Statistics
| Branch: | Revision:

root / hw / mips_malta.c @ 751c6a17

History | View | Annotate | Download (31.2 kB)

1
/*
2
 * QEMU Malta board support
3
 *
4
 * Copyright (c) 2006 Aurelien Jarno
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24

    
25
#include "hw.h"
26
#include "pc.h"
27
#include "fdc.h"
28
#include "net.h"
29
#include "boards.h"
30
#include "smbus.h"
31
#include "block.h"
32
#include "flash.h"
33
#include "mips.h"
34
#include "pci.h"
35
#include "qemu-char.h"
36
#include "sysemu.h"
37
#include "audio/audio.h"
38
#include "boards.h"
39
#include "qemu-log.h"
40
#include "mips-bios.h"
41

    
42
//#define DEBUG_BOARD_INIT
43

    
44
#ifdef TARGET_MIPS64
45
#define PHYS_TO_VIRT(x) ((x) | ~0x7fffffffULL)
46
#else
47
#define PHYS_TO_VIRT(x) ((x) | ~0x7fffffffU)
48
#endif
49

    
50
#define ENVP_ADDR (int32_t)0x80002000
51
#define VIRT_TO_PHYS_ADDEND (-((int64_t)(int32_t)0x80000000))
52

    
53
#define ENVP_NB_ENTRIES                 16
54
#define ENVP_ENTRY_SIZE                 256
55

    
56
#define MAX_IDE_BUS 2
57

    
58
typedef struct {
59
    uint32_t leds;
60
    uint32_t brk;
61
    uint32_t gpout;
62
    uint32_t i2cin;
63
    uint32_t i2coe;
64
    uint32_t i2cout;
65
    uint32_t i2csel;
66
    CharDriverState *display;
67
    char display_text[9];
68
    SerialState *uart;
69
} MaltaFPGAState;
70

    
71
static PITState *pit;
72

    
73
static struct _loaderparams {
74
    int ram_size;
75
    const char *kernel_filename;
76
    const char *kernel_cmdline;
77
    const char *initrd_filename;
78
} loaderparams;
79

    
80
/* Malta FPGA */
81
static void malta_fpga_update_display(void *opaque)
82
{
83
    char leds_text[9];
84
    int i;
85
    MaltaFPGAState *s = opaque;
86

    
87
    for (i = 7 ; i >= 0 ; i--) {
88
        if (s->leds & (1 << i))
89
            leds_text[i] = '#';
90
        else
91
            leds_text[i] = ' ';
92
    }
93
    leds_text[8] = '\0';
94

    
95
    qemu_chr_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text);
96
    qemu_chr_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text);
97
}
98

    
99
/*
100
 * EEPROM 24C01 / 24C02 emulation.
101
 *
102
 * Emulation for serial EEPROMs:
103
 * 24C01 - 1024 bit (128 x 8)
104
 * 24C02 - 2048 bit (256 x 8)
105
 *
106
 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
107
 */
108

    
109
//~ #define DEBUG
110

    
111
#if defined(DEBUG)
112
#  define logout(fmt, ...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
113
#else
114
#  define logout(fmt, ...) ((void)0)
115
#endif
116

    
117
struct _eeprom24c0x_t {
118
  uint8_t tick;
119
  uint8_t address;
120
  uint8_t command;
121
  uint8_t ack;
122
  uint8_t scl;
123
  uint8_t sda;
124
  uint8_t data;
125
  //~ uint16_t size;
126
  uint8_t contents[256];
127
};
128

    
129
typedef struct _eeprom24c0x_t eeprom24c0x_t;
130

    
131
static eeprom24c0x_t eeprom = {
132
    contents: {
133
        /* 00000000: */ 0x80,0x08,0x04,0x0D,0x0A,0x01,0x40,0x00,
134
        /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
135
        /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x0E,0x00,
136
        /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0x40,
137
        /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
138
        /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
139
        /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
140
        /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
141
        /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
142
        /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
143
        /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
144
        /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
145
        /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
146
        /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
147
        /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
148
        /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
149
    },
150
};
151

