Statistics
| Branch: | Revision:

root / block / qcow2-cluster.c @ 72893756

History | View | Annotate | Download (27.5 kB)

1
/*
2
 * Block driver for the QCOW version 2 format
3
 *
4
 * Copyright (c) 2004-2006 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24

    
25
#include <zlib.h>
26

    
27
#include "qemu-common.h"
28
#include "block_int.h"
29
#include "block/qcow2.h"
30

    
31
int qcow2_grow_l1_table(BlockDriverState *bs, int min_size, bool exact_size)
32
{
33
    BDRVQcowState *s = bs->opaque;
34
    int new_l1_size, new_l1_size2, ret, i;
35
    uint64_t *new_l1_table;
36
    int64_t new_l1_table_offset;
37
    uint8_t data[12];
38

    
39
    if (min_size <= s->l1_size)
40
        return 0;
41

    
42
    if (exact_size) {
43
        new_l1_size = min_size;
44
    } else {
45
        /* Bump size up to reduce the number of times we have to grow */
46
        new_l1_size = s->l1_size;
47
        if (new_l1_size == 0) {
48
            new_l1_size = 1;
49
        }
50
        while (min_size > new_l1_size) {
51
            new_l1_size = (new_l1_size * 3 + 1) / 2;
52
        }
53
    }
54

    
55
#ifdef DEBUG_ALLOC2
56
    printf("grow l1_table from %d to %d\n", s->l1_size, new_l1_size);
57
#endif
58

    
59
    new_l1_size2 = sizeof(uint64_t) * new_l1_size;
60
    new_l1_table = qemu_mallocz(align_offset(new_l1_size2, 512));
61
    memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
62

    
63
    /* write new table (align to cluster) */
64
    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
65
    new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
66
    if (new_l1_table_offset < 0) {
67
        qemu_free(new_l1_table);
68
        return new_l1_table_offset;
69
    }
70
    bdrv_flush(bs->file);
71

    
72
    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
73
    for(i = 0; i < s->l1_size; i++)
74
        new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
75
    ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
76
    if (ret < 0)
77
        goto fail;
78
    for(i = 0; i < s->l1_size; i++)
79
        new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
80

    
81
    /* set new table */
82
    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
83
    cpu_to_be32w((uint32_t*)data, new_l1_size);
84
    cpu_to_be64w((uint64_t*)(data + 4), new_l1_table_offset);
85
    ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
86
    if (ret < 0) {
87
        goto fail;
88
    }
89
    qemu_free(s->l1_table);
90
    qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t));
91
    s->l1_table_offset = new_l1_table_offset;
92
    s->l1_table = new_l1_table;
93
    s->l1_size = new_l1_size;
94
    return 0;
95
 fail:
96
    qemu_free(new_l1_table);
97
    qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2);
98
    return ret;
99
}
100

    
101
void qcow2_l2_cache_reset(BlockDriverState *bs)
102
{
103
    BDRVQcowState *s = bs->opaque;
104

    
105
    memset(s->l2_cache, 0, s->l2_size * L2_CACHE_SIZE * sizeof(uint64_t));
106
    memset(s->l2_cache_offsets, 0, L2_CACHE_SIZE * sizeof(uint64_t));
107
    memset(s->l2_cache_counts, 0, L2_CACHE_SIZE * sizeof(uint32_t));
108
}
109

    
110
static inline int l2_cache_new_entry(BlockDriverState *bs)
111
{
112
    BDRVQcowState *s = bs->opaque;
113
    uint32_t min_count;
114
    int min_index, i;
115

    
116
    /* find a new entry in the least used one */
117
    min_index = 0;
118
    min_count = 0xffffffff;
119
    for(i = 0; i < L2_CACHE_SIZE; i++) {
120
        if (s->l2_cache_counts[i] < min_count) {
121
            min_count = s->l2_cache_counts[i];
122
            min_index = i;
123
        }
124
    }
125
    return min_index;
126
}
127

