rxdw0 |= (size+4);
1125

    
1126
        /* update ring data */
1127
        val = cpu_to_le32(rxdw0);
1128
        cpu_physical_memory_write(cplus_rx_ring_desc,    (uint8_t *)&val, 4);
1129
        val = cpu_to_le32(rxdw1);
1130
        cpu_physical_memory_write(cplus_rx_ring_desc+4,  (uint8_t *)&val, 4);
1131

    
1132
        /* update tally counter */
1133
        ++s->tally_counters.RxOk;
1134

    
1135
        /* seek to next Rx descriptor */
1136
        if (rxdw0 & CP_RX_EOR)
1137
        {
1138
            s->currCPlusRxDesc = 0;
1139
        }
1140
        else
1141
        {
1142
            ++s->currCPlusRxDesc;
1143
        }
1144

    
1145
        DPRINTF("done C+ Rx mode ----------------\n");
1146

    
1147
    }
1148
    else
1149
    {
1150
        DPRINTF("in ring Rx mode ================\n");
1151

    
1152
        /* begin ring receiver mode */
1153
        int avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr, s->RxBufferSize);
1154

    
1155
        /* if receiver buffer is empty then avail == 0 */
1156

    
1157
        if (avail != 0 && size + 8 >= avail)
1158
        {
1159
            DPRINTF("rx overflow: rx buffer length %d head 0x%04x "
1160
                "read 0x%04x === available 0x%04x need 0x%04x\n",
1161
                s->RxBufferSize, s->RxBufAddr, s->RxBufPtr, avail, size + 8);
1162

    
1163
            s->IntrStatus |= RxOverflow;
1164
            ++s->RxMissed;
1165
            rtl8139_update_irq(s);
1166
            return size_;
1167
        }
1168

    
1169
        packet_header |= RxStatusOK;
1170

    
1171
        packet_header |= (((size+4) << 16) & 0xffff0000);
1172

    
1173
        /* write header */
1174
        uint32_t val = cpu_to_le32(packet_header);
1175

    
1176
        rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1177

    
1178
        rtl8139_write_buffer(s, buf, size);
1179

    
1180
        /* write checksum */
1181
        val = cpu_to_le32(crc32(0, buf, size));
1182
        rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1183

    
1184
        /* correct buffer write pointer */
1185
        s->RxBufAddr = MOD2((s->RxBufAddr + 3) & ~0x3, s->RxBufferSize);
1186

    
1187
        /* now we can signal we have received something */
1188

    
1189
        DPRINTF("received: rx buffer length %d head 0x%04x read 0x%04x\n",
1190
            s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
1191
    }
1192

    
1193
    s->IntrStatus |= RxOK;
1194

    
1195
    if (do_interrupt)
1196
    {
1197
        rtl8139_update_irq(s);
1198
    }
1199

    
1200
    return size_;
1201
}
1202

    
1203
static ssize_t rtl8139_receive(VLANClientState *nc, const uint8_t *buf, size_t size)
1204
{
1205
    return rtl8139_do_receive(nc, buf, size, 1);
1206
}
1207

    
1208
static void rtl8139_reset_rxring(RTL8139State *s, uint32_t bufferSize)
1209
{
1210
    s->RxBufferSize = bufferSize;
1211
    s->RxBufPtr  = 0;
1212
    s->RxBufAddr = 0;
1213
}
1214

    
1215
static void rtl8139_reset(DeviceState *d)
1216
{
1217
    RTL8139State *s = container_of(d, RTL8139State, dev.qdev);
1218
    int i;
1219

    
1220
    /* restore MAC address */
1221
    memcpy(s->phys, s->conf.macaddr.a, 6);
1222

    
1223
    /* reset interrupt mask */
1224
    s->IntrStatus = 0;
1225
    s->IntrMask = 0;
1226

    
1227
    rtl8139_update_irq(s);
1228

    
1229
    /* mark all status registers as owned by host */
1230
    for (i = 0; i < 4; ++i)
1231
    {
1232
        s->TxStatus[i] = TxHostOwns;
1233
    }
1234

    
1235
    s->currTxDesc = 0;
1236
    s->currCPlusRxDesc = 0;
1237
    s->currCPlusTxDesc = 0;
1238

    
1239
    s->RxRingAddrLO = 0;
1240
    s->RxRingAddrHI = 0;
1241

    
1242
    s->RxBuf = 0;
1243

    
1244
    rtl8139_reset_rxring(s, 8192);
1245

    
1246
    /* ACK the reset */
1247
    s->TxConfig = 0;
1248

    
1249
#if 0
1250
//    s->TxConfig |= HW_REVID(1, 0, 0, 0, 0, 0, 0); // RTL-8139  HasHltClk
1251
    s->clock_enabled = 0;
1252
#else
1253
    s->TxConfig |= HW_REVID(1, 1, 1, 0, 1, 1, 0); // RTL-8139C+ HasLWake
1254
    s->clock_enabled = 1;
1255
#endif
1256

    
1257
    s->bChipCmdState = CmdReset; /* RxBufEmpty bit is calculated on read from ChipCmd */;
1258

    
1259
    /* set initial state data */
1260
    s->Config0 = 0x0; /* No boot ROM */
1261
    s->Config1 = 0xC; /* IO mapped and MEM mapped registers available */
1262
    s->Config3 = 0x1; /* fast back-to-back compatible */
1263
    s->Config5 = 0x0;
1264

    
1265
    s->CSCR = CSCR_F_LINK_100 | CSCR_HEART_BIT | CSCR_LD;
1266

    
1267
    s->CpCmd   = 0x0; /* reset C+ mode */
1268
    s->cplus_enabled = 0;
1269

    
1270

    
1271
//    s->BasicModeCtrl = 0x3100; // 100Mbps, full duplex, autonegotiation
1272
//    s->BasicModeCtrl = 0x2100; // 100Mbps, full duplex
1273
    s->BasicModeCtrl = 0x1000; // autonegotiation
1274

    
1275
    s->BasicModeStatus  = 0x7809;
1276
    //s->BasicModeStatus |= 0x0040; /* UTP medium */
1277
    s->BasicModeStatus |= 0x0020; /* autonegotiation completed */
1278
    s->BasicModeStatus |= 0x0004; /* link is up */
1279

    
1280
    s->NWayAdvert    = 0x05e1; /* all modes, full duplex */
1281
    s->NWayLPAR      = 0x05e1; /* all modes, full duplex */
1282
    s->NWayExpansion = 0x0001; /* autonegotiation supported */
1283

    
1284
    /* also reset timer and disable timer interrupt */
1285
    s->TCTR = 0;
1286
    s->TimerInt = 0;
1287
    s->TCTR_base = 0;
1288

    
1289
    /* reset tally counters */
1290
    RTL8139TallyCounters_clear(&s->tally_counters);
1291
}
1292

    
1293
static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters)
1294
{
1295
    counters->TxOk = 0;
1296
    counters->RxOk = 0;
1297
    counters->TxERR = 0;
1298
    counters->RxERR = 0;
1299
    counters->MissPkt = 0;
1300
    counters->FAE = 0;
1301
    counters->Tx1Col = 0;
1302
    counters->TxMCol = 0;
1303
    counters->RxOkPhy = 0;
1304
    counters->RxOkBrd = 0;
1305
    counters->RxOkMul = 0;
1306
    counters->TxAbt = 0;
1307
    counters->TxUndrn = 0;
1308
}
1309

    
1310
static void RTL8139TallyCounters_physical_memory_write(target_phys_addr_t tc_addr, RTL8139TallyCounters* tally_counters)
1311
{
1312
    uint16_t val16;
1313
    uint32_t val32;
1314
    uint64_t val64;
1315

    
1316
    val64 = cpu_to_le64(tally_counters->TxOk);
1317
    cpu_physical_memory_write(tc_addr + 0,    (uint8_t *)&val64, 8);
1318

    
1319
    val64 = cpu_to_le64(tally_counters->RxOk);
1320
    cpu_physical_memory_write(tc_addr + 8,    (uint8_t *)&val64, 8);
1321

    
1322
    val64 = cpu_to_le64(tally_counters->TxERR);
1323
    cpu_physical_memory_write(tc_addr + 16,    (uint8_t *)&val64, 8);
1324

    
1325
    val32 = cpu_to_le32(tally_counters->RxERR);
1326
    cpu_physical_memory_write(tc_addr + 24,    (uint8_t *)&val32, 4);
1327

    
1328
    val16 = cpu_to_le16(tally_counters->MissPkt);
1329
    cpu_physical_memory_write(tc_addr + 28,    (uint8_t *)&val16, 2);
1330

    
1331
    val16 = cpu_to_le16(tally_counters->FAE);
1332
    cpu_physical_memory_write(tc_addr + 30,    (uint8_t *)&val16, 2);
1333

    
1334
    val32 = cpu_to_le32(tally_counters->Tx1Col);
1335
    cpu_physical_memory_write(tc_addr + 32,    (uint8_t *)&val32, 4);
1336

    
1337
    val32 = cpu_to_le32(tally_counters->TxMCol);
1338
    cpu_physical_memory_write(tc_addr + 36,    (uint8_t *)&val32, 4);
1339

    
1340
    val64 = cpu_to_le64(tally_counters->RxOkPhy);
1341
    cpu_physical_memory_write(tc_addr + 40,    (uint8_t *)&val64, 8);
1342

    
1343
    val64 = cpu_to_le64(tally_counters->RxOkBrd);
1344
    cpu_physical_memory_write(tc_addr + 48,    (uint8_t *)&val64, 8);
1345

    
1346
    val32 = cpu_to_le32(tally_counters->RxOkMul);
1347
    cpu_physical_memory_write(tc_addr + 56,    (uint8_t *)&val32, 4);
1348

    
1349
    val16 = cpu_to_le16(tally_counters->TxAbt);
1350
    cpu_physical_memory_write(tc_addr + 60,    (uint8_t *)&val16, 2);
1351

    
1352
    val16 = cpu_to_le16(tally_counters->TxUndrn);
1353
    cpu_physical_memory_write(tc_addr + 62,    (uint8_t *)&val16, 2);
1354
}
1355

    
1356
/* Loads values of tally counters from VM state file */
1357

    
1358
static const VMStateDescription vmstate_tally_counters = {
1359
    .name = "tally_counters",
1360
    .version_id = 1,
1361
    .minimum_version_id = 1,
1362
    .minimum_version_id_old = 1,
1363
    .fields      = (VMStateField []) {
1364
        VMSTATE_UINT64(TxOk, RTL8139TallyCounters),
1365
        VMSTATE_UINT64(RxOk, RTL8139TallyCounters),
1366
        VMSTATE_UINT64(TxERR, RTL8139TallyCounters),
1367
        VMSTATE_UINT32(RxERR, RTL8139TallyCounters),
1368
        VMSTATE_UINT16(MissPkt, RTL8139TallyCounters),
1369
        VMSTATE_UINT16(FAE, RTL8139TallyCounters),
1370
        VMSTATE_UINT32(Tx1Col, RTL8139TallyCounters),
1371
        VMSTATE_UINT32(TxMCol, RTL8139TallyCounters),
1372
        VMSTATE_UINT64(RxOkPhy, RTL8139TallyCounters),
1373
        VMSTATE_UINT64(RxOkBrd, RTL8139TallyCounters),
1374
        VMSTATE_UINT16(TxAbt, RTL8139TallyCounters),
1375
        VMSTATE_UINT16(TxUndrn, RTL8139TallyCounters),
1376
        VMSTATE_END_OF_LIST()
1377
    }
1378
};
1379

    
1380
static void rtl8139_ChipCmd_write(RTL8139State *s, uint32_t val)
1381
{
1382
    val &= 0xff;
1383

    
1384
    DPRINTF("ChipCmd write val=0x%08x\n", val);
1385

    
1386
    if (val & CmdReset)
1387
    {
1388
        DPRINTF("ChipCmd reset\n");
1389
        rtl8139_reset(&s->dev.qdev);
1390
    }
1391
    if (val & CmdRxEnb)
1392
    {
1393
        DPRINTF("ChipCmd enable receiver\n");
1394

    
1395
        s->currCPlusRxDesc = 0;
1396
    }
1397
    if (val & CmdTxEnb)
1398
    {
1399
        DPRINTF("ChipCmd enable transmitter\n");
1400

