Statistics
| Branch: | Revision:

root / coroutine-sigaltstack.c @ 737e150e

History | View | Annotate | Download (9.2 kB)

1
/*
2
 * sigaltstack coroutine initialization code
3
 *
4
 * Copyright (C) 2006  Anthony Liguori <anthony@codemonkey.ws>
5
 * Copyright (C) 2011  Kevin Wolf <kwolf@redhat.com>
6
 * Copyright (C) 2012  Alex Barcelo <abarcelo@ac.upc.edu>
7
** This file is partly based on pth_mctx.c, from the GNU Portable Threads
8
**  Copyright (c) 1999-2006 Ralf S. Engelschall <rse@engelschall.com>
9
 *
10
 * This library is free software; you can redistribute it and/or
11
 * modify it under the terms of the GNU Lesser General Public
12
 * License as published by the Free Software Foundation; either
13
 * version 2.1 of the License, or (at your option) any later version.
14
 *
15
 * This library is distributed in the hope that it will be useful,
16
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18
 * Lesser General Public License for more details.
19
 *
20
 * You should have received a copy of the GNU Lesser General Public
21
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22
 */
23

    
24
/* XXX Is there a nicer way to disable glibc's stack check for longjmp? */
25
#ifdef _FORTIFY_SOURCE
26
#undef _FORTIFY_SOURCE
27
#endif
28
#include <stdlib.h>
29
#include <setjmp.h>
30
#include <stdint.h>
31
#include <pthread.h>
32
#include <signal.h>
33
#include "qemu-common.h"
34
#include "block/coroutine_int.h"
35

    
36
enum {
37
    /* Maximum free pool size prevents holding too many freed coroutines */
38
    POOL_MAX_SIZE = 64,
39
};
40

    
41
/** Free list to speed up creation */
42
static QSLIST_HEAD(, Coroutine) pool = QSLIST_HEAD_INITIALIZER(pool);
43
static unsigned int pool_size;
44

    
45
typedef struct {
46
    Coroutine base;
47
    void *stack;
48
    jmp_buf env;
49
} CoroutineUContext;
50

    
51
/**
52
 * Per-thread coroutine bookkeeping
53
 */
54
typedef struct {
55
    /** Currently executing coroutine */
56
    Coroutine *current;
57

    
58
    /** The default coroutine */
59
    CoroutineUContext leader;
60

    
61
    /** Information for the signal handler (trampoline) */
62
    jmp_buf tr_reenter;
63
    volatile sig_atomic_t tr_called;
64
    void *tr_handler;
65
} CoroutineThreadState;
66

    
67
static pthread_key_t thread_state_key;
68

    
69
static CoroutineThreadState *coroutine_get_thread_state(void)
70
{
71
    CoroutineThreadState *s = pthread_getspecific(thread_state_key);
72

    
73
    if (!s) {
74
        s = g_malloc0(sizeof(*s));
75
        s->current = &s->leader.base;
76
        pthread_setspecific(thread_state_key, s);
77
    }
78
    return s;
79
}
80

    
81
static void qemu_coroutine_thread_cleanup(void *opaque)
82
{
83
    CoroutineThreadState *s = opaque;
84

    
85
    g_free(s);
86
}
87

    
88
static void __attribute__((destructor)) coroutine_cleanup(void)
89
{
90
    Coroutine *co;
91
    Coroutine *tmp;
92

    
93
    QSLIST_FOREACH_SAFE(co, &pool, pool_next, tmp) {
94
        g_free(DO_UPCAST(CoroutineUContext, base, co)->stack);
95
        g_free(co);
96
    }
97
}
98

    
99
static void __attribute__((constructor)) coroutine_init(void)
100
{
101
    int ret;
102

    
103
    ret = pthread_key_create(&thread_state_key, qemu_coroutine_thread_cleanup);
104
    if (ret != 0) {
105
        fprintf(stderr, "unable to create leader key: %s\n", strerror(errno));
106
        abort();
107
    }
108
}
109

