Statistics
| Branch: | Revision:

root / hw / strongarm.c @ 7267c094

History | View | Annotate | Download (41.1 kB)

1
/*
2
 * StrongARM SA-1100/SA-1110 emulation
3
 *
4
 * Copyright (C) 2011 Dmitry Eremin-Solenikov
5
 *
6
 * Largely based on StrongARM emulation:
7
 * Copyright (c) 2006 Openedhand Ltd.
8
 * Written by Andrzej Zaborowski <balrog@zabor.org>
9
 *
10
 * UART code based on QEMU 16550A UART emulation
11
 * Copyright (c) 2003-2004 Fabrice Bellard
12
 * Copyright (c) 2008 Citrix Systems, Inc.
13
 *
14
 *  This program is free software; you can redistribute it and/or modify
15
 *  it under the terms of the GNU General Public License version 2 as
16
 *  published by the Free Software Foundation.
17
 *
18
 *  This program is distributed in the hope that it will be useful,
19
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
20
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21
 *  GNU General Public License for more details.
22
 *
23
 *  You should have received a copy of the GNU General Public License along
24
 *  with this program; if not, see <http://www.gnu.org/licenses/>.
25
 */
26
#include "sysbus.h"
27
#include "strongarm.h"
28
#include "qemu-error.h"
29
#include "arm-misc.h"
30
#include "sysemu.h"
31
#include "ssi.h"
32

    
33
//#define DEBUG
34

    
35
/*
36
 TODO
37
 - Implement cp15, c14 ?
38
 - Implement cp15, c15 !!! (idle used in L)
39
 - Implement idle mode handling/DIM
40
 - Implement sleep mode/Wake sources
41
 - Implement reset control
42
 - Implement memory control regs
43
 - PCMCIA handling
44
 - Maybe support MBGNT/MBREQ
45
 - DMA channels
46
 - GPCLK
47
 - IrDA
48
 - MCP
49
 - Enhance UART with modem signals
50
 */
51

    
52
#ifdef DEBUG
53
# define DPRINTF(format, ...) printf(format , ## __VA_ARGS__)
54
#else
55
# define DPRINTF(format, ...) do { } while (0)
56
#endif
57

    
58
static struct {
59
    target_phys_addr_t io_base;
60
    int irq;
61
} sa_serial[] = {
62
    { 0x80010000, SA_PIC_UART1 },
63
    { 0x80030000, SA_PIC_UART2 },
64
    { 0x80050000, SA_PIC_UART3 },
65
    { 0, 0 }
66
};
67

    
68
/* Interrupt Controller */
69
typedef struct {
70
    SysBusDevice busdev;
71
    qemu_irq    irq;
72
    qemu_irq    fiq;
73

    
74
    uint32_t pending;
75
    uint32_t enabled;
76
    uint32_t is_fiq;
77
    uint32_t int_idle;
78
} StrongARMPICState;
79

    
80
#define ICIP    0x00
81
#define ICMR    0x04
82
#define ICLR    0x08
83
#define ICFP    0x10
84
#define ICPR    0x20
85
#define ICCR    0x0c
86

    
87
#define SA_PIC_SRCS     32
88

    
89

    
90
static void strongarm_pic_update(void *opaque)
91
{
92
    StrongARMPICState *s = opaque;
93

    
94
    /* FIXME: reflect DIM */
95
    qemu_set_irq(s->fiq, s->pending & s->enabled &  s->is_fiq);
96
    qemu_set_irq(s->irq, s->pending & s->enabled & ~s->is_fiq);
97
}
98

    
99
static void strongarm_pic_set_irq(void *opaque, int irq, int level)
100
{
101
    StrongARMPICState *s = opaque;
102

    
103
    if (level) {
104
        s->pending |= 1 << irq;
105
    } else {
106
        s->pending &= ~(1 << irq);
107
    }
108

    
109
    strongarm_pic_update(s);
110
}
111

    
112
static uint32_t strongarm_pic_mem_read(void *opaque, target_phys_addr_t offset)
113
{
114
    StrongARMPICState *s = opaque;
115

    
116
    switch (offset) {
117
    case ICIP:
118
        return s->pending & ~s->is_fiq & s->enabled;
119
    case ICMR:
120
        return s->enabled;
121
    case ICLR:
122
        return s->is_fiq;
123
    case ICCR:
124
        return s->int_idle == 0;
125
    case ICFP:
126
        return s->pending & s->is_fiq & s->enabled;
127
    case ICPR:
128
        return s->pending;
129
    default:
130
        printf("%s: Bad register offset 0x" TARGET_FMT_plx "\n",
131
                        __func__, offset);
132
        return 0;
133
    }
134
}
135

    
136
static void strongarm_pic_mem_write(void *opaque, target_phys_addr_t offset,
137
                uint32_t value)
138
{
139
    StrongARMPICState *s = opaque;
140

    
141
    switch (offset) {
142
    case ICMR:
143
        s->enabled = value;
144
        break;
145
    case ICLR:
146
        s->is_fiq = value;
147
        break;
148
    case ICCR:
149
        s->int_idle = (value & 1) ? 0 : ~0;
150
        break;
151
    default:
152
        printf("%s: Bad register offset 0x" TARGET_FMT_plx "\n",
153
                        __func__, offset);
154
        break;
155
    }
156
    strongarm_pic_update(s);
157
}
158

    
159
static CPUReadMemoryFunc * const strongarm_pic_readfn[] = {
160
    strongarm_pic_mem_read,
161
    strongarm_pic_mem_read,
162
    strongarm_pic_mem_read,
163
};
164

    
165
static CPUWriteMemoryFunc * const strongarm_pic_writefn[] = {
166
    strongarm_pic_mem_write,
167
    strongarm_pic_mem_write,
168
    strongarm_pic_mem_write,
169
};
170

    
171
static int strongarm_pic_initfn(SysBusDevice *dev)
172
{
173
    StrongARMPICState *s = FROM_SYSBUS(StrongARMPICState, dev);
174
    int iomemtype;
175

    
176
    qdev_init_gpio_in(&dev->qdev, strongarm_pic_set_irq, SA_PIC_SRCS);
177
    iomemtype = cpu_register_io_memory(strongarm_pic_readfn,
178
                    strongarm_pic_writefn, s, DEVICE_NATIVE_ENDIAN);
179
    sysbus_init_mmio(dev, 0x1000, iomemtype);
180
    sysbus_init_irq(dev, &s->irq);
181
    sysbus_init_irq(dev, &s->fiq);
182

    
183
    return 0;
184
}
185

    
186
static int strongarm_pic_post_load(void *opaque, int version_id)
187
{
188
    strongarm_pic_update(opaque);
189
    return 0;
190
}
191

    
192
static VMStateDescription vmstate_strongarm_pic_regs = {
193
    .name = "strongarm_pic",
194
    .version_id = 0,
195
    .minimum_version_id = 0,
196
    .minimum_version_id_old = 0,
197
    .post_load = strongarm_pic_post_load,
198
    .fields = (VMStateField[]) {
199
        VMSTATE_UINT32(pending, StrongARMPICState),
200
        VMSTATE_UINT32(enabled, StrongARMPICState),
201
        VMSTATE_UINT32(is_fiq, StrongARMPICState),
202
        VMSTATE_UINT32(int_idle, StrongARMPICState),
203
        VMSTATE_END_OF_LIST(),
204
    },
205
};
206

    
207
static SysBusDeviceInfo strongarm_pic_info = {
208
    .init       = strongarm_pic_initfn,
209
    .qdev.name  = "strongarm_pic",
210
    .qdev.desc  = "StrongARM PIC",
211
    .qdev.size  = sizeof(StrongARMPICState),
212
    .qdev.vmsd  = &vmstate_strongarm_pic_regs,
213
};
214

