Statistics
| Branch: | Revision:

root / hw / mc146818rtc.c @ 74475455

History | View | Annotate | Download (19.5 kB)

1
/*
2
 * QEMU MC146818 RTC emulation
3
 *
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "qemu-timer.h"
26
#include "sysemu.h"
27
#include "pc.h"
28
#include "apic.h"
29
#include "isa.h"
30
#include "mc146818rtc.h"
31

    
32
//#define DEBUG_CMOS
33
//#define DEBUG_COALESCED
34

    
35
#ifdef DEBUG_CMOS
36
# define CMOS_DPRINTF(format, ...)      printf(format, ## __VA_ARGS__)
37
#else
38
# define CMOS_DPRINTF(format, ...)      do { } while (0)
39
#endif
40

    
41
#ifdef DEBUG_COALESCED
42
# define DPRINTF_C(format, ...)      printf(format, ## __VA_ARGS__)
43
#else
44
# define DPRINTF_C(format, ...)      do { } while (0)
45
#endif
46

    
47
#define RTC_REINJECT_ON_ACK_COUNT 20
48

    
49
#define RTC_SECONDS             0
50
#define RTC_SECONDS_ALARM       1
51
#define RTC_MINUTES             2
52
#define RTC_MINUTES_ALARM       3
53
#define RTC_HOURS               4
54
#define RTC_HOURS_ALARM         5
55
#define RTC_ALARM_DONT_CARE    0xC0
56

    
57
#define RTC_DAY_OF_WEEK         6
58
#define RTC_DAY_OF_MONTH        7
59
#define RTC_MONTH               8
60
#define RTC_YEAR                9
61

    
62
#define RTC_REG_A               10
63
#define RTC_REG_B               11
64
#define RTC_REG_C               12
65
#define RTC_REG_D               13
66

    
67
#define REG_A_UIP 0x80
68

    
69
#define REG_B_SET  0x80
70
#define REG_B_PIE  0x40
71
#define REG_B_AIE  0x20
72
#define REG_B_UIE  0x10
73
#define REG_B_SQWE 0x08
74
#define REG_B_DM   0x04
75
#define REG_B_24H  0x02
76

    
77
#define REG_C_UF   0x10
78
#define REG_C_IRQF 0x80
79
#define REG_C_PF   0x40
80
#define REG_C_AF   0x20
81

    
82
typedef struct RTCState {
83
    ISADevice dev;
84
    uint8_t cmos_data[128];
85
    uint8_t cmos_index;
86
    struct tm current_tm;
87
    int32_t base_year;
88
    qemu_irq irq;
89
    qemu_irq sqw_irq;
90
    int it_shift;
91
    /* periodic timer */
92
    QEMUTimer *periodic_timer;
93
    int64_t next_periodic_time;
94
    /* second update */
95
    int64_t next_second_time;
96
    uint16_t irq_reinject_on_ack_count;
97
    uint32_t irq_coalesced;
98
    uint32_t period;
99
    QEMUTimer *coalesced_timer;
100
    QEMUTimer *second_timer;
101
    QEMUTimer *second_timer2;
102
} RTCState;
103

    
104
static void rtc_set_time(RTCState *s);
105
static void rtc_copy_date(RTCState *s);
106

    
107
#ifdef TARGET_I386
108
static void rtc_coalesced_timer_update(RTCState *s)
109
{
110
    if (s->irq_coalesced == 0) {
111
        qemu_del_timer(s->coalesced_timer);
112
    } else {
113
        /* divide each RTC interval to 2 - 8 smaller intervals */
114
        int c = MIN(s->irq_coalesced, 7) + 1; 
115
        int64_t next_clock = qemu_get_clock_ns(rtc_clock) +
116
            muldiv64(s->period / c, get_ticks_per_sec(), 32768);
117
        qemu_mod_timer(s->coalesced_timer, next_clock);
118
    }
119
}
120