    
128
/*
129
 * seek_l2_table
130
 *
131
 * seek l2_offset in the l2_cache table
132
 * if not found, return NULL,
133
 * if found,
134
 *   increments the l2 cache hit count of the entry,
135
 *   if counter overflow, divide by two all counters
136
 *   return the pointer to the l2 cache entry
137
 *
138
 */
139

    
140
static uint64_t *seek_l2_table(BDRVQcowState *s, uint64_t l2_offset)
141
{
142
    int i, j;
143

    
144
    for(i = 0; i < L2_CACHE_SIZE; i++) {
145
        if (l2_offset == s->l2_cache_offsets[i]) {
146
            /* increment the hit count */
147
            if (++s->l2_cache_counts[i] == 0xffffffff) {
148
                for(j = 0; j < L2_CACHE_SIZE; j++) {
149
                    s->l2_cache_counts[j] >>= 1;
150
                }
151
            }
152
            return s->l2_cache + (i << s->l2_bits);
153
        }
154
    }
155
    return NULL;
156
}
157

    
158
/*
159
 * l2_load
160
 *
161
 * Loads a L2 table into memory. If the table is in the cache, the cache
162
 * is used; otherwise the L2 table is loaded from the image file.
163
 *
164
 * Returns a pointer to the L2 table on success, or NULL if the read from
165
 * the image file failed.
166
 */
167

    
168
static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
169
    uint64_t **l2_table)
170
{
171
    BDRVQcowState *s = bs->opaque;
172
    int min_index;
173
    int ret;
174

    
175
    /* seek if the table for the given offset is in the cache */
176

    
177
    *l2_table = seek_l2_table(s, l2_offset);
178
    if (*l2_table != NULL) {
179
        return 0;
180
    }
181

    
182
    /* not found: load a new entry in the least used one */
183

    
184
    min_index = l2_cache_new_entry(bs);
185
    *l2_table = s->l2_cache + (min_index << s->l2_bits);
186

    
187
    BLKDBG_EVENT(bs->file, BLKDBG_L2_LOAD);
188
    ret = bdrv_pread(bs->file, l2_offset, *l2_table,
189
        s->l2_size * sizeof(uint64_t));
190
    if (ret < 0) {
191
        return ret;
192
    }
193

    
194
    s->l2_cache_offsets[min_index] = l2_offset;
195
    s->l2_cache_counts[min_index] = 1;
196

    
197
    return 0;
198
}
199

    
200
/*
201
 * Writes one sector of the L1 table to the disk (can't update single entries
202
 * and we really don't want bdrv_pread to perform a read-modify-write)
203
 */
204
#define L1_ENTRIES_PER_SECTOR (512 / 8)
205
static int write_l1_entry(BlockDriverState *bs, int l1_index)
206
{
207
    BDRVQcowState *s = bs->opaque;
208
    uint64_t buf[L1_ENTRIES_PER_SECTOR];
209
    int l1_start_index;
210
    int i, ret;
211

    
212
    l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
213
    for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
214
        buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
215
    }
216

    
217
    BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
218
    ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
219
        buf, sizeof(buf));
220
    if (ret < 0) {
221
        return ret;
222
    }
223

    
224
    return 0;
225
}
226

    
227
/*
228
 * l2_allocate
229
 *
230
 * Allocate a new l2 entry in the file. If l1_index points to an already
231
 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
232
 * table) copy the contents of the old L2 table into the newly allocated one.
233
 * Otherwise the new table is initialized with zeros.
234
 *
235
 */
236

    
237
static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
238
{
239
    BDRVQcowState *s = bs->opaque;
240
    int min_index;
241
    uint64_t old_l2_offset;
242
    uint64_t *l2_table;
243
    int64_t l2_offset;
244
    int ret;
245

    
246
    old_l2_offset = s->l1_table[l1_index];
247

    
248
    /* allocate a new l2 entry */
249

    
250
    l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
251
    if (l2_offset < 0) {
252
        return l2_offset;
253
    }
254
    bdrv_flush(bs->file);
255

    
256
    /* allocate a new entry in the l2 cache */
257

    
258
    min_index = l2_cache_new_entry(bs);
259
    l2_table = s->l2_cache + (min_index << s->l2_bits);
260