    
215
/* Real-Time Clock */
216
#define RTAR 0x00 /* RTC Alarm register */
217
#define RCNR 0x04 /* RTC Counter register */
218
#define RTTR 0x08 /* RTC Timer Trim register */
219
#define RTSR 0x10 /* RTC Status register */
220

    
221
#define RTSR_AL (1 << 0) /* RTC Alarm detected */
222
#define RTSR_HZ (1 << 1) /* RTC 1Hz detected */
223
#define RTSR_ALE (1 << 2) /* RTC Alarm enable */
224
#define RTSR_HZE (1 << 3) /* RTC 1Hz enable */
225

    
226
/* 16 LSB of RTTR are clockdiv for internal trim logic,
227
 * trim delete isn't emulated, so
228
 * f = 32 768 / (RTTR_trim + 1) */
229

    
230
typedef struct {
231
    SysBusDevice busdev;
232
    uint32_t rttr;
233
    uint32_t rtsr;
234
    uint32_t rtar;
235
    uint32_t last_rcnr;
236
    int64_t last_hz;
237
    QEMUTimer *rtc_alarm;
238
    QEMUTimer *rtc_hz;
239
    qemu_irq rtc_irq;
240
    qemu_irq rtc_hz_irq;
241
} StrongARMRTCState;
242

    
243
static inline void strongarm_rtc_int_update(StrongARMRTCState *s)
244
{
245
    qemu_set_irq(s->rtc_irq, s->rtsr & RTSR_AL);
246
    qemu_set_irq(s->rtc_hz_irq, s->rtsr & RTSR_HZ);
247
}
248

    
249
static void strongarm_rtc_hzupdate(StrongARMRTCState *s)
250
{
251
    int64_t rt = qemu_get_clock_ms(rt_clock);
252
    s->last_rcnr += ((rt - s->last_hz) << 15) /
253
            (1000 * ((s->rttr & 0xffff) + 1));
254
    s->last_hz = rt;
255
}
256

    
257
static inline void strongarm_rtc_timer_update(StrongARMRTCState *s)
258
{
259
    if ((s->rtsr & RTSR_HZE) && !(s->rtsr & RTSR_HZ)) {
260
        qemu_mod_timer(s->rtc_hz, s->last_hz + 1000);
261
    } else {
262
        qemu_del_timer(s->rtc_hz);
263
    }
264

    
265
    if ((s->rtsr & RTSR_ALE) && !(s->rtsr & RTSR_AL)) {
266
        qemu_mod_timer(s->rtc_alarm, s->last_hz +
267
                (((s->rtar - s->last_rcnr) * 1000 *
268
                  ((s->rttr & 0xffff) + 1)) >> 15));
269
    } else {
270
        qemu_del_timer(s->rtc_alarm);
271
    }
272
}
273

    
274
static inline void strongarm_rtc_alarm_tick(void *opaque)
275
{
276
    StrongARMRTCState *s = opaque;
277
    s->rtsr |= RTSR_AL;
278
    strongarm_rtc_timer_update(s);
279
    strongarm_rtc_int_update(s);
280
}
281

    
282
static inline void strongarm_rtc_hz_tick(void *opaque)
283
{
284
    StrongARMRTCState *s = opaque;
285
    s->rtsr |= RTSR_HZ;
286
    strongarm_rtc_timer_update(s);
287
    strongarm_rtc_int_update(s);
288
}
289

    
290
static uint32_t strongarm_rtc_read(void *opaque, target_phys_addr_t addr)
291
{
292
    StrongARMRTCState *s = opaque;
293

    
294
    switch (addr) {
295
    case RTTR:
296
        return s->rttr;
297
    case RTSR:
298
        return s->rtsr;
299
    case RTAR:
300
        return s->rtar;
301
    case RCNR:
302
        return s->last_rcnr +
303
                ((qemu_get_clock_ms(rt_clock) - s->last_hz) << 15) /
304
                (1000 * ((s->rttr & 0xffff) + 1));
305
    default:
306
        printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
307
        return 0;
308
    }
309
}
310

    
311
static void strongarm_rtc_write(void *opaque, target_phys_addr_t addr,
312
                uint32_t value)
313
{
314
    StrongARMRTCState *s = opaque;
315
    uint32_t old_rtsr;
316

    
317
    switch (addr) {
318
    case RTTR:
319
        strongarm_rtc_hzupdate(s);
320
        s->rttr = value;
321
        strongarm_rtc_timer_update(s);
322
        break;
323

    
324
    case RTSR:
325
        old_rtsr = s->rtsr;
326
        s->rtsr = (value & (RTSR_ALE | RTSR_HZE)) |
327
                  (s->rtsr & ~(value & (RTSR_AL | RTSR_HZ)));
328

    
329
        if (s->rtsr != old_rtsr) {
330
            strongarm_rtc_timer_update(s);
331
        }
332

    
333
        strongarm_rtc_int_update(s);
334
        break;
335

    
336
    case RTAR:
337
        s->rtar = value;
338
        strongarm_rtc_timer_update(s);
339
        break;
340

    
341
    case RCNR:
342
        strongarm_rtc_hzupdate(s);
343
        s->last_rcnr = value;
344
        strongarm_rtc_timer_update(s);
345
        break;
346

    
347
    default:
348
        printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
349
    }
350
}
351

    
352
static CPUReadMemoryFunc * const strongarm_rtc_readfn[] = {
353
    strongarm_rtc_read,
354
    strongarm_rtc_read,
355
    strongarm_rtc_read,
356
};
357

    
358
static CPUWriteMemoryFunc * const strongarm_rtc_writefn[] = {
359
    strongarm_rtc_write,
360
    strongarm_rtc_write,
361
    strongarm_rtc_write,
362
};
363

    
364
static int strongarm_rtc_init(SysBusDevice *dev)
365
{
366
    StrongARMRTCState *s = FROM_SYSBUS(StrongARMRTCState, dev);
367
    struct tm tm;
368
    int iomemtype;
369

    
370
    s->rttr = 0x0;
371
    s->rtsr = 0;
372

    
373
    qemu_get_timedate(&tm, 0);
374

    
375
    s->last_rcnr = (uint32_t) mktimegm(&tm);
376
    s->last_hz = qemu_get_clock_ms(rt_clock);
377

    
378
    s->rtc_alarm = qemu_new_timer_ms(rt_clock, strongarm_rtc_alarm_tick, s);
379
    s->rtc_hz = qemu_new_timer_ms(rt_clock, strongarm_rtc_hz_tick, s);
380

    
381
    sysbus_init_irq(dev, &s->rtc_irq);
382
    sysbus_init_irq(dev, &s->rtc_hz_irq);
383

    
384
    iomemtype = cpu_register_io_memory(strongarm_rtc_readfn,
385
                    strongarm_rtc_writefn, s, DEVICE_NATIVE_ENDIAN);
386
    sysbus_init_mmio(dev, 0x10000, iomemtype);
387

    
388
    return 0;
389
}
390

    
391
static void strongarm_rtc_pre_save(void *opaque)
392
{
393
    StrongARMRTCState *s = opaque;
394

    
395
    strongarm_rtc_hzupdate(s);
396
}
397

    
398
static int strongarm_rtc_post_load(void *opaque, int version_id)
399
{
400
    StrongARMRTCState *s = opaque;
401

    
402
    strongarm_rtc_timer_update(s);
403
    strongarm_rtc_int_update(s);
404

    
405
    return 0;
406
}
407

    
408
static const VMStateDescription vmstate_strongarm_rtc_regs = {
409
    .name = "strongarm-rtc",
410
    .version_id = 0,
411
    .minimum_version_id = 0,
412
    .minimum_version_id_old = 0,
413
    .pre_save = strongarm_rtc_pre_save,
414
    .post_load = strongarm_rtc_post_load,
415
    .fields = (VMStateField[]) {
416
        VMSTATE_UINT32(rttr, StrongARMRTCState),
417
        VMSTATE_UINT32(rtsr, StrongARMRTCState),
418
        VMSTATE_UINT32(rtar, StrongARMRTCState),
419
        VMSTATE_UINT32(last_rcnr, StrongARMRTCState),
420
        VMSTATE_INT64(last_hz, StrongARMRTCState),
421
        VMSTATE_END_OF_LIST(),
422
    },
423
};
424