    
152
static uint8_t eeprom24c0x_read(void)
153
{
154
    logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
155
        eeprom.tick, eeprom.scl, eeprom.sda, eeprom.data);
156
    return eeprom.sda;
157
}
158

    
159
static void eeprom24c0x_write(int scl, int sda)
160
{
161
    if (eeprom.scl && scl && (eeprom.sda != sda)) {
162
        logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
163
                eeprom.tick, eeprom.scl, scl, eeprom.sda, sda, sda ? "stop" : "start");
164
        if (!sda) {
165
            eeprom.tick = 1;
166
            eeprom.command = 0;
167
        }
168
    } else if (eeprom.tick == 0 && !eeprom.ack) {
169
        /* Waiting for start. */
170
        logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
171
                eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
172
    } else if (!eeprom.scl && scl) {
173
        logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
174
                eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
175
        if (eeprom.ack) {
176
            logout("\ti2c ack bit = 0\n");
177
            sda = 0;
178
            eeprom.ack = 0;
179
        } else if (eeprom.sda == sda) {
180
            uint8_t bit = (sda != 0);
181
            logout("\ti2c bit = %d\n", bit);
182
            if (eeprom.tick < 9) {
183
                eeprom.command <<= 1;
184
                eeprom.command += bit;
185
                eeprom.tick++;
186
                if (eeprom.tick == 9) {
187
                    logout("\tcommand 0x%04x, %s\n", eeprom.command, bit ? "read" : "write");
188
                    eeprom.ack = 1;
189
                }
190
            } else if (eeprom.tick < 17) {
191
                if (eeprom.command & 1) {
192
                    sda = ((eeprom.data & 0x80) != 0);
193
                }
194
                eeprom.address <<= 1;
195
                eeprom.address += bit;
196
                eeprom.tick++;
197
                eeprom.data <<= 1;
198
                if (eeprom.tick == 17) {
199
                    eeprom.data = eeprom.contents[eeprom.address];
200
                    logout("\taddress 0x%04x, data 0x%02x\n", eeprom.address, eeprom.data);
201
                    eeprom.ack = 1;
202
                    eeprom.tick = 0;
203
                }
204
            } else if (eeprom.tick >= 17) {
205
                sda = 0;
206
            }
207
        } else {
208
            logout("\tsda changed with raising scl\n");
209
        }
210
    } else {
211
        logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
212
    }
213
    eeprom.scl = scl;
214
    eeprom.sda = sda;
215
}
216

    
217
static uint32_t malta_fpga_readl(void *opaque, target_phys_addr_t addr)
218
{
219
    MaltaFPGAState *s = opaque;
220
    uint32_t val = 0;
221
    uint32_t saddr;
222

    
223
    saddr = (addr & 0xfffff);
224

    
225
    switch (saddr) {
226

    
227
    /* SWITCH Register */
228
    case 0x00200:
229
        val = 0x00000000;                /* All switches closed */
230
        break;
231

    
232
    /* STATUS Register */
233
    case 0x00208:
234
#ifdef TARGET_WORDS_BIGENDIAN
235
        val = 0x00000012;
236
#else
237
        val = 0x00000010;
238
#endif
239
        break;
240

    
241
    /* JMPRS Register */
242
    case 0x00210:
243
        val = 0x00;
244
        break;
245

    
246
    /* LEDBAR Register */
247
    case 0x00408:
248
        val = s->leds;
249
        break;
250

    
251
    /* BRKRES Register */
252
    case 0x00508:
253
        val = s->brk;
254
        break;
255

    
256
    /* UART Registers are handled directly by the serial device */
257

    
258
    /* GPOUT Register */
259
    case 0x00a00:
260
        val = s->gpout;
261
        break;
262

    
263
    /* XXX: implement a real I2C controller */
264

    
265
    /* GPINP Register */
266
    case 0x00a08:
267
        /* IN = OUT until a real I2C control is implemented */
268
        if (s->i2csel)
269
            val = s->i2cout;
270
        else
271
            val = 0x00;
272
        break;
273

    
274
    /* I2CINP Register */
275
    case 0x00b00:
276
        val = ((s->i2cin & ~1) | eeprom24c0x_read());
277
        break;
278

    
279
    /* I2COE Register */
280
    case 0x00b08:
281
        val = s->i2coe;
282
        break;
283