    
261
    if (old_l2_offset == 0) {
262
        /* if there was no old l2 table, clear the new table */
263
        memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
264
    } else {
265
        /* if there was an old l2 table, read it from the disk */
266
        BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
267
        ret = bdrv_pread(bs->file, old_l2_offset, l2_table,
268
            s->l2_size * sizeof(uint64_t));
269
        if (ret < 0) {
270
            goto fail;
271
        }
272
    }
273
    /* write the l2 table to the file */
274
    BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
275
    ret = bdrv_pwrite_sync(bs->file, l2_offset, l2_table,
276
        s->l2_size * sizeof(uint64_t));
277
    if (ret < 0) {
278
        goto fail;
279
    }
280

    
281
    /* update the L1 entry */
282
    s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
283
    ret = write_l1_entry(bs, l1_index);
284
    if (ret < 0) {
285
        goto fail;
286
    }
287

    
288
    /* update the l2 cache entry */
289

    
290
    s->l2_cache_offsets[min_index] = l2_offset;
291
    s->l2_cache_counts[min_index] = 1;
292

    
293
    *table = l2_table;
294
    return 0;
295

    
296
fail:
297
    s->l1_table[l1_index] = old_l2_offset;
298
    qcow2_l2_cache_reset(bs);
299
    return ret;
300
}
301

    
302
static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
303
        uint64_t *l2_table, uint64_t start, uint64_t mask)
304
{
305
    int i;
306
    uint64_t offset = be64_to_cpu(l2_table[0]) & ~mask;
307

    
308
    if (!offset)
309
        return 0;
310

    
311
    for (i = start; i < start + nb_clusters; i++)
312
        if (offset + (uint64_t) i * cluster_size != (be64_to_cpu(l2_table[i]) & ~mask))
313
            break;
314

    
315
        return (i - start);
316
}
317

    
318
static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
319
{
320
    int i = 0;
321

    
322
    while(nb_clusters-- && l2_table[i] == 0)
323
        i++;
324

    
325
    return i;
326
}
327

    
328
/* The crypt function is compatible with the linux cryptoloop
329
   algorithm for < 4 GB images. NOTE: out_buf == in_buf is
330
   supported */
331
void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
332
                           uint8_t *out_buf, const uint8_t *in_buf,
333
                           int nb_sectors, int enc,
334
                           const AES_KEY *key)
335
{
336
    union {
337
        uint64_t ll[2];
338
        uint8_t b[16];
339
    } ivec;
340
    int i;
341

    
342
    for(i = 0; i < nb_sectors; i++) {
343
        ivec.ll[0] = cpu_to_le64(sector_num);
344
        ivec.ll[1] = 0;
345
        AES_cbc_encrypt(in_buf, out_buf, 512, key,
346
                        ivec.b, enc);
347
        sector_num++;
348
        in_buf += 512;
349
        out_buf += 512;
350
    }
351
}
352

    
353

    
354
static int qcow_read(BlockDriverState *bs, int64_t sector_num,
355
                     uint8_t *buf, int nb_sectors)
356
{
357
    BDRVQcowState *s = bs->opaque;
358
    int ret, index_in_cluster, n, n1;
359
    uint64_t cluster_offset;
360
    struct iovec iov;
361
    QEMUIOVector qiov;
362

    
363
    while (nb_sectors > 0) {
364
        n = nb_sectors;
365

    
366
        ret = qcow2_get_cluster_offset(bs, sector_num << 9, &n,
367
            &cluster_offset);
368
        if (ret < 0) {
369
            return ret;
370
        }
371

    
372
        index_in_cluster = sector_num & (s->cluster_sectors - 1);
373
        if (!cluster_offset) {
374
            if (bs->backing_hd) {
375
                /* read from the base image */
376
                iov.iov_base = buf;
377
                iov.iov_len = n * 512;
378
                qemu_iovec_init_external(&qiov, &iov, 1);
379

