Statistics
| Branch: | Revision:

root / qemu-timer.c @ 7267c094

History | View | Annotate | Download (31.9 kB)

1
/*
2
 * QEMU System Emulator
3
 *
4
 * Copyright (c) 2003-2008 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24

    
25
#include "sysemu.h"
26
#include "net.h"
27
#include "monitor.h"
28
#include "console.h"
29

    
30
#include "hw/hw.h"
31

    
32
#include <unistd.h>
33
#include <fcntl.h>
34
#include <time.h>
35
#include <errno.h>
36
#include <sys/time.h>
37
#include <signal.h>
38
#ifdef __FreeBSD__
39
#include <sys/param.h>
40
#endif
41

    
42
#ifdef _WIN32
43
#include <windows.h>
44
#include <mmsystem.h>
45
#endif
46

    
47
#include "qemu-timer.h"
48

    
49
/* Conversion factor from emulated instructions to virtual clock ticks.  */
50
int icount_time_shift;
51
/* Arbitrarily pick 1MIPS as the minimum allowable speed.  */
52
#define MAX_ICOUNT_SHIFT 10
53
/* Compensate for varying guest execution speed.  */
54
int64_t qemu_icount_bias;
55
static QEMUTimer *icount_rt_timer;
56
static QEMUTimer *icount_vm_timer;
57

    
58
/***********************************************************/
59
/* guest cycle counter */
60

    
61
typedef struct TimersState {
62
    int64_t cpu_ticks_prev;
63
    int64_t cpu_ticks_offset;
64
    int64_t cpu_clock_offset;
65
    int32_t cpu_ticks_enabled;
66
    int64_t dummy;
67
} TimersState;
68

    
69
TimersState timers_state;
70

    
71
/* return the host CPU cycle counter and handle stop/restart */
72
int64_t cpu_get_ticks(void)
73
{
74
    if (use_icount) {
75
        return cpu_get_icount();
76
    }
77
    if (!timers_state.cpu_ticks_enabled) {
78
        return timers_state.cpu_ticks_offset;
79
    } else {
80
        int64_t ticks;
81
        ticks = cpu_get_real_ticks();
82
        if (timers_state.cpu_ticks_prev > ticks) {
83
            /* Note: non increasing ticks may happen if the host uses
84
               software suspend */
85
            timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
86
        }
87
        timers_state.cpu_ticks_prev = ticks;
88
        return ticks + timers_state.cpu_ticks_offset;
89
    }
90
}
91

    
92
/* return the host CPU monotonic timer and handle stop/restart */
93
static int64_t cpu_get_clock(void)
94
{
95
    int64_t ti;
96
    if (!timers_state.cpu_ticks_enabled) {
97
        return timers_state.cpu_clock_offset;
98
    } else {
99
        ti = get_clock();
100
        return ti + timers_state.cpu_clock_offset;
101
    }
102
}
103

    
104
#ifndef CONFIG_IOTHREAD
105
static int64_t qemu_icount_delta(void)
106
{
107
    if (!use_icount) {
108
        return 5000 * (int64_t) 1000000;
109
    } else if (use_icount == 1) {
110
        /* When not using an adaptive execution frequency
111
           we tend to get badly out of sync with real time,
112
           so just delay for a reasonable amount of time.  */
113
        return 0;
114
    } else {
115
        return cpu_get_icount() - cpu_get_clock();
116
    }
117
}
118
#endif
119

    
120
/* enable cpu_get_ticks() */
121
void cpu_enable_ticks(void)
122
{
123
    if (!timers_state.cpu_ticks_enabled) {
124
        timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
125
        timers_state.cpu_clock_offset -= get_clock();
126
        timers_state.cpu_ticks_enabled = 1;
127
    }
128
}
129

    
130
/* disable cpu_get_ticks() : the clock is stopped. You must not call
131
   cpu_get_ticks() after that.  */
132
void cpu_disable_ticks(void)
133
{
134
    if (timers_state.cpu_ticks_enabled) {
135
        timers_state.cpu_ticks_offset = cpu_get_ticks();
136
        timers_state.cpu_clock_offset = cpu_get_clock();
137
        timers_state.cpu_ticks_enabled = 0;
138
    }
139
}
140

    
141
/***********************************************************/
142
/* timers */
143

    
144
#define QEMU_CLOCK_REALTIME 0
145
#define QEMU_CLOCK_VIRTUAL  1
146
#define QEMU_CLOCK_HOST     2
147

    
148
struct QEMUClock {
149
    int type;
150
    int enabled;
151

    
152
    QEMUTimer *warp_timer;
153

    
154
    NotifierList reset_notifiers;
155
    int64_t last;
156
};
157

    
158
struct QEMUTimer {
159
    QEMUClock *clock;
160
    int64_t expire_time;        /* in nanoseconds */
161
    int scale;
162
    QEMUTimerCB *cb;
163
    void *opaque;
164
    struct QEMUTimer *next;
165
};
166

    
167
struct qemu_alarm_timer {
168
    char const *name;
169
    int (*start)(struct qemu_alarm_timer *t);
170
    void (*stop)(struct qemu_alarm_timer *t);
171
    void (*rearm)(struct qemu_alarm_timer *t);
172
#if defined(__linux__)
173
    int fd;
174
    timer_t timer;
175
#elif defined(_WIN32)
176
    HANDLE timer;
177
#endif
178
    char expired;
179
    char pending;
180
};
181

