Statistics
| Branch: | Revision:

root / target-ppc / kvm.c @ 73aaec4a

History | View | Annotate | Download (9.5 kB)

1
/*
2
 * PowerPC implementation of KVM hooks
3
 *
4
 * Copyright IBM Corp. 2007
5
 *
6
 * Authors:
7
 *  Jerone Young <jyoung5@us.ibm.com>
8
 *  Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
9
 *  Hollis Blanchard <hollisb@us.ibm.com>
10
 *
11
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12
 * See the COPYING file in the top-level directory.
13
 *
14
 */
15

    
16
#include <sys/types.h>
17
#include <sys/ioctl.h>
18
#include <sys/mman.h>
19

    
20
#include <linux/kvm.h>
21

    
22
#include "qemu-common.h"
23
#include "qemu-timer.h"
24
#include "sysemu.h"
25
#include "kvm.h"
26
#include "kvm_ppc.h"
27
#include "cpu.h"
28
#include "device_tree.h"
29

    
30
//#define DEBUG_KVM
31

    
32
#ifdef DEBUG_KVM
33
#define dprintf(fmt, ...) \
34
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
35
#else
36
#define dprintf(fmt, ...) \
37
    do { } while (0)
38
#endif
39

    
40
static int cap_interrupt_unset = false;
41
static int cap_interrupt_level = false;
42

    
43
/* XXX We have a race condition where we actually have a level triggered
44
 *     interrupt, but the infrastructure can't expose that yet, so the guest
45
 *     takes but ignores it, goes to sleep and never gets notified that there's
46
 *     still an interrupt pending.
47
 *
48
 *     As a quick workaround, let's just wake up again 20 ms after we injected
49
 *     an interrupt. That way we can assure that we're always reinjecting
50
 *     interrupts in case the guest swallowed them.
51
 */
52
static QEMUTimer *idle_timer;
53

    
54
static void kvm_kick_env(void *env)
55
{
56
    qemu_cpu_kick(env);
57
}
58

    
59
int kvm_arch_init(KVMState *s, int smp_cpus)
60
{
61
#ifdef KVM_CAP_PPC_UNSET_IRQ
62
    cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
63
#endif
64
#ifdef KVM_CAP_PPC_IRQ_LEVEL
65
    cap_interrupt_level = kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL);
66
#endif
67

    
68
    if (!cap_interrupt_level) {
69
        fprintf(stderr, "KVM: Couldn't find level irq capability. Expect the "
70
                        "VM to stall at times!\n");
71
    }
72

    
73
    return 0;
74
}
75

    
76
int kvm_arch_init_vcpu(CPUState *cenv)
77
{
78
    int ret = 0;
79
    struct kvm_sregs sregs;
80

    
81
    sregs.pvr = cenv->spr[SPR_PVR];
82
    ret = kvm_vcpu_ioctl(cenv, KVM_SET_SREGS, &sregs);
83

    
84
    idle_timer = qemu_new_timer(vm_clock, kvm_kick_env, cenv);
85

    
86
    return ret;
87
}
88

    
89
void kvm_arch_reset_vcpu(CPUState *env)
90
{
91
}
92

    
93
int kvm_arch_put_registers(CPUState *env, int level)
94
{
95
    struct kvm_regs regs;
96
    int ret;
97
    int i;
98

    
99
    ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
100
    if (ret < 0)
101
        return ret;
102

    
103
    regs.ctr = env->ctr;
104
    regs.lr  = env->lr;
105
    regs.xer = env->xer;
106
    regs.msr = env->msr;
107
    regs.pc = env->nip;
108

    
109
    regs.srr0 = env->spr[SPR_SRR0];
110
    regs.srr1 = env->spr[SPR_SRR1];
111

    
112
    regs.sprg0 = env->spr[SPR_SPRG0];
113
    regs.sprg1 = env->spr[SPR_SPRG1];
114
    regs.sprg2 = env->spr[SPR_SPRG2];
115
    regs.sprg3 = env->spr[SPR_SPRG3];
116
    regs.sprg4 = env->spr[SPR_SPRG4];
117
    regs.sprg5 = env->spr[SPR_SPRG5];
118
    regs.sprg6 = env->spr[SPR_SPRG6];
119
    regs.sprg7 = env->spr[SPR_SPRG7];
120

