Statistics
| Branch: | Revision:

root / hw / cuda.c @ 74475455

History | View | Annotate | Download (21.2 kB)

1
/*
2
 * QEMU PowerMac CUDA device support
3
 *
4
 * Copyright (c) 2004-2007 Fabrice Bellard
5
 * Copyright (c) 2007 Jocelyn Mayer
6
 *
7
 * Permission is hereby granted, free of charge, to any person obtaining a copy
8
 * of this software and associated documentation files (the "Software"), to deal
9
 * in the Software without restriction, including without limitation the rights
10
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11
 * copies of the Software, and to permit persons to whom the Software is
12
 * furnished to do so, subject to the following conditions:
13
 *
14
 * The above copyright notice and this permission notice shall be included in
15
 * all copies or substantial portions of the Software.
16
 *
17
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23
 * THE SOFTWARE.
24
 */
25
#include "hw.h"
26
#include "ppc_mac.h"
27
#include "qemu-timer.h"
28
#include "sysemu.h"
29

    
30
/* XXX: implement all timer modes */
31

    
32
/* debug CUDA */
33
//#define DEBUG_CUDA
34

    
35
/* debug CUDA packets */
36
//#define DEBUG_CUDA_PACKET
37

    
38
#ifdef DEBUG_CUDA
39
#define CUDA_DPRINTF(fmt, ...)                                  \
40
    do { printf("CUDA: " fmt , ## __VA_ARGS__); } while (0)
41
#else
42
#define CUDA_DPRINTF(fmt, ...)
43
#endif
44

    
45
/* Bits in B data register: all active low */
46
#define TREQ                0x08                /* Transfer request (input) */
47
#define TACK                0x10                /* Transfer acknowledge (output) */
48
#define TIP                0x20                /* Transfer in progress (output) */
49

    
50
/* Bits in ACR */
51
#define SR_CTRL                0x1c                /* Shift register control bits */
52
#define SR_EXT                0x0c                /* Shift on external clock */
53
#define SR_OUT                0x10                /* Shift out if 1 */
54

    
55
/* Bits in IFR and IER */
56
#define IER_SET                0x80                /* set bits in IER */
57
#define IER_CLR                0                /* clear bits in IER */
58
#define SR_INT                0x04                /* Shift register full/empty */
59
#define T1_INT          0x40            /* Timer 1 interrupt */
60
#define T2_INT          0x20            /* Timer 2 interrupt */
61

    
62
/* Bits in ACR */
63
#define T1MODE          0xc0            /* Timer 1 mode */
64
#define T1MODE_CONT     0x40            /*  continuous interrupts */
65

    
66
/* commands (1st byte) */
67
#define ADB_PACKET        0
68
#define CUDA_PACKET        1
69
#define ERROR_PACKET        2
70
#define TIMER_PACKET        3
71
#define POWER_PACKET        4
72
#define MACIIC_PACKET        5
73
#define PMU_PACKET        6
74

    
75

    
76
/* CUDA commands (2nd byte) */
77
#define CUDA_WARM_START                        0x0
78
#define CUDA_AUTOPOLL                        0x1
79
#define CUDA_GET_6805_ADDR                0x2
80
#define CUDA_GET_TIME                        0x3
81
#define CUDA_GET_PRAM                        0x7
82
#define CUDA_SET_6805_ADDR                0x8
83
#define CUDA_SET_TIME                        0x9
84
#define CUDA_POWERDOWN                        0xa
85
#define CUDA_POWERUP_TIME                0xb
86
#define CUDA_SET_PRAM                        0xc
87
#define CUDA_MS_RESET                        0xd
88
#define CUDA_SEND_DFAC                        0xe
89
#define CUDA_BATTERY_SWAP_SENSE                0x10
90
#define CUDA_RESET_SYSTEM                0x11
91
#define CUDA_SET_IPL                        0x12
92
#define CUDA_FILE_SERVER_FLAG                0x13
93
#define CUDA_SET_AUTO_RATE                0x14
94
#define CUDA_GET_AUTO_RATE                0x16
95
#define CUDA_SET_DEVICE_LIST                0x19
96
#define CUDA_GET_DEVICE_LIST                0x1a
97
#define CUDA_SET_ONE_SECOND_MODE        0x1b
98
#define CUDA_SET_POWER_MESSAGES                0x21
99
#define CUDA_GET_SET_IIC                0x22
100
#define CUDA_WAKEUP                        0x23
101
#define CUDA_TIMER_TICKLE                0x24
102
#define CUDA_COMBINED_FORMAT_IIC        0x25
103