    
1401
        s->currCPlusTxDesc = 0;
1402
    }
1403

    
1404
    /* mask unwritable bits */
1405
    val = SET_MASKED(val, 0xe3, s->bChipCmdState);
1406

    
1407
    /* Deassert reset pin before next read */
1408
    val &= ~CmdReset;
1409

    
1410
    s->bChipCmdState = val;
1411
}
1412

    
1413
static int rtl8139_RxBufferEmpty(RTL8139State *s)
1414
{
1415
    int unread = MOD2(s->RxBufferSize + s->RxBufAddr - s->RxBufPtr, s->RxBufferSize);
1416

    
1417
    if (unread != 0)
1418
    {
1419
        DPRINTF("receiver buffer data available 0x%04x\n", unread);
1420
        return 0;
1421
    }
1422

    
1423
    DPRINTF("receiver buffer is empty\n");
1424

    
1425
    return 1;
1426
}
1427

    
1428
static uint32_t rtl8139_ChipCmd_read(RTL8139State *s)
1429
{
1430
    uint32_t ret = s->bChipCmdState;
1431

    
1432
    if (rtl8139_RxBufferEmpty(s))
1433
        ret |= RxBufEmpty;
1434

    
1435
    DPRINTF("ChipCmd read val=0x%04x\n", ret);
1436

    
1437
    return ret;
1438
}
1439

    
1440
static void rtl8139_CpCmd_write(RTL8139State *s, uint32_t val)
1441
{
1442
    val &= 0xffff;
1443

    
1444
    DPRINTF("C+ command register write(w) val=0x%04x\n", val);
1445

    
1446
    s->cplus_enabled = 1;
1447

    
1448
    /* mask unwritable bits */
1449
    val = SET_MASKED(val, 0xff84, s->CpCmd);
1450

    
1451
    s->CpCmd = val;
1452
}
1453

    
1454
static uint32_t rtl8139_CpCmd_read(RTL8139State *s)
1455
{
1456
    uint32_t ret = s->CpCmd;
1457

    
1458
    DPRINTF("C+ command register read(w) val=0x%04x\n", ret);
1459

    
1460
    return ret;
1461
}
1462

    
1463
static void rtl8139_IntrMitigate_write(RTL8139State *s, uint32_t val)
1464
{
1465
    DPRINTF("C+ IntrMitigate register write(w) val=0x%04x\n", val);
1466
}
1467

    
1468
static uint32_t rtl8139_IntrMitigate_read(RTL8139State *s)
1469
{
1470
    uint32_t ret = 0;
1471

    
1472
    DPRINTF("C+ IntrMitigate register read(w) val=0x%04x\n", ret);
1473

    
1474
    return ret;
1475
}
1476

    
1477
static int rtl8139_config_writable(RTL8139State *s)
1478
{
1479
    if (s->Cfg9346 & Cfg9346_Unlock)
1480
    {
1481
        return 1;
1482
    }
1483

    
1484
    DPRINTF("Configuration registers are write-protected\n");
1485

    
1486
    return 0;
1487
}
1488

    
1489
static void rtl8139_BasicModeCtrl_write(RTL8139State *s, uint32_t val)
1490
{
1491
    val &= 0xffff;
1492

    
1493
    DPRINTF("BasicModeCtrl register write(w) val=0x%04x\n", val);
1494

    
1495
    /* mask unwritable bits */
1496
    uint32_t mask = 0x4cff;
1497

    
1498
    if (1 || !rtl8139_config_writable(s))
1499
    {
1500
        /* Speed setting and autonegotiation enable bits are read-only */
1501
        mask |= 0x3000;
1502
        /* Duplex mode setting is read-only */
1503
        mask |= 0x0100;
1504
    }
1505

    
1506
    val = SET_MASKED(val, mask, s->BasicModeCtrl);
1507

    
1508
    s->BasicModeCtrl = val;
1509
}
1510

    
1511
static uint32_t rtl8139_BasicModeCtrl_read(RTL8139State *s)
1512
{
1513
    uint32_t ret = s->BasicModeCtrl;
1514

    
1515
    DPRINTF("BasicModeCtrl register read(w) val=0x%04x\n", ret);
1516

    
1517
    return ret;
1518
}
1519

    
1520
static void rtl8139_BasicModeStatus_write(RTL8139State *s, uint32_t val)
1521
{
1522
    val &= 0xffff;
1523

    
1524
    DPRINTF("BasicModeStatus register write(w) val=0x%04x\n", val);
1525

    
1526
    /* mask unwritable bits */
1527
    val = SET_MASKED(val, 0xff3f, s->BasicModeStatus);
1528

    
1529
    s->BasicModeStatus = val;
1530
}
1531

    
1532
static uint32_t rtl8139_BasicModeStatus_read(RTL8139State *s)
1533
{
1534
    uint32_t ret = s->BasicModeStatus;
1535

    
1536
    DPRINTF("BasicModeStatus register read(w) val=0x%04x\n", ret);
1537

    
1538
    return ret;
1539
}
1540

    
1541
static void rtl8139_Cfg9346_write(RTL8139State *s, uint32_t val)
1542
{
1543
    val &= 0xff;
1544

    
1545
    DPRINTF("Cfg9346 write val=0x%02x\n", val);
1546

    
1547
    /* mask unwritable bits */
1548
    val = SET_MASKED(val, 0x31, s->Cfg9346);
1549

    
1550
    uint32_t opmode = val & 0xc0;
1551
    uint32_t eeprom_val = val & 0xf;
1552

    
1553
    if (opmode == 0x80) {
1554
        /* eeprom access */
1555
        int eecs = (eeprom_val & 0x08)?1:0;
1556
        int eesk = (eeprom_val & 0x04)?1:0;
1557
        int eedi = (eeprom_val & 0x02)?1:0;
1558
        prom9346_set_wire(s, eecs, eesk, eedi);
1559
    } else if (opmode == 0x40) {
1560
        /* Reset.  */
1561
        val = 0;
1562
        rtl8139_reset(&s->dev.qdev);
1563
    }
1564

    
1565
    s->Cfg9346 = val;
1566
}
1567

    
1568
static uint32_t rtl8139_Cfg9346_read(RTL8139State *s)
1569
{
1570
    uint32_t ret = s->Cfg9346;
1571

    
1572
    uint32_t opmode = ret & 0xc0;
1573

    
1574
    if (opmode == 0x80)
1575
    {
1576
        /* eeprom access */
1577
        int eedo = prom9346_get_wire(s);
1578
        if (eedo)
1579
        {
1580
            ret |=  0x01;
1581
        }
1582
        else
1583
        {
1584
            ret &= ~0x01;
1585
        }
1586
    }
1587

    
1588
    DPRINTF("Cfg9346 read val=0x%02x\n", ret);
1589

    
1590
    return ret;
1591
}
1592

    
1593
static void rtl8139_Config0_write(RTL8139State *s, uint32_t val)
1594
{
1595
    val &= 0xff;
1596

    
1597
    DPRINTF("Config0 write val=0x%02x\n", val);
1598

    
1599
    if (!rtl8139_config_writable(s)) {
1600
        return;
1601
    }
1602

    
1603
    /* mask unwritable bits */
1604
    val = SET_MASKED(val, 0xf8, s->Config0);
1605

    
1606
    s->Config0 = val;
1607
}
1608

    
1609
static uint32_t rtl8139_Config0_read(RTL8139State *s)
1610
{
1611
    uint32_t ret = s->Config0;
1612

    
1613
    DPRINTF("Config0 read val=0x%02x\n", ret);
1614

    
1615
    return ret;
1616
}
1617

    
1618
static void rtl8139_Config1_write(RTL8139State *s, uint32_t val)
1619
{
1620
    val &= 0xff;
1621

    
1622
    DPRINTF("Config1 write val=0x%02x\n", val);
1623

    
1624
    if (!rtl8139_config_writable(s)) {
1625
        return;
1626
    }
1627

    
1628
    /* mask unwritable bits */
1629
    val = SET_MASKED(val, 0xC, s->Config1);
1630

    
1631
    s->Config1 = val;
1632
}
1633

    
1634
static uint32_t rtl8139_Config1_read(RTL8139State *s)
1635
{
1636
    uint32_t ret = s->Config1;
1637

    
1638
    DPRINTF("Config1 read val=0x%02x\n", ret);
1639

    
1640
    return ret;
1641
}
1642

    
1643
static void rtl8139_Config3_write(RTL8139State *s, uint32_t val)
1644
{
1645
    val &= 0xff;
1646

    
1647
    DPRINTF("Config3 write val=0x%02x\n", val);
1648

    
1649
    if (!rtl8139_config_writable(s)) {
1650
        return;
1651
    }
1652

    
1653
    /* mask unwritable bits */
1654
    val = SET_MASKED(val, 0x8F, s->Config3);
1655

    
1656
    s->Config3 = val;
1657
}
1658

    
1659
static uint32_t rtl8139_Config3_read(RTL8139State *s)
1660
{
1661
    uint32_t ret = s->Config3;
1662

    
1663
    DPRINTF("Config3 read val=0x%02x\n", ret);
1664

    
1665
    return ret;
1666
}
1667

    
1668
static void rtl8139_Config4_write(RTL8139State *s, uint32_t val)
1669
{
1670
    val &= 0xff;
1671

    
1672
    DPRINTF("Config4 write val=0x%02x\n", val);
1673

    
1674
    if (!rtl8139_config_writable(s)) {
1675
        return;
1676
    }
1677

    
1678
    /* mask unwritable bits */
1679
    val = SET_MASKED(val, 0x0a, s->Config4);
1680

    
1681
    s->Config4 = val;
1682
}
1683

    
1684
static uint32_t rtl8139_Config4_read(RTL8139State *s)
1685
{
1686
    uint32_t ret = s->Config4;
1687

    
1688
    DPRINTF("Config4 read val=0x%02x\n", ret);
1689

    
1690
    return ret;
1691
}
1692

    
1693
static void rtl8139_Config5_write(RTL8139State *s, uint32_t val)
1694
{
1695
    val &= 0xff;
1696

    
1697
    DPRINTF("Config5 write val=0x%02x\n", val);
1698

    
1699
    /* mask unwritable bits */
1700
    val = SET_MASKED(val, 0x80, s->Config5);
1701

    
1702
    s->Config5 = val;
1703
}
1704

    
1705
static uint32_t rtl8139_Config5_read(RTL8139State *s)
1706
{
1707
    uint32_t ret = s->Config5;
1708

    
1709
    DPRINTF("Config5 read val=0x%02x\n", ret);
1710

    
1711
    return ret;
1712
}
1713

    
1714
static void rtl8139_TxConfig_write(RTL8139State *s, uint32_t val)
1715
{
1716
    if (!rtl8139_transmitter_enabled(s))
1717
    {
1718
        DPRINTF("transmitter disabled; no TxConfig write val=0x%08x\n", val);
1719
        return;
1720
    }
1721

    
1722
    DPRINTF("TxConfig write val=0x%08x\n", val);
1723

    
1724
    val = SET_MASKED(val, TxVersionMask | 0x8070f80f, s->TxConfig);
1725

    
1726
    s->TxConfig = val;
1727
}
1728

    
1729
static void rtl8139_TxConfig_writeb(RTL8139State *s, uint32_t val)
1730
{
1731
    DPRINTF("RTL8139C TxConfig via write(b) val=0x%02x\n", val);
1732

    
1733
    uint32_t tc = s->TxConfig;
1734
    tc &= 0xFFFFFF00;
1735
    tc |= (val & 0x000000FF);
1736
    rtl8139_TxConfig_write(s, tc);
1737
}
1738

    
1739
static uint32_t rtl8139_TxConfig_read(RTL8139State *s)
1740
{
1741
    uint32_t ret = s->TxConfig;
1742

    
1743
    DPRINTF("TxConfig read val=0x%04x\n", ret);
1744

    
1745
    return ret;
1746
}
1747

    
1748
static void rtl8139_RxConfig_write(RTL8139State *s, uint32_t val)
1749
{
1750
    DPRINTF("RxConfig write val=0x%08x\n", val);
1751

    
1752
    /* mask unwritable bits */
1753
    val = SET_MASKED(val, 0xf0fc0040, s->RxConfig);
1754

    
1755
    s->RxConfig = val;
1756

    
1757
    /* reset buffer size and read/write pointers */
1758
    rtl8139_reset_rxring(s, 8192 << ((s->RxConfig >> 11) & 0x3));
1759