    
182
static struct qemu_alarm_timer *alarm_timer;
183

    
184
static bool qemu_timer_expired_ns(QEMUTimer *timer_head, int64_t current_time)
185
{
186
    return timer_head && (timer_head->expire_time <= current_time);
187
}
188

    
189
int qemu_alarm_pending(void)
190
{
191
    return alarm_timer->pending;
192
}
193

    
194
static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
195
{
196
    return !!t->rearm;
197
}
198

    
199
static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
200
{
201
    if (!alarm_has_dynticks(t))
202
        return;
203

    
204
    t->rearm(t);
205
}
206

    
207
/* TODO: MIN_TIMER_REARM_NS should be optimized */
208
#define MIN_TIMER_REARM_NS 250000
209

    
210
#ifdef _WIN32
211

    
212
static int mm_start_timer(struct qemu_alarm_timer *t);
213
static void mm_stop_timer(struct qemu_alarm_timer *t);
214
static void mm_rearm_timer(struct qemu_alarm_timer *t);
215

    
216
static int win32_start_timer(struct qemu_alarm_timer *t);
217
static void win32_stop_timer(struct qemu_alarm_timer *t);
218
static void win32_rearm_timer(struct qemu_alarm_timer *t);
219

    
220
#else
221

    
222
static int unix_start_timer(struct qemu_alarm_timer *t);
223
static void unix_stop_timer(struct qemu_alarm_timer *t);
224
static void unix_rearm_timer(struct qemu_alarm_timer *t);
225

    
226
#ifdef __linux__
227

    
228
static int dynticks_start_timer(struct qemu_alarm_timer *t);
229
static void dynticks_stop_timer(struct qemu_alarm_timer *t);
230
static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
231

    
232
#endif /* __linux__ */
233

    
234
#endif /* _WIN32 */
235

    
236
/* Correlation between real and virtual time is always going to be
237
   fairly approximate, so ignore small variation.
238
   When the guest is idle real and virtual time will be aligned in
239
   the IO wait loop.  */
240
#define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
241

    
242
static void icount_adjust(void)
243
{
244
    int64_t cur_time;
245
    int64_t cur_icount;
246
    int64_t delta;
247
    static int64_t last_delta;
248
    /* If the VM is not running, then do nothing.  */
249
    if (!vm_running)
250
        return;
251

    
252
    cur_time = cpu_get_clock();
253
    cur_icount = qemu_get_clock_ns(vm_clock);
254
    delta = cur_icount - cur_time;
255
    /* FIXME: This is a very crude algorithm, somewhat prone to oscillation.  */
256
    if (delta > 0
257
        && last_delta + ICOUNT_WOBBLE < delta * 2
258
        && icount_time_shift > 0) {
259
        /* The guest is getting too far ahead.  Slow time down.  */
260
        icount_time_shift--;
261
    }
262
    if (delta < 0
263
        && last_delta - ICOUNT_WOBBLE > delta * 2
264
        && icount_time_shift < MAX_ICOUNT_SHIFT) {
265
        /* The guest is getting too far behind.  Speed time up.  */
266
        icount_time_shift++;
267
    }
268
    last_delta = delta;
269
    qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
270
}
271

    
272
static void icount_adjust_rt(void * opaque)
273
{
274
    qemu_mod_timer(icount_rt_timer,
275
                   qemu_get_clock_ms(rt_clock) + 1000);
276
    icount_adjust();
277
}
278

    
279
static void icount_adjust_vm(void * opaque)
280
{
281
    qemu_mod_timer(icount_vm_timer,
282
                   qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
283
    icount_adjust();
284
}
285

    
286
int64_t qemu_icount_round(int64_t count)
287
{
288
    return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
289
}
290

    
291
static struct qemu_alarm_timer alarm_timers[] = {
292
#ifndef _WIN32
293
#ifdef __linux__
294
    {"dynticks", dynticks_start_timer,
295
     dynticks_stop_timer, dynticks_rearm_timer},
296
#endif
297
    {"unix", unix_start_timer, unix_stop_timer, unix_rearm_timer},
298
#else
299
    {"mmtimer", mm_start_timer, mm_stop_timer, NULL},
300
    {"mmtimer2", mm_start_timer, mm_stop_timer, mm_rearm_timer},
301
    {"dynticks", win32_start_timer, win32_stop_timer, win32_rearm_timer},
302
    {"win32", win32_start_timer, win32_stop_timer, NULL},
303
#endif
304
    {NULL, }
305
};
306

    
307
static void show_available_alarms(void)
308
{
309
    int i;
310

    
311
    printf("Available alarm timers, in order of precedence:\n");
312
    for (i = 0; alarm_timers[i].name; i++)
313
        printf("%s\n", alarm_timers[i].name);
314
}
315

    
316
void configure_alarms(char const *opt)
317
{
318
    int i;
319
    int cur = 0;
320
    int count = ARRAY_SIZE(alarm_timers) - 1;
321
    char *arg;
322
    char *name;
323
    struct qemu_alarm_timer tmp;
324