    
380
                n1 = qcow2_backing_read1(bs->backing_hd, &qiov, sector_num, n);
381
                if (n1 > 0) {
382
                    BLKDBG_EVENT(bs->file, BLKDBG_READ_BACKING);
383
                    ret = bdrv_read(bs->backing_hd, sector_num, buf, n1);
384
                    if (ret < 0)
385
                        return -1;
386
                }
387
            } else {
388
                memset(buf, 0, 512 * n);
389
            }
390
        } else if (cluster_offset & QCOW_OFLAG_COMPRESSED) {
391
            if (qcow2_decompress_cluster(bs, cluster_offset) < 0)
392
                return -1;
393
            memcpy(buf, s->cluster_cache + index_in_cluster * 512, 512 * n);
394
        } else {
395
            BLKDBG_EVENT(bs->file, BLKDBG_READ);
396
            ret = bdrv_pread(bs->file, cluster_offset + index_in_cluster * 512, buf, n * 512);
397
            if (ret != n * 512)
398
                return -1;
399
            if (s->crypt_method) {
400
                qcow2_encrypt_sectors(s, sector_num, buf, buf, n, 0,
401
                                &s->aes_decrypt_key);
402
            }
403
        }
404
        nb_sectors -= n;
405
        sector_num += n;
406
        buf += n * 512;
407
    }
408
    return 0;
409
}
410

    
411
static int copy_sectors(BlockDriverState *bs, uint64_t start_sect,
412
                        uint64_t cluster_offset, int n_start, int n_end)
413
{
414
    BDRVQcowState *s = bs->opaque;
415
    int n, ret;
416

    
417
    n = n_end - n_start;
418
    if (n <= 0)
419
        return 0;
420
    BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
421
    ret = qcow_read(bs, start_sect + n_start, s->cluster_data, n);
422
    if (ret < 0)
423
        return ret;
424
    if (s->crypt_method) {
425
        qcow2_encrypt_sectors(s, start_sect + n_start,
426
                        s->cluster_data,
427
                        s->cluster_data, n, 1,
428
                        &s->aes_encrypt_key);
429
    }
430
    BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
431
    ret = bdrv_write(bs->file, (cluster_offset >> 9) + n_start,
432
        s->cluster_data, n);
433
    if (ret < 0)
434
        return ret;
435
    return 0;
436
}
437

    
438

    
439
/*
440
 * get_cluster_offset
441
 *
442
 * For a given offset of the disk image, find the cluster offset in
443
 * qcow2 file. The offset is stored in *cluster_offset.
444
 *
445
 * on entry, *num is the number of contiguous clusters we'd like to
446
 * access following offset.
447
 *
448
 * on exit, *num is the number of contiguous clusters we can read.
449
 *
450
 * Return 0, if the offset is found
451
 * Return -errno, otherwise.
452
 *
453
 */
454

    
455
int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
456
    int *num, uint64_t *cluster_offset)
457
{
458
    BDRVQcowState *s = bs->opaque;
459
    unsigned int l1_index, l2_index;
460
    uint64_t l2_offset, *l2_table;
461
    int l1_bits, c;
462
    unsigned int index_in_cluster, nb_clusters;
463
    uint64_t nb_available, nb_needed;
464
    int ret;
465

    
466
    index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
467
    nb_needed = *num + index_in_cluster;
468

    
469
    l1_bits = s->l2_bits + s->cluster_bits;
470

    
471
    /* compute how many bytes there are between the offset and
472
     * the end of the l1 entry
473
     */
474

    
475
    nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
476

    
477
    /* compute the number of available sectors */
478

    
479
    nb_available = (nb_available >> 9) + index_in_cluster;
480

    
481
    if (nb_needed > nb_available) {
482
        nb_needed = nb_available;
483
    }
484

    
485
    *cluster_offset = 0;
486

    
487
    /* seek the the l2 offset in the l1 table */
488

    
489
    l1_index = offset >> l1_bits;
490
    if (l1_index >= s->l1_size)
491
        goto out;
492