    
121
static void rtc_coalesced_timer(void *opaque)
122
{
123
    RTCState *s = opaque;
124

    
125
    if (s->irq_coalesced != 0) {
126
        apic_reset_irq_delivered();
127
        s->cmos_data[RTC_REG_C] |= 0xc0;
128
        DPRINTF_C("cmos: injecting from timer\n");
129
        qemu_irq_raise(s->irq);
130
        if (apic_get_irq_delivered()) {
131
            s->irq_coalesced--;
132
            DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
133
                      s->irq_coalesced);
134
        }
135
    }
136

    
137
    rtc_coalesced_timer_update(s);
138
}
139
#endif
140

    
141
static void rtc_timer_update(RTCState *s, int64_t current_time)
142
{
143
    int period_code, period;
144
    int64_t cur_clock, next_irq_clock;
145

    
146
    period_code = s->cmos_data[RTC_REG_A] & 0x0f;
147
    if (period_code != 0
148
        && ((s->cmos_data[RTC_REG_B] & REG_B_PIE)
149
            || ((s->cmos_data[RTC_REG_B] & REG_B_SQWE) && s->sqw_irq))) {
150
        if (period_code <= 2)
151
            period_code += 7;
152
        /* period in 32 Khz cycles */
153
        period = 1 << (period_code - 1);
154
#ifdef TARGET_I386
155
        if (period != s->period) {
156
            s->irq_coalesced = (s->irq_coalesced * s->period) / period;
157
            DPRINTF_C("cmos: coalesced irqs scaled to %d\n", s->irq_coalesced);
158
        }
159
        s->period = period;
160
#endif
161
        /* compute 32 khz clock */
162
        cur_clock = muldiv64(current_time, 32768, get_ticks_per_sec());
163
        next_irq_clock = (cur_clock & ~(period - 1)) + period;
164
        s->next_periodic_time =
165
            muldiv64(next_irq_clock, get_ticks_per_sec(), 32768) + 1;
166
        qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
167
    } else {
168
#ifdef TARGET_I386
169
        s->irq_coalesced = 0;
170
#endif
171
        qemu_del_timer(s->periodic_timer);
172
    }
173
}
174

    
175
static void rtc_periodic_timer(void *opaque)
176
{
177
    RTCState *s = opaque;
178

    
179
    rtc_timer_update(s, s->next_periodic_time);
180
    if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
181
        s->cmos_data[RTC_REG_C] |= 0xc0;
182
#ifdef TARGET_I386
183
        if(rtc_td_hack) {
184
            if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
185
                s->irq_reinject_on_ack_count = 0;                
186
            apic_reset_irq_delivered();
187
            qemu_irq_raise(s->irq);
188
            if (!apic_get_irq_delivered()) {
189
                s->irq_coalesced++;
190
                rtc_coalesced_timer_update(s);
191
                DPRINTF_C("cmos: coalesced irqs increased to %d\n",
192
                          s->irq_coalesced);
193
            }
194
        } else
195
#endif
196
        qemu_irq_raise(s->irq);
197
    }
198
    if (s->cmos_data[RTC_REG_B] & REG_B_SQWE) {
199
        /* Not square wave at all but we don't want 2048Hz interrupts!
200
           Must be seen as a pulse.  */
201
        qemu_irq_raise(s->sqw_irq);
202
    }
203
}
204

    
205
static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data)
206
{
207
    RTCState *s = opaque;
208