    
425
static SysBusDeviceInfo strongarm_rtc_sysbus_info = {
426
    .init       = strongarm_rtc_init,
427
    .qdev.name  = "strongarm-rtc",
428
    .qdev.desc  = "StrongARM RTC Controller",
429
    .qdev.size  = sizeof(StrongARMRTCState),
430
    .qdev.vmsd  = &vmstate_strongarm_rtc_regs,
431
};
432

    
433
/* GPIO */
434
#define GPLR 0x00
435
#define GPDR 0x04
436
#define GPSR 0x08
437
#define GPCR 0x0c
438
#define GRER 0x10
439
#define GFER 0x14
440
#define GEDR 0x18
441
#define GAFR 0x1c
442

    
443
typedef struct StrongARMGPIOInfo StrongARMGPIOInfo;
444
struct StrongARMGPIOInfo {
445
    SysBusDevice busdev;
446
    qemu_irq handler[28];
447
    qemu_irq irqs[11];
448
    qemu_irq irqX;
449

    
450
    uint32_t ilevel;
451
    uint32_t olevel;
452
    uint32_t dir;
453
    uint32_t rising;
454
    uint32_t falling;
455
    uint32_t status;
456
    uint32_t gpsr;
457
    uint32_t gafr;
458

    
459
    uint32_t prev_level;
460
};
461

    
462

    
463
static void strongarm_gpio_irq_update(StrongARMGPIOInfo *s)
464
{
465
    int i;
466
    for (i = 0; i < 11; i++) {
467
        qemu_set_irq(s->irqs[i], s->status & (1 << i));
468
    }
469

    
470
    qemu_set_irq(s->irqX, (s->status & ~0x7ff));
471
}
472

    
473
static void strongarm_gpio_set(void *opaque, int line, int level)
474
{
475
    StrongARMGPIOInfo *s = opaque;
476
    uint32_t mask;
477

    
478
    mask = 1 << line;
479

    
480
    if (level) {
481
        s->status |= s->rising & mask &
482
                ~s->ilevel & ~s->dir;
483
        s->ilevel |= mask;
484
    } else {
485
        s->status |= s->falling & mask &
486
                s->ilevel & ~s->dir;
487
        s->ilevel &= ~mask;
488
    }
489

    
490
    if (s->status & mask) {
491
        strongarm_gpio_irq_update(s);
492
    }
493
}
494

    
495
static void strongarm_gpio_handler_update(StrongARMGPIOInfo *s)
496
{
497
    uint32_t level, diff;
498
    int bit;
499

    
500
    level = s->olevel & s->dir;
501

    
502
    for (diff = s->prev_level ^ level; diff; diff ^= 1 << bit) {
503
        bit = ffs(diff) - 1;
504
        qemu_set_irq(s->handler[bit], (level >> bit) & 1);
505
    }
506

    
507
    s->prev_level = level;
508
}
509

    
510
static uint32_t strongarm_gpio_read(void *opaque, target_phys_addr_t offset)
511
{
512
    StrongARMGPIOInfo *s = opaque;
513

    
514
    switch (offset) {
515
    case GPDR:        /* GPIO Pin-Direction registers */
516
        return s->dir;
517

    
518
    case GPSR:        /* GPIO Pin-Output Set registers */
519
        DPRINTF("%s: Read from a write-only register 0x" TARGET_FMT_plx "\n",
520
                        __func__, offset);
521
        return s->gpsr;    /* Return last written value.  */
522

    
523
    case GPCR:        /* GPIO Pin-Output Clear registers */
524
        DPRINTF("%s: Read from a write-only register 0x" TARGET_FMT_plx "\n",
525
                        __func__, offset);
526
        return 31337;        /* Specified as unpredictable in the docs.  */
527

    
528
    case GRER:        /* GPIO Rising-Edge Detect Enable registers */
529
        return s->rising;
530

    
531
    case GFER:        /* GPIO Falling-Edge Detect Enable registers */
532
        return s->falling;
533

    
534
    case GAFR:        /* GPIO Alternate Function registers */
535
        return s->gafr;
536

    
537
    case GPLR:        /* GPIO Pin-Level registers */
538
        return (s->olevel & s->dir) |
539
               (s->ilevel & ~s->dir);
540

    
541
    case GEDR:        /* GPIO Edge Detect Status registers */
542
        return s->status;
543

    
544
    default:
545
        printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
546
    }
547

    
548
    return 0;
549
}
550

    
551
static void strongarm_gpio_write(void *opaque,
552
                target_phys_addr_t offset, uint32_t value)
553
{
554
    StrongARMGPIOInfo *s = opaque;
555

    
556
    switch (offset) {
557
    case GPDR:        /* GPIO Pin-Direction registers */
558
        s->dir = value;
559
        strongarm_gpio_handler_update(s);
560
        break;
561

    
562
    case GPSR:        /* GPIO Pin-Output Set registers */
563
        s->olevel |= value;
564
        strongarm_gpio_handler_update(s);
565
        s->gpsr = value;
566
        break;
567

    
568
    case GPCR:        /* GPIO Pin-Output Clear registers */
569
        s->olevel &= ~value;
570
        strongarm_gpio_handler_update(s);
571
        break;
572

    
573
    case GRER:        /* GPIO Rising-Edge Detect Enable registers */
574
        s->rising = value;
575
        break;
576

    
577
    case GFER:        /* GPIO Falling-Edge Detect Enable registers */
578
        s->falling = value;
579
        break;
580

    
581
    case GAFR:        /* GPIO Alternate Function registers */
582
        s->gafr = value;
583
        break;
584

    
585
    case GEDR:        /* GPIO Edge Detect Status registers */
586
        s->status &= ~value;
587
        strongarm_gpio_irq_update(s);
588
        break;
589

    
590
    default:
591
        printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
592
    }
593
}
594

    
595
static CPUReadMemoryFunc * const strongarm_gpio_readfn[] = {
596
    strongarm_gpio_read,
597
    strongarm_gpio_read,
598
    strongarm_gpio_read
599
};
600

    
601
static CPUWriteMemoryFunc * const strongarm_gpio_writefn[] = {
602
    strongarm_gpio_write,
603
    strongarm_gpio_write,
604
    strongarm_gpio_write
605
};
606

    
607
static DeviceState *strongarm_gpio_init(target_phys_addr_t base,
608
                DeviceState *pic)
609
{
610
    DeviceState *dev;
611
    int i;
612

    
613
    dev = qdev_create(NULL, "strongarm-gpio");
614
    qdev_init_nofail(dev);
615

    
616
    sysbus_mmio_map(sysbus_from_qdev(dev), 0, base);
617
    for (i = 0; i < 12; i++)
618
        sysbus_connect_irq(sysbus_from_qdev(dev), i,
619
                    qdev_get_gpio_in(pic, SA_PIC_GPIO0_EDGE + i));
620

    
621
    return dev;
622
}
623

    
624
static int strongarm_gpio_initfn(SysBusDevice *dev)
625
{
626
    int iomemtype;
627
    StrongARMGPIOInfo *s;
628
    int i;
629

    
630
    s = FROM_SYSBUS(StrongARMGPIOInfo, dev);
631

    
632
    qdev_init_gpio_in(&dev->qdev, strongarm_gpio_set, 28);
633
    qdev_init_gpio_out(&dev->qdev, s->handler, 28);
634

    
635
    iomemtype = cpu_register_io_memory(strongarm_gpio_readfn,
636
                    strongarm_gpio_writefn, s, DEVICE_NATIVE_ENDIAN);
637