    
1760
    DPRINTF("RxConfig write reset buffer size to %d\n", s->RxBufferSize);
1761
}
1762

    
1763
static uint32_t rtl8139_RxConfig_read(RTL8139State *s)
1764
{
1765
    uint32_t ret = s->RxConfig;
1766

    
1767
    DPRINTF("RxConfig read val=0x%08x\n", ret);
1768

    
1769
    return ret;
1770
}
1771

    
1772
static void rtl8139_transfer_frame(RTL8139State *s, uint8_t *buf, int size,
1773
    int do_interrupt, const uint8_t *dot1q_buf)
1774
{
1775
    struct iovec *iov = NULL;
1776

    
1777
    if (!size)
1778
    {
1779
        DPRINTF("+++ empty ethernet frame\n");
1780
        return;
1781
    }
1782

    
1783
    if (dot1q_buf && size >= ETHER_ADDR_LEN * 2) {
1784
        iov = (struct iovec[3]) {
1785
            { .iov_base = buf, .iov_len = ETHER_ADDR_LEN * 2 },
1786
            { .iov_base = (void *) dot1q_buf, .iov_len = VLAN_HLEN },
1787
            { .iov_base = buf + ETHER_ADDR_LEN * 2,
1788
                .iov_len = size - ETHER_ADDR_LEN * 2 },
1789
        };
1790
    }
1791

    
1792
    if (TxLoopBack == (s->TxConfig & TxLoopBack))
1793
    {
1794
        size_t buf2_size;
1795
        uint8_t *buf2;
1796

    
1797
        if (iov) {
1798
            buf2_size = iov_size(iov, 3);
1799
            buf2 = g_malloc(buf2_size);
1800
            iov_to_buf(iov, 3, buf2, 0, buf2_size);
1801
            buf = buf2;
1802
        }
1803

    
1804
        DPRINTF("+++ transmit loopback mode\n");
1805
        rtl8139_do_receive(&s->nic->nc, buf, size, do_interrupt);
1806

    
1807
        if (iov) {
1808
            g_free(buf2);
1809
        }
1810
    }
1811
    else
1812
    {
1813
        if (iov) {
1814
            qemu_sendv_packet(&s->nic->nc, iov, 3);
1815
        } else {
1816
            qemu_send_packet(&s->nic->nc, buf, size);
1817
        }
1818
    }
1819
}
1820

    
1821
static int rtl8139_transmit_one(RTL8139State *s, int descriptor)
1822
{
1823
    if (!rtl8139_transmitter_enabled(s))
1824
    {
1825
        DPRINTF("+++ cannot transmit from descriptor %d: transmitter "
1826
            "disabled\n", descriptor);
1827
        return 0;
1828
    }
1829

    
1830
    if (s->TxStatus[descriptor] & TxHostOwns)
1831
    {
1832
        DPRINTF("+++ cannot transmit from descriptor %d: owned by host "
1833
            "(%08x)\n", descriptor, s->TxStatus[descriptor]);
1834
        return 0;
1835
    }
1836

    
1837
    DPRINTF("+++ transmitting from descriptor %d\n", descriptor);
1838

    
1839
    int txsize = s->TxStatus[descriptor] & 0x1fff;
1840
    uint8_t txbuffer[0x2000];
1841

    
1842
    DPRINTF("+++ transmit reading %d bytes from host memory at 0x%08x\n",
1843
        txsize, s->TxAddr[descriptor]);
1844

    
1845
    cpu_physical_memory_read(s->TxAddr[descriptor], txbuffer, txsize);
1846

    
1847
    /* Mark descriptor as transferred */
1848
    s->TxStatus[descriptor] |= TxHostOwns;
1849
    s->TxStatus[descriptor] |= TxStatOK;
1850

    
1851
    rtl8139_transfer_frame(s, txbuffer, txsize, 0, NULL);
1852

    
1853
    DPRINTF("+++ transmitted %d bytes from descriptor %d\n", txsize,
1854
        descriptor);
1855

    
1856
    /* update interrupt */
1857
    s->IntrStatus |= TxOK;
1858
    rtl8139_update_irq(s);
1859

    
1860
    return 1;
1861
}
1862

    
1863
/* structures and macros for task offloading */
1864
typedef struct ip_header
1865
{
1866
    uint8_t  ip_ver_len;    /* version and header length */
1867
    uint8_t  ip_tos;        /* type of service */
1868
    uint16_t ip_len;        /* total length */
1869
    uint16_t ip_id;         /* identification */
1870
    uint16_t ip_off;        /* fragment offset field */
1871
    uint8_t  ip_ttl;        /* time to live */
1872
    uint8_t  ip_p;          /* protocol */
1873
    uint16_t ip_sum;        /* checksum */
1874
    uint32_t ip_src,ip_dst; /* source and dest address */
1875
} ip_header;
1876

    
1877
#define IP_HEADER_VERSION_4 4
1878
#define IP_HEADER_VERSION(ip) ((ip->ip_ver_len >> 4)&0xf)
1879
#define IP_HEADER_LENGTH(ip) (((ip->ip_ver_len)&0xf) << 2)
1880

    
1881
typedef struct tcp_header
1882
{
1883
    uint16_t th_sport;                /* source port */
1884
    uint16_t th_dport;                /* destination port */
1885
    uint32_t th_seq;                        /* sequence number */
1886
    uint32_t th_ack;                        /* acknowledgement number */
1887
    uint16_t th_offset_flags; /* data offset, reserved 6 bits, TCP protocol flags */
1888
    uint16_t th_win;                        /* window */
1889
    uint16_t th_sum;                        /* checksum */
1890
    uint16_t th_urp;                        /* urgent pointer */
1891
} tcp_header;
1892

    
1893
typedef struct udp_header
1894
{
1895
    uint16_t uh_sport; /* source port */
1896
    uint16_t uh_dport; /* destination port */
1897
    uint16_t uh_ulen;  /* udp length */
1898
    uint16_t uh_sum;   /* udp checksum */
1899
} udp_header;
1900

    
1901
typedef struct ip_pseudo_header
1902
{
1903
    uint32_t ip_src;
1904
    uint32_t ip_dst;
1905
    uint8_t  zeros;
1906
    uint8_t  ip_proto;
1907
    uint16_t ip_payload;
1908
} ip_pseudo_header;
1909

    
1910
#define IP_PROTO_TCP 6
1911
#define IP_PROTO_UDP 17
1912

    
1913
#define TCP_HEADER_DATA_OFFSET(tcp) (((be16_to_cpu(tcp->th_offset_flags) >> 12)&0xf) << 2)
1914
#define TCP_FLAGS_ONLY(flags) ((flags)&0x3f)
1915
#define TCP_HEADER_FLAGS(tcp) TCP_FLAGS_ONLY(be16_to_cpu(tcp->th_offset_flags))
1916

    
1917
#define TCP_HEADER_CLEAR_FLAGS(tcp, off) ((tcp)->th_offset_flags &= cpu_to_be16(~TCP_FLAGS_ONLY(off)))
1918

    
1919
#define TCP_FLAG_FIN  0x01
1920
#define TCP_FLAG_PUSH 0x08
1921

    
1922
/* produces ones' complement sum of data */
1923
static uint16_t ones_complement_sum(uint8_t *data, size_t len)
1924
{
1925
    uint32_t result = 0;
1926

    
1927
    for (; len > 1; data+=2, len-=2)
1928
    {
1929
        result += *(uint16_t*)data;
1930
    }
1931

    
1932
    /* add the remainder byte */
1933
    if (len)
1934
    {
1935
        uint8_t odd[2] = {*data, 0};
1936
        result += *(uint16_t*)odd;
1937
    }
1938

    
1939
    while (result>>16)
1940
        result = (result & 0xffff) + (result >> 16);
1941

    
1942
    return result;
1943
}
1944

    
1945
static uint16_t ip_checksum(void *data, size_t len)
1946
{
1947
    return ~ones_complement_sum((uint8_t*)data, len);
1948
}
1949

    
1950
static int rtl8139_cplus_transmit_one(RTL8139State *s)
1951
{
1952
    if (!rtl8139_transmitter_enabled(s))
1953
    {
1954
        DPRINTF("+++ C+ mode: transmitter disabled\n");
1955
        return 0;
1956
    }
1957

    
1958
    if (!rtl8139_cp_transmitter_enabled(s))
1959
    {
1960
        DPRINTF("+++ C+ mode: C+ transmitter disabled\n");
1961
        return 0 ;
1962
    }
1963

    
1964
    int descriptor = s->currCPlusTxDesc;
1965

    
1966
    target_phys_addr_t cplus_tx_ring_desc =
1967
        rtl8139_addr64(s->TxAddr[0], s->TxAddr[1]);
1968

    
1969
    /* Normal priority ring */
1970
    cplus_tx_ring_desc += 16 * descriptor;
1971

    
1972
    DPRINTF("+++ C+ mode reading TX descriptor %d from host memory at "
1973
        "%08x0x%08x = 0x"TARGET_FMT_plx"\n", descriptor, s->TxAddr[1],
1974
        s->TxAddr[0], cplus_tx_ring_desc);
1975

    
1976
    uint32_t val, txdw0,txdw1,txbufLO,txbufHI;
1977

    
1978
    cpu_physical_memory_read(cplus_tx_ring_desc,    (uint8_t *)&val, 4);
1979
    txdw0 = le32_to_cpu(val);
1980
    cpu_physical_memory_read(cplus_tx_ring_desc+4,  (uint8_t *)&val, 4);
1981
    txdw1 = le32_to_cpu(val);
1982
    cpu_physical_memory_read(cplus_tx_ring_desc+8,  (uint8_t *)&val, 4);
1983
    txbufLO = le32_to_cpu(val);
1984
    cpu_physical_memory_read(cplus_tx_ring_desc+12, (uint8_t *)&val, 4);
1985
    txbufHI = le32_to_cpu(val);
1986

    
1987
    DPRINTF("+++ C+ mode TX descriptor %d %08x %08x %08x %08x\n", descriptor,
1988
        txdw0, txdw1, txbufLO, txbufHI);
1989

    
1990
/* w0 ownership flag */
1991
#define CP_TX_OWN (1<<31)
1992
/* w0 end of ring flag */
1993
#define CP_TX_EOR (1<<30)
1994
/* first segment of received packet flag */
1995
#define CP_TX_FS (1<<29)
1996
/* last segment of received packet flag */
1997
#define CP_TX_LS (1<<28)
1998
/* large send packet flag */
1999
#define CP_TX_LGSEN (1<<27)
2000
/* large send MSS mask, bits 16...25 */
2001
#define CP_TC_LGSEN_MSS_MASK ((1 << 12) - 1)
2002

    
2003
/* IP checksum offload flag */
2004
#define CP_TX_IPCS (1<<18)
2005
/* UDP checksum offload flag */
2006
#define CP_TX_UDPCS (1<<17)
2007
/* TCP checksum offload flag */
2008
#define CP_TX_TCPCS (1<<16)
2009

    
2010
/* w0 bits 0...15 : buffer size */
2011
#define CP_TX_BUFFER_SIZE (1<<16)
2012
#define CP_TX_BUFFER_SIZE_MASK (CP_TX_BUFFER_SIZE - 1)
2013
/* w1 add tag flag */
2014
#define CP_TX_TAGC (1<<17)
2015
/* w1 bits 0...15 : VLAN tag (big endian) */
2016
#define CP_TX_VLAN_TAG_MASK ((1<<16) - 1)
2017
/* w2 low  32bit of Rx buffer ptr */
2018
/* w3 high 32bit of Rx buffer ptr */
2019

    
2020
/* set after transmission */
2021
/* FIFO underrun flag */
2022
#define CP_TX_STATUS_UNF (1<<25)
2023
/* transmit error summary flag, valid if set any of three below */
2024
#define CP_TX_STATUS_TES (1<<23)
2025
/* out-of-window collision flag */
2026
#define CP_TX_STATUS_OWC (1<<22)
2027
/* link failure flag */
2028
#define CP_TX_STATUS_LNKF (1<<21)
2029
/* excessive collisions flag */
2030
#define CP_TX_STATUS_EXC (1<<20)
2031

    
2032
    if (!(txdw0 & CP_TX_OWN))
2033
    {
2034
        DPRINTF("C+ Tx mode : descriptor %d is owned by host\n", descriptor);
2035
        return 0 ;
2036
    }
2037