    
209
    if ((addr & 1) == 0) {
210
        s->cmos_index = data & 0x7f;
211
    } else {
212
        CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02x\n",
213
                     s->cmos_index, data);
214
        switch(s->cmos_index) {
215
        case RTC_SECONDS_ALARM:
216
        case RTC_MINUTES_ALARM:
217
        case RTC_HOURS_ALARM:
218
            s->cmos_data[s->cmos_index] = data;
219
            break;
220
        case RTC_SECONDS:
221
        case RTC_MINUTES:
222
        case RTC_HOURS:
223
        case RTC_DAY_OF_WEEK:
224
        case RTC_DAY_OF_MONTH:
225
        case RTC_MONTH:
226
        case RTC_YEAR:
227
            s->cmos_data[s->cmos_index] = data;
228
            /* if in set mode, do not update the time */
229
            if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
230
                rtc_set_time(s);
231
            }
232
            break;
233
        case RTC_REG_A:
234
            /* UIP bit is read only */
235
            s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
236
                (s->cmos_data[RTC_REG_A] & REG_A_UIP);
237
            rtc_timer_update(s, qemu_get_clock_ns(rtc_clock));
238
            break;
239
        case RTC_REG_B:
240
            if (data & REG_B_SET) {
241
                /* set mode: reset UIP mode */
242
                s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
243
                data &= ~REG_B_UIE;
244
            } else {
245
                /* if disabling set mode, update the time */
246
                if (s->cmos_data[RTC_REG_B] & REG_B_SET) {
247
                    rtc_set_time(s);
248
                }
249
            }
250
            if (((s->cmos_data[RTC_REG_B] ^ data) & (REG_B_DM | REG_B_24H)) &&
251
                !(data & REG_B_SET)) {
252
                /* If the time format has changed and not in set mode,
253
                   update the registers immediately. */
254
                s->cmos_data[RTC_REG_B] = data;
255
                rtc_copy_date(s);
256
            } else {
257
                s->cmos_data[RTC_REG_B] = data;
258
            }
259
            rtc_timer_update(s, qemu_get_clock_ns(rtc_clock));
260
            break;
261
        case RTC_REG_C:
262
        case RTC_REG_D:
263
            /* cannot write to them */
264
            break;
265
        default:
266
            s->cmos_data[s->cmos_index] = data;
267
            break;
268
        }
269
    }
270
}
271

    
272
static inline int rtc_to_bcd(RTCState *s, int a)
273
{
274
    if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
275
        return a;
276
    } else {
277
        return ((a / 10) << 4) | (a % 10);
278
    }
279
}
280

    
281
static inline int rtc_from_bcd(RTCState *s, int a)
282
{
283
    if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
284
        return a;
285
    } else {
286
        return ((a >> 4) * 10) + (a & 0x0f);
287
    }
288
}
289

    
290
static void rtc_set_time(RTCState *s)
291
{
292
    struct tm *tm = &s->current_tm;
293

    
294
    tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
295
    tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
296
    tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
297
    if (!(s->cmos_data[RTC_REG_B] & REG_B_24H) &&
298
        (s->cmos_data[RTC_HOURS] & 0x80)) {
299
        tm->tm_hour += 12;
300
    }
301
    tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
302
    tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
303
    tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
304
    tm->tm_year = rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year - 1900;
305

    
306
    rtc_change_mon_event(tm);
307
}
308

    
309
static void rtc_copy_date(RTCState *s)
310
{
311
    const struct tm *tm = &s->current_tm;
312
    int year;
313

    
314
    s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
315
    s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
316
    if (s->cmos_data[RTC_REG_B] & REG_B_24H) {
317
        /* 24 hour format */
318
        s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
319
    } else {
320
        /* 12 hour format */
321
        s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour % 12);
322
        if (tm->tm_hour >= 12)
323
            s->cmos_data[RTC_HOURS] |= 0x80;
324
    }
325
    s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
326
    s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
327
    s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
328
    year = (tm->tm_year - s->base_year) % 100;
329
    if (year < 0)
330
        year += 100;
331
    s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year);
332
}
333

    
334
/* month is between 0 and 11. */
335
static int get_days_in_month(int month, int year)
336
{
337
    static const int days_tab[12] = {
338
        31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
339
    };
340
    int d;
341
    if ((unsigned )month >= 12)
342
        return 31;
343
    d = days_tab[month];
344
    if (month == 1) {
345
        if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0))
346
            d++;
347
    }
348
    return d;
349
}
350