    
638
    sysbus_init_mmio(dev, 0x1000, iomemtype);
639
    for (i = 0; i < 11; i++) {
640
        sysbus_init_irq(dev, &s->irqs[i]);
641
    }
642
    sysbus_init_irq(dev, &s->irqX);
643

    
644
    return 0;
645
}
646

    
647
static const VMStateDescription vmstate_strongarm_gpio_regs = {
648
    .name = "strongarm-gpio",
649
    .version_id = 0,
650
    .minimum_version_id = 0,
651
    .minimum_version_id_old = 0,
652
    .fields = (VMStateField[]) {
653
        VMSTATE_UINT32(ilevel, StrongARMGPIOInfo),
654
        VMSTATE_UINT32(olevel, StrongARMGPIOInfo),
655
        VMSTATE_UINT32(dir, StrongARMGPIOInfo),
656
        VMSTATE_UINT32(rising, StrongARMGPIOInfo),
657
        VMSTATE_UINT32(falling, StrongARMGPIOInfo),
658
        VMSTATE_UINT32(status, StrongARMGPIOInfo),
659
        VMSTATE_UINT32(gafr, StrongARMGPIOInfo),
660
        VMSTATE_END_OF_LIST(),
661
    },
662
};
663

    
664
static SysBusDeviceInfo strongarm_gpio_info = {
665
    .init       = strongarm_gpio_initfn,
666
    .qdev.name  = "strongarm-gpio",
667
    .qdev.desc  = "StrongARM GPIO controller",
668
    .qdev.size  = sizeof(StrongARMGPIOInfo),
669
};
670

    
671
/* Peripheral Pin Controller */
672
#define PPDR 0x00
673
#define PPSR 0x04
674
#define PPAR 0x08
675
#define PSDR 0x0c
676
#define PPFR 0x10
677

    
678
typedef struct StrongARMPPCInfo StrongARMPPCInfo;
679
struct StrongARMPPCInfo {
680
    SysBusDevice busdev;
681
    qemu_irq handler[28];
682

    
683
    uint32_t ilevel;
684
    uint32_t olevel;
685
    uint32_t dir;
686
    uint32_t ppar;
687
    uint32_t psdr;
688
    uint32_t ppfr;
689

    
690
    uint32_t prev_level;
691
};
692

    
693
static void strongarm_ppc_set(void *opaque, int line, int level)
694
{
695
    StrongARMPPCInfo *s = opaque;
696

    
697
    if (level) {
698
        s->ilevel |= 1 << line;
699
    } else {
700
        s->ilevel &= ~(1 << line);
701
    }
702
}
703

    
704
static void strongarm_ppc_handler_update(StrongARMPPCInfo *s)
705
{
706
    uint32_t level, diff;
707
    int bit;
708

    
709
    level = s->olevel & s->dir;
710

    
711
    for (diff = s->prev_level ^ level; diff; diff ^= 1 << bit) {
712
        bit = ffs(diff) - 1;
713
        qemu_set_irq(s->handler[bit], (level >> bit) & 1);
714
    }
715

    
716
    s->prev_level = level;
717
}
718

    
719
static uint32_t strongarm_ppc_read(void *opaque, target_phys_addr_t offset)
720
{
721
    StrongARMPPCInfo *s = opaque;
722

    
723
    switch (offset) {
724
    case PPDR:        /* PPC Pin Direction registers */
725
        return s->dir | ~0x3fffff;
726

    
727
    case PPSR:        /* PPC Pin State registers */
728
        return (s->olevel & s->dir) |
729
               (s->ilevel & ~s->dir) |
730
               ~0x3fffff;
731

    
732
    case PPAR:
733
        return s->ppar | ~0x41000;
734

    
735
    case PSDR:
736
        return s->psdr;
737

    
738
    case PPFR:
739
        return s->ppfr | ~0x7f001;
740

    
741
    default:
742
        printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
743
    }
744

    
745
    return 0;
746
}
747

    
748
static void strongarm_ppc_write(void *opaque,
749
                target_phys_addr_t offset, uint32_t value)
750
{
751
    StrongARMPPCInfo *s = opaque;
752

    
753
    switch (offset) {
754
    case PPDR:        /* PPC Pin Direction registers */
755
        s->dir = value & 0x3fffff;
756
        strongarm_ppc_handler_update(s);
757
        break;
758

    
759
    case PPSR:        /* PPC Pin State registers */
760
        s->olevel = value & s->dir & 0x3fffff;
761
        strongarm_ppc_handler_update(s);
762
        break;
763

    
764
    case PPAR:
765
        s->ppar = value & 0x41000;
766
        break;
767

    
768
    case PSDR:
769
        s->psdr = value & 0x3fffff;
770
        break;
771

    
772
    case PPFR:
773
        s->ppfr = value & 0x7f001;
774
        break;
775

    
776
    default:
777
        printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
778
    }
779
}
780

    
781
static CPUReadMemoryFunc * const strongarm_ppc_readfn[] = {
782
    strongarm_ppc_read,
783
    strongarm_ppc_read,
784
    strongarm_ppc_read
785
};
786

    
787
static CPUWriteMemoryFunc * const strongarm_ppc_writefn[] = {
788
    strongarm_ppc_write,
789
    strongarm_ppc_write,
790
    strongarm_ppc_write
791
};
792

    
793
static int strongarm_ppc_init(SysBusDevice *dev)
794
{
795
    int iomemtype;
796
    StrongARMPPCInfo *s;
797

    
798
    s = FROM_SYSBUS(StrongARMPPCInfo, dev);
799

    
800
    qdev_init_gpio_in(&dev->qdev, strongarm_ppc_set, 22);
801
    qdev_init_gpio_out(&dev->qdev, s->handler, 22);
802

    
803
    iomemtype = cpu_register_io_memory(strongarm_ppc_readfn,
804
                    strongarm_ppc_writefn, s, DEVICE_NATIVE_ENDIAN);
805

    
806
    sysbus_init_mmio(dev, 0x1000, iomemtype);
807

    
808
    return 0;
809
}
810

    
811
static const VMStateDescription vmstate_strongarm_ppc_regs = {
812
    .name = "strongarm-ppc",
813
    .version_id = 0,
814
    .minimum_version_id = 0,
815
    .minimum_version_id_old = 0,
816
    .fields = (VMStateField[]) {
817
        VMSTATE_UINT32(ilevel, StrongARMPPCInfo),
818
        VMSTATE_UINT32(olevel, StrongARMPPCInfo),
819
        VMSTATE_UINT32(dir, StrongARMPPCInfo),
820
        VMSTATE_UINT32(ppar, StrongARMPPCInfo),
821
        VMSTATE_UINT32(psdr, StrongARMPPCInfo),
822
        VMSTATE_UINT32(ppfr, StrongARMPPCInfo),
823
        VMSTATE_END_OF_LIST(),
824
    },
825
};
826

    
827
static SysBusDeviceInfo strongarm_ppc_info = {
828
    .init       = strongarm_ppc_init,
829
    .qdev.name  = "strongarm-ppc",
830
    .qdev.desc  = "StrongARM PPC controller",
831
    .qdev.size  = sizeof(StrongARMPPCInfo),
832
};
833

    
834
/* UART Ports */
835
#define UTCR0 0x00
836
#define UTCR1 0x04
837
#define UTCR2 0x08
838
#define UTCR3 0x0c
839
#define UTDR  0x14
840
#define UTSR0 0x1c
841
#define UTSR1 0x20
842

    
843
#define UTCR0_PE  (1 << 0) /* Parity enable */
844
#define UTCR0_OES (1 << 1) /* Even parity */
845
#define UTCR0_SBS (1 << 2) /* 2 stop bits */
846
#define UTCR0_DSS (1 << 3) /* 8-bit data */
847