    
104
#define CUDA_TIMER_FREQ (4700000 / 6)
105
#define CUDA_ADB_POLL_FREQ 50
106

    
107
/* CUDA returns time_t's offset from Jan 1, 1904, not 1970 */
108
#define RTC_OFFSET                      2082844800
109

    
110
typedef struct CUDATimer {
111
    int index;
112
    uint16_t latch;
113
    uint16_t counter_value; /* counter value at load time */
114
    int64_t load_time;
115
    int64_t next_irq_time;
116
    QEMUTimer *timer;
117
} CUDATimer;
118

    
119
typedef struct CUDAState {
120
    /* cuda registers */
121
    uint8_t b;      /* B-side data */
122
    uint8_t a;      /* A-side data */
123
    uint8_t dirb;   /* B-side direction (1=output) */
124
    uint8_t dira;   /* A-side direction (1=output) */
125
    uint8_t sr;     /* Shift register */
126
    uint8_t acr;    /* Auxiliary control register */
127
    uint8_t pcr;    /* Peripheral control register */
128
    uint8_t ifr;    /* Interrupt flag register */
129
    uint8_t ier;    /* Interrupt enable register */
130
    uint8_t anh;    /* A-side data, no handshake */
131

    
132
    CUDATimer timers[2];
133

    
134
    uint32_t tick_offset;
135

    
136
    uint8_t last_b; /* last value of B register */
137
    uint8_t last_acr; /* last value of B register */
138

    
139
    int data_in_size;
140
    int data_in_index;
141
    int data_out_index;
142

    
143
    qemu_irq irq;
144
    uint8_t autopoll;
145
    uint8_t data_in[128];
146
    uint8_t data_out[16];
147
    QEMUTimer *adb_poll_timer;
148
} CUDAState;
149

    
150
static CUDAState cuda_state;
151
ADBBusState adb_bus;
152

    
153
static void cuda_update(CUDAState *s);
154
static void cuda_receive_packet_from_host(CUDAState *s,
155
                                          const uint8_t *data, int len);
156
static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
157
                              int64_t current_time);
158

    
159
static void cuda_update_irq(CUDAState *s)
160
{
161
    if (s->ifr & s->ier & (SR_INT | T1_INT)) {
162
        qemu_irq_raise(s->irq);
163
    } else {
164
        qemu_irq_lower(s->irq);
165
    }
166
}
167

    
168
static unsigned int get_counter(CUDATimer *s)
169
{
170
    int64_t d;
171
    unsigned int counter;
172

    
173
    d = muldiv64(qemu_get_clock_ns(vm_clock) - s->load_time,
174
                 CUDA_TIMER_FREQ, get_ticks_per_sec());
175
    if (s->index == 0) {
176
        /* the timer goes down from latch to -1 (period of latch + 2) */
177
        if (d <= (s->counter_value + 1)) {
178
            counter = (s->counter_value - d) & 0xffff;
179
        } else {
180
            counter = (d - (s->counter_value + 1)) % (s->latch + 2);
181
            counter = (s->latch - counter) & 0xffff;
182
        }
183
    } else {
184
        counter = (s->counter_value - d) & 0xffff;
185
    }
186
    return counter;
187
}
188

    
189
static void set_counter(CUDAState *s, CUDATimer *ti, unsigned int val)
190
{
191
    CUDA_DPRINTF("T%d.counter=%d\n", 1 + (ti->timer == NULL), val);
192
    ti->load_time = qemu_get_clock_ns(vm_clock);
193
    ti->counter_value = val;
194
    cuda_timer_update(s, ti, ti->load_time);
195
}
196

    
197
static int64_t get_next_irq_time(CUDATimer *s, int64_t current_time)
198
{
199
    int64_t d, next_time;
200
    unsigned int counter;
201