    
493
    l2_offset = s->l1_table[l1_index];
494

    
495
    /* seek the l2 table of the given l2 offset */
496

    
497
    if (!l2_offset)
498
        goto out;
499

    
500
    /* load the l2 table in memory */
501

    
502
    l2_offset &= ~QCOW_OFLAG_COPIED;
503
    ret = l2_load(bs, l2_offset, &l2_table);
504
    if (ret < 0) {
505
        return ret;
506
    }
507

    
508
    /* find the cluster offset for the given disk offset */
509

    
510
    l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
511
    *cluster_offset = be64_to_cpu(l2_table[l2_index]);
512
    nb_clusters = size_to_clusters(s, nb_needed << 9);
513

    
514
    if (!*cluster_offset) {
515
        /* how many empty clusters ? */
516
        c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
517
    } else {
518
        /* how many allocated clusters ? */
519
        c = count_contiguous_clusters(nb_clusters, s->cluster_size,
520
                &l2_table[l2_index], 0, QCOW_OFLAG_COPIED);
521
    }
522

    
523
   nb_available = (c * s->cluster_sectors);
524
out:
525
    if (nb_available > nb_needed)
526
        nb_available = nb_needed;
527

    
528
    *num = nb_available - index_in_cluster;
529

    
530
    *cluster_offset &=~QCOW_OFLAG_COPIED;
531
    return 0;
532
}
533

    
534
/*
535
 * get_cluster_table
536
 *
537
 * for a given disk offset, load (and allocate if needed)
538
 * the l2 table.
539
 *
540
 * the l2 table offset in the qcow2 file and the cluster index
541
 * in the l2 table are given to the caller.
542
 *
543
 * Returns 0 on success, -errno in failure case
544
 */
545
static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
546
                             uint64_t **new_l2_table,
547
                             uint64_t *new_l2_offset,
548
                             int *new_l2_index)
549
{
550
    BDRVQcowState *s = bs->opaque;
551
    unsigned int l1_index, l2_index;
552
    uint64_t l2_offset;
553
    uint64_t *l2_table = NULL;
554
    int ret;
555

    
556
    /* seek the the l2 offset in the l1 table */
557

    
558
    l1_index = offset >> (s->l2_bits + s->cluster_bits);
559
    if (l1_index >= s->l1_size) {
560
        ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
561
        if (ret < 0) {
562
            return ret;
563
        }
564
    }
565
    l2_offset = s->l1_table[l1_index];
566

    
567
    /* seek the l2 table of the given l2 offset */
568

    
569
    if (l2_offset & QCOW_OFLAG_COPIED) {
570
        /* load the l2 table in memory */
571
        l2_offset &= ~QCOW_OFLAG_COPIED;
572
        ret = l2_load(bs, l2_offset, &l2_table);
573
        if (ret < 0) {
574
            return ret;
575
        }
576
    } else {
577
        if (l2_offset)
578
            qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t));
579
        ret = l2_allocate(bs, l1_index, &l2_table);
580
        if (ret < 0) {
581
            return ret;
582
        }
583
        l2_offset = s->l1_table[l1_index] & ~QCOW_OFLAG_COPIED;
584
    }
585

    
586
    /* find the cluster offset for the given disk offset */
587

    
588
    l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
589

    
590
    *new_l2_table = l2_table;
591
    *new_l2_offset = l2_offset;
592
    *new_l2_index = l2_index;
593

    
594
    return 0;
595
}
596

    
597
/*
598
 * alloc_compressed_cluster_offset
599
 *
600
 * For a given offset of the disk image, return cluster offset in
601
 * qcow2 file.
602
 *
603
 * If the offset is not found, allocate a new compressed cluster.
604
 *
605
 * Return the cluster offset if successful,
606
 * Return 0, otherwise.
607
 *
608
 */
609

    
610
uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
611
                                               uint64_t offset,
612
                                               int compressed_size)
613
{
614
    BDRVQcowState *s = bs->opaque;
615
    int l2_index, ret;
616
    uint64_t l2_offset, *l2_table;
617
    int64_t cluster_offset;
618
    int nb_csectors;
619