    
848
#define UTCR3_RXE (1 << 0) /* Rx enable */
849
#define UTCR3_TXE (1 << 1) /* Tx enable */
850
#define UTCR3_BRK (1 << 2) /* Force Break */
851
#define UTCR3_RIE (1 << 3) /* Rx int enable */
852
#define UTCR3_TIE (1 << 4) /* Tx int enable */
853
#define UTCR3_LBM (1 << 5) /* Loopback */
854

    
855
#define UTSR0_TFS (1 << 0) /* Tx FIFO nearly empty */
856
#define UTSR0_RFS (1 << 1) /* Rx FIFO nearly full */
857
#define UTSR0_RID (1 << 2) /* Receiver Idle */
858
#define UTSR0_RBB (1 << 3) /* Receiver begin break */
859
#define UTSR0_REB (1 << 4) /* Receiver end break */
860
#define UTSR0_EIF (1 << 5) /* Error in FIFO */
861

    
862
#define UTSR1_RNE (1 << 1) /* Receive FIFO not empty */
863
#define UTSR1_TNF (1 << 2) /* Transmit FIFO not full */
864
#define UTSR1_PRE (1 << 3) /* Parity error */
865
#define UTSR1_FRE (1 << 4) /* Frame error */
866
#define UTSR1_ROR (1 << 5) /* Receive Over Run */
867

    
868
#define RX_FIFO_PRE (1 << 8)
869
#define RX_FIFO_FRE (1 << 9)
870
#define RX_FIFO_ROR (1 << 10)
871

    
872
typedef struct {
873
    SysBusDevice busdev;
874
    CharDriverState *chr;
875
    qemu_irq irq;
876

    
877
    uint8_t utcr0;
878
    uint16_t brd;
879
    uint8_t utcr3;
880
    uint8_t utsr0;
881
    uint8_t utsr1;
882

    
883
    uint8_t tx_fifo[8];
884
    uint8_t tx_start;
885
    uint8_t tx_len;
886
    uint16_t rx_fifo[12]; /* value + error flags in high bits */
887
    uint8_t rx_start;
888
    uint8_t rx_len;
889

    
890
    uint64_t char_transmit_time; /* time to transmit a char in ticks*/
891
    bool wait_break_end;
892
    QEMUTimer *rx_timeout_timer;
893
    QEMUTimer *tx_timer;
894
} StrongARMUARTState;
895

    
896
static void strongarm_uart_update_status(StrongARMUARTState *s)
897
{
898
    uint16_t utsr1 = 0;
899

    
900
    if (s->tx_len != 8) {
901
        utsr1 |= UTSR1_TNF;
902
    }
903

    
904
    if (s->rx_len != 0) {
905
        uint16_t ent = s->rx_fifo[s->rx_start];
906

    
907
        utsr1 |= UTSR1_RNE;
908
        if (ent & RX_FIFO_PRE) {
909
            s->utsr1 |= UTSR1_PRE;
910
        }
911
        if (ent & RX_FIFO_FRE) {
912
            s->utsr1 |= UTSR1_FRE;
913
        }
914
        if (ent & RX_FIFO_ROR) {
915
            s->utsr1 |= UTSR1_ROR;
916
        }
917
    }
918

    
919
    s->utsr1 = utsr1;
920
}
921

    
922
static void strongarm_uart_update_int_status(StrongARMUARTState *s)
923
{
924
    uint16_t utsr0 = s->utsr0 &
925
            (UTSR0_REB | UTSR0_RBB | UTSR0_RID);
926
    int i;
927

    
928
    if ((s->utcr3 & UTCR3_TXE) &&
929
                (s->utcr3 & UTCR3_TIE) &&
930
                s->tx_len <= 4) {
931
        utsr0 |= UTSR0_TFS;
932
    }
933

    
934
    if ((s->utcr3 & UTCR3_RXE) &&
935
                (s->utcr3 & UTCR3_RIE) &&
936
                s->rx_len > 4) {
937
        utsr0 |= UTSR0_RFS;
938
    }
939

    
940
    for (i = 0; i < s->rx_len && i < 4; i++)
941
        if (s->rx_fifo[(s->rx_start + i) % 12] & ~0xff) {
942
            utsr0 |= UTSR0_EIF;
943
            break;
944
        }
945

    
946
    s->utsr0 = utsr0;
947
    qemu_set_irq(s->irq, utsr0);
948
}
949

    
950
static void strongarm_uart_update_parameters(StrongARMUARTState *s)
951
{
952
    int speed, parity, data_bits, stop_bits, frame_size;
953
    QEMUSerialSetParams ssp;
954

    
955
    /* Start bit. */
956
    frame_size = 1;
957
    if (s->utcr0 & UTCR0_PE) {
958
        /* Parity bit. */
959
        frame_size++;
960
        if (s->utcr0 & UTCR0_OES) {
961
            parity = 'E';
962
        } else {
963
            parity = 'O';
964
        }
965
    } else {
966
            parity = 'N';
967
    }
968
    if (s->utcr0 & UTCR0_SBS) {
969
        stop_bits = 2;
970
    } else {
971
        stop_bits = 1;
972
    }
973

    
974
    data_bits = (s->utcr0 & UTCR0_DSS) ? 8 : 7;
975
    frame_size += data_bits + stop_bits;
976
    speed = 3686400 / 16 / (s->brd + 1);
977
    ssp.speed = speed;
978
    ssp.parity = parity;
979
    ssp.data_bits = data_bits;
980
    ssp.stop_bits = stop_bits;
981
    s->char_transmit_time =  (get_ticks_per_sec() / speed) * frame_size;
982
    if (s->chr) {
983
        qemu_chr_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
984
    }
985

    
986
    DPRINTF(stderr, "%s speed=%d parity=%c data=%d stop=%d\n", s->chr->label,
987
            speed, parity, data_bits, stop_bits);
988
}
989

    
990
static void strongarm_uart_rx_to(void *opaque)
991
{
992
    StrongARMUARTState *s = opaque;
993

    
994
    if (s->rx_len) {
995
        s->utsr0 |= UTSR0_RID;
996
        strongarm_uart_update_int_status(s);
997
    }
998
}
999

    
1000
static void strongarm_uart_rx_push(StrongARMUARTState *s, uint16_t c)
1001
{
1002
    if ((s->utcr3 & UTCR3_RXE) == 0) {
1003
        /* rx disabled */
1004
        return;
1005
    }
1006

    
1007
    if (s->wait_break_end) {
1008
        s->utsr0 |= UTSR0_REB;
1009
        s->wait_break_end = false;
1010
    }
1011

    
1012
    if (s->rx_len < 12) {
1013
        s->rx_fifo[(s->rx_start + s->rx_len) % 12] = c;
1014
        s->rx_len++;
1015
    } else
1016
        s->rx_fifo[(s->rx_start + 11) % 12] |= RX_FIFO_ROR;
1017
}
1018

    
1019
static int strongarm_uart_can_receive(void *opaque)
1020
{
1021
    StrongARMUARTState *s = opaque;
1022

    
1023
    if (s->rx_len == 12) {
1024
        return 0;
1025
    }
1026
    /* It's best not to get more than 2/3 of RX FIFO, so advertise that much */
1027
    if (s->rx_len < 8) {
1028
        return 8 - s->rx_len;
1029
    }
1030
    return 1;
1031
}
1032

    
1033
static void strongarm_uart_receive(void *opaque, const uint8_t *buf, int size)
1034
{
1035
    StrongARMUARTState *s = opaque;
1036
    int i;
1037

    
1038
    for (i = 0; i < size; i++) {
1039
        strongarm_uart_rx_push(s, buf[i]);
1040
    }
1041

    
1042
    /* call the timeout receive callback in 3 char transmit time */
1043
    qemu_mod_timer(s->rx_timeout_timer,
1044
                    qemu_get_clock_ns(vm_clock) + s->char_transmit_time * 3);
1045