    
202
    /* current counter value */
203
    d = muldiv64(current_time - s->load_time,
204
                 CUDA_TIMER_FREQ, get_ticks_per_sec());
205
    /* the timer goes down from latch to -1 (period of latch + 2) */
206
    if (d <= (s->counter_value + 1)) {
207
        counter = (s->counter_value - d) & 0xffff;
208
    } else {
209
        counter = (d - (s->counter_value + 1)) % (s->latch + 2);
210
        counter = (s->latch - counter) & 0xffff;
211
    }
212

    
213
    /* Note: we consider the irq is raised on 0 */
214
    if (counter == 0xffff) {
215
        next_time = d + s->latch + 1;
216
    } else if (counter == 0) {
217
        next_time = d + s->latch + 2;
218
    } else {
219
        next_time = d + counter;
220
    }
221
    CUDA_DPRINTF("latch=%d counter=%" PRId64 " delta_next=%" PRId64 "\n",
222
                 s->latch, d, next_time - d);
223
    next_time = muldiv64(next_time, get_ticks_per_sec(), CUDA_TIMER_FREQ) +
224
        s->load_time;
225
    if (next_time <= current_time)
226
        next_time = current_time + 1;
227
    return next_time;
228
}
229

    
230
static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
231
                              int64_t current_time)
232
{
233
    if (!ti->timer)
234
        return;
235
    if ((s->acr & T1MODE) != T1MODE_CONT) {
236
        qemu_del_timer(ti->timer);
237
    } else {
238
        ti->next_irq_time = get_next_irq_time(ti, current_time);
239
        qemu_mod_timer(ti->timer, ti->next_irq_time);
240
    }
241
}
242

    
243
static void cuda_timer1(void *opaque)
244
{
245
    CUDAState *s = opaque;
246
    CUDATimer *ti = &s->timers[0];
247

    
248
    cuda_timer_update(s, ti, ti->next_irq_time);
249
    s->ifr |= T1_INT;
250
    cuda_update_irq(s);
251
}
252

    
253
static uint32_t cuda_readb(void *opaque, target_phys_addr_t addr)
254
{
255
    CUDAState *s = opaque;
256
    uint32_t val;
257

    
258
    addr = (addr >> 9) & 0xf;
259
    switch(addr) {
260
    case 0:
261
        val = s->b;
262
        break;
263
    case 1:
264
        val = s->a;
265
        break;
266
    case 2:
267
        val = s->dirb;
268
        break;
269
    case 3:
270
        val = s->dira;
271
        break;
272
    case 4:
273
        val = get_counter(&s->timers[0]) & 0xff;
274
        s->ifr &= ~T1_INT;
275
        cuda_update_irq(s);
276
        break;
277
    case 5:
278
        val = get_counter(&s->timers[0]) >> 8;
279
        cuda_update_irq(s);
280
        break;
281
    case 6:
282
        val = s->timers[0].latch & 0xff;
283
        break;
284
    case 7:
285
        /* XXX: check this */
286
        val = (s->timers[0].latch >> 8) & 0xff;
287
        break;
288
    case 8:
289
        val = get_counter(&s->timers[1]) & 0xff;
290
        s->ifr &= ~T2_INT;
291
        break;
292
    case 9:
293
        val = get_counter(&s->timers[1]) >> 8;
294
        break;
295
    case 10:
296
        val = s->sr;
297
        s->ifr &= ~SR_INT;
298
        cuda_update_irq(s);
299
        break;
300
    case 11:
301
        val = s->acr;
302
        break;
303
    case 12:
304
        val = s->pcr;
305
        break;
306
    case 13:
307
        val = s->ifr;
308
        if (s->ifr & s->ier)
309
            val |= 0x80;
310
        break;
311
    case 14:
312
        val = s->ier | 0x80;
313
        break;
314
    default:
315
    case 15:
316
        val = s->anh;
317
        break;
318
    }
319
    if (addr != 13 || val != 0) {
320
        CUDA_DPRINTF("read: reg=0x%x val=%02x\n", (int)addr, val);
321
    }
322

    
323
    return val;
324
}
325

    
326
static void cuda_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
327
{
328
    CUDAState *s = opaque;
329