    
325
    if (!strcmp(opt, "?")) {
326
        show_available_alarms();
327
        exit(0);
328
    }
329

    
330
    arg = g_strdup(opt);
331

    
332
    /* Reorder the array */
333
    name = strtok(arg, ",");
334
    while (name) {
335
        for (i = 0; i < count && alarm_timers[i].name; i++) {
336
            if (!strcmp(alarm_timers[i].name, name))
337
                break;
338
        }
339

    
340
        if (i == count) {
341
            fprintf(stderr, "Unknown clock %s\n", name);
342
            goto next;
343
        }
344

    
345
        if (i < cur)
346
            /* Ignore */
347
            goto next;
348

    
349
        /* Swap */
350
        tmp = alarm_timers[i];
351
        alarm_timers[i] = alarm_timers[cur];
352
        alarm_timers[cur] = tmp;
353

    
354
        cur++;
355
next:
356
        name = strtok(NULL, ",");
357
    }
358

    
359
    g_free(arg);
360

    
361
    if (cur) {
362
        /* Disable remaining timers */
363
        for (i = cur; i < count; i++)
364
            alarm_timers[i].name = NULL;
365
    } else {
366
        show_available_alarms();
367
        exit(1);
368
    }
369
}
370

    
371
#define QEMU_NUM_CLOCKS 3
372

    
373
QEMUClock *rt_clock;
374
QEMUClock *vm_clock;
375
QEMUClock *host_clock;
376

    
377
static QEMUTimer *active_timers[QEMU_NUM_CLOCKS];
378

    
379
static QEMUClock *qemu_new_clock(int type)
380
{
381
    QEMUClock *clock;
382

    
383
    clock = g_malloc0(sizeof(QEMUClock));
384
    clock->type = type;
385
    clock->enabled = 1;
386
    notifier_list_init(&clock->reset_notifiers);
387
    /* required to detect & report backward jumps */
388
    if (type == QEMU_CLOCK_HOST) {
389
        clock->last = get_clock_realtime();
390
    }
391
    return clock;
392
}
393

    
394
void qemu_clock_enable(QEMUClock *clock, int enabled)
395
{
396
    clock->enabled = enabled;
397
}
398

    
399
static int64_t vm_clock_warp_start;
400

    
401
static void icount_warp_rt(void *opaque)
402
{
403
    if (vm_clock_warp_start == -1) {
404
        return;
405
    }
406

    
407
    if (vm_running) {
408
        int64_t clock = qemu_get_clock_ns(rt_clock);
409
        int64_t warp_delta = clock - vm_clock_warp_start;
410
        if (use_icount == 1) {
411
            qemu_icount_bias += warp_delta;
412
        } else {
413
            /*
414
             * In adaptive mode, do not let the vm_clock run too
415
             * far ahead of real time.
416
             */
417
            int64_t cur_time = cpu_get_clock();
418
            int64_t cur_icount = qemu_get_clock_ns(vm_clock);
419
            int64_t delta = cur_time - cur_icount;
420
            qemu_icount_bias += MIN(warp_delta, delta);
421
        }
422
        if (qemu_timer_expired(active_timers[QEMU_CLOCK_VIRTUAL],
423
                               qemu_get_clock_ns(vm_clock))) {
424
            qemu_notify_event();
425
        }
426
    }
427
    vm_clock_warp_start = -1;
428
}
429

    
430
void qemu_clock_warp(QEMUClock *clock)
431
{
432
    int64_t deadline;
433

    
434
    if (!clock->warp_timer) {
435
        return;
436
    }
437

    
438
    /*
439
     * There are too many global variables to make the "warp" behavior
440
     * applicable to other clocks.  But a clock argument removes the
441
     * need for if statements all over the place.
442
     */
443
    assert(clock == vm_clock);
444

    
445
    /*
446
     * If the CPUs have been sleeping, advance the vm_clock timer now.  This
447
     * ensures that the deadline for the timer is computed correctly below.
448
     * This also makes sure that the insn counter is synchronized before the
449
     * CPU starts running, in case the CPU is woken by an event other than
450
     * the earliest vm_clock timer.
451
     */
452
    icount_warp_rt(NULL);
453
    if (!all_cpu_threads_idle() || !active_timers[clock->type]) {
454
        qemu_del_timer(clock->warp_timer);
455
        return;
456
    }
457

    
458
    vm_clock_warp_start = qemu_get_clock_ns(rt_clock);
459
    deadline = qemu_next_icount_deadline();
460
    if (deadline > 0) {
461
        /*
462
         * Ensure the vm_clock proceeds even when the virtual CPU goes to
463
         * sleep.  Otherwise, the CPU might be waiting for a future timer
464
         * interrupt to wake it up, but the interrupt never comes because
465
         * the vCPU isn't running any insns and thus doesn't advance the
466
         * vm_clock.
467
         *
468
         * An extreme solution for this problem would be to never let VCPUs
469
         * sleep in icount mode if there is a pending vm_clock timer; rather
470
         * time could just advance to the next vm_clock event.  Instead, we
471
         * do stop VCPUs and only advance vm_clock after some "real" time,
472
         * (related to the time left until the next event) has passed.  This
473
         * rt_clock timer will do this.  This avoids that the warps are too
474
         * visible externally---for example, you will not be sending network
475
         * packets continously instead of every 100ms.
476
         */
477
        qemu_mod_timer(clock->warp_timer, vm_clock_warp_start + deadline);
478
    } else {
479
        qemu_notify_event();
480
    }
481
}
482