    
620
    ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
621
    if (ret < 0) {
622
        return 0;
623
    }
624

    
625
    cluster_offset = be64_to_cpu(l2_table[l2_index]);
626
    if (cluster_offset & QCOW_OFLAG_COPIED)
627
        return cluster_offset & ~QCOW_OFLAG_COPIED;
628

    
629
    if (cluster_offset)
630
        qcow2_free_any_clusters(bs, cluster_offset, 1);
631

    
632
    cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
633
    if (cluster_offset < 0) {
634
        return 0;
635
    }
636

    
637
    nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
638
                  (cluster_offset >> 9);
639

    
640
    cluster_offset |= QCOW_OFLAG_COMPRESSED |
641
                      ((uint64_t)nb_csectors << s->csize_shift);
642

    
643
    /* update L2 table */
644

    
645
    /* compressed clusters never have the copied flag */
646

    
647
    BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
648
    l2_table[l2_index] = cpu_to_be64(cluster_offset);
649
    if (bdrv_pwrite_sync(bs->file,
650
                    l2_offset + l2_index * sizeof(uint64_t),
651
                    l2_table + l2_index,
652
                    sizeof(uint64_t)) < 0)
653
        return 0;
654

    
655
    return cluster_offset;
656
}
657

    
658
/*
659
 * Write L2 table updates to disk, writing whole sectors to avoid a
660
 * read-modify-write in bdrv_pwrite
661
 */
662
#define L2_ENTRIES_PER_SECTOR (512 / 8)
663
static int write_l2_entries(BlockDriverState *bs, uint64_t *l2_table,
664
    uint64_t l2_offset, int l2_index, int num)
665
{
666
    int l2_start_index = l2_index & ~(L1_ENTRIES_PER_SECTOR - 1);
667
    int start_offset = (8 * l2_index) & ~511;
668
    int end_offset = (8 * (l2_index + num) + 511) & ~511;
669
    size_t len = end_offset - start_offset;
670
    int ret;
671

    
672
    BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE);
673
    ret = bdrv_pwrite(bs->file, l2_offset + start_offset,
674
        &l2_table[l2_start_index], len);
675
    if (ret < 0) {
676
        return ret;
677
    }
678

    
679
    return 0;
680
}
681

    
682
int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
683
{
684
    BDRVQcowState *s = bs->opaque;
685
    int i, j = 0, l2_index, ret;
686
    uint64_t *old_cluster, start_sect, l2_offset, *l2_table;
687
    uint64_t cluster_offset = m->cluster_offset;
688

    
689
    if (m->nb_clusters == 0)
690
        return 0;
691

    
692
    old_cluster = qemu_malloc(m->nb_clusters * sizeof(uint64_t));
693

    
694
    /* copy content of unmodified sectors */
695
    start_sect = (m->offset & ~(s->cluster_size - 1)) >> 9;
696
    if (m->n_start) {
697
        ret = copy_sectors(bs, start_sect, cluster_offset, 0, m->n_start);
698
        if (ret < 0)
699
            goto err;
700
    }
701

    
702
    if (m->nb_available & (s->cluster_sectors - 1)) {
703
        uint64_t end = m->nb_available & ~(uint64_t)(s->cluster_sectors - 1);
704
        ret = copy_sectors(bs, start_sect + end, cluster_offset + (end << 9),
705
                m->nb_available - end, s->cluster_sectors);
706
        if (ret < 0)
707
            goto err;
708
    }
709

    
710
    /* update L2 table */
711
    ret = get_cluster_table(bs, m->offset, &l2_table, &l2_offset, &l2_index);
712
    if (ret < 0) {
713
        goto err;
714
    }
715

    
716
    for (i = 0; i < m->nb_clusters; i++) {
717
        /* if two concurrent writes happen to the same unallocated cluster
718
         * each write allocates separate cluster and writes data concurrently.
719
         * The first one to complete updates l2 table with pointer to its
720
         * cluster the second one has to do RMW (which is done above by
721
         * copy_sectors()), update l2 table with its cluster pointer and free
722
         * old cluster. This is what this loop does */
723
        if(l2_table[l2_index + i] != 0)
724
            old_cluster[j++] = l2_table[l2_index + i];
725