    
330
    addr = (addr >> 9) & 0xf;
331
    CUDA_DPRINTF("write: reg=0x%x val=%02x\n", (int)addr, val);
332

    
333
    switch(addr) {
334
    case 0:
335
        s->b = val;
336
        cuda_update(s);
337
        break;
338
    case 1:
339
        s->a = val;
340
        break;
341
    case 2:
342
        s->dirb = val;
343
        break;
344
    case 3:
345
        s->dira = val;
346
        break;
347
    case 4:
348
        s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
349
        cuda_timer_update(s, &s->timers[0], qemu_get_clock_ns(vm_clock));
350
        break;
351
    case 5:
352
        s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
353
        s->ifr &= ~T1_INT;
354
        set_counter(s, &s->timers[0], s->timers[0].latch);
355
        break;
356
    case 6:
357
        s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
358
        cuda_timer_update(s, &s->timers[0], qemu_get_clock_ns(vm_clock));
359
        break;
360
    case 7:
361
        s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
362
        s->ifr &= ~T1_INT;
363
        cuda_timer_update(s, &s->timers[0], qemu_get_clock_ns(vm_clock));
364
        break;
365
    case 8:
366
        s->timers[1].latch = val;
367
        set_counter(s, &s->timers[1], val);
368
        break;
369
    case 9:
370
        set_counter(s, &s->timers[1], (val << 8) | s->timers[1].latch);
371
        break;
372
    case 10:
373
        s->sr = val;
374
        break;
375
    case 11:
376
        s->acr = val;
377
        cuda_timer_update(s, &s->timers[0], qemu_get_clock_ns(vm_clock));
378
        cuda_update(s);
379
        break;
380
    case 12:
381
        s->pcr = val;
382
        break;
383
    case 13:
384
        /* reset bits */
385
        s->ifr &= ~val;
386
        cuda_update_irq(s);
387
        break;
388
    case 14:
389
        if (val & IER_SET) {
390
            /* set bits */
391
            s->ier |= val & 0x7f;
392
        } else {
393
            /* reset bits */
394
            s->ier &= ~val;
395
        }
396
        cuda_update_irq(s);
397
        break;
398
    default:
399
    case 15:
400
        s->anh = val;
401
        break;
402
    }
403
}
404

    
405
/* NOTE: TIP and TREQ are negated */
406
static void cuda_update(CUDAState *s)
407
{
408
    int packet_received, len;
409

    
410
    packet_received = 0;
411
    if (!(s->b & TIP)) {
412
        /* transfer requested from host */
413

    
414
        if (s->acr & SR_OUT) {
415
            /* data output */
416
            if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
417
                if (s->data_out_index < sizeof(s->data_out)) {
418
                    CUDA_DPRINTF("send: %02x\n", s->sr);
419
                    s->data_out[s->data_out_index++] = s->sr;
420
                    s->ifr |= SR_INT;
421
                    cuda_update_irq(s);
422
                }
423
            }
424
        } else {
425
            if (s->data_in_index < s->data_in_size) {
426
                /* data input */
427
                if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
428
                    s->sr = s->data_in[s->data_in_index++];
429
                    CUDA_DPRINTF("recv: %02x\n", s->sr);
430
                    /* indicate end of transfer */
431
                    if (s->data_in_index >= s->data_in_size) {
432
                        s->b = (s->b | TREQ);
433
                    }
434
                    s->ifr |= SR_INT;
435
                    cuda_update_irq(s);
436
                }
437
            }
438
        }
439
    } else {
440
        /* no transfer requested: handle sync case */
441
        if ((s->last_b & TIP) && (s->b & TACK) != (s->last_b & TACK)) {
442
            /* update TREQ state each time TACK change state */
443
            if (s->b & TACK)
444
                s->b = (s->b | TREQ);
445
            else
446
                s->b = (s->b & ~TREQ);
447
            s->ifr |= SR_INT;
448
            cuda_update_irq(s);
449
        } else {
450
            if (!(s->last_b & TIP)) {
451
                /* handle end of host to cuda transfer */
452
                packet_received = (s->data_out_index > 0);
453
                /* always an IRQ at the end of transfer */
454
                s->ifr |= SR_INT;
455
                cuda_update_irq(s);
456
            }
457
            /* signal if there is data to read */
458
            if (s->data_in_index < s->data_in_size) {
459
                s->b = (s->b & ~TREQ);
460
            }
461
        }
462
    }
463