    
483
QEMUTimer *qemu_new_timer(QEMUClock *clock, int scale,
484
                          QEMUTimerCB *cb, void *opaque)
485
{
486
    QEMUTimer *ts;
487

    
488
    ts = g_malloc0(sizeof(QEMUTimer));
489
    ts->clock = clock;
490
    ts->cb = cb;
491
    ts->opaque = opaque;
492
    ts->scale = scale;
493
    return ts;
494
}
495

    
496
void qemu_free_timer(QEMUTimer *ts)
497
{
498
    g_free(ts);
499
}
500

    
501
/* stop a timer, but do not dealloc it */
502
void qemu_del_timer(QEMUTimer *ts)
503
{
504
    QEMUTimer **pt, *t;
505

    
506
    /* NOTE: this code must be signal safe because
507
       qemu_timer_expired() can be called from a signal. */
508
    pt = &active_timers[ts->clock->type];
509
    for(;;) {
510
        t = *pt;
511
        if (!t)
512
            break;
513
        if (t == ts) {
514
            *pt = t->next;
515
            break;
516
        }
517
        pt = &t->next;
518
    }
519
}
520

    
521
/* modify the current timer so that it will be fired when current_time
522
   >= expire_time. The corresponding callback will be called. */
523
static void qemu_mod_timer_ns(QEMUTimer *ts, int64_t expire_time)
524
{
525
    QEMUTimer **pt, *t;
526

    
527
    qemu_del_timer(ts);
528

    
529
    /* add the timer in the sorted list */
530
    /* NOTE: this code must be signal safe because
531
       qemu_timer_expired() can be called from a signal. */
532
    pt = &active_timers[ts->clock->type];
533
    for(;;) {
534
        t = *pt;
535
        if (!qemu_timer_expired_ns(t, expire_time)) {
536
            break;
537
        }
538
        pt = &t->next;
539
    }
540
    ts->expire_time = expire_time;
541
    ts->next = *pt;
542
    *pt = ts;
543

    
544
    /* Rearm if necessary  */
545
    if (pt == &active_timers[ts->clock->type]) {
546
        if (!alarm_timer->pending) {
547
            qemu_rearm_alarm_timer(alarm_timer);
548
        }
549
        /* Interrupt execution to force deadline recalculation.  */
550
        qemu_clock_warp(ts->clock);
551
        if (use_icount) {
552
            qemu_notify_event();
553
        }
554
    }
555
}
556

    
557
/* modify the current timer so that it will be fired when current_time
558
   >= expire_time. The corresponding callback will be called. */
559
void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
560
{
561
    qemu_mod_timer_ns(ts, expire_time * ts->scale);
562
}
563

    
564
int qemu_timer_pending(QEMUTimer *ts)
565
{
566
    QEMUTimer *t;
567
    for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
568
        if (t == ts)
569
            return 1;
570
    }
571
    return 0;
572
}
573

    
574
int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
575
{
576
    return qemu_timer_expired_ns(timer_head, current_time * timer_head->scale);
577
}
578

    
579
static void qemu_run_timers(QEMUClock *clock)
580
{
581
    QEMUTimer **ptimer_head, *ts;
582
    int64_t current_time;
583
   
584
    if (!clock->enabled)
585
        return;
586

    
587
    current_time = qemu_get_clock_ns(clock);
588
    ptimer_head = &active_timers[clock->type];
589
    for(;;) {
590
        ts = *ptimer_head;
591
        if (!qemu_timer_expired_ns(ts, current_time)) {
592
            break;
593
        }
594
        /* remove timer from the list before calling the callback */
595
        *ptimer_head = ts->next;
596
        ts->next = NULL;
597

    
598
        /* run the callback (the timer list can be modified) */
599
        ts->cb(ts->opaque);
600
    }
601
}
602

    
603
int64_t qemu_get_clock_ns(QEMUClock *clock)
604
{
605
    int64_t now, last;
606

    
607
    switch(clock->type) {
608
    case QEMU_CLOCK_REALTIME:
609
        return get_clock();
610
    default:
611
    case QEMU_CLOCK_VIRTUAL:
612
        if (use_icount) {
613
            return cpu_get_icount();
614
        } else {
615
            return cpu_get_clock();
616
        }
617
    case QEMU_CLOCK_HOST:
618
        now = get_clock_realtime();
619
        last = clock->last;
620
        clock->last = now;
621
        if (now < last) {
622
            notifier_list_notify(&clock->reset_notifiers, &now);
623
        }
624
        return now;
625
    }
626
}
627

    
628
void qemu_register_clock_reset_notifier(QEMUClock *clock, Notifier *notifier)
629
{
630
    notifier_list_add(&clock->reset_notifiers, notifier);
631
}
632

    
633
void qemu_unregister_clock_reset_notifier(QEMUClock *clock, Notifier *notifier)
634
{
635
    notifier_list_remove(&clock->reset_notifiers, notifier);
636
}
637