    
351
/* update 'tm' to the next second */
352
static void rtc_next_second(struct tm *tm)
353
{
354
    int days_in_month;
355

    
356
    tm->tm_sec++;
357
    if ((unsigned)tm->tm_sec >= 60) {
358
        tm->tm_sec = 0;
359
        tm->tm_min++;
360
        if ((unsigned)tm->tm_min >= 60) {
361
            tm->tm_min = 0;
362
            tm->tm_hour++;
363
            if ((unsigned)tm->tm_hour >= 24) {
364
                tm->tm_hour = 0;
365
                /* next day */
366
                tm->tm_wday++;
367
                if ((unsigned)tm->tm_wday >= 7)
368
                    tm->tm_wday = 0;
369
                days_in_month = get_days_in_month(tm->tm_mon,
370
                                                  tm->tm_year + 1900);
371
                tm->tm_mday++;
372
                if (tm->tm_mday < 1) {
373
                    tm->tm_mday = 1;
374
                } else if (tm->tm_mday > days_in_month) {
375
                    tm->tm_mday = 1;
376
                    tm->tm_mon++;
377
                    if (tm->tm_mon >= 12) {
378
                        tm->tm_mon = 0;
379
                        tm->tm_year++;
380
                    }
381
                }
382
            }
383
        }
384
    }
385
}
386

    
387

    
388
static void rtc_update_second(void *opaque)
389
{
390
    RTCState *s = opaque;
391
    int64_t delay;
392

    
393
    /* if the oscillator is not in normal operation, we do not update */
394
    if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) {
395
        s->next_second_time += get_ticks_per_sec();
396
        qemu_mod_timer(s->second_timer, s->next_second_time);
397
    } else {
398
        rtc_next_second(&s->current_tm);
399

    
400
        if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
401
            /* update in progress bit */
402
            s->cmos_data[RTC_REG_A] |= REG_A_UIP;
403
        }
404
        /* should be 244 us = 8 / 32768 seconds, but currently the
405
           timers do not have the necessary resolution. */
406
        delay = (get_ticks_per_sec() * 1) / 100;
407
        if (delay < 1)
408
            delay = 1;
409
        qemu_mod_timer(s->second_timer2,
410
                       s->next_second_time + delay);
411
    }
412
}
413

    
414
static void rtc_update_second2(void *opaque)
415
{
416
    RTCState *s = opaque;
417

    
418
    if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
419
        rtc_copy_date(s);
420
    }
421

    
422
    /* check alarm */
423
    if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
424
        if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 ||
425
             rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]) == s->current_tm.tm_sec) &&
426
            ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 ||
427
             rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]) == s->current_tm.tm_min) &&
428
            ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 ||
429
             rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]) == s->current_tm.tm_hour)) {
430

    
431
            s->cmos_data[RTC_REG_C] |= 0xa0;
432
            qemu_irq_raise(s->irq);
433
        }
434
    }
435

    
436
    /* update ended interrupt */
437
    s->cmos_data[RTC_REG_C] |= REG_C_UF;
438
    if (s->cmos_data[RTC_REG_B] & REG_B_UIE) {
439
        s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
440
        qemu_irq_raise(s->irq);
441
    }
442

    
443
    /* clear update in progress bit */
444
    s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
445

    
446
    s->next_second_time += get_ticks_per_sec();
447
    qemu_mod_timer(s->second_timer, s->next_second_time);
448
}
449