    
1046
    strongarm_uart_update_status(s);
1047
    strongarm_uart_update_int_status(s);
1048
}
1049

    
1050
static void strongarm_uart_event(void *opaque, int event)
1051
{
1052
    StrongARMUARTState *s = opaque;
1053
    if (event == CHR_EVENT_BREAK) {
1054
        s->utsr0 |= UTSR0_RBB;
1055
        strongarm_uart_rx_push(s, RX_FIFO_FRE);
1056
        s->wait_break_end = true;
1057
        strongarm_uart_update_status(s);
1058
        strongarm_uart_update_int_status(s);
1059
    }
1060
}
1061

    
1062
static void strongarm_uart_tx(void *opaque)
1063
{
1064
    StrongARMUARTState *s = opaque;
1065
    uint64_t new_xmit_ts = qemu_get_clock_ns(vm_clock);
1066

    
1067
    if (s->utcr3 & UTCR3_LBM) /* loopback */ {
1068
        strongarm_uart_receive(s, &s->tx_fifo[s->tx_start], 1);
1069
    } else if (s->chr) {
1070
        qemu_chr_write(s->chr, &s->tx_fifo[s->tx_start], 1);
1071
    }
1072

    
1073
    s->tx_start = (s->tx_start + 1) % 8;
1074
    s->tx_len--;
1075
    if (s->tx_len) {
1076
        qemu_mod_timer(s->tx_timer, new_xmit_ts + s->char_transmit_time);
1077
    }
1078
    strongarm_uart_update_status(s);
1079
    strongarm_uart_update_int_status(s);
1080
}
1081

    
1082
static uint32_t strongarm_uart_read(void *opaque, target_phys_addr_t addr)
1083
{
1084
    StrongARMUARTState *s = opaque;
1085
    uint16_t ret;
1086

    
1087
    switch (addr) {
1088
    case UTCR0:
1089
        return s->utcr0;
1090

    
1091
    case UTCR1:
1092
        return s->brd >> 8;
1093

    
1094
    case UTCR2:
1095
        return s->brd & 0xff;
1096

    
1097
    case UTCR3:
1098
        return s->utcr3;
1099

    
1100
    case UTDR:
1101
        if (s->rx_len != 0) {
1102
            ret = s->rx_fifo[s->rx_start];
1103
            s->rx_start = (s->rx_start + 1) % 12;
1104
            s->rx_len--;
1105
            strongarm_uart_update_status(s);
1106
            strongarm_uart_update_int_status(s);
1107
            return ret;
1108
        }
1109
        return 0;
1110

    
1111
    case UTSR0:
1112
        return s->utsr0;
1113

    
1114
    case UTSR1:
1115
        return s->utsr1;
1116

    
1117
    default:
1118
        printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
1119
        return 0;
1120
    }
1121
}
1122

    
1123
static void strongarm_uart_write(void *opaque, target_phys_addr_t addr,
1124
                uint32_t value)
1125
{
1126
    StrongARMUARTState *s = opaque;
1127

    
1128
    switch (addr) {
1129
    case UTCR0:
1130
        s->utcr0 = value & 0x7f;
1131
        strongarm_uart_update_parameters(s);
1132
        break;
1133

    
1134
    case UTCR1:
1135
        s->brd = (s->brd & 0xff) | ((value & 0xf) << 8);
1136
        strongarm_uart_update_parameters(s);
1137
        break;
1138

    
1139
    case UTCR2:
1140
        s->brd = (s->brd & 0xf00) | (value & 0xff);
1141
        strongarm_uart_update_parameters(s);
1142
        break;
1143

    
1144
    case UTCR3:
1145
        s->utcr3 = value & 0x3f;
1146
        if ((s->utcr3 & UTCR3_RXE) == 0) {
1147
            s->rx_len = 0;
1148
        }
1149
        if ((s->utcr3 & UTCR3_TXE) == 0) {
1150
            s->tx_len = 0;
1151
        }
1152
        strongarm_uart_update_status(s);
1153
        strongarm_uart_update_int_status(s);
1154
        break;
1155

    
1156
    case UTDR:
1157
        if ((s->utcr3 & UTCR3_TXE) && s->tx_len != 8) {
1158
            s->tx_fifo[(s->tx_start + s->tx_len) % 8] = value;
1159
            s->tx_len++;
1160
            strongarm_uart_update_status(s);
1161
            strongarm_uart_update_int_status(s);
1162
            if (s->tx_len == 1) {
1163
                strongarm_uart_tx(s);
1164
            }
1165
        }
1166
        break;
1167

    
1168
    case UTSR0:
1169
        s->utsr0 = s->utsr0 & ~(value &
1170
                (UTSR0_REB | UTSR0_RBB | UTSR0_RID));
1171
        strongarm_uart_update_int_status(s);
1172
        break;
1173

    
1174
    default:
1175
        printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
1176
    }
1177
}
1178

    
1179
static CPUReadMemoryFunc * const strongarm_uart_readfn[] = {
1180
    strongarm_uart_read,
1181
    strongarm_uart_read,
1182
    strongarm_uart_read,
1183
};
1184

    
1185
static CPUWriteMemoryFunc * const strongarm_uart_writefn[] = {
1186
    strongarm_uart_write,
1187
    strongarm_uart_write,
1188
    strongarm_uart_write,
1189
};
1190

    
1191
static int strongarm_uart_init(SysBusDevice *dev)
1192
{
1193
    StrongARMUARTState *s = FROM_SYSBUS(StrongARMUARTState, dev);
1194
    int iomemtype;
1195

    
1196
    iomemtype = cpu_register_io_memory(strongarm_uart_readfn,
1197
                    strongarm_uart_writefn, s, DEVICE_NATIVE_ENDIAN);
1198
    sysbus_init_mmio(dev, 0x10000, iomemtype);
1199
    sysbus_init_irq(dev, &s->irq);
1200

    
1201
    s->rx_timeout_timer = qemu_new_timer_ns(vm_clock, strongarm_uart_rx_to, s);
1202
    s->tx_timer = qemu_new_timer_ns(vm_clock, strongarm_uart_tx, s);
1203

    
1204
    if (s->chr) {
1205
        qemu_chr_add_handlers(s->chr,
1206
                        strongarm_uart_can_receive,
1207
                        strongarm_uart_receive,
1208
                        strongarm_uart_event,
1209
                        s);
1210
    }
1211

    
1212
    return 0;
1213
}
1214

    
1215
static void strongarm_uart_reset(DeviceState *dev)
1216
{
1217
    StrongARMUARTState *s = DO_UPCAST(StrongARMUARTState, busdev.qdev, dev);
1218

    
1219
    s->utcr0 = UTCR0_DSS; /* 8 data, no parity */
1220
    s->brd = 23;    /* 9600 */
1221
    /* enable send & recv - this actually violates spec */
1222
    s->utcr3 = UTCR3_TXE | UTCR3_RXE;
1223

    
1224
    s->rx_len = s->tx_len = 0;
1225

    
1226
    strongarm_uart_update_parameters(s);
1227
    strongarm_uart_update_status(s);
1228
    strongarm_uart_update_int_status(s);
1229
}
1230

    
1231
static int strongarm_uart_post_load(void *opaque, int version_id)
1232
{
1233
    StrongARMUARTState *s = opaque;
1234

    
1235
    strongarm_uart_update_parameters(s);
1236
    strongarm_uart_update_status(s);
1237
    strongarm_uart_update_int_status(s);
1238

    
1239
    /* tx and restart timer */
1240
    if (s->tx_len) {
1241
        strongarm_uart_tx(s);
1242
    }
1243

    
1244
    /* restart rx timeout timer */
1245
    if (s->rx_len) {
1246
        qemu_mod_timer(s->rx_timeout_timer,
1247
                qemu_get_clock_ns(vm_clock) + s->char_transmit_time * 3);
1248
    }
1249