    
638
void init_clocks(void)
639
{
640
    rt_clock = qemu_new_clock(QEMU_CLOCK_REALTIME);
641
    vm_clock = qemu_new_clock(QEMU_CLOCK_VIRTUAL);
642
    host_clock = qemu_new_clock(QEMU_CLOCK_HOST);
643

    
644
    rtc_clock = host_clock;
645
}
646

    
647
/* save a timer */
648
void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
649
{
650
    uint64_t expire_time;
651

    
652
    if (qemu_timer_pending(ts)) {
653
        expire_time = ts->expire_time;
654
    } else {
655
        expire_time = -1;
656
    }
657
    qemu_put_be64(f, expire_time);
658
}
659

    
660
void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
661
{
662
    uint64_t expire_time;
663

    
664
    expire_time = qemu_get_be64(f);
665
    if (expire_time != -1) {
666
        qemu_mod_timer_ns(ts, expire_time);
667
    } else {
668
        qemu_del_timer(ts);
669
    }
670
}
671

    
672
static const VMStateDescription vmstate_timers = {
673
    .name = "timer",
674
    .version_id = 2,
675
    .minimum_version_id = 1,
676
    .minimum_version_id_old = 1,
677
    .fields      = (VMStateField []) {
678
        VMSTATE_INT64(cpu_ticks_offset, TimersState),
679
        VMSTATE_INT64(dummy, TimersState),
680
        VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
681
        VMSTATE_END_OF_LIST()
682
    }
683
};
684

    
685
void configure_icount(const char *option)
686
{
687
    vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
688
    if (!option)
689
        return;
690

    
691
#ifdef CONFIG_IOTHREAD
692
    vm_clock->warp_timer = qemu_new_timer_ns(rt_clock, icount_warp_rt, NULL);
693
#endif
694

    
695
    if (strcmp(option, "auto") != 0) {
696
        icount_time_shift = strtol(option, NULL, 0);
697
        use_icount = 1;
698
        return;
699
    }
700

    
701
    use_icount = 2;
702

    
703
    /* 125MIPS seems a reasonable initial guess at the guest speed.
704
       It will be corrected fairly quickly anyway.  */
705
    icount_time_shift = 3;
706

    
707
    /* Have both realtime and virtual time triggers for speed adjustment.
708
       The realtime trigger catches emulated time passing too slowly,
709
       the virtual time trigger catches emulated time passing too fast.
710
       Realtime triggers occur even when idle, so use them less frequently
711
       than VM triggers.  */
712
    icount_rt_timer = qemu_new_timer_ms(rt_clock, icount_adjust_rt, NULL);
713
    qemu_mod_timer(icount_rt_timer,
714
                   qemu_get_clock_ms(rt_clock) + 1000);
715
    icount_vm_timer = qemu_new_timer_ns(vm_clock, icount_adjust_vm, NULL);
716
    qemu_mod_timer(icount_vm_timer,
717
                   qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
718
}
719

    
720
void qemu_run_all_timers(void)
721
{
722
    alarm_timer->pending = 0;
723

    
724
    /* rearm timer, if not periodic */
725
    if (alarm_timer->expired) {
726
        alarm_timer->expired = 0;
727
        qemu_rearm_alarm_timer(alarm_timer);
728
    }
729

    
730
    /* vm time timers */
731
    if (vm_running) {
732
        qemu_run_timers(vm_clock);
733
    }
734

    
735
    qemu_run_timers(rt_clock);
736
    qemu_run_timers(host_clock);
737
}
738

    
739
static int64_t qemu_next_alarm_deadline(void);
740

    
741
#ifdef _WIN32
742
static void CALLBACK host_alarm_handler(PVOID lpParam, BOOLEAN unused)
743
#else
744
static void host_alarm_handler(int host_signum)
745
#endif
746
{
747
    struct qemu_alarm_timer *t = alarm_timer;
748
    if (!t)
749
        return;
750

    
751
#if 0
752
#define DISP_FREQ 1000
753
    {
754
        static int64_t delta_min = INT64_MAX;
755
        static int64_t delta_max, delta_cum, last_clock, delta, ti;
756
        static int count;
757
        ti = qemu_get_clock_ns(vm_clock);
758
        if (last_clock != 0) {
759
            delta = ti - last_clock;
760
            if (delta < delta_min)
761
                delta_min = delta;
762
            if (delta > delta_max)
763
                delta_max = delta;
764
            delta_cum += delta;
765
            if (++count == DISP_FREQ) {
766
                printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
767
                       muldiv64(delta_min, 1000000, get_ticks_per_sec()),
768
                       muldiv64(delta_max, 1000000, get_ticks_per_sec()),
769
                       muldiv64(delta_cum, 1000000 / DISP_FREQ, get_ticks_per_sec()),
770
                       (double)get_ticks_per_sec() / ((double)delta_cum / DISP_FREQ));
771
                count = 0;
772
                delta_min = INT64_MAX;
773
                delta_max = 0;
774
                delta_cum = 0;
775
            }
776
        }
777
        last_clock = ti;
778
    }
779
#endif
780
    if (alarm_has_dynticks(t) ||
781
        qemu_next_alarm_deadline () <= 0) {
782
        t->expired = alarm_has_dynticks(t);
783
        t->pending = 1;
784
        qemu_notify_event();
785
    }
786
}
787