    
450
static uint32_t cmos_ioport_read(void *opaque, uint32_t addr)
451
{
452
    RTCState *s = opaque;
453
    int ret;
454
    if ((addr & 1) == 0) {
455
        return 0xff;
456
    } else {
457
        switch(s->cmos_index) {
458
        case RTC_SECONDS:
459
        case RTC_MINUTES:
460
        case RTC_HOURS:
461
        case RTC_DAY_OF_WEEK:
462
        case RTC_DAY_OF_MONTH:
463
        case RTC_MONTH:
464
        case RTC_YEAR:
465
            ret = s->cmos_data[s->cmos_index];
466
            break;
467
        case RTC_REG_A:
468
            ret = s->cmos_data[s->cmos_index];
469
            break;
470
        case RTC_REG_C:
471
            ret = s->cmos_data[s->cmos_index];
472
            qemu_irq_lower(s->irq);
473
#ifdef TARGET_I386
474
            if(s->irq_coalesced &&
475
                    s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
476
                s->irq_reinject_on_ack_count++;
477
                apic_reset_irq_delivered();
478
                DPRINTF_C("cmos: injecting on ack\n");
479
                qemu_irq_raise(s->irq);
480
                if (apic_get_irq_delivered()) {
481
                    s->irq_coalesced--;
482
                    DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
483
                              s->irq_coalesced);
484
                }
485
                break;
486
            }
487
#endif
488

    
489
            s->cmos_data[RTC_REG_C] = 0x00;
490
            break;
491
        default:
492
            ret = s->cmos_data[s->cmos_index];
493
            break;
494
        }
495
        CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
496
                     s->cmos_index, ret);
497
        return ret;
498
    }
499
}
500

    
501
void rtc_set_memory(ISADevice *dev, int addr, int val)
502
{
503
    RTCState *s = DO_UPCAST(RTCState, dev, dev);
504
    if (addr >= 0 && addr <= 127)
505
        s->cmos_data[addr] = val;
506
}
507

    
508
void rtc_set_date(ISADevice *dev, const struct tm *tm)
509
{
510
    RTCState *s = DO_UPCAST(RTCState, dev, dev);
511
    s->current_tm = *tm;
512
    rtc_copy_date(s);
513
}
514

    
515
/* PC cmos mappings */
516
#define REG_IBM_CENTURY_BYTE        0x32
517
#define REG_IBM_PS2_CENTURY_BYTE    0x37
518

    
519
static void rtc_set_date_from_host(ISADevice *dev)
520
{
521
    RTCState *s = DO_UPCAST(RTCState, dev, dev);
522
    struct tm tm;
523
    int val;
524

    
525
    /* set the CMOS date */
526
    qemu_get_timedate(&tm, 0);
527
    rtc_set_date(dev, &tm);
528

    
529
    val = rtc_to_bcd(s, (tm.tm_year / 100) + 19);
530
    rtc_set_memory(dev, REG_IBM_CENTURY_BYTE, val);
531
    rtc_set_memory(dev, REG_IBM_PS2_CENTURY_BYTE, val);
532
}
533

    
534
static int rtc_post_load(void *opaque, int version_id)
535
{
536
#ifdef TARGET_I386
537
    RTCState *s = opaque;
538

    
539
    if (version_id >= 2) {
540
        if (rtc_td_hack) {
541
            rtc_coalesced_timer_update(s);
542
        }
543
    }
544
#endif
545
    return 0;
546
}
547

    
548
static const VMStateDescription vmstate_rtc = {
549
    .name = "mc146818rtc",
550
    .version_id = 2,
551
    .minimum_version_id = 1,
552
    .minimum_version_id_old = 1,
553
    .post_load = rtc_post_load,
554
    .fields      = (VMStateField []) {
555
        VMSTATE_BUFFER(cmos_data, RTCState),
556
        VMSTATE_UINT8(cmos_index, RTCState),
557
        VMSTATE_INT32(current_tm.tm_sec, RTCState),
558
        VMSTATE_INT32(current_tm.tm_min, RTCState),
559
        VMSTATE_INT32(current_tm.tm_hour, RTCState),
560
        VMSTATE_INT32(current_tm.tm_wday, RTCState),
561
        VMSTATE_INT32(current_tm.tm_mday, RTCState),
562
        VMSTATE_INT32(current_tm.tm_mon, RTCState),
563
        VMSTATE_INT32(current_tm.tm_year, RTCState),
564
        VMSTATE_TIMER(periodic_timer, RTCState),
565
        VMSTATE_INT64(next_periodic_time, RTCState),
566
        VMSTATE_INT64(next_second_time, RTCState),
567
        VMSTATE_TIMER(second_timer, RTCState),
568
        VMSTATE_TIMER(second_timer2, RTCState),
569
        VMSTATE_UINT32_V(irq_coalesced, RTCState, 2),
570
        VMSTATE_UINT32_V(period, RTCState, 2),
571
        VMSTATE_END_OF_LIST()
572
    }
573
};
574