    
2038
    DPRINTF("+++ C+ Tx mode : transmitting from descriptor %d\n", descriptor);
2039

    
2040
    if (txdw0 & CP_TX_FS)
2041
    {
2042
        DPRINTF("+++ C+ Tx mode : descriptor %d is first segment "
2043
            "descriptor\n", descriptor);
2044

    
2045
        /* reset internal buffer offset */
2046
        s->cplus_txbuffer_offset = 0;
2047
    }
2048

    
2049
    int txsize = txdw0 & CP_TX_BUFFER_SIZE_MASK;
2050
    target_phys_addr_t tx_addr = rtl8139_addr64(txbufLO, txbufHI);
2051

    
2052
    /* make sure we have enough space to assemble the packet */
2053
    if (!s->cplus_txbuffer)
2054
    {
2055
        s->cplus_txbuffer_len = CP_TX_BUFFER_SIZE;
2056
        s->cplus_txbuffer = g_malloc(s->cplus_txbuffer_len);
2057
        s->cplus_txbuffer_offset = 0;
2058

    
2059
        DPRINTF("+++ C+ mode transmission buffer allocated space %d\n",
2060
            s->cplus_txbuffer_len);
2061
    }
2062

    
2063
    while (s->cplus_txbuffer && s->cplus_txbuffer_offset + txsize >= s->cplus_txbuffer_len)
2064
    {
2065
        s->cplus_txbuffer_len += CP_TX_BUFFER_SIZE;
2066
        s->cplus_txbuffer = g_realloc(s->cplus_txbuffer, s->cplus_txbuffer_len);
2067

    
2068
        DPRINTF("+++ C+ mode transmission buffer space changed to %d\n",
2069
            s->cplus_txbuffer_len);
2070
    }
2071

    
2072
    if (!s->cplus_txbuffer)
2073
    {
2074
        /* out of memory */
2075

    
2076
        DPRINTF("+++ C+ mode transmiter failed to reallocate %d bytes\n",
2077
            s->cplus_txbuffer_len);
2078

    
2079
        /* update tally counter */
2080
        ++s->tally_counters.TxERR;
2081
        ++s->tally_counters.TxAbt;
2082

    
2083
        return 0;
2084
    }
2085

    
2086
    /* append more data to the packet */
2087

    
2088
    DPRINTF("+++ C+ mode transmit reading %d bytes from host memory at "
2089
        TARGET_FMT_plx" to offset %d\n", txsize, tx_addr,
2090
        s->cplus_txbuffer_offset);
2091

    
2092
    cpu_physical_memory_read(tx_addr, s->cplus_txbuffer + s->cplus_txbuffer_offset, txsize);
2093
    s->cplus_txbuffer_offset += txsize;
2094

    
2095
    /* seek to next Rx descriptor */
2096
    if (txdw0 & CP_TX_EOR)
2097
    {
2098
        s->currCPlusTxDesc = 0;
2099
    }
2100
    else
2101
    {
2102
        ++s->currCPlusTxDesc;
2103
        if (s->currCPlusTxDesc >= 64)
2104
            s->currCPlusTxDesc = 0;
2105
    }
2106

    
2107
    /* transfer ownership to target */
2108
    txdw0 &= ~CP_RX_OWN;
2109

    
2110
    /* reset error indicator bits */
2111
    txdw0 &= ~CP_TX_STATUS_UNF;
2112
    txdw0 &= ~CP_TX_STATUS_TES;
2113
    txdw0 &= ~CP_TX_STATUS_OWC;
2114
    txdw0 &= ~CP_TX_STATUS_LNKF;
2115
    txdw0 &= ~CP_TX_STATUS_EXC;
2116

    
2117
    /* update ring data */
2118
    val = cpu_to_le32(txdw0);
2119
    cpu_physical_memory_write(cplus_tx_ring_desc,    (uint8_t *)&val, 4);
2120

    
2121
    /* Now decide if descriptor being processed is holding the last segment of packet */
2122
    if (txdw0 & CP_TX_LS)
2123
    {
2124
        uint8_t dot1q_buffer_space[VLAN_HLEN];
2125
        uint16_t *dot1q_buffer;
2126

    
2127
        DPRINTF("+++ C+ Tx mode : descriptor %d is last segment descriptor\n",
2128
            descriptor);
2129

    
2130
        /* can transfer fully assembled packet */
2131

    
2132
        uint8_t *saved_buffer  = s->cplus_txbuffer;
2133
        int      saved_size    = s->cplus_txbuffer_offset;
2134
        int      saved_buffer_len = s->cplus_txbuffer_len;
2135

    
2136
        /* create vlan tag */
2137
        if (txdw1 & CP_TX_TAGC) {
2138
            /* the vlan tag is in BE byte order in the descriptor
2139
             * BE + le_to_cpu() + ~swap()~ = cpu */
2140
            DPRINTF("+++ C+ Tx mode : inserting vlan tag with ""tci: %u\n",
2141
                bswap16(txdw1 & CP_TX_VLAN_TAG_MASK));
2142

    
2143
            dot1q_buffer = (uint16_t *) dot1q_buffer_space;
2144
            dot1q_buffer[0] = cpu_to_be16(ETH_P_8021Q);
2145
            /* BE + le_to_cpu() + ~cpu_to_le()~ = BE */
2146
            dot1q_buffer[1] = cpu_to_le16(txdw1 & CP_TX_VLAN_TAG_MASK);
2147
        } else {
2148
            dot1q_buffer = NULL;
2149
        }
2150

    
2151
        /* reset the card space to protect from recursive call */
2152
        s->cplus_txbuffer = NULL;
2153
        s->cplus_txbuffer_offset = 0;
2154
        s->cplus_txbuffer_len = 0;
2155

    
2156
        if (txdw0 & (CP_TX_IPCS | CP_TX_UDPCS | CP_TX_TCPCS | CP_TX_LGSEN))
2157
        {
2158
            DPRINTF("+++ C+ mode offloaded task checksum\n");
2159

    
2160
            /* ip packet header */
2161
            ip_header *ip = NULL;
2162
            int hlen = 0;
2163
            uint8_t  ip_protocol = 0;
2164
            uint16_t ip_data_len = 0;
2165

    
2166
            uint8_t *eth_payload_data = NULL;
2167
            size_t   eth_payload_len  = 0;
2168

    
2169
            int proto = be16_to_cpu(*(uint16_t *)(saved_buffer + 12));
2170
            if (proto == ETH_P_IP)
2171
            {
2172
                DPRINTF("+++ C+ mode has IP packet\n");
2173

    
2174
                /* not aligned */
2175
                eth_payload_data = saved_buffer + ETH_HLEN;
2176
                eth_payload_len  = saved_size   - ETH_HLEN;
2177

    
2178
                ip = (ip_header*)eth_payload_data;
2179

    
2180
                if (IP_HEADER_VERSION(ip) != IP_HEADER_VERSION_4) {
2181
                    DPRINTF("+++ C+ mode packet has bad IP version %d "
2182
                        "expected %d\n", IP_HEADER_VERSION(ip),
2183
                        IP_HEADER_VERSION_4);
2184
                    ip = NULL;
2185
                } else {
2186
                    hlen = IP_HEADER_LENGTH(ip);
2187
                    ip_protocol = ip->ip_p;
2188
                    ip_data_len = be16_to_cpu(ip->ip_len) - hlen;
2189
                }
2190
            }
2191

    
2192
            if (ip)
2193
            {
2194
                if (txdw0 & CP_TX_IPCS)
2195
                {
2196
                    DPRINTF("+++ C+ mode need IP checksum\n");
2197

    
2198
                    if (hlen<sizeof(ip_header) || hlen>eth_payload_len) {/* min header length */
2199
                        /* bad packet header len */
2200
                        /* or packet too short */
2201
                    }
2202
                    else
2203
                    {
2204
                        ip->ip_sum = 0;
2205
                        ip->ip_sum = ip_checksum(ip, hlen);
2206
                        DPRINTF("+++ C+ mode IP header len=%d checksum=%04x\n",
2207
                            hlen, ip->ip_sum);
2208
                    }
2209
                }
2210

    
2211
                if ((txdw0 & CP_TX_LGSEN) && ip_protocol == IP_PROTO_TCP)
2212
                {
2213
                    int large_send_mss = (txdw0 >> 16) & CP_TC_LGSEN_MSS_MASK;
2214

    
2215
                    DPRINTF("+++ C+ mode offloaded task TSO MTU=%d IP data %d "
2216
                        "frame data %d specified MSS=%d\n", ETH_MTU,
2217
                        ip_data_len, saved_size - ETH_HLEN, large_send_mss);
2218

    
2219
                    int tcp_send_offset = 0;
2220
                    int send_count = 0;
2221

    
2222
                    /* maximum IP header length is 60 bytes */
2223
                    uint8_t saved_ip_header[60];
2224

    
2225
                    /* save IP header template; data area is used in tcp checksum calculation */
2226
                    memcpy(saved_ip_header, eth_payload_data, hlen);
2227

    
2228
                    /* a placeholder for checksum calculation routine in tcp case */
2229
                    uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2230
                    //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2231

    
2232
                    /* pointer to TCP header */
2233
                    tcp_header *p_tcp_hdr = (tcp_header*)(eth_payload_data + hlen);
2234

    
2235
                    int tcp_hlen = TCP_HEADER_DATA_OFFSET(p_tcp_hdr);
2236

    
2237
                    /* ETH_MTU = ip header len + tcp header len + payload */
2238
                    int tcp_data_len = ip_data_len - tcp_hlen;
2239
                    int tcp_chunk_size = ETH_MTU - hlen - tcp_hlen;
2240

    
2241
                    DPRINTF("+++ C+ mode TSO IP data len %d TCP hlen %d TCP "
2242
                        "data len %d TCP chunk size %d\n", ip_data_len,
2243
                        tcp_hlen, tcp_data_len, tcp_chunk_size);
2244

    
2245
                    /* note the cycle below overwrites IP header data,
2246
                       but restores it from saved_ip_header before sending packet */
2247

    
2248
                    int is_last_frame = 0;
2249

    
2250
                    for (tcp_send_offset = 0; tcp_send_offset < tcp_data_len; tcp_send_offset += tcp_chunk_size)
2251
                    {
2252
                        uint16_t chunk_size = tcp_chunk_size;
2253

    
2254
                        /* check if this is the last frame */
2255
                        if (tcp_send_offset + tcp_chunk_size >= tcp_data_len)
2256
                        {
2257
                            is_last_frame = 1;
2258
                            chunk_size = tcp_data_len - tcp_send_offset;
2259
                        }
2260

    
2261
                        DPRINTF("+++ C+ mode TSO TCP seqno %08x\n",
2262
                            be32_to_cpu(p_tcp_hdr->th_seq));
2263

    
2264
                        /* add 4 TCP pseudoheader fields */
2265
                        /* copy IP source and destination fields */
2266
                        memcpy(data_to_checksum, saved_ip_header + 12, 8);
2267

    
2268
                        DPRINTF("+++ C+ mode TSO calculating TCP checksum for "
2269
                            "packet with %d bytes data\n", tcp_hlen +
2270
                            chunk_size);
2271

    
2272
                        if (tcp_send_offset)
2273
                        {
2274
                            memcpy((uint8_t*)p_tcp_hdr + tcp_hlen, (uint8_t*)p_tcp_hdr + tcp_hlen + tcp_send_offset, chunk_size);
2275
                        }
2276

    
2277
                        /* keep PUSH and FIN flags only for the last frame */
2278
                        if (!is_last_frame)
2279
                        {
2280
                            TCP_HEADER_CLEAR_FLAGS(p_tcp_hdr, TCP_FLAG_PUSH|TCP_FLAG_FIN);
2281
                        }
2282

    
2283
                        /* recalculate TCP checksum */
2284
                        ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2285
                        p_tcpip_hdr->zeros      = 0;
2286
                        p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2287
                        p_tcpip_hdr->ip_payload = cpu_to_be16(tcp_hlen + chunk_size);
2288

    
2289
                        p_tcp_hdr->th_sum = 0;
2290

    
2291
                        int tcp_checksum = ip_checksum(data_to_checksum, tcp_hlen + chunk_size + 12);
2292
                        DPRINTF("+++ C+ mode TSO TCP checksum %04x\n",
2293
                            tcp_checksum);
2294

    
2295
                        p_tcp_hdr->th_sum = tcp_checksum;
2296

    
2297
                        /* restore IP header */
2298
                        memcpy(eth_payload_data, saved_ip_header, hlen);
2299