    
788
int64_t qemu_next_icount_deadline(void)
789
{
790
    /* To avoid problems with overflow limit this to 2^32.  */
791
    int64_t delta = INT32_MAX;
792

    
793
    assert(use_icount);
794
    if (active_timers[QEMU_CLOCK_VIRTUAL]) {
795
        delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time -
796
                     qemu_get_clock_ns(vm_clock);
797
    }
798

    
799
    if (delta < 0)
800
        delta = 0;
801

    
802
    return delta;
803
}
804

    
805
static int64_t qemu_next_alarm_deadline(void)
806
{
807
    int64_t delta;
808
    int64_t rtdelta;
809

    
810
    if (!use_icount && active_timers[QEMU_CLOCK_VIRTUAL]) {
811
        delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time -
812
                     qemu_get_clock_ns(vm_clock);
813
    } else {
814
        delta = INT32_MAX;
815
    }
816
    if (active_timers[QEMU_CLOCK_HOST]) {
817
        int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time -
818
                 qemu_get_clock_ns(host_clock);
819
        if (hdelta < delta)
820
            delta = hdelta;
821
    }
822
    if (active_timers[QEMU_CLOCK_REALTIME]) {
823
        rtdelta = (active_timers[QEMU_CLOCK_REALTIME]->expire_time -
824
                 qemu_get_clock_ns(rt_clock));
825
        if (rtdelta < delta)
826
            delta = rtdelta;
827
    }
828

    
829
    return delta;
830
}
831

    
832
#if defined(__linux__)
833

    
834
#include "compatfd.h"
835

    
836
static int dynticks_start_timer(struct qemu_alarm_timer *t)
837
{
838
    struct sigevent ev;
839
    timer_t host_timer;
840
    struct sigaction act;
841

    
842
    sigfillset(&act.sa_mask);
843
    act.sa_flags = 0;
844
    act.sa_handler = host_alarm_handler;
845

    
846
    sigaction(SIGALRM, &act, NULL);
847

    
848
    /* 
849
     * Initialize ev struct to 0 to avoid valgrind complaining
850
     * about uninitialized data in timer_create call
851
     */
852
    memset(&ev, 0, sizeof(ev));
853
    ev.sigev_value.sival_int = 0;
854
    ev.sigev_notify = SIGEV_SIGNAL;
855
#ifdef SIGEV_THREAD_ID
856
    if (qemu_signalfd_available()) {
857
        ev.sigev_notify = SIGEV_THREAD_ID;
858
        ev._sigev_un._tid = qemu_get_thread_id();
859
    }
860
#endif /* SIGEV_THREAD_ID */
861
    ev.sigev_signo = SIGALRM;
862

    
863
    if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
864
        perror("timer_create");
865

    
866
        /* disable dynticks */
867
        fprintf(stderr, "Dynamic Ticks disabled\n");
868

    
869
        return -1;
870
    }
871

    
872
    t->timer = host_timer;
873

    
874
    return 0;
875
}
876

    
877
static void dynticks_stop_timer(struct qemu_alarm_timer *t)
878
{
879
    timer_t host_timer = t->timer;
880

    
881
    timer_delete(host_timer);
882
}
883

    
884
static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
885
{
886
    timer_t host_timer = t->timer;
887
    struct itimerspec timeout;
888
    int64_t nearest_delta_ns = INT64_MAX;
889
    int64_t current_ns;
890

    
891
    assert(alarm_has_dynticks(t));
892
    if (!active_timers[QEMU_CLOCK_REALTIME] &&
893
        !active_timers[QEMU_CLOCK_VIRTUAL] &&
894
        !active_timers[QEMU_CLOCK_HOST])
895
        return;
896

    
897
    nearest_delta_ns = qemu_next_alarm_deadline();
898
    if (nearest_delta_ns < MIN_TIMER_REARM_NS)
899
        nearest_delta_ns = MIN_TIMER_REARM_NS;
900

    
901
    /* check whether a timer is already running */
902
    if (timer_gettime(host_timer, &timeout)) {
903
        perror("gettime");
904
        fprintf(stderr, "Internal timer error: aborting\n");
905
        exit(1);
906
    }
907
    current_ns = timeout.it_value.tv_sec * 1000000000LL + timeout.it_value.tv_nsec;
908
    if (current_ns && current_ns <= nearest_delta_ns)
909
        return;
910

    
911
    timeout.it_interval.tv_sec = 0;
912
    timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
913
    timeout.it_value.tv_sec =  nearest_delta_ns / 1000000000;
914
    timeout.it_value.tv_nsec = nearest_delta_ns % 1000000000;
915
    if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
916
        perror("settime");
917
        fprintf(stderr, "Internal timer error: aborting\n");
918
        exit(1);
919
    }
920
}
921

    
922
#endif /* defined(__linux__) */
923

    
924
#if !defined(_WIN32)
925

    
926
static int unix_start_timer(struct qemu_alarm_timer *t)
927
{
928
    struct sigaction act;
929

    
930
    /* timer signal */
931
    sigfillset(&act.sa_mask);
932
    act.sa_flags = 0;
933
    act.sa_handler = host_alarm_handler;
934