    
110
/* "boot" function
111
 * This is what starts the coroutine, is called from the trampoline
112
 * (from the signal handler when it is not signal handling, read ahead
113
 * for more information).
114
 */
115
static void coroutine_bootstrap(CoroutineUContext *self, Coroutine *co)
116
{
117
    /* Initialize longjmp environment and switch back the caller */
118
    if (!setjmp(self->env)) {
119
        longjmp(*(jmp_buf *)co->entry_arg, 1);
120
    }
121

    
122
    while (true) {
123
        co->entry(co->entry_arg);
124
        qemu_coroutine_switch(co, co->caller, COROUTINE_TERMINATE);
125
    }
126
}
127

    
128
/*
129
 * This is used as the signal handler. This is called with the brand new stack
130
 * (thanks to sigaltstack). We have to return, given that this is a signal
131
 * handler and the sigmask and some other things are changed.
132
 */
133
static void coroutine_trampoline(int signal)
134
{
135
    CoroutineUContext *self;
136
    Coroutine *co;
137
    CoroutineThreadState *coTS;
138

    
139
    /* Get the thread specific information */
140
    coTS = coroutine_get_thread_state();
141
    self = coTS->tr_handler;
142
    coTS->tr_called = 1;
143
    co = &self->base;
144

    
145
    /*
146
     * Here we have to do a bit of a ping pong between the caller, given that
147
     * this is a signal handler and we have to do a return "soon". Then the
148
     * caller can reestablish everything and do a longjmp here again.
149
     */
150
    if (!setjmp(coTS->tr_reenter)) {
151
        return;
152
    }
153

    
154
    /*
155
     * Ok, the caller has longjmp'ed back to us, so now prepare
156
     * us for the real machine state switching. We have to jump
157
     * into another function here to get a new stack context for
158
     * the auto variables (which have to be auto-variables
159
     * because the start of the thread happens later). Else with
160
     * PIC (i.e. Position Independent Code which is used when PTH
161
     * is built as a shared library) most platforms would
162
     * horrible core dump as experience showed.
163
     */
164
    coroutine_bootstrap(self, co);
165
}
166

    
167
static Coroutine *coroutine_new(void)
168
{
169
    const size_t stack_size = 1 << 20;
170
    CoroutineUContext *co;
171
    CoroutineThreadState *coTS;
172
    struct sigaction sa;
173
    struct sigaction osa;
174
    stack_t ss;
175
    stack_t oss;
176
    sigset_t sigs;
177
    sigset_t osigs;
178
    jmp_buf old_env;
179

    
180
    /* The way to manipulate stack is with the sigaltstack function. We
181
     * prepare a stack, with it delivering a signal to ourselves and then
182
     * put setjmp/longjmp where needed.
183
     * This has been done keeping coroutine-ucontext as a model and with the
184
     * pth ideas (GNU Portable Threads). See coroutine-ucontext for the basics
185
     * of the coroutines and see pth_mctx.c (from the pth project) for the
186
     * sigaltstack way of manipulating stacks.
187
     */
188

    
189
    co = g_malloc0(sizeof(*co));
190
    co->stack = g_malloc(stack_size);
191
    co->base.entry_arg = &old_env; /* stash away our jmp_buf */
192

    
193
    coTS = coroutine_get_thread_state();
194
    coTS->tr_handler = co;
195

    
196
    /*
197
     * Preserve the SIGUSR2 signal state, block SIGUSR2,
198
     * and establish our signal handler. The signal will
199
     * later transfer control onto the signal stack.
200
     */
201
    sigemptyset(&sigs);
202
    sigaddset(&sigs, SIGUSR2);
203
    pthread_sigmask(SIG_BLOCK, &sigs, &osigs);
204
    sa.sa_handler = coroutine_trampoline;
205
    sigfillset(&sa.sa_mask);
206
    sa.sa_flags = SA_ONSTACK;
207
    if (sigaction(SIGUSR2, &sa, &osa) != 0) {
208
        abort();
209
    }
210

    
211
    /*
212
     * Set the new stack.
213
     */
214
    ss.ss_sp = co->stack;
215
    ss.ss_size = stack_size;
216
    ss.ss_flags = 0;
217
    if (sigaltstack(&ss, &oss) < 0) {
218
        abort();
219
    }
220