    
2300
                        /* set IP data length and recalculate IP checksum */
2301
                        ip->ip_len = cpu_to_be16(hlen + tcp_hlen + chunk_size);
2302

    
2303
                        /* increment IP id for subsequent frames */
2304
                        ip->ip_id = cpu_to_be16(tcp_send_offset/tcp_chunk_size + be16_to_cpu(ip->ip_id));
2305

    
2306
                        ip->ip_sum = 0;
2307
                        ip->ip_sum = ip_checksum(eth_payload_data, hlen);
2308
                        DPRINTF("+++ C+ mode TSO IP header len=%d "
2309
                            "checksum=%04x\n", hlen, ip->ip_sum);
2310

    
2311
                        int tso_send_size = ETH_HLEN + hlen + tcp_hlen + chunk_size;
2312
                        DPRINTF("+++ C+ mode TSO transferring packet size "
2313
                            "%d\n", tso_send_size);
2314
                        rtl8139_transfer_frame(s, saved_buffer, tso_send_size,
2315
                            0, (uint8_t *) dot1q_buffer);
2316

    
2317
                        /* add transferred count to TCP sequence number */
2318
                        p_tcp_hdr->th_seq = cpu_to_be32(chunk_size + be32_to_cpu(p_tcp_hdr->th_seq));
2319
                        ++send_count;
2320
                    }
2321

    
2322
                    /* Stop sending this frame */
2323
                    saved_size = 0;
2324
                }
2325
                else if (txdw0 & (CP_TX_TCPCS|CP_TX_UDPCS))
2326
                {
2327
                    DPRINTF("+++ C+ mode need TCP or UDP checksum\n");
2328

    
2329
                    /* maximum IP header length is 60 bytes */
2330
                    uint8_t saved_ip_header[60];
2331
                    memcpy(saved_ip_header, eth_payload_data, hlen);
2332

    
2333
                    uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2334
                    //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2335

    
2336
                    /* add 4 TCP pseudoheader fields */
2337
                    /* copy IP source and destination fields */
2338
                    memcpy(data_to_checksum, saved_ip_header + 12, 8);
2339

    
2340
                    if ((txdw0 & CP_TX_TCPCS) && ip_protocol == IP_PROTO_TCP)
2341
                    {
2342
                        DPRINTF("+++ C+ mode calculating TCP checksum for "
2343
                            "packet with %d bytes data\n", ip_data_len);
2344

    
2345
                        ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2346
                        p_tcpip_hdr->zeros      = 0;
2347
                        p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2348
                        p_tcpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2349

    
2350
                        tcp_header* p_tcp_hdr = (tcp_header *) (data_to_checksum+12);
2351

    
2352
                        p_tcp_hdr->th_sum = 0;
2353

    
2354
                        int tcp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2355
                        DPRINTF("+++ C+ mode TCP checksum %04x\n",
2356
                            tcp_checksum);
2357

    
2358
                        p_tcp_hdr->th_sum = tcp_checksum;
2359
                    }
2360
                    else if ((txdw0 & CP_TX_UDPCS) && ip_protocol == IP_PROTO_UDP)
2361
                    {
2362
                        DPRINTF("+++ C+ mode calculating UDP checksum for "
2363
                            "packet with %d bytes data\n", ip_data_len);
2364

    
2365
                        ip_pseudo_header *p_udpip_hdr = (ip_pseudo_header *)data_to_checksum;
2366
                        p_udpip_hdr->zeros      = 0;
2367
                        p_udpip_hdr->ip_proto   = IP_PROTO_UDP;
2368
                        p_udpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2369

    
2370
                        udp_header *p_udp_hdr = (udp_header *) (data_to_checksum+12);
2371

    
2372
                        p_udp_hdr->uh_sum = 0;
2373

    
2374
                        int udp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2375
                        DPRINTF("+++ C+ mode UDP checksum %04x\n",
2376
                            udp_checksum);
2377

    
2378
                        p_udp_hdr->uh_sum = udp_checksum;
2379
                    }
2380

    
2381
                    /* restore IP header */
2382
                    memcpy(eth_payload_data, saved_ip_header, hlen);
2383
                }
2384
            }
2385
        }
2386

    
2387
        /* update tally counter */
2388
        ++s->tally_counters.TxOk;
2389

    
2390
        DPRINTF("+++ C+ mode transmitting %d bytes packet\n", saved_size);
2391

    
2392
        rtl8139_transfer_frame(s, saved_buffer, saved_size, 1,
2393
            (uint8_t *) dot1q_buffer);
2394

    
2395
        /* restore card space if there was no recursion and reset offset */
2396
        if (!s->cplus_txbuffer)
2397
        {
2398
            s->cplus_txbuffer        = saved_buffer;
2399
            s->cplus_txbuffer_len    = saved_buffer_len;
2400
            s->cplus_txbuffer_offset = 0;
2401
        }
2402
        else
2403
        {
2404
            g_free(saved_buffer);
2405
        }
2406
    }
2407
    else
2408
    {
2409
        DPRINTF("+++ C+ mode transmission continue to next descriptor\n");
2410
    }
2411

    
2412
    return 1;
2413
}
2414

    
2415
static void rtl8139_cplus_transmit(RTL8139State *s)
2416
{
2417
    int txcount = 0;
2418

    
2419
    while (rtl8139_cplus_transmit_one(s))
2420
    {
2421
        ++txcount;
2422
    }
2423

    
2424
    /* Mark transfer completed */
2425
    if (!txcount)
2426
    {
2427
        DPRINTF("C+ mode : transmitter queue stalled, current TxDesc = %d\n",
2428
            s->currCPlusTxDesc);
2429
    }
2430
    else
2431
    {
2432
        /* update interrupt status */
2433
        s->IntrStatus |= TxOK;
2434
        rtl8139_update_irq(s);
2435
    }
2436
}
2437

    
2438
static void rtl8139_transmit(RTL8139State *s)
2439
{
2440
    int descriptor = s->currTxDesc, txcount = 0;
2441

    
2442
    /*while*/
2443
    if (rtl8139_transmit_one(s, descriptor))
2444
    {
2445
        ++s->currTxDesc;
2446
        s->currTxDesc %= 4;
2447
        ++txcount;
2448
    }
2449

    
2450
    /* Mark transfer completed */
2451
    if (!txcount)
2452
    {
2453
        DPRINTF("transmitter queue stalled, current TxDesc = %d\n",
2454
            s->currTxDesc);
2455
    }
2456
}
2457

    
2458
static void rtl8139_TxStatus_write(RTL8139State *s, uint32_t txRegOffset, uint32_t val)
2459
{
2460

    
2461
    int descriptor = txRegOffset/4;
2462

    
2463
    /* handle C+ transmit mode register configuration */
2464

    
2465
    if (s->cplus_enabled)
2466
    {
2467
        DPRINTF("RTL8139C+ DTCCR write offset=0x%x val=0x%08x "
2468
            "descriptor=%d\n", txRegOffset, val, descriptor);
2469

    
2470
        /* handle Dump Tally Counters command */
2471
        s->TxStatus[descriptor] = val;
2472

    
2473
        if (descriptor == 0 && (val & 0x8))
2474
        {
2475
            target_phys_addr_t tc_addr = rtl8139_addr64(s->TxStatus[0] & ~0x3f, s->TxStatus[1]);
2476

    
2477
            /* dump tally counters to specified memory location */
2478
            RTL8139TallyCounters_physical_memory_write( tc_addr, &s->tally_counters);
2479

    
2480
            /* mark dump completed */
2481
            s->TxStatus[0] &= ~0x8;
2482
        }
2483

    
2484
        return;
2485
    }
2486

    
2487
    DPRINTF("TxStatus write offset=0x%x val=0x%08x descriptor=%d\n",
2488
        txRegOffset, val, descriptor);
2489

    
2490
    /* mask only reserved bits */
2491
    val &= ~0xff00c000; /* these bits are reset on write */
2492
    val = SET_MASKED(val, 0x00c00000, s->TxStatus[descriptor]);
2493

    
2494
    s->TxStatus[descriptor] = val;
2495

    
2496
    /* attempt to start transmission */
2497
    rtl8139_transmit(s);
2498
}
2499

    
2500
static uint32_t rtl8139_TxStatus_read(RTL8139State *s, uint32_t txRegOffset)
2501
{
2502
    uint32_t ret = s->TxStatus[txRegOffset/4];
2503

    
2504
    DPRINTF("TxStatus read offset=0x%x val=0x%08x\n", txRegOffset, ret);
2505

    
2506
    return ret;
2507
}
2508

    
2509
static uint16_t rtl8139_TSAD_read(RTL8139State *s)
2510
{
2511
    uint16_t ret = 0;
2512

    
2513
    /* Simulate TSAD, it is read only anyway */
2514

    
2515
    ret = ((s->TxStatus[3] & TxStatOK  )?TSAD_TOK3:0)
2516
         |((s->TxStatus[2] & TxStatOK  )?TSAD_TOK2:0)
2517
         |((s->TxStatus[1] & TxStatOK  )?TSAD_TOK1:0)
2518
         |((s->TxStatus[0] & TxStatOK  )?TSAD_TOK0:0)
2519

    
2520
         |((s->TxStatus[3] & TxUnderrun)?TSAD_TUN3:0)
2521
         |((s->TxStatus[2] & TxUnderrun)?TSAD_TUN2:0)
2522
         |((s->TxStatus[1] & TxUnderrun)?TSAD_TUN1:0)
2523
         |((s->TxStatus[0] & TxUnderrun)?TSAD_TUN0:0)
2524

    
2525
         |((s->TxStatus[3] & TxAborted )?TSAD_TABT3:0)
2526
         |((s->TxStatus[2] & TxAborted )?TSAD_TABT2:0)
2527
         |((s->TxStatus[1] & TxAborted )?TSAD_TABT1:0)
2528
         |((s->TxStatus[0] & TxAborted )?TSAD_TABT0:0)
2529

    
2530
         |((s->TxStatus[3] & TxHostOwns )?TSAD_OWN3:0)
2531
         |((s->TxStatus[2] & TxHostOwns )?TSAD_OWN2:0)
2532
         |((s->TxStatus[1] & TxHostOwns )?TSAD_OWN1:0)
2533
         |((s->TxStatus[0] & TxHostOwns )?TSAD_OWN0:0) ;
2534

    
2535

    
2536
    DPRINTF("TSAD read val=0x%04x\n", ret);
2537

    
2538
    return ret;
2539
}
2540

    
2541
static uint16_t rtl8139_CSCR_read(RTL8139State *s)
2542
{
2543
    uint16_t ret = s->CSCR;
2544

    
2545
    DPRINTF("CSCR read val=0x%04x\n", ret);
2546

    
2547
    return ret;
2548
}
2549

    
2550
static void rtl8139_TxAddr_write(RTL8139State *s, uint32_t txAddrOffset, uint32_t val)
2551
{
2552
    DPRINTF("TxAddr write offset=0x%x val=0x%08x\n", txAddrOffset, val);
2553

    
2554
    s->TxAddr[txAddrOffset/4] = val;
2555
}
2556

    
2557
static uint32_t rtl8139_TxAddr_read(RTL8139State *s, uint32_t txAddrOffset)
2558
{
2559
    uint32_t ret = s->TxAddr[txAddrOffset/4];
2560

    
2561
    DPRINTF("TxAddr read offset=0x%x val=0x%08x\n", txAddrOffset, ret);
2562

    
2563
    return ret;
2564
}
2565

    
2566
static void rtl8139_RxBufPtr_write(RTL8139State *s, uint32_t val)
2567
{
2568
    DPRINTF("RxBufPtr write val=0x%04x\n", val);
2569

    
2570
    /* this value is off by 16 */
2571
    s->RxBufPtr = MOD2(val + 0x10, s->RxBufferSize);
2572

    
2573
    DPRINTF(" CAPR write: rx buffer length %d head 0x%04x read 0x%04x\n",
2574
        s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
2575
}
2576

    
2577
static uint32_t rtl8139_RxBufPtr_read(RTL8139State *s)
2578
{
2579
    /* this value is off by 16 */
2580
    uint32_t ret = s->RxBufPtr - 0x10;
2581

    
2582
    DPRINTF("RxBufPtr read val=0x%04x\n", ret);
2583

    
2584
    return ret;
2585
}
2586

    
2587
static uint32_t rtl8139_RxBufAddr_read(RTL8139State *s)
2588
{
2589
    /* this value is NOT off by 16 */
2590
    uint32_t ret = s->RxBufAddr;
2591