    
726
        l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
727
                    (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
728
     }
729

    
730
    /*
731
     * Before we update the L2 table to actually point to the new cluster, we
732
     * need to be sure that the refcounts have been increased and COW was
733
     * handled.
734
     */
735
    bdrv_flush(bs->file);
736

    
737
    ret = write_l2_entries(bs, l2_table, l2_offset, l2_index, m->nb_clusters);
738
    if (ret < 0) {
739
        qcow2_l2_cache_reset(bs);
740
        goto err;
741
    }
742

    
743
    /*
744
     * If this was a COW, we need to decrease the refcount of the old cluster.
745
     * Also flush bs->file to get the right order for L2 and refcount update.
746
     */
747
    if (j != 0) {
748
        bdrv_flush(bs->file);
749
        for (i = 0; i < j; i++) {
750
            qcow2_free_any_clusters(bs,
751
                be64_to_cpu(old_cluster[i]) & ~QCOW_OFLAG_COPIED, 1);
752
        }
753
    }
754

    
755
    ret = 0;
756
err:
757
    qemu_free(old_cluster);
758
    return ret;
759
 }
760

    
761
/*
762
 * alloc_cluster_offset
763
 *
764
 * For a given offset of the disk image, return cluster offset in qcow2 file.
765
 * If the offset is not found, allocate a new cluster.
766
 *
767
 * If the cluster was already allocated, m->nb_clusters is set to 0,
768
 * m->depends_on is set to NULL and the other fields in m are meaningless.
769
 *
770
 * If the cluster is newly allocated, m->nb_clusters is set to the number of
771
 * contiguous clusters that have been allocated. This may be 0 if the request
772
 * conflict with another write request in flight; in this case, m->depends_on
773
 * is set and the remaining fields of m are meaningless.
774
 *
775
 * If m->nb_clusters is non-zero, the other fields of m are valid and contain
776
 * information about the first allocated cluster.
777
 *
778
 * Return 0 on success and -errno in error cases
779
 */
780
int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
781
    int n_start, int n_end, int *num, QCowL2Meta *m)
782
{
783
    BDRVQcowState *s = bs->opaque;
784
    int l2_index, ret;
785
    uint64_t l2_offset, *l2_table;
786
    int64_t cluster_offset;
787
    unsigned int nb_clusters, i = 0;
788
    QCowL2Meta *old_alloc;
789

    
790
    ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
791
    if (ret < 0) {
792
        return ret;
793
    }
794

    
795
    nb_clusters = size_to_clusters(s, n_end << 9);
796

    
797
    nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
798

    
799
    cluster_offset = be64_to_cpu(l2_table[l2_index]);
800

    
801
    /* We keep all QCOW_OFLAG_COPIED clusters */
802

    
803
    if (cluster_offset & QCOW_OFLAG_COPIED) {
804
        nb_clusters = count_contiguous_clusters(nb_clusters, s->cluster_size,
805
                &l2_table[l2_index], 0, 0);
806

    
807
        cluster_offset &= ~QCOW_OFLAG_COPIED;
808
        m->nb_clusters = 0;
809
        m->depends_on = NULL;
810

    
811
        goto out;
812
    }
813

    
814
    /* for the moment, multiple compressed clusters are not managed */
815

    
816
    if (cluster_offset & QCOW_OFLAG_COMPRESSED)
817
        nb_clusters = 1;
818

    
819
    /* how many available clusters ? */
820

    
821
    while (i < nb_clusters) {
822
        i += count_contiguous_clusters(nb_clusters - i, s->cluster_size,
823
                &l2_table[l2_index], i, 0);
824
        if ((i >= nb_clusters) || be64_to_cpu(l2_table[l2_index + i])) {
825
            break;
826
        }
827

    
828
        i += count_contiguous_free_clusters(nb_clusters - i,
829
                &l2_table[l2_index + i]);
830
        if (i >= nb_clusters) {
831
            break;
832
        }
833