    
221
    /*
222
     * Now transfer control onto the signal stack and set it up.
223
     * It will return immediately via "return" after the setjmp()
224
     * was performed. Be careful here with race conditions.  The
225
     * signal can be delivered the first time sigsuspend() is
226
     * called.
227
     */
228
    coTS->tr_called = 0;
229
    pthread_kill(pthread_self(), SIGUSR2);
230
    sigfillset(&sigs);
231
    sigdelset(&sigs, SIGUSR2);
232
    while (!coTS->tr_called) {
233
        sigsuspend(&sigs);
234
    }
235

    
236
    /*
237
     * Inform the system that we are back off the signal stack by
238
     * removing the alternative signal stack. Be careful here: It
239
     * first has to be disabled, before it can be removed.
240
     */
241
    sigaltstack(NULL, &ss);
242
    ss.ss_flags = SS_DISABLE;
243
    if (sigaltstack(&ss, NULL) < 0) {
244
        abort();
245
    }
246
    sigaltstack(NULL, &ss);
247
    if (!(oss.ss_flags & SS_DISABLE)) {
248
        sigaltstack(&oss, NULL);
249
    }
250

    
251
    /*
252
     * Restore the old SIGUSR2 signal handler and mask
253
     */
254
    sigaction(SIGUSR2, &osa, NULL);
255
    pthread_sigmask(SIG_SETMASK, &osigs, NULL);
256

    
257
    /*
258
     * Now enter the trampoline again, but this time not as a signal
259
     * handler. Instead we jump into it directly. The functionally
260
     * redundant ping-pong pointer arithmetic is necessary to avoid
261
     * type-conversion warnings related to the `volatile' qualifier and
262
     * the fact that `jmp_buf' usually is an array type.
263
     */
264
    if (!setjmp(old_env)) {
265
        longjmp(coTS->tr_reenter, 1);
266
    }
267

    
268
    /*
269
     * Ok, we returned again, so now we're finished
270
     */
271

    
272
    return &co->base;
273
}
274

    
275
Coroutine *qemu_coroutine_new(void)
276
{
277
    Coroutine *co;
278

    
279
    co = QSLIST_FIRST(&pool);
280
    if (co) {
281
        QSLIST_REMOVE_HEAD(&pool, pool_next);
282
        pool_size--;
283
    } else {
284
        co = coroutine_new();
285
    }
286
    return co;
287
}
288

    
289
void qemu_coroutine_delete(Coroutine *co_)
290
{
291
    CoroutineUContext *co = DO_UPCAST(CoroutineUContext, base, co_);
292

    
293
    if (pool_size < POOL_MAX_SIZE) {
294
        QSLIST_INSERT_HEAD(&pool, &co->base, pool_next);
295
        co->base.caller = NULL;
296
        pool_size++;
297
        return;
298
    }
299

    
300
    g_free(co->stack);
301
    g_free(co);
302
}
303

    
304
CoroutineAction qemu_coroutine_switch(Coroutine *from_, Coroutine *to_,
305
                                      CoroutineAction action)
306
{
307
    CoroutineUContext *from = DO_UPCAST(CoroutineUContext, base, from_);
308
    CoroutineUContext *to = DO_UPCAST(CoroutineUContext, base, to_);
309
    CoroutineThreadState *s = coroutine_get_thread_state();
310
    int ret;
311

    
312
    s->current = to_;
313

    
314
    ret = setjmp(from->env);
315
    if (ret == 0) {
316
        longjmp(to->env, action);
317
    }
318
    return ret;
319
}
320

    
321
Coroutine *qemu_coroutine_self(void)
322
{
323
    CoroutineThreadState *s = coroutine_get_thread_state();
324

    
325
    return s->current;
326
}
327

    
328
bool qemu_in_coroutine(void)
329
{
330
    CoroutineThreadState *s = pthread_getspecific(thread_state_key);
331

    
332
    return s && s->current->caller;
333
}
334