    
2592
    DPRINTF("RxBufAddr read val=0x%04x\n", ret);
2593

    
2594
    return ret;
2595
}
2596

    
2597
static void rtl8139_RxBuf_write(RTL8139State *s, uint32_t val)
2598
{
2599
    DPRINTF("RxBuf write val=0x%08x\n", val);
2600

    
2601
    s->RxBuf = val;
2602

    
2603
    /* may need to reset rxring here */
2604
}
2605

    
2606
static uint32_t rtl8139_RxBuf_read(RTL8139State *s)
2607
{
2608
    uint32_t ret = s->RxBuf;
2609

    
2610
    DPRINTF("RxBuf read val=0x%08x\n", ret);
2611

    
2612
    return ret;
2613
}
2614

    
2615
static void rtl8139_IntrMask_write(RTL8139State *s, uint32_t val)
2616
{
2617
    DPRINTF("IntrMask write(w) val=0x%04x\n", val);
2618

    
2619
    /* mask unwritable bits */
2620
    val = SET_MASKED(val, 0x1e00, s->IntrMask);
2621

    
2622
    s->IntrMask = val;
2623

    
2624
    rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
2625
    rtl8139_update_irq(s);
2626

    
2627
}
2628

    
2629
static uint32_t rtl8139_IntrMask_read(RTL8139State *s)
2630
{
2631
    uint32_t ret = s->IntrMask;
2632

    
2633
    DPRINTF("IntrMask read(w) val=0x%04x\n", ret);
2634

    
2635
    return ret;
2636
}
2637

    
2638
static void rtl8139_IntrStatus_write(RTL8139State *s, uint32_t val)
2639
{
2640
    DPRINTF("IntrStatus write(w) val=0x%04x\n", val);
2641

    
2642
#if 0
2643

2644
    /* writing to ISR has no effect */
2645

2646
    return;
2647

2648
#else
2649
    uint16_t newStatus = s->IntrStatus & ~val;
2650

    
2651
    /* mask unwritable bits */
2652
    newStatus = SET_MASKED(newStatus, 0x1e00, s->IntrStatus);
2653

    
2654
    /* writing 1 to interrupt status register bit clears it */
2655
    s->IntrStatus = 0;
2656
    rtl8139_update_irq(s);
2657

    
2658
    s->IntrStatus = newStatus;
2659
    /*
2660
     * Computing if we miss an interrupt here is not that correct but
2661
     * considered that we should have had already an interrupt
2662
     * and probably emulated is slower is better to assume this resetting was
2663
     * done before testing on previous rtl8139_update_irq lead to IRQ loosing
2664
     */
2665
    rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
2666
    rtl8139_update_irq(s);
2667

    
2668
#endif
2669
}
2670

    
2671
static uint32_t rtl8139_IntrStatus_read(RTL8139State *s)
2672
{
2673
    rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
2674

    
2675
    uint32_t ret = s->IntrStatus;
2676

    
2677
    DPRINTF("IntrStatus read(w) val=0x%04x\n", ret);
2678

    
2679
#if 0
2680

2681
    /* reading ISR clears all interrupts */
2682
    s->IntrStatus = 0;
2683

2684
    rtl8139_update_irq(s);
2685

2686
#endif
2687

    
2688
    return ret;
2689
}
2690

    
2691
static void rtl8139_MultiIntr_write(RTL8139State *s, uint32_t val)
2692
{
2693
    DPRINTF("MultiIntr write(w) val=0x%04x\n", val);
2694

    
2695
    /* mask unwritable bits */
2696
    val = SET_MASKED(val, 0xf000, s->MultiIntr);
2697

    
2698
    s->MultiIntr = val;
2699
}
2700

    
2701
static uint32_t rtl8139_MultiIntr_read(RTL8139State *s)
2702
{
2703
    uint32_t ret = s->MultiIntr;
2704

    
2705
    DPRINTF("MultiIntr read(w) val=0x%04x\n", ret);
2706

    
2707
    return ret;
2708
}
2709

    
2710
static void rtl8139_io_writeb(void *opaque, uint8_t addr, uint32_t val)
2711
{
2712
    RTL8139State *s = opaque;
2713

    
2714
    addr &= 0xff;
2715

    
2716
    switch (addr)
2717
    {
2718
        case MAC0 ... MAC0+5:
2719
            s->phys[addr - MAC0] = val;
2720
            break;
2721
        case MAC0+6 ... MAC0+7:
2722
            /* reserved */
2723
            break;
2724
        case MAR0 ... MAR0+7:
2725
            s->mult[addr - MAR0] = val;
2726
            break;
2727
        case ChipCmd:
2728
            rtl8139_ChipCmd_write(s, val);
2729
            break;
2730
        case Cfg9346:
2731
            rtl8139_Cfg9346_write(s, val);
2732
            break;
2733
        case TxConfig: /* windows driver sometimes writes using byte-lenth call */
2734
            rtl8139_TxConfig_writeb(s, val);
2735
            break;
2736
        case Config0:
2737
            rtl8139_Config0_write(s, val);
2738
            break;
2739
        case Config1:
2740
            rtl8139_Config1_write(s, val);
2741
            break;
2742
        case Config3:
2743
            rtl8139_Config3_write(s, val);
2744
            break;
2745
        case Config4:
2746
            rtl8139_Config4_write(s, val);
2747
            break;
2748
        case Config5:
2749
            rtl8139_Config5_write(s, val);
2750
            break;
2751
        case MediaStatus:
2752
            /* ignore */
2753
            DPRINTF("not implemented write(b) to MediaStatus val=0x%02x\n",
2754
                val);
2755
            break;
2756

    
2757
        case HltClk:
2758
            DPRINTF("HltClk write val=0x%08x\n", val);
2759
            if (val == 'R')
2760
            {
2761
                s->clock_enabled = 1;
2762
            }
2763
            else if (val == 'H')
2764
            {
2765
                s->clock_enabled = 0;
2766
            }
2767
            break;
2768

    
2769
        case TxThresh:
2770
            DPRINTF("C+ TxThresh write(b) val=0x%02x\n", val);
2771
            s->TxThresh = val;
2772
            break;
2773

    
2774
        case TxPoll:
2775
            DPRINTF("C+ TxPoll write(b) val=0x%02x\n", val);
2776
            if (val & (1 << 7))
2777
            {
2778
                DPRINTF("C+ TxPoll high priority transmission (not "
2779
                    "implemented)\n");
2780
                //rtl8139_cplus_transmit(s);
2781
            }
2782
            if (val & (1 << 6))
2783
            {
2784
                DPRINTF("C+ TxPoll normal priority transmission\n");
2785
                rtl8139_cplus_transmit(s);
2786
            }
2787

    
2788
            break;
2789

    
2790
        default:
2791
            DPRINTF("not implemented write(b) addr=0x%x val=0x%02x\n", addr,
2792
                val);
2793
            break;
2794
    }
2795
}
2796

    
2797
static void rtl8139_io_writew(void *opaque, uint8_t addr, uint32_t val)
2798
{
2799
    RTL8139State *s = opaque;
2800

    
2801
    addr &= 0xfe;
2802

    
2803
    switch (addr)
2804
    {
2805
        case IntrMask:
2806
            rtl8139_IntrMask_write(s, val);
2807
            break;
2808

    
2809
        case IntrStatus:
2810
            rtl8139_IntrStatus_write(s, val);
2811
            break;
2812

    
2813
        case MultiIntr:
2814
            rtl8139_MultiIntr_write(s, val);
2815
            break;
2816

    
2817
        case RxBufPtr:
2818
            rtl8139_RxBufPtr_write(s, val);
2819
            break;
2820

    
2821
        case BasicModeCtrl:
2822
            rtl8139_BasicModeCtrl_write(s, val);
2823
            break;
2824
        case BasicModeStatus:
2825
            rtl8139_BasicModeStatus_write(s, val);
2826
            break;
2827
        case NWayAdvert:
2828
            DPRINTF("NWayAdvert write(w) val=0x%04x\n", val);
2829
            s->NWayAdvert = val;
2830
            break;
2831
        case NWayLPAR:
2832
            DPRINTF("forbidden NWayLPAR write(w) val=0x%04x\n", val);
2833
            break;
2834
        case NWayExpansion:
2835
            DPRINTF("NWayExpansion write(w) val=0x%04x\n", val);
2836
            s->NWayExpansion = val;
2837
            break;
2838

    
2839
        case CpCmd:
2840
            rtl8139_CpCmd_write(s, val);
2841
            break;
2842

    
2843
        case IntrMitigate:
2844
            rtl8139_IntrMitigate_write(s, val);
2845
            break;
2846

    
2847
        default:
2848
            DPRINTF("ioport write(w) addr=0x%x val=0x%04x via write(b)\n",
2849
                addr, val);
2850

    
2851
            rtl8139_io_writeb(opaque, addr, val & 0xff);
2852
            rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2853
            break;
2854
    }
2855
}
2856

    
2857
static void rtl8139_set_next_tctr_time(RTL8139State *s, int64_t current_time)
2858
{
2859
    int64_t pci_time, next_time;
2860
    uint32_t low_pci;
2861

    
2862
    DPRINTF("entered rtl8139_set_next_tctr_time\n");
2863

    
2864
    if (s->TimerExpire && current_time >= s->TimerExpire) {
2865
        s->IntrStatus |= PCSTimeout;
2866
        rtl8139_update_irq(s);
2867
    }
2868

    
2869
    /* Set QEMU timer only if needed that is
2870
     * - TimerInt <> 0 (we have a timer)
2871
     * - mask = 1 (we want an interrupt timer)
2872
     * - irq = 0  (irq is not already active)
2873
     * If any of above change we need to compute timer again
2874
     * Also we must check if timer is passed without QEMU timer
2875
     */
2876
    s->TimerExpire = 0;
2877
    if (!s->TimerInt) {
2878
        return;
2879
    }
2880

    
2881
    pci_time = muldiv64(current_time - s->TCTR_base, PCI_FREQUENCY,
2882
                                get_ticks_per_sec());
2883
    low_pci = pci_time & 0xffffffff;
2884
    pci_time = pci_time - low_pci + s->TimerInt;
2885
    if (low_pci >= s->TimerInt) {
2886
        pci_time += 0x100000000LL;
2887
    }
2888
    next_time = s->TCTR_base + muldiv64(pci_time, get_ticks_per_sec(),
2889
                                                PCI_FREQUENCY);
2890
    s->TimerExpire = next_time;
2891

    
2892
    if ((s->IntrMask & PCSTimeout) != 0 && (s->IntrStatus & PCSTimeout) == 0) {
2893
        qemu_mod_timer(s->timer, next_time);
2894
    }
2895
}
2896

    
2897
static void rtl8139_io_writel(void *opaque, uint8_t addr, uint32_t val)
2898
{
2899
    RTL8139State *s = opaque;
2900

    
2901
    addr &= 0xfc;
2902

    
2903
    switch (addr)
2904
    {
2905
        case RxMissed:
2906
            DPRINTF("RxMissed clearing on write\n");
2907
            s->RxMissed = 0;
2908
            break;
2909

    
2910
        case TxConfig:
2911
            rtl8139_TxConfig_write(s, val);
2912
            break;
2913

    
2914
        case RxConfig:
2915
            rtl8139_RxConfig_write(s, val);
2916
            break;
2917

    
2918
        case TxStatus0 ... TxStatus0+4*4-1:
2919
            rtl8139_TxStatus_write(s, addr-TxStatus0, val);
2920
            break;
2921

    
2922
        case TxAddr0 ... TxAddr0+4*4-1:
2923
            rtl8139_TxAddr_write(s, addr-TxAddr0, val);
2924
            break;
2925

    
2926
        case RxBuf:
2927
            rtl8139_RxBuf_write(s, val);
2928
            break;
2929

    
2930
        case RxRingAddrLO:
2931
            DPRINTF("C+ RxRing low bits write val=0x%08x\n", val);
2932
            s->RxRingAddrLO = val;
2933
            break;
2934

    
2935
        case RxRingAddrHI:
2936
            DPRINTF("C+ RxRing high bits write val=0x%08x\n", val);
2937
            s->RxRingAddrHI = val;
2938
            break;
2939