    
464
    s->last_acr = s->acr;
465
    s->last_b = s->b;
466

    
467
    /* NOTE: cuda_receive_packet_from_host() can call cuda_update()
468
       recursively */
469
    if (packet_received) {
470
        len = s->data_out_index;
471
        s->data_out_index = 0;
472
        cuda_receive_packet_from_host(s, s->data_out, len);
473
    }
474
}
475

    
476
static void cuda_send_packet_to_host(CUDAState *s,
477
                                     const uint8_t *data, int len)
478
{
479
#ifdef DEBUG_CUDA_PACKET
480
    {
481
        int i;
482
        printf("cuda_send_packet_to_host:\n");
483
        for(i = 0; i < len; i++)
484
            printf(" %02x", data[i]);
485
        printf("\n");
486
    }
487
#endif
488
    memcpy(s->data_in, data, len);
489
    s->data_in_size = len;
490
    s->data_in_index = 0;
491
    cuda_update(s);
492
    s->ifr |= SR_INT;
493
    cuda_update_irq(s);
494
}
495

    
496
static void cuda_adb_poll(void *opaque)
497
{
498
    CUDAState *s = opaque;
499
    uint8_t obuf[ADB_MAX_OUT_LEN + 2];
500
    int olen;
501

    
502
    olen = adb_poll(&adb_bus, obuf + 2);
503
    if (olen > 0) {
504
        obuf[0] = ADB_PACKET;
505
        obuf[1] = 0x40; /* polled data */
506
        cuda_send_packet_to_host(s, obuf, olen + 2);
507
    }
508
    qemu_mod_timer(s->adb_poll_timer,
509
                   qemu_get_clock_ns(vm_clock) +
510
                   (get_ticks_per_sec() / CUDA_ADB_POLL_FREQ));
511
}
512

    
513
static void cuda_receive_packet(CUDAState *s,
514
                                const uint8_t *data, int len)
515
{
516
    uint8_t obuf[16];
517
    int autopoll;
518
    uint32_t ti;
519

    
520
    switch(data[0]) {
521
    case CUDA_AUTOPOLL:
522
        autopoll = (data[1] != 0);
523
        if (autopoll != s->autopoll) {
524
            s->autopoll = autopoll;
525
            if (autopoll) {
526
                qemu_mod_timer(s->adb_poll_timer,
527
                               qemu_get_clock_ns(vm_clock) +
528
                               (get_ticks_per_sec() / CUDA_ADB_POLL_FREQ));
529
            } else {
530
                qemu_del_timer(s->adb_poll_timer);
531
            }
532
        }
533
        obuf[0] = CUDA_PACKET;
534
        obuf[1] = data[1];
535
        cuda_send_packet_to_host(s, obuf, 2);
536
        break;
537
    case CUDA_SET_TIME:
538
        ti = (((uint32_t)data[1]) << 24) + (((uint32_t)data[2]) << 16) + (((uint32_t)data[3]) << 8) + data[4];
539
        s->tick_offset = ti - (qemu_get_clock_ns(vm_clock) / get_ticks_per_sec());
540
        obuf[0] = CUDA_PACKET;
541
        obuf[1] = 0;
542
        obuf[2] = 0;
543
        cuda_send_packet_to_host(s, obuf, 3);
544
        break;
545
    case CUDA_GET_TIME:
546
        ti = s->tick_offset + (qemu_get_clock_ns(vm_clock) / get_ticks_per_sec());
547
        obuf[0] = CUDA_PACKET;
548
        obuf[1] = 0;
549
        obuf[2] = 0;
550
        obuf[3] = ti >> 24;
551
        obuf[4] = ti >> 16;
552
        obuf[5] = ti >> 8;
553
        obuf[6] = ti;
554
        cuda_send_packet_to_host(s, obuf, 7);
555
        break;
556
    case CUDA_FILE_SERVER_FLAG:
557
    case CUDA_SET_DEVICE_LIST:
558
    case CUDA_SET_AUTO_RATE:
559
    case CUDA_SET_POWER_MESSAGES:
560
        obuf[0] = CUDA_PACKET;
561
        obuf[1] = 0;
562
        cuda_send_packet_to_host(s, obuf, 2);
563
        break;
564
    case CUDA_POWERDOWN:
565
        obuf[0] = CUDA_PACKET;
566
        obuf[1] = 0;
567
        cuda_send_packet_to_host(s, obuf, 2);
568
        qemu_system_shutdown_request();
569
        break;
570
    case CUDA_RESET_SYSTEM:
571
        obuf[0] = CUDA_PACKET;
572
        obuf[1] = 0;
573
        cuda_send_packet_to_host(s, obuf, 2);
574
        qemu_system_reset_request();
575
        break;
576
    default:
577
        break;
578
    }
579
}
580