    
1250
    return 0;
1251
}
1252

    
1253
static const VMStateDescription vmstate_strongarm_uart_regs = {
1254
    .name = "strongarm-uart",
1255
    .version_id = 0,
1256
    .minimum_version_id = 0,
1257
    .minimum_version_id_old = 0,
1258
    .post_load = strongarm_uart_post_load,
1259
    .fields = (VMStateField[]) {
1260
        VMSTATE_UINT8(utcr0, StrongARMUARTState),
1261
        VMSTATE_UINT16(brd, StrongARMUARTState),
1262
        VMSTATE_UINT8(utcr3, StrongARMUARTState),
1263
        VMSTATE_UINT8(utsr0, StrongARMUARTState),
1264
        VMSTATE_UINT8_ARRAY(tx_fifo, StrongARMUARTState, 8),
1265
        VMSTATE_UINT8(tx_start, StrongARMUARTState),
1266
        VMSTATE_UINT8(tx_len, StrongARMUARTState),
1267
        VMSTATE_UINT16_ARRAY(rx_fifo, StrongARMUARTState, 12),
1268
        VMSTATE_UINT8(rx_start, StrongARMUARTState),
1269
        VMSTATE_UINT8(rx_len, StrongARMUARTState),
1270
        VMSTATE_BOOL(wait_break_end, StrongARMUARTState),
1271
        VMSTATE_END_OF_LIST(),
1272
    },
1273
};
1274

    
1275
static SysBusDeviceInfo strongarm_uart_info = {
1276
    .init       = strongarm_uart_init,
1277
    .qdev.name  = "strongarm-uart",
1278
    .qdev.desc  = "StrongARM UART controller",
1279
    .qdev.size  = sizeof(StrongARMUARTState),
1280
    .qdev.reset = strongarm_uart_reset,
1281
    .qdev.vmsd  = &vmstate_strongarm_uart_regs,
1282
    .qdev.props = (Property[]) {
1283
        DEFINE_PROP_CHR("chardev", StrongARMUARTState, chr),
1284
        DEFINE_PROP_END_OF_LIST(),
1285
    }
1286
};
1287

    
1288
/* Synchronous Serial Ports */
1289
typedef struct {
1290
    SysBusDevice busdev;
1291
    qemu_irq irq;
1292
    SSIBus *bus;
1293

    
1294
    uint16_t sscr[2];
1295
    uint16_t sssr;
1296

    
1297
    uint16_t rx_fifo[8];
1298
    uint8_t rx_level;
1299
    uint8_t rx_start;
1300
} StrongARMSSPState;
1301

    
1302
#define SSCR0 0x60 /* SSP Control register 0 */
1303
#define SSCR1 0x64 /* SSP Control register 1 */
1304
#define SSDR  0x6c /* SSP Data register */
1305
#define SSSR  0x74 /* SSP Status register */
1306

    
1307
/* Bitfields for above registers */
1308
#define SSCR0_SPI(x)    (((x) & 0x30) == 0x00)
1309
#define SSCR0_SSP(x)    (((x) & 0x30) == 0x10)
1310
#define SSCR0_UWIRE(x)  (((x) & 0x30) == 0x20)
1311
#define SSCR0_PSP(x)    (((x) & 0x30) == 0x30)
1312
#define SSCR0_SSE       (1 << 7)
1313
#define SSCR0_DSS(x)    (((x) & 0xf) + 1)
1314
#define SSCR1_RIE       (1 << 0)
1315
#define SSCR1_TIE       (1 << 1)
1316
#define SSCR1_LBM       (1 << 2)
1317
#define SSSR_TNF        (1 << 2)
1318
#define SSSR_RNE        (1 << 3)
1319
#define SSSR_TFS        (1 << 5)
1320
#define SSSR_RFS        (1 << 6)
1321
#define SSSR_ROR        (1 << 7)
1322
#define SSSR_RW         0x0080
1323

    
1324
static void strongarm_ssp_int_update(StrongARMSSPState *s)
1325
{
1326
    int level = 0;
1327

    
1328
    level |= (s->sssr & SSSR_ROR);
1329
    level |= (s->sssr & SSSR_RFS)  &&  (s->sscr[1] & SSCR1_RIE);
1330
    level |= (s->sssr & SSSR_TFS)  &&  (s->sscr[1] & SSCR1_TIE);
1331
    qemu_set_irq(s->irq, level);
1332
}
1333

    
1334
static void strongarm_ssp_fifo_update(StrongARMSSPState *s)
1335
{
1336
    s->sssr &= ~SSSR_TFS;
1337
    s->sssr &= ~SSSR_TNF;
1338
    if (s->sscr[0] & SSCR0_SSE) {
1339
        if (s->rx_level >= 4) {
1340
            s->sssr |= SSSR_RFS;
1341
        } else {
1342
            s->sssr &= ~SSSR_RFS;
1343
        }
1344
        if (s->rx_level) {
1345
            s->sssr |= SSSR_RNE;
1346
        } else {
1347
            s->sssr &= ~SSSR_RNE;
1348
        }
1349
        /* TX FIFO is never filled, so it is always in underrun
1350
           condition if SSP is enabled */
1351
        s->sssr |= SSSR_TFS;
1352
        s->sssr |= SSSR_TNF;
1353
    }
1354

    
1355
    strongarm_ssp_int_update(s);
1356
}
1357

    
1358
static uint32_t strongarm_ssp_read(void *opaque, target_phys_addr_t addr)
1359
{
1360
    StrongARMSSPState *s = opaque;
1361
    uint32_t retval;
1362

    
1363
    switch (addr) {
1364
    case SSCR0:
1365
        return s->sscr[0];
1366
    case SSCR1:
1367
        return s->sscr[1];
1368
    case SSSR:
1369
        return s->sssr;
1370
    case SSDR:
1371
        if (~s->sscr[0] & SSCR0_SSE) {
1372
            return 0xffffffff;
1373
        }
1374
        if (s->rx_level < 1) {
1375
            printf("%s: SSP Rx Underrun\n", __func__);
1376
            return 0xffffffff;
1377
        }
1378
        s->rx_level--;
1379
        retval = s->rx_fifo[s->rx_start++];
1380
        s->rx_start &= 0x7;
1381
        strongarm_ssp_fifo_update(s);
1382
        return retval;
1383
    default:
1384
        printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
1385
        break;
1386
    }
1387
    return 0;
1388
}
1389

    
1390
static void strongarm_ssp_write(void *opaque, target_phys_addr_t addr,
1391
                uint32_t value)
1392
{
1393
    StrongARMSSPState *s = opaque;
1394

    
1395
    switch (addr) {
1396
    case SSCR0:
1397
        s->sscr[0] = value & 0xffbf;
1398
        if ((s->sscr[0] & SSCR0_SSE) && SSCR0_DSS(value) < 4) {
1399
            printf("%s: Wrong data size: %i bits\n", __func__,
1400
                            SSCR0_DSS(value));
1401
        }
1402
        if (!(value & SSCR0_SSE)) {
1403
            s->sssr = 0;
1404
            s->rx_level = 0;
1405
        }
1406
        strongarm_ssp_fifo_update(s);
1407
        break;
1408

    
1409
    case SSCR1:
1410
        s->sscr[1] = value & 0x2f;
1411
        if (value & SSCR1_LBM) {
1412
            printf("%s: Attempt to use SSP LBM mode\n", __func__);
1413
        }
1414
        strongarm_ssp_fifo_update(s);
1415
        break;
1416

    
1417
    case SSSR:
1418
        s->sssr &= ~(value & SSSR_RW);
1419
        strongarm_ssp_int_update(s);
1420
        break;
1421

    
1422
    case SSDR:
1423
        if (SSCR0_UWIRE(s->sscr[0])) {
1424
            value &= 0xff;
1425
        } else
1426
            /* Note how 32bits overflow does no harm here */
1427
            value &= (1 << SSCR0_DSS(s->sscr[0])) - 1;
1428