    
2940
        case Timer:
2941
            DPRINTF("TCTR Timer reset on write\n");
2942
            s->TCTR_base = qemu_get_clock_ns(vm_clock);
2943
            rtl8139_set_next_tctr_time(s, s->TCTR_base);
2944
            break;
2945

    
2946
        case FlashReg:
2947
            DPRINTF("FlashReg TimerInt write val=0x%08x\n", val);
2948
            if (s->TimerInt != val) {
2949
                s->TimerInt = val;
2950
                rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
2951
            }
2952
            break;
2953

    
2954
        default:
2955
            DPRINTF("ioport write(l) addr=0x%x val=0x%08x via write(b)\n",
2956
                addr, val);
2957
            rtl8139_io_writeb(opaque, addr, val & 0xff);
2958
            rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2959
            rtl8139_io_writeb(opaque, addr + 2, (val >> 16) & 0xff);
2960
            rtl8139_io_writeb(opaque, addr + 3, (val >> 24) & 0xff);
2961
            break;
2962
    }
2963
}
2964

    
2965
static uint32_t rtl8139_io_readb(void *opaque, uint8_t addr)
2966
{
2967
    RTL8139State *s = opaque;
2968
    int ret;
2969

    
2970
    addr &= 0xff;
2971

    
2972
    switch (addr)
2973
    {
2974
        case MAC0 ... MAC0+5:
2975
            ret = s->phys[addr - MAC0];
2976
            break;
2977
        case MAC0+6 ... MAC0+7:
2978
            ret = 0;
2979
            break;
2980
        case MAR0 ... MAR0+7:
2981
            ret = s->mult[addr - MAR0];
2982
            break;
2983
        case ChipCmd:
2984
            ret = rtl8139_ChipCmd_read(s);
2985
            break;
2986
        case Cfg9346:
2987
            ret = rtl8139_Cfg9346_read(s);
2988
            break;
2989
        case Config0:
2990
            ret = rtl8139_Config0_read(s);
2991
            break;
2992
        case Config1:
2993
            ret = rtl8139_Config1_read(s);
2994
            break;
2995
        case Config3:
2996
            ret = rtl8139_Config3_read(s);
2997
            break;
2998
        case Config4:
2999
            ret = rtl8139_Config4_read(s);
3000
            break;
3001
        case Config5:
3002
            ret = rtl8139_Config5_read(s);
3003
            break;
3004

    
3005
        case MediaStatus:
3006
            ret = 0xd0;
3007
            DPRINTF("MediaStatus read 0x%x\n", ret);
3008
            break;
3009

    
3010
        case HltClk:
3011
            ret = s->clock_enabled;
3012
            DPRINTF("HltClk read 0x%x\n", ret);
3013
            break;
3014

    
3015
        case PCIRevisionID:
3016
            ret = RTL8139_PCI_REVID;
3017
            DPRINTF("PCI Revision ID read 0x%x\n", ret);
3018
            break;
3019

    
3020
        case TxThresh:
3021
            ret = s->TxThresh;
3022
            DPRINTF("C+ TxThresh read(b) val=0x%02x\n", ret);
3023
            break;
3024

    
3025
        case 0x43: /* Part of TxConfig register. Windows driver tries to read it */
3026
            ret = s->TxConfig >> 24;
3027
            DPRINTF("RTL8139C TxConfig at 0x43 read(b) val=0x%02x\n", ret);
3028
            break;
3029

    
3030
        default:
3031
            DPRINTF("not implemented read(b) addr=0x%x\n", addr);
3032
            ret = 0;
3033
            break;
3034
    }
3035

    
3036
    return ret;
3037
}
3038

    
3039
static uint32_t rtl8139_io_readw(void *opaque, uint8_t addr)
3040
{
3041
    RTL8139State *s = opaque;
3042
    uint32_t ret;
3043

    
3044
    addr &= 0xfe; /* mask lower bit */
3045

    
3046
    switch (addr)
3047
    {
3048
        case IntrMask:
3049
            ret = rtl8139_IntrMask_read(s);
3050
            break;
3051

    
3052
        case IntrStatus:
3053
            ret = rtl8139_IntrStatus_read(s);
3054
            break;
3055

    
3056
        case MultiIntr:
3057
            ret = rtl8139_MultiIntr_read(s);
3058
            break;
3059

    
3060
        case RxBufPtr:
3061
            ret = rtl8139_RxBufPtr_read(s);
3062
            break;
3063

    
3064
        case RxBufAddr:
3065
            ret = rtl8139_RxBufAddr_read(s);
3066
            break;
3067

    
3068
        case BasicModeCtrl:
3069
            ret = rtl8139_BasicModeCtrl_read(s);
3070
            break;
3071
        case BasicModeStatus:
3072
            ret = rtl8139_BasicModeStatus_read(s);
3073
            break;
3074
        case NWayAdvert:
3075
            ret = s->NWayAdvert;
3076
            DPRINTF("NWayAdvert read(w) val=0x%04x\n", ret);
3077
            break;
3078
        case NWayLPAR:
3079
            ret = s->NWayLPAR;
3080
            DPRINTF("NWayLPAR read(w) val=0x%04x\n", ret);
3081
            break;
3082
        case NWayExpansion:
3083
            ret = s->NWayExpansion;
3084
            DPRINTF("NWayExpansion read(w) val=0x%04x\n", ret);
3085
            break;
3086

    
3087
        case CpCmd:
3088
            ret = rtl8139_CpCmd_read(s);
3089
            break;
3090

    
3091
        case IntrMitigate:
3092
            ret = rtl8139_IntrMitigate_read(s);
3093
            break;
3094

    
3095
        case TxSummary:
3096
            ret = rtl8139_TSAD_read(s);
3097
            break;
3098

    
3099
        case CSCR:
3100
            ret = rtl8139_CSCR_read(s);
3101
            break;
3102

    
3103
        default:
3104
            DPRINTF("ioport read(w) addr=0x%x via read(b)\n", addr);
3105

    
3106
            ret  = rtl8139_io_readb(opaque, addr);
3107
            ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3108

    
3109
            DPRINTF("ioport read(w) addr=0x%x val=0x%04x\n", addr, ret);
3110
            break;
3111
    }
3112

    
3113
    return ret;
3114
}
3115

    
3116
static uint32_t rtl8139_io_readl(void *opaque, uint8_t addr)
3117
{
3118
    RTL8139State *s = opaque;
3119
    uint32_t ret;
3120

    
3121
    addr &= 0xfc; /* also mask low 2 bits */
3122

    
3123
    switch (addr)
3124
    {
3125
        case RxMissed:
3126
            ret = s->RxMissed;
3127

    
3128
            DPRINTF("RxMissed read val=0x%08x\n", ret);
3129
            break;
3130

    
3131
        case TxConfig:
3132
            ret = rtl8139_TxConfig_read(s);
3133
            break;
3134

    
3135
        case RxConfig:
3136
            ret = rtl8139_RxConfig_read(s);
3137
            break;
3138

    
3139
        case TxStatus0 ... TxStatus0+4*4-1:
3140
            ret = rtl8139_TxStatus_read(s, addr-TxStatus0);
3141
            break;
3142

    
3143
        case TxAddr0 ... TxAddr0+4*4-1:
3144
            ret = rtl8139_TxAddr_read(s, addr-TxAddr0);
3145
            break;
3146

    
3147
        case RxBuf:
3148
            ret = rtl8139_RxBuf_read(s);
3149
            break;
3150

    
3151
        case RxRingAddrLO:
3152
            ret = s->RxRingAddrLO;
3153
            DPRINTF("C+ RxRing low bits read val=0x%08x\n", ret);
3154
            break;
3155

    
3156
        case RxRingAddrHI:
3157
            ret = s->RxRingAddrHI;
3158
            DPRINTF("C+ RxRing high bits read val=0x%08x\n", ret);
3159
            break;
3160

    
3161
        case Timer:
3162
            ret = muldiv64(qemu_get_clock_ns(vm_clock) - s->TCTR_base,
3163
                           PCI_FREQUENCY, get_ticks_per_sec());
3164
            DPRINTF("TCTR Timer read val=0x%08x\n", ret);
3165
            break;
3166

    
3167
        case FlashReg:
3168
            ret = s->TimerInt;
3169
            DPRINTF("FlashReg TimerInt read val=0x%08x\n", ret);
3170
            break;
3171

    
3172
        default:
3173
            DPRINTF("ioport read(l) addr=0x%x via read(b)\n", addr);
3174

    
3175
            ret  = rtl8139_io_readb(opaque, addr);
3176
            ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3177
            ret |= rtl8139_io_readb(opaque, addr + 2) << 16;
3178
            ret |= rtl8139_io_readb(opaque, addr + 3) << 24;
3179

    
3180
            DPRINTF("read(l) addr=0x%x val=%08x\n", addr, ret);
3181
            break;
3182
    }
3183

    
3184
    return ret;
3185
}
3186

    
3187
/* */
3188

    
3189
static void rtl8139_ioport_writeb(void *opaque, uint32_t addr, uint32_t val)
3190
{
3191
    rtl8139_io_writeb(opaque, addr & 0xFF, val);
3192
}
3193

    
3194
static void rtl8139_ioport_writew(void *opaque, uint32_t addr, uint32_t val)
3195
{
3196
    rtl8139_io_writew(opaque, addr & 0xFF, val);
3197
}
3198

    
3199
static void rtl8139_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
3200
{
3201
    rtl8139_io_writel(opaque, addr & 0xFF, val);
3202
}
3203

    
3204
static uint32_t rtl8139_ioport_readb(void *opaque, uint32_t addr)
3205
{
3206
    return rtl8139_io_readb(opaque, addr & 0xFF);
3207
}
3208

    
3209
static uint32_t rtl8139_ioport_readw(void *opaque, uint32_t addr)
3210
{
3211
    return rtl8139_io_readw(opaque, addr & 0xFF);
3212
}
3213

    
3214
static uint32_t rtl8139_ioport_readl(void *opaque, uint32_t addr)
3215
{
3216
    return rtl8139_io_readl(opaque, addr & 0xFF);
3217
}
3218

    
3219
/* */
3220

    
3221
static void rtl8139_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
3222
{
3223
    rtl8139_io_writeb(opaque, addr & 0xFF, val);
3224
}
3225

    
3226
static void rtl8139_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
3227
{
3228
    rtl8139_io_writew(opaque, addr & 0xFF, val);
3229
}
3230

    
3231
static void rtl8139_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
3232
{
3233
    rtl8139_io_writel(opaque, addr & 0xFF, val);
3234
}
3235

    
3236
static uint32_t rtl8139_mmio_readb(void *opaque, target_phys_addr_t addr)
3237
{
3238
    return rtl8139_io_readb(opaque, addr & 0xFF);
3239
}
3240

    
3241
static uint32_t rtl8139_mmio_readw(void *opaque, target_phys_addr_t addr)
3242
{
3243
    uint32_t val = rtl8139_io_readw(opaque, addr & 0xFF);
3244
    return val;
3245
}
3246

    
3247
static uint32_t rtl8139_mmio_readl(void *opaque, target_phys_addr_t addr)
3248
{
3249
    uint32_t val = rtl8139_io_readl(opaque, addr & 0xFF);
3250
    return val;
3251
}
3252

    
3253
static int rtl8139_post_load(void *opaque, int version_id)
3254
{
3255
    RTL8139State* s = opaque;
3256
    rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
3257
    if (version_id < 4) {
3258
        s->cplus_enabled = s->CpCmd != 0;
3259
    }
3260

    
3261
    return 0;
3262
}
3263

    
3264
static bool rtl8139_hotplug_ready_needed(void *opaque)
3265
{
3266
    return qdev_machine_modified();
3267
}
3268

    
3269
static const VMStateDescription vmstate_rtl8139_hotplug_ready ={
3270
    .name = "rtl8139/hotplug_ready",
3271
    .version_id = 1,
3272
    .minimum_version_id = 1,
3273
    .minimum_version_id_old = 1,
3274
    .fields      = (VMStateField []) {
3275
        VMSTATE_END_OF_LIST()
3276
    }
3277
};
3278

    
3279
static void rtl8139_pre_save(void *opaque)
3280
{
3281
    RTL8139State* s = opaque;
3282
    int64_t current_time = qemu_get_clock_ns(vm_clock);
3283

    
3284
    /* set IntrStatus correctly */
3285
    rtl8139_set_next_tctr_time(s, current_time);
3286
    s->TCTR = muldiv64(current_time - s->TCTR_base, PCI_FREQUENCY,
3287
                       get_ticks_per_sec());
3288
    s->rtl8139_mmio_io_addr_dummy = 0;
3289
}
3290