    
581
static void cuda_receive_packet_from_host(CUDAState *s,
582
                                          const uint8_t *data, int len)
583
{
584
#ifdef DEBUG_CUDA_PACKET
585
    {
586
        int i;
587
        printf("cuda_receive_packet_from_host:\n");
588
        for(i = 0; i < len; i++)
589
            printf(" %02x", data[i]);
590
        printf("\n");
591
    }
592
#endif
593
    switch(data[0]) {
594
    case ADB_PACKET:
595
        {
596
            uint8_t obuf[ADB_MAX_OUT_LEN + 2];
597
            int olen;
598
            olen = adb_request(&adb_bus, obuf + 2, data + 1, len - 1);
599
            if (olen > 0) {
600
                obuf[0] = ADB_PACKET;
601
                obuf[1] = 0x00;
602
            } else {
603
                /* error */
604
                obuf[0] = ADB_PACKET;
605
                obuf[1] = -olen;
606
                olen = 0;
607
            }
608
            cuda_send_packet_to_host(s, obuf, olen + 2);
609
        }
610
        break;
611
    case CUDA_PACKET:
612
        cuda_receive_packet(s, data + 1, len - 1);
613
        break;
614
    }
615
}
616

    
617
static void cuda_writew (void *opaque, target_phys_addr_t addr, uint32_t value)
618
{
619
}
620

    
621
static void cuda_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
622
{
623
}
624

    
625
static uint32_t cuda_readw (void *opaque, target_phys_addr_t addr)
626
{
627
    return 0;
628
}
629

    
630
static uint32_t cuda_readl (void *opaque, target_phys_addr_t addr)
631
{
632
    return 0;
633
}
634

    
635
static CPUWriteMemoryFunc * const cuda_write[] = {
636
    &cuda_writeb,
637
    &cuda_writew,
638
    &cuda_writel,
639
};
640

    
641
static CPUReadMemoryFunc * const cuda_read[] = {
642
    &cuda_readb,
643
    &cuda_readw,
644
    &cuda_readl,
645
};
646

    
647
static void cuda_save_timer(QEMUFile *f, CUDATimer *s)
648
{
649
    qemu_put_be16s(f, &s->latch);
650
    qemu_put_be16s(f, &s->counter_value);
651
    qemu_put_sbe64s(f, &s->load_time);
652
    qemu_put_sbe64s(f, &s->next_irq_time);
653
    if (s->timer)
654
        qemu_put_timer(f, s->timer);
655
}
656

    
657
static void cuda_save(QEMUFile *f, void *opaque)
658
{
659
    CUDAState *s = (CUDAState *)opaque;
660

    
661
    qemu_put_ubyte(f, s->b);
662
    qemu_put_ubyte(f, s->a);
663
    qemu_put_ubyte(f, s->dirb);
664
    qemu_put_ubyte(f, s->dira);
665
    qemu_put_ubyte(f, s->sr);
666
    qemu_put_ubyte(f, s->acr);
667
    qemu_put_ubyte(f, s->pcr);
668
    qemu_put_ubyte(f, s->ifr);
669
    qemu_put_ubyte(f, s->ier);
670
    qemu_put_ubyte(f, s->anh);
671
    qemu_put_sbe32s(f, &s->data_in_size);
672
    qemu_put_sbe32s(f, &s->data_in_index);
673
    qemu_put_sbe32s(f, &s->data_out_index);
674
    qemu_put_ubyte(f, s->autopoll);
675
    qemu_put_buffer(f, s->data_in, sizeof(s->data_in));
676
    qemu_put_buffer(f, s->data_out, sizeof(s->data_out));
677
    qemu_put_be32s(f, &s->tick_offset);
678
    cuda_save_timer(f, &s->timers[0]);
679
    cuda_save_timer(f, &s->timers[1]);
680
}
681