    
935
    sigaction(SIGALRM, &act, NULL);
936
    return 0;
937
}
938

    
939
static void unix_rearm_timer(struct qemu_alarm_timer *t)
940
{
941
    struct itimerval itv;
942
    int64_t nearest_delta_ns = INT64_MAX;
943
    int err;
944

    
945
    assert(alarm_has_dynticks(t));
946
    if (!active_timers[QEMU_CLOCK_REALTIME] &&
947
        !active_timers[QEMU_CLOCK_VIRTUAL] &&
948
        !active_timers[QEMU_CLOCK_HOST])
949
        return;
950

    
951
    nearest_delta_ns = qemu_next_alarm_deadline();
952
    if (nearest_delta_ns < MIN_TIMER_REARM_NS)
953
        nearest_delta_ns = MIN_TIMER_REARM_NS;
954

    
955
    itv.it_interval.tv_sec = 0;
956
    itv.it_interval.tv_usec = 0; /* 0 for one-shot timer */
957
    itv.it_value.tv_sec =  nearest_delta_ns / 1000000000;
958
    itv.it_value.tv_usec = (nearest_delta_ns % 1000000000) / 1000;
959
    err = setitimer(ITIMER_REAL, &itv, NULL);
960
    if (err) {
961
        perror("setitimer");
962
        fprintf(stderr, "Internal timer error: aborting\n");
963
        exit(1);
964
    }
965
}
966

    
967
static void unix_stop_timer(struct qemu_alarm_timer *t)
968
{
969
    struct itimerval itv;
970

    
971
    memset(&itv, 0, sizeof(itv));
972
    setitimer(ITIMER_REAL, &itv, NULL);
973
}
974

    
975
#endif /* !defined(_WIN32) */
976

    
977

    
978
#ifdef _WIN32
979

    
980
static MMRESULT mm_timer;
981
static unsigned mm_period;
982

    
983
static void CALLBACK mm_alarm_handler(UINT uTimerID, UINT uMsg,
984
                                      DWORD_PTR dwUser, DWORD_PTR dw1,
985
                                      DWORD_PTR dw2)
986
{
987
    struct qemu_alarm_timer *t = alarm_timer;
988
    if (!t) {
989
        return;
990
    }
991
    if (alarm_has_dynticks(t) || qemu_next_alarm_deadline() <= 0) {
992
        t->expired = alarm_has_dynticks(t);
993
        t->pending = 1;
994
        qemu_notify_event();
995
    }
996
}
997

    
998
static int mm_start_timer(struct qemu_alarm_timer *t)
999
{
1000
    TIMECAPS tc;
1001
    UINT flags;
1002

    
1003
    memset(&tc, 0, sizeof(tc));
1004
    timeGetDevCaps(&tc, sizeof(tc));
1005

    
1006
    mm_period = tc.wPeriodMin;
1007
    timeBeginPeriod(mm_period);
1008

    
1009
    flags = TIME_CALLBACK_FUNCTION;
1010
    if (alarm_has_dynticks(t)) {
1011
        flags |= TIME_ONESHOT;
1012
    } else {
1013
        flags |= TIME_PERIODIC;
1014
    }
1015

    
1016
    mm_timer = timeSetEvent(1,                  /* interval (ms) */
1017
                            mm_period,          /* resolution */
1018
                            mm_alarm_handler,   /* function */
1019
                            (DWORD_PTR)t,       /* parameter */
1020
                            flags);
1021

    
1022
    if (!mm_timer) {
1023
        fprintf(stderr, "Failed to initialize win32 alarm timer: %ld\n",
1024
                GetLastError());
1025
        timeEndPeriod(mm_period);
1026
        return -1;
1027
    }
1028

    
1029
    return 0;
1030
}
1031

    
1032
static void mm_stop_timer(struct qemu_alarm_timer *t)
1033
{
1034
    timeKillEvent(mm_timer);
1035
    timeEndPeriod(mm_period);
1036
}
1037

    
1038
static void mm_rearm_timer(struct qemu_alarm_timer *t)
1039
{
1040
    int nearest_delta_ms;
1041

    
1042
    assert(alarm_has_dynticks(t));
1043
    if (!active_timers[QEMU_CLOCK_REALTIME] &&
1044
        !active_timers[QEMU_CLOCK_VIRTUAL] &&
1045
        !active_timers[QEMU_CLOCK_HOST]) {
1046
        return;
1047
    }
1048

    
1049
    timeKillEvent(mm_timer);
1050

    
1051
    nearest_delta_ms = (qemu_next_alarm_deadline() + 999999) / 1000000;
1052
    if (nearest_delta_ms < 1) {
1053
        nearest_delta_ms = 1;
1054
    }
1055
    mm_timer = timeSetEvent(nearest_delta_ms,
1056
                            mm_period,
1057
                            mm_alarm_handler,
1058
                            (DWORD_PTR)t,
1059
                            TIME_ONESHOT | TIME_CALLBACK_FUNCTION);
1060

    
1061
    if (!mm_timer) {
1062
        fprintf(stderr, "Failed to re-arm win32 alarm timer %ld\n",
1063
                GetLastError());
1064

    
1065
        timeEndPeriod(mm_period);
1066
        exit(1);
1067
    }
1068
}
1069