    
3291
static const VMStateDescription vmstate_rtl8139 = {
3292
    .name = "rtl8139",
3293
    .version_id = 4,
3294
    .minimum_version_id = 3,
3295
    .minimum_version_id_old = 3,
3296
    .post_load = rtl8139_post_load,
3297
    .pre_save  = rtl8139_pre_save,
3298
    .fields      = (VMStateField []) {
3299
        VMSTATE_PCI_DEVICE(dev, RTL8139State),
3300
        VMSTATE_PARTIAL_BUFFER(phys, RTL8139State, 6),
3301
        VMSTATE_BUFFER(mult, RTL8139State),
3302
        VMSTATE_UINT32_ARRAY(TxStatus, RTL8139State, 4),
3303
        VMSTATE_UINT32_ARRAY(TxAddr, RTL8139State, 4),
3304

    
3305
        VMSTATE_UINT32(RxBuf, RTL8139State),
3306
        VMSTATE_UINT32(RxBufferSize, RTL8139State),
3307
        VMSTATE_UINT32(RxBufPtr, RTL8139State),
3308
        VMSTATE_UINT32(RxBufAddr, RTL8139State),
3309

    
3310
        VMSTATE_UINT16(IntrStatus, RTL8139State),
3311
        VMSTATE_UINT16(IntrMask, RTL8139State),
3312

    
3313
        VMSTATE_UINT32(TxConfig, RTL8139State),
3314
        VMSTATE_UINT32(RxConfig, RTL8139State),
3315
        VMSTATE_UINT32(RxMissed, RTL8139State),
3316
        VMSTATE_UINT16(CSCR, RTL8139State),
3317

    
3318
        VMSTATE_UINT8(Cfg9346, RTL8139State),
3319
        VMSTATE_UINT8(Config0, RTL8139State),
3320
        VMSTATE_UINT8(Config1, RTL8139State),
3321
        VMSTATE_UINT8(Config3, RTL8139State),
3322
        VMSTATE_UINT8(Config4, RTL8139State),
3323
        VMSTATE_UINT8(Config5, RTL8139State),
3324

    
3325
        VMSTATE_UINT8(clock_enabled, RTL8139State),
3326
        VMSTATE_UINT8(bChipCmdState, RTL8139State),
3327

    
3328
        VMSTATE_UINT16(MultiIntr, RTL8139State),
3329

    
3330
        VMSTATE_UINT16(BasicModeCtrl, RTL8139State),
3331
        VMSTATE_UINT16(BasicModeStatus, RTL8139State),
3332
        VMSTATE_UINT16(NWayAdvert, RTL8139State),
3333
        VMSTATE_UINT16(NWayLPAR, RTL8139State),
3334
        VMSTATE_UINT16(NWayExpansion, RTL8139State),
3335

    
3336
        VMSTATE_UINT16(CpCmd, RTL8139State),
3337
        VMSTATE_UINT8(TxThresh, RTL8139State),
3338

    
3339
        VMSTATE_UNUSED(4),
3340
        VMSTATE_MACADDR(conf.macaddr, RTL8139State),
3341
        VMSTATE_INT32(rtl8139_mmio_io_addr_dummy, RTL8139State),
3342

    
3343
        VMSTATE_UINT32(currTxDesc, RTL8139State),
3344
        VMSTATE_UINT32(currCPlusRxDesc, RTL8139State),
3345
        VMSTATE_UINT32(currCPlusTxDesc, RTL8139State),
3346
        VMSTATE_UINT32(RxRingAddrLO, RTL8139State),
3347
        VMSTATE_UINT32(RxRingAddrHI, RTL8139State),
3348

    
3349
        VMSTATE_UINT16_ARRAY(eeprom.contents, RTL8139State, EEPROM_9346_SIZE),
3350
        VMSTATE_INT32(eeprom.mode, RTL8139State),
3351
        VMSTATE_UINT32(eeprom.tick, RTL8139State),
3352
        VMSTATE_UINT8(eeprom.address, RTL8139State),
3353
        VMSTATE_UINT16(eeprom.input, RTL8139State),
3354
        VMSTATE_UINT16(eeprom.output, RTL8139State),
3355

    
3356
        VMSTATE_UINT8(eeprom.eecs, RTL8139State),
3357
        VMSTATE_UINT8(eeprom.eesk, RTL8139State),
3358
        VMSTATE_UINT8(eeprom.eedi, RTL8139State),
3359
        VMSTATE_UINT8(eeprom.eedo, RTL8139State),
3360

    
3361
        VMSTATE_UINT32(TCTR, RTL8139State),
3362
        VMSTATE_UINT32(TimerInt, RTL8139State),
3363
        VMSTATE_INT64(TCTR_base, RTL8139State),
3364

    
3365
        VMSTATE_STRUCT(tally_counters, RTL8139State, 0,
3366
                       vmstate_tally_counters, RTL8139TallyCounters),
3367

    
3368
        VMSTATE_UINT32_V(cplus_enabled, RTL8139State, 4),
3369
        VMSTATE_END_OF_LIST()
3370
    },
3371
    .subsections = (VMStateSubsection []) {
3372
        {
3373
            .vmsd = &vmstate_rtl8139_hotplug_ready,
3374
            .needed = rtl8139_hotplug_ready_needed,
3375
        }, {
3376
            /* empty */
3377
        }
3378
    }
3379
};
3380

    
3381
/***********************************************************/
3382
/* PCI RTL8139 definitions */
3383

    
3384
static const MemoryRegionPortio rtl8139_portio[] = {
3385
    { 0, 0x100, 1, .read = rtl8139_ioport_readb, },
3386
    { 0, 0x100, 1, .write = rtl8139_ioport_writeb, },
3387
    { 0, 0x100, 2, .read = rtl8139_ioport_readw, },
3388
    { 0, 0x100, 2, .write = rtl8139_ioport_writew, },
3389
    { 0, 0x100, 4, .read = rtl8139_ioport_readl, },
3390
    { 0, 0x100, 4, .write = rtl8139_ioport_writel, },
3391
    PORTIO_END_OF_LIST()
3392
};
3393

    
3394
static const MemoryRegionOps rtl8139_io_ops = {
3395
    .old_portio = rtl8139_portio,
3396
    .endianness = DEVICE_LITTLE_ENDIAN,
3397
};
3398

    
3399
static const MemoryRegionOps rtl8139_mmio_ops = {
3400
    .old_mmio = {
3401
        .read = {
3402
            rtl8139_mmio_readb,
3403
            rtl8139_mmio_readw,
3404
            rtl8139_mmio_readl,
3405
        },
3406
        .write = {
3407
            rtl8139_mmio_writeb,
3408
            rtl8139_mmio_writew,
3409
            rtl8139_mmio_writel,
3410
        },
3411
    },
3412
    .endianness = DEVICE_LITTLE_ENDIAN,
3413
};
3414

    
3415
static void rtl8139_timer(void *opaque)
3416
{
3417
    RTL8139State *s = opaque;
3418

    
3419
    if (!s->clock_enabled)
3420
    {
3421
        DPRINTF(">>> timer: clock is not running\n");
3422
        return;
3423
    }
3424

    
3425
    s->IntrStatus |= PCSTimeout;
3426
    rtl8139_update_irq(s);
3427
    rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
3428
}
3429

    
3430
static void rtl8139_cleanup(VLANClientState *nc)
3431
{
3432
    RTL8139State *s = DO_UPCAST(NICState, nc, nc)->opaque;
3433

    
3434
    s->nic = NULL;
3435
}
3436

    
3437
static int pci_rtl8139_uninit(PCIDevice *dev)
3438
{
3439
    RTL8139State *s = DO_UPCAST(RTL8139State, dev, dev);
3440

    
3441
    memory_region_destroy(&s->bar_io);
3442
    memory_region_destroy(&s->bar_mem);
3443
    if (s->cplus_txbuffer) {
3444
        g_free(s->cplus_txbuffer);
3445
        s->cplus_txbuffer = NULL;
3446
    }
3447
    qemu_del_timer(s->timer);
3448
    qemu_free_timer(s->timer);
3449
    qemu_del_vlan_client(&s->nic->nc);
3450
    return 0;
3451
}
3452

    
3453
static NetClientInfo net_rtl8139_info = {
3454
    .type = NET_CLIENT_TYPE_NIC,
3455
    .size = sizeof(NICState),
3456
    .can_receive = rtl8139_can_receive,
3457
    .receive = rtl8139_receive,
3458
    .cleanup = rtl8139_cleanup,
3459
};
3460

    
3461
static int pci_rtl8139_init(PCIDevice *dev)
3462
{
3463
    RTL8139State * s = DO_UPCAST(RTL8139State, dev, dev);
3464
    uint8_t *pci_conf;
3465

    
3466
    pci_conf = s->dev.config;
3467
    pci_conf[PCI_INTERRUPT_PIN] = 1;    /* interrupt pin 0 */
3468
    /* TODO: start of capability list, but no capability
3469
     * list bit in status register, and offset 0xdc seems unused. */
3470
    pci_conf[PCI_CAPABILITY_LIST] = 0xdc;
3471

    
3472
    memory_region_init_io(&s->bar_io, &rtl8139_io_ops, s, "rtl8139", 0x100);
3473
    memory_region_init_io(&s->bar_mem, &rtl8139_mmio_ops, s, "rtl8139", 0x100);
3474
    pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->bar_io);
3475
    pci_register_bar(&s->dev, 1, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar_mem);
3476

    
3477
    qemu_macaddr_default_if_unset(&s->conf.macaddr);
3478

    
3479
    /* prepare eeprom */
3480
    s->eeprom.contents[0] = 0x8129;
3481
#if 1
3482
    /* PCI vendor and device ID should be mirrored here */
3483
    s->eeprom.contents[1] = PCI_VENDOR_ID_REALTEK;
3484
    s->eeprom.contents[2] = PCI_DEVICE_ID_REALTEK_8139;
3485
#endif
3486
    s->eeprom.contents[7] = s->conf.macaddr.a[0] | s->conf.macaddr.a[1] << 8;
3487
    s->eeprom.contents[8] = s->conf.macaddr.a[2] | s->conf.macaddr.a[3] << 8;
3488
    s->eeprom.contents[9] = s->conf.macaddr.a[4] | s->conf.macaddr.a[5] << 8;
3489

    
3490
    s->nic = qemu_new_nic(&net_rtl8139_info, &s->conf,
3491
                          dev->qdev.info->name, dev->qdev.id, s);
3492
    qemu_format_nic_info_str(&s->nic->nc, s->conf.macaddr.a);
3493

    
3494
    s->cplus_txbuffer = NULL;
3495
    s->cplus_txbuffer_len = 0;
3496
    s->cplus_txbuffer_offset = 0;
3497

    
3498
    s->TimerExpire = 0;
3499
    s->timer = qemu_new_timer_ns(vm_clock, rtl8139_timer, s);
3500
    rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
3501

    
3502
    add_boot_device_path(s->conf.bootindex, &dev->qdev, "/ethernet-phy@0");
3503

    
3504
    return 0;
3505
}
3506

    
3507
static PCIDeviceInfo rtl8139_info = {
3508
    .qdev.name  = "rtl8139",
3509
    .qdev.size  = sizeof(RTL8139State),
3510
    .qdev.reset = rtl8139_reset,
3511
    .qdev.vmsd  = &vmstate_rtl8139,
3512
    .init       = pci_rtl8139_init,
3513
    .exit       = pci_rtl8139_uninit,
3514
    .romfile    = "pxe-rtl8139.rom",
3515
    .vendor_id  = PCI_VENDOR_ID_REALTEK,
3516
    .device_id  = PCI_DEVICE_ID_REALTEK_8139,
3517
    .revision   = RTL8139_PCI_REVID, /* >=0x20 is for 8139C+ */
3518
    .class_id   = PCI_CLASS_NETWORK_ETHERNET,
3519
    .qdev.props = (Property[]) {
3520
        DEFINE_NIC_PROPERTIES(RTL8139State, conf),
3521
        DEFINE_PROP_END_OF_LIST(),
3522
    }
3523
};
3524

    
3525
static void rtl8139_register_devices(void)
3526
{
3527
    pci_qdev_register(&rtl8139_info);
3528
}
3529

    
3530
device_init(rtl8139_register_devices)