    
575
static void rtc_reset(void *opaque)
576
{
577
    RTCState *s = opaque;
578

    
579
    s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
580
    s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
581

    
582
    qemu_irq_lower(s->irq);
583

    
584
#ifdef TARGET_I386
585
    if (rtc_td_hack)
586
            s->irq_coalesced = 0;
587
#endif
588
}
589

    
590
static int rtc_initfn(ISADevice *dev)
591
{
592
    RTCState *s = DO_UPCAST(RTCState, dev, dev);
593
    int base = 0x70;
594

    
595
    s->cmos_data[RTC_REG_A] = 0x26;
596
    s->cmos_data[RTC_REG_B] = 0x02;
597
    s->cmos_data[RTC_REG_C] = 0x00;
598
    s->cmos_data[RTC_REG_D] = 0x80;
599

    
600
    rtc_set_date_from_host(dev);
601

    
602
    s->periodic_timer = qemu_new_timer_ns(rtc_clock, rtc_periodic_timer, s);
603
#ifdef TARGET_I386
604
    if (rtc_td_hack)
605
        s->coalesced_timer =
606
            qemu_new_timer_ns(rtc_clock, rtc_coalesced_timer, s);
607
#endif
608
    s->second_timer = qemu_new_timer_ns(rtc_clock, rtc_update_second, s);
609
    s->second_timer2 = qemu_new_timer_ns(rtc_clock, rtc_update_second2, s);
610

    
611
    s->next_second_time =
612
        qemu_get_clock_ns(rtc_clock) + (get_ticks_per_sec() * 99) / 100;
613
    qemu_mod_timer(s->second_timer2, s->next_second_time);
614

    
615
    register_ioport_write(base, 2, 1, cmos_ioport_write, s);
616
    register_ioport_read(base, 2, 1, cmos_ioport_read, s);
617
    isa_init_ioport_range(dev, base, 2);
618

    
619
    qdev_set_legacy_instance_id(&dev->qdev, base, 2);
620
    qemu_register_reset(rtc_reset, s);
621
    return 0;
622
}
623

    
624
ISADevice *rtc_init(int base_year, qemu_irq intercept_irq)
625
{
626
    ISADevice *dev;
627
    RTCState *s;
628

    
629
    dev = isa_create("mc146818rtc");
630
    s = DO_UPCAST(RTCState, dev, dev);
631
    qdev_prop_set_int32(&dev->qdev, "base_year", base_year);
632
    qdev_init_nofail(&dev->qdev);
633
    if (intercept_irq) {
634
        s->irq = intercept_irq;
635
    } else {
636
        isa_init_irq(dev, &s->irq, RTC_ISA_IRQ);
637
    }
638
    return dev;
639
}
640

    
641
static ISADeviceInfo mc146818rtc_info = {
642
    .qdev.name     = "mc146818rtc",
643
    .qdev.size     = sizeof(RTCState),
644
    .qdev.no_user  = 1,
645
    .qdev.vmsd     = &vmstate_rtc,
646
    .init          = rtc_initfn,
647
    .qdev.props    = (Property[]) {
648
        DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
649
        DEFINE_PROP_END_OF_LIST(),
650
    }
651
};
652

    
653
static void mc146818rtc_register(void)
654
{
655
    isa_qdev_register(&mc146818rtc_info);
656
}
657
device_init(mc146818rtc_register)