    
121
    for (i = 0;i < 32; i++)
122
        regs.gpr[i] = env->gpr[i];
123

    
124
    ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
125
    if (ret < 0)
126
        return ret;
127

    
128
    return ret;
129
}
130

    
131
int kvm_arch_get_registers(CPUState *env)
132
{
133
    struct kvm_regs regs;
134
    struct kvm_sregs sregs;
135
    int i, ret;
136

    
137
    ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
138
    if (ret < 0)
139
        return ret;
140

    
141
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
142
    if (ret < 0)
143
        return ret;
144

    
145
    env->ctr = regs.ctr;
146
    env->lr = regs.lr;
147
    env->xer = regs.xer;
148
    env->msr = regs.msr;
149
    env->nip = regs.pc;
150

    
151
    env->spr[SPR_SRR0] = regs.srr0;
152
    env->spr[SPR_SRR1] = regs.srr1;
153

    
154
    env->spr[SPR_SPRG0] = regs.sprg0;
155
    env->spr[SPR_SPRG1] = regs.sprg1;
156
    env->spr[SPR_SPRG2] = regs.sprg2;
157
    env->spr[SPR_SPRG3] = regs.sprg3;
158
    env->spr[SPR_SPRG4] = regs.sprg4;
159
    env->spr[SPR_SPRG5] = regs.sprg5;
160
    env->spr[SPR_SPRG6] = regs.sprg6;
161
    env->spr[SPR_SPRG7] = regs.sprg7;
162

    
163
    for (i = 0;i < 32; i++)
164
        env->gpr[i] = regs.gpr[i];
165

    
166
#ifdef KVM_CAP_PPC_SEGSTATE
167
    if (kvm_check_extension(env->kvm_state, KVM_CAP_PPC_SEGSTATE)) {
168
        env->sdr1 = sregs.u.s.sdr1;
169

    
170
        /* Sync SLB */
171
#ifdef TARGET_PPC64
172
        for (i = 0; i < 64; i++) {
173
            ppc_store_slb(env, sregs.u.s.ppc64.slb[i].slbe,
174
                               sregs.u.s.ppc64.slb[i].slbv);
175
        }
176
#endif
177

    
178
        /* Sync SRs */
179
        for (i = 0; i < 16; i++) {
180
            env->sr[i] = sregs.u.s.ppc32.sr[i];
181
        }
182

    
183
        /* Sync BATs */
184
        for (i = 0; i < 8; i++) {
185
            env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
186
            env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
187
            env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
188
            env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
189
        }
190
    }
191
#endif
192

    
193
    return 0;
194
}
195

    
196
int kvmppc_set_interrupt(CPUState *env, int irq, int level)
197
{
198
    unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
199

    
200
    if (irq != PPC_INTERRUPT_EXT) {
201
        return 0;
202
    }
203

    
204
    if (!kvm_enabled() || !cap_interrupt_unset || !cap_interrupt_level) {
205
        return 0;
206
    }
207

    
208
    kvm_vcpu_ioctl(env, KVM_INTERRUPT, &virq);
209

    
210
    return 0;
211
}
212

    
213
#if defined(TARGET_PPCEMB)
214
#define PPC_INPUT_INT PPC40x_INPUT_INT
215
#elif defined(TARGET_PPC64)
216
#define PPC_INPUT_INT PPC970_INPUT_INT
217
#else
218
#define PPC_INPUT_INT PPC6xx_INPUT_INT
219
#endif
220

    
221
int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
222
{
223
    int r;
224
    unsigned irq;
225

    
226
    /* PowerPC Qemu tracks the various core input pins (interrupt, critical
227
     * interrupt, reset, etc) in PPC-specific env->irq_input_state. */
228
    if (!cap_interrupt_level &&
229
        run->ready_for_interrupt_injection &&
230
        (env->interrupt_request & CPU_INTERRUPT_HARD) &&
231
        (env->irq_input_state & (1<<PPC_INPUT_INT)))
232
    {
233
        /* For now KVM disregards the 'irq' argument. However, in the
234
         * future KVM could cache it in-kernel to avoid a heavyweight exit
235
         * when reading the UIC.
236
         */
237
        irq = KVM_INTERRUPT_SET;
238

    
239
        dprintf("injected interrupt %d\n", irq);
240
        r = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &irq);
241
        if (r < 0)
242
            printf("cpu %d fail inject %x\n", env->cpu_index, irq);
243