    
1070
static int win32_start_timer(struct qemu_alarm_timer *t)
1071
{
1072
    HANDLE hTimer;
1073
    BOOLEAN success;
1074

    
1075
    /* If you call ChangeTimerQueueTimer on a one-shot timer (its period
1076
       is zero) that has already expired, the timer is not updated.  Since
1077
       creating a new timer is relatively expensive, set a bogus one-hour
1078
       interval in the dynticks case.  */
1079
    success = CreateTimerQueueTimer(&hTimer,
1080
                          NULL,
1081
                          host_alarm_handler,
1082
                          t,
1083
                          1,
1084
                          alarm_has_dynticks(t) ? 3600000 : 1,
1085
                          WT_EXECUTEINTIMERTHREAD);
1086

    
1087
    if (!success) {
1088
        fprintf(stderr, "Failed to initialize win32 alarm timer: %ld\n",
1089
                GetLastError());
1090
        return -1;
1091
    }
1092

    
1093
    t->timer = hTimer;
1094
    return 0;
1095
}
1096

    
1097
static void win32_stop_timer(struct qemu_alarm_timer *t)
1098
{
1099
    HANDLE hTimer = t->timer;
1100

    
1101
    if (hTimer) {
1102
        DeleteTimerQueueTimer(NULL, hTimer, NULL);
1103
    }
1104
}
1105

    
1106
static void win32_rearm_timer(struct qemu_alarm_timer *t)
1107
{
1108
    HANDLE hTimer = t->timer;
1109
    int nearest_delta_ms;
1110
    BOOLEAN success;
1111

    
1112
    assert(alarm_has_dynticks(t));
1113
    if (!active_timers[QEMU_CLOCK_REALTIME] &&
1114
        !active_timers[QEMU_CLOCK_VIRTUAL] &&
1115
        !active_timers[QEMU_CLOCK_HOST])
1116
        return;
1117

    
1118
    nearest_delta_ms = (qemu_next_alarm_deadline() + 999999) / 1000000;
1119
    if (nearest_delta_ms < 1) {
1120
        nearest_delta_ms = 1;
1121
    }
1122
    success = ChangeTimerQueueTimer(NULL,
1123
                                    hTimer,
1124
                                    nearest_delta_ms,
1125
                                    3600000);
1126

    
1127
    if (!success) {
1128
        fprintf(stderr, "Failed to rearm win32 alarm timer: %ld\n",
1129
                GetLastError());
1130
        exit(-1);
1131
    }
1132

    
1133
}
1134

    
1135
#endif /* _WIN32 */
1136

    
1137
static void alarm_timer_on_change_state_rearm(void *opaque, int running, int reason)
1138
{
1139
    if (running)
1140
        qemu_rearm_alarm_timer((struct qemu_alarm_timer *) opaque);
1141
}
1142

    
1143
int init_timer_alarm(void)
1144
{
1145
    struct qemu_alarm_timer *t = NULL;
1146
    int i, err = -1;
1147

    
1148
    for (i = 0; alarm_timers[i].name; i++) {
1149
        t = &alarm_timers[i];
1150

    
1151
        err = t->start(t);
1152
        if (!err)
1153
            break;
1154
    }
1155

    
1156
    if (err) {
1157
        err = -ENOENT;
1158
        goto fail;
1159
    }
1160

    
1161
    /* first event is at time 0 */
1162
    t->pending = 1;
1163
    alarm_timer = t;
1164
    qemu_add_vm_change_state_handler(alarm_timer_on_change_state_rearm, t);
1165

    
1166
    return 0;
1167

    
1168
fail:
1169
    return err;
1170
}
1171

    
1172
void quit_timers(void)
1173
{
1174
    struct qemu_alarm_timer *t = alarm_timer;
1175
    alarm_timer = NULL;
1176
    t->stop(t);
1177
}
1178

    
1179
int qemu_calculate_timeout(void)
1180
{
1181
#ifndef CONFIG_IOTHREAD
1182
    int timeout;
1183

    
1184
    if (!vm_running)
1185
        timeout = 5000;
1186
    else {
1187
     /* XXX: use timeout computed from timers */
1188
        int64_t add;
1189
        int64_t delta;
1190
        /* Advance virtual time to the next event.  */
1191
        delta = qemu_icount_delta();
1192
        if (delta > 0) {
1193
            /* If virtual time is ahead of real time then just
1194
               wait for IO.  */
1195
            timeout = (delta + 999999) / 1000000;
1196
        } else {
1197
            /* Wait for either IO to occur or the next
1198
               timer event.  */
1199
            add = qemu_next_icount_deadline();
1200
            /* We advance the timer before checking for IO.
1201
               Limit the amount we advance so that early IO
1202
               activity won't get the guest too far ahead.  */
1203
            if (add > 10000000)
1204
                add = 10000000;
1205
            delta += add;
1206
            qemu_icount += qemu_icount_round (add);
1207
            timeout = delta / 1000000;
1208
            if (timeout < 0)
1209
                timeout = 0;
1210
        }
1211
    }
1212

    
1213
    return timeout;
1214
#else /* CONFIG_IOTHREAD */
1215
    return 1000;
1216
#endif
1217
}
1218