    
834
        cluster_offset = be64_to_cpu(l2_table[l2_index + i]);
835

    
836
        if ((cluster_offset & QCOW_OFLAG_COPIED) ||
837
                (cluster_offset & QCOW_OFLAG_COMPRESSED))
838
            break;
839
    }
840
    assert(i <= nb_clusters);
841
    nb_clusters = i;
842

    
843
    /*
844
     * Check if there already is an AIO write request in flight which allocates
845
     * the same cluster. In this case we need to wait until the previous
846
     * request has completed and updated the L2 table accordingly.
847
     */
848
    QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
849

    
850
        uint64_t end_offset = offset + nb_clusters * s->cluster_size;
851
        uint64_t old_offset = old_alloc->offset;
852
        uint64_t old_end_offset = old_alloc->offset +
853
            old_alloc->nb_clusters * s->cluster_size;
854

    
855
        if (end_offset < old_offset || offset > old_end_offset) {
856
            /* No intersection */
857
        } else {
858
            if (offset < old_offset) {
859
                /* Stop at the start of a running allocation */
860
                nb_clusters = (old_offset - offset) >> s->cluster_bits;
861
            } else {
862
                nb_clusters = 0;
863
            }
864

    
865
            if (nb_clusters == 0) {
866
                /* Set dependency and wait for a callback */
867
                m->depends_on = old_alloc;
868
                m->nb_clusters = 0;
869
                *num = 0;
870
                return 0;
871
            }
872
        }
873
    }
874

    
875
    if (!nb_clusters) {
876
        abort();
877
    }
878

    
879
    QLIST_INSERT_HEAD(&s->cluster_allocs, m, next_in_flight);
880

    
881
    /* allocate a new cluster */
882

    
883
    cluster_offset = qcow2_alloc_clusters(bs, nb_clusters * s->cluster_size);
884
    if (cluster_offset < 0) {
885
        QLIST_REMOVE(m, next_in_flight);
886
        return cluster_offset;
887
    }
888

    
889
    /* save info needed for meta data update */
890
    m->offset = offset;
891
    m->n_start = n_start;
892
    m->nb_clusters = nb_clusters;
893

    
894
out:
895
    m->nb_available = MIN(nb_clusters << (s->cluster_bits - 9), n_end);
896
    m->cluster_offset = cluster_offset;
897

    
898
    *num = m->nb_available - n_start;
899

    
900
    return 0;
901
}
902

    
903
static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
904
                             const uint8_t *buf, int buf_size)
905
{
906
    z_stream strm1, *strm = &strm1;
907
    int ret, out_len;
908

    
909
    memset(strm, 0, sizeof(*strm));
910

    
911
    strm->next_in = (uint8_t *)buf;
912
    strm->avail_in = buf_size;
913
    strm->next_out = out_buf;
914
    strm->avail_out = out_buf_size;
915

    
916
    ret = inflateInit2(strm, -12);
917
    if (ret != Z_OK)
918
        return -1;
919
    ret = inflate(strm, Z_FINISH);
920
    out_len = strm->next_out - out_buf;
921
    if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
922
        out_len != out_buf_size) {
923
        inflateEnd(strm);
924
        return -1;
925
    }
926
    inflateEnd(strm);
927
    return 0;
928
}
929

    
930
int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
931
{
932
    BDRVQcowState *s = bs->opaque;
933
    int ret, csize, nb_csectors, sector_offset;
934
    uint64_t coffset;
935

    
936
    coffset = cluster_offset & s->cluster_offset_mask;
937
    if (s->cluster_cache_offset != coffset) {
938
        nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
939
        sector_offset = coffset & 511;
940
        csize = nb_csectors * 512 - sector_offset;
941
        BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
942
        ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
943
        if (ret < 0) {
944
            return -1;
945
        }
946
        if (decompress_buffer(s->cluster_cache, s->cluster_size,
947
                              s->cluster_data + sector_offset, csize) < 0) {
948
            return -1;
949
        }
950
        s->cluster_cache_offset = coffset;
951
    }
952
    return 0;
953
}