    
244
        /* Always wake up soon in case the interrupt was level based */
245
        qemu_mod_timer(idle_timer, qemu_get_clock(vm_clock) +
246
                       (get_ticks_per_sec() / 50));
247
    }
248

    
249
    /* We don't know if there are more interrupts pending after this. However,
250
     * the guest will return to userspace in the course of handling this one
251
     * anyways, so we will get a chance to deliver the rest. */
252
    return 0;
253
}
254

    
255
int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
256
{
257
    return 0;
258
}
259

    
260
int kvm_arch_process_irqchip_events(CPUState *env)
261
{
262
    return 0;
263
}
264

    
265
static int kvmppc_handle_halt(CPUState *env)
266
{
267
    if (!(env->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
268
        env->halted = 1;
269
        env->exception_index = EXCP_HLT;
270
    }
271

    
272
    return 1;
273
}
274

    
275
/* map dcr access to existing qemu dcr emulation */
276
static int kvmppc_handle_dcr_read(CPUState *env, uint32_t dcrn, uint32_t *data)
277
{
278
    if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0)
279
        fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
280

    
281
    return 1;
282
}
283

    
284
static int kvmppc_handle_dcr_write(CPUState *env, uint32_t dcrn, uint32_t data)
285
{
286
    if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0)
287
        fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
288

    
289
    return 1;
290
}
291

    
292
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
293
{
294
    int ret = 0;
295

    
296
    switch (run->exit_reason) {
297
    case KVM_EXIT_DCR:
298
        if (run->dcr.is_write) {
299
            dprintf("handle dcr write\n");
300
            ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
301
        } else {
302
            dprintf("handle dcr read\n");
303
            ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
304
        }
305
        break;
306
    case KVM_EXIT_HLT:
307
        dprintf("handle halt\n");
308
        ret = kvmppc_handle_halt(env);
309
        break;
310
    default:
311
        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
312
        ret = -1;
313
        break;
314
    }
315

    
316
    return ret;
317
}
318

    
319
static int read_cpuinfo(const char *field, char *value, int len)
320
{
321
    FILE *f;
322
    int ret = -1;
323
    int field_len = strlen(field);
324
    char line[512];
325

    
326
    f = fopen("/proc/cpuinfo", "r");
327
    if (!f) {
328
        return -1;
329
    }
330

    
331
    do {
332
        if(!fgets(line, sizeof(line), f)) {
333
            break;
334
        }
335
        if (!strncmp(line, field, field_len)) {
336
            strncpy(value, line, len);
337
            ret = 0;
338
            break;
339
        }
340
    } while(*line);
341

    
342
    fclose(f);
343

    
344
    return ret;
345
}
346

    
347
uint32_t kvmppc_get_tbfreq(void)
348
{
349
    char line[512];
350
    char *ns;
351
    uint32_t retval = get_ticks_per_sec();
352

    
353
    if (read_cpuinfo("timebase", line, sizeof(line))) {
354
        return retval;
355
    }
356

    
357
    if (!(ns = strchr(line, ':'))) {
358
        return retval;
359
    }
360

    
361
    ns++;
362

    
363
    retval = atoi(ns);
364
    return retval;
365
}
366

    
367
int kvmppc_get_hypercall(CPUState *env, uint8_t *buf, int buf_len)
368
{
369
    uint32_t *hc = (uint32_t*)buf;
370

    
371
#ifdef KVM_CAP_PPC_GET_PVINFO
372
    struct kvm_ppc_pvinfo pvinfo;
373

    
374
    if (kvm_check_extension(env->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
375
        !kvm_vm_ioctl(env->kvm_state, KVM_PPC_GET_PVINFO, &pvinfo)) {
376
        memcpy(buf, pvinfo.hcall, buf_len);
377

    
378
        return 0;
379
    }
380
#endif
381

    
382
    /*
383
     * Fallback to always fail hypercalls:
384
     *
385
     *     li r3, -1
386
     *     nop
387
     *     nop
388
     *     nop
389
     */
390

    
391
    hc[0] = 0x3860ffff;
392
    hc[1] = 0x60000000;
393
    hc[2] = 0x60000000;
394
    hc[3] = 0x60000000;
395

    
396
    return 0;
397
}
398

    
399
bool kvm_arch_stop_on_emulation_error(CPUState *env)
400
{
401
    return true;
402
}