    
1429
        /* Data goes from here to the Tx FIFO and is shifted out from
1430
         * there directly to the slave, no need to buffer it.
1431
         */
1432
        if (s->sscr[0] & SSCR0_SSE) {
1433
            uint32_t readval;
1434
            if (s->sscr[1] & SSCR1_LBM) {
1435
                readval = value;
1436
            } else {
1437
                readval = ssi_transfer(s->bus, value);
1438
            }
1439

    
1440
            if (s->rx_level < 0x08) {
1441
                s->rx_fifo[(s->rx_start + s->rx_level++) & 0x7] = readval;
1442
            } else {
1443
                s->sssr |= SSSR_ROR;
1444
            }
1445
        }
1446
        strongarm_ssp_fifo_update(s);
1447
        break;
1448

    
1449
    default:
1450
        printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
1451
        break;
1452
    }
1453
}
1454

    
1455
static CPUReadMemoryFunc * const strongarm_ssp_readfn[] = {
1456
    strongarm_ssp_read,
1457
    strongarm_ssp_read,
1458
    strongarm_ssp_read,
1459
};
1460

    
1461
static CPUWriteMemoryFunc * const strongarm_ssp_writefn[] = {
1462
    strongarm_ssp_write,
1463
    strongarm_ssp_write,
1464
    strongarm_ssp_write,
1465
};
1466

    
1467
static int strongarm_ssp_post_load(void *opaque, int version_id)
1468
{
1469
    StrongARMSSPState *s = opaque;
1470

    
1471
    strongarm_ssp_fifo_update(s);
1472

    
1473
    return 0;
1474
}
1475

    
1476
static int strongarm_ssp_init(SysBusDevice *dev)
1477
{
1478
    int iomemtype;
1479
    StrongARMSSPState *s = FROM_SYSBUS(StrongARMSSPState, dev);
1480

    
1481
    sysbus_init_irq(dev, &s->irq);
1482

    
1483
    iomemtype = cpu_register_io_memory(strongarm_ssp_readfn,
1484
                                       strongarm_ssp_writefn, s,
1485
                                       DEVICE_NATIVE_ENDIAN);
1486
    sysbus_init_mmio(dev, 0x1000, iomemtype);
1487

    
1488
    s->bus = ssi_create_bus(&dev->qdev, "ssi");
1489
    return 0;
1490
}
1491

    
1492
static void strongarm_ssp_reset(DeviceState *dev)
1493
{
1494
    StrongARMSSPState *s = DO_UPCAST(StrongARMSSPState, busdev.qdev, dev);
1495
    s->sssr = 0x03; /* 3 bit data, SPI, disabled */
1496
    s->rx_start = 0;
1497
    s->rx_level = 0;
1498
}
1499

    
1500
static const VMStateDescription vmstate_strongarm_ssp_regs = {
1501
    .name = "strongarm-ssp",
1502
    .version_id = 0,
1503
    .minimum_version_id = 0,
1504
    .minimum_version_id_old = 0,
1505
    .post_load = strongarm_ssp_post_load,
1506
    .fields = (VMStateField[]) {
1507
        VMSTATE_UINT16_ARRAY(sscr, StrongARMSSPState, 2),
1508
        VMSTATE_UINT16(sssr, StrongARMSSPState),
1509
        VMSTATE_UINT16_ARRAY(rx_fifo, StrongARMSSPState, 8),
1510
        VMSTATE_UINT8(rx_start, StrongARMSSPState),
1511
        VMSTATE_UINT8(rx_level, StrongARMSSPState),
1512
        VMSTATE_END_OF_LIST(),
1513
    },
1514
};
1515

    
1516
static SysBusDeviceInfo strongarm_ssp_info = {
1517
    .init       = strongarm_ssp_init,
1518
    .qdev.name  = "strongarm-ssp",
1519
    .qdev.desc  = "StrongARM SSP controller",
1520
    .qdev.size  = sizeof(StrongARMSSPState),
1521
    .qdev.reset = strongarm_ssp_reset,
1522
    .qdev.vmsd  = &vmstate_strongarm_ssp_regs,
1523
};
1524

    
1525
/* Main CPU functions */
1526
StrongARMState *sa1110_init(unsigned int sdram_size, const char *rev)
1527
{
1528
    StrongARMState *s;
1529
    qemu_irq *pic;
1530
    int i;
1531

    
1532
    s = g_malloc0(sizeof(StrongARMState));
1533

    
1534
    if (!rev) {
1535
        rev = "sa1110-b5";
1536
    }
1537

    
1538
    if (strncmp(rev, "sa1110", 6)) {
1539
        error_report("Machine requires a SA1110 processor.");
1540
        exit(1);
1541
    }
1542

    
1543
    s->env = cpu_init(rev);
1544

    
1545
    if (!s->env) {
1546
        error_report("Unable to find CPU definition");
1547
        exit(1);
1548
    }
1549

    
1550
    cpu_register_physical_memory(SA_SDCS0,
1551
                    sdram_size, qemu_ram_alloc(NULL, "strongarm.sdram",
1552
                                                sdram_size) | IO_MEM_RAM);
1553

    
1554
    pic = arm_pic_init_cpu(s->env);
1555
    s->pic = sysbus_create_varargs("strongarm_pic", 0x90050000,
1556
                    pic[ARM_PIC_CPU_IRQ], pic[ARM_PIC_CPU_FIQ], NULL);
1557

    
1558
    sysbus_create_varargs("pxa25x-timer", 0x90000000,
1559
                    qdev_get_gpio_in(s->pic, SA_PIC_OSTC0),
1560
                    qdev_get_gpio_in(s->pic, SA_PIC_OSTC1),
1561
                    qdev_get_gpio_in(s->pic, SA_PIC_OSTC2),
1562
                    qdev_get_gpio_in(s->pic, SA_PIC_OSTC3),
1563
                    NULL);
1564

    
1565
    sysbus_create_simple("strongarm-rtc", 0x90010000,
1566
                    qdev_get_gpio_in(s->pic, SA_PIC_RTC_ALARM));
1567

    
1568
    s->gpio = strongarm_gpio_init(0x90040000, s->pic);
1569

    
1570
    s->ppc = sysbus_create_varargs("strongarm-ppc", 0x90060000, NULL);
1571

    
1572
    for (i = 0; sa_serial[i].io_base; i++) {
1573
        DeviceState *dev = qdev_create(NULL, "strongarm-uart");
1574
        qdev_prop_set_chr(dev, "chardev", serial_hds[i]);
1575
        qdev_init_nofail(dev);
1576
        sysbus_mmio_map(sysbus_from_qdev(dev), 0,
1577
                sa_serial[i].io_base);
1578
        sysbus_connect_irq(sysbus_from_qdev(dev), 0,
1579
                qdev_get_gpio_in(s->pic, sa_serial[i].irq));
1580
    }
1581

    
1582
    s->ssp = sysbus_create_varargs("strongarm-ssp", 0x80070000,
1583
                qdev_get_gpio_in(s->pic, SA_PIC_SSP), NULL);
1584
    s->ssp_bus = (SSIBus *)qdev_get_child_bus(s->ssp, "ssi");
1585

    
1586
    return s;
1587
}
1588

    
1589
static void strongarm_register_devices(void)
1590
{
1591
    sysbus_register_withprop(&strongarm_pic_info);
1592
    sysbus_register_withprop(&strongarm_rtc_sysbus_info);
1593
    sysbus_register_withprop(&strongarm_gpio_info);
1594
    sysbus_register_withprop(&strongarm_ppc_info);
1595
    sysbus_register_withprop(&strongarm_uart_info);
1596
    sysbus_register_withprop(&strongarm_ssp_info);
1597
}
1598
device_init(strongarm_register_devices)