    
682
static void cuda_load_timer(QEMUFile *f, CUDATimer *s)
683
{
684
    qemu_get_be16s(f, &s->latch);
685
    qemu_get_be16s(f, &s->counter_value);
686
    qemu_get_sbe64s(f, &s->load_time);
687
    qemu_get_sbe64s(f, &s->next_irq_time);
688
    if (s->timer)
689
        qemu_get_timer(f, s->timer);
690
}
691

    
692
static int cuda_load(QEMUFile *f, void *opaque, int version_id)
693
{
694
    CUDAState *s = (CUDAState *)opaque;
695

    
696
    if (version_id != 1)
697
        return -EINVAL;
698

    
699
    s->b = qemu_get_ubyte(f);
700
    s->a = qemu_get_ubyte(f);
701
    s->dirb = qemu_get_ubyte(f);
702
    s->dira = qemu_get_ubyte(f);
703
    s->sr = qemu_get_ubyte(f);
704
    s->acr = qemu_get_ubyte(f);
705
    s->pcr = qemu_get_ubyte(f);
706
    s->ifr = qemu_get_ubyte(f);
707
    s->ier = qemu_get_ubyte(f);
708
    s->anh = qemu_get_ubyte(f);
709
    qemu_get_sbe32s(f, &s->data_in_size);
710
    qemu_get_sbe32s(f, &s->data_in_index);
711
    qemu_get_sbe32s(f, &s->data_out_index);
712
    s->autopoll = qemu_get_ubyte(f);
713
    qemu_get_buffer(f, s->data_in, sizeof(s->data_in));
714
    qemu_get_buffer(f, s->data_out, sizeof(s->data_out));
715
    qemu_get_be32s(f, &s->tick_offset);
716
    cuda_load_timer(f, &s->timers[0]);
717
    cuda_load_timer(f, &s->timers[1]);
718

    
719
    return 0;
720
}
721

    
722
static void cuda_reset(void *opaque)
723
{
724
    CUDAState *s = opaque;
725

    
726
    s->b = 0;
727
    s->a = 0;
728
    s->dirb = 0;
729
    s->dira = 0;
730
    s->sr = 0;
731
    s->acr = 0;
732
    s->pcr = 0;
733
    s->ifr = 0;
734
    s->ier = 0;
735
    //    s->ier = T1_INT | SR_INT;
736
    s->anh = 0;
737
    s->data_in_size = 0;
738
    s->data_in_index = 0;
739
    s->data_out_index = 0;
740
    s->autopoll = 0;
741

    
742
    s->timers[0].latch = 0xffff;
743
    set_counter(s, &s->timers[0], 0xffff);
744

    
745
    s->timers[1].latch = 0;
746
    set_counter(s, &s->timers[1], 0xffff);
747
}
748

    
749
void cuda_init (int *cuda_mem_index, qemu_irq irq)
750
{
751
    struct tm tm;
752
    CUDAState *s = &cuda_state;
753

    
754
    s->irq = irq;
755

    
756
    s->timers[0].index = 0;
757
    s->timers[0].timer = qemu_new_timer_ns(vm_clock, cuda_timer1, s);
758

    
759
    s->timers[1].index = 1;
760

    
761
    qemu_get_timedate(&tm, 0);
762
    s->tick_offset = (uint32_t)mktimegm(&tm) + RTC_OFFSET;
763

    
764
    s->adb_poll_timer = qemu_new_timer_ns(vm_clock, cuda_adb_poll, s);
765
    *cuda_mem_index = cpu_register_io_memory(cuda_read, cuda_write, s,
766
                                             DEVICE_NATIVE_ENDIAN);
767
    register_savevm(NULL, "cuda", -1, 1, cuda_save, cuda_load, s);
768
    qemu_register_reset(cuda_reset, s);
769
}