    
284
    /* I2COUT Register */
285
    case 0x00b10:
286
        val = s->i2cout;
287
        break;
288

    
289
    /* I2CSEL Register */
290
    case 0x00b18:
291
        val = s->i2csel;
292
        break;
293

    
294
    default:
295
#if 0
296
        printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
297
                addr);
298
#endif
299
        break;
300
    }
301
    return val;
302
}
303

    
304
static void malta_fpga_writel(void *opaque, target_phys_addr_t addr,
305
                              uint32_t val)
306
{
307
    MaltaFPGAState *s = opaque;
308
    uint32_t saddr;
309

    
310
    saddr = (addr & 0xfffff);
311

    
312
    switch (saddr) {
313

    
314
    /* SWITCH Register */
315
    case 0x00200:
316
        break;
317

    
318
    /* JMPRS Register */
319
    case 0x00210:
320
        break;
321

    
322
    /* LEDBAR Register */
323
    /* XXX: implement a 8-LED array */
324
    case 0x00408:
325
        s->leds = val & 0xff;
326
        break;
327

    
328
    /* ASCIIWORD Register */
329
    case 0x00410:
330
        snprintf(s->display_text, 9, "%08X", val);
331
        malta_fpga_update_display(s);
332
        break;
333

    
334
    /* ASCIIPOS0 to ASCIIPOS7 Registers */
335
    case 0x00418:
336
    case 0x00420:
337
    case 0x00428:
338
    case 0x00430:
339
    case 0x00438:
340
    case 0x00440:
341
    case 0x00448:
342
    case 0x00450:
343
        s->display_text[(saddr - 0x00418) >> 3] = (char) val;
344
        malta_fpga_update_display(s);
345
        break;
346

    
347
    /* SOFTRES Register */
348
    case 0x00500:
349
        if (val == 0x42)
350
            qemu_system_reset_request ();
351
        break;
352

    
353
    /* BRKRES Register */
354
    case 0x00508:
355
        s->brk = val & 0xff;
356
        break;
357

    
358
    /* UART Registers are handled directly by the serial device */
359

    
360
    /* GPOUT Register */
361
    case 0x00a00:
362
        s->gpout = val & 0xff;
363
        break;
364

    
365
    /* I2COE Register */
366
    case 0x00b08:
367
        s->i2coe = val & 0x03;
368
        break;
369

    
370
    /* I2COUT Register */
371
    case 0x00b10:
372
        eeprom24c0x_write(val & 0x02, val & 0x01);
373
        s->i2cout = val;
374
        break;
375

    
376
    /* I2CSEL Register */
377
    case 0x00b18:
378
        s->i2csel = val & 0x01;
379
        break;
380

    
381
    default:
382
#if 0
383
        printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
384
                addr);
385
#endif
386
        break;
387
    }
388
}
389

    
390
static CPUReadMemoryFunc *malta_fpga_read[] = {
391
   malta_fpga_readl,
392
   malta_fpga_readl,
393
   malta_fpga_readl
394
};
395

    
396
static CPUWriteMemoryFunc *malta_fpga_write[] = {
397
   malta_fpga_writel,
398
   malta_fpga_writel,
399
   malta_fpga_writel
400
};
401

    
402
static void malta_fpga_reset(void *opaque)
403
{
404
    MaltaFPGAState *s = opaque;
405

    
406
    s->leds   = 0x00;
407
    s->brk    = 0x0a;
408
    s->gpout  = 0x00;
409
    s->i2cin  = 0x3;
410
    s->i2coe  = 0x0;
411
    s->i2cout = 0x3;
412
    s->i2csel = 0x1;
413

    
414
    s->display_text[8] = '\0';
415
    snprintf(s->display_text, 9, "        ");
416
}
417

    
418
static void malta_fpga_led_init(CharDriverState *chr)
419
{
420
    qemu_chr_printf(chr, "\e[HMalta LEDBAR\r\n");
421
    qemu_chr_printf(chr, "+--------+\r\n");
422
    qemu_chr_printf(chr, "+        +\r\n");
423
    qemu_chr_printf(chr, "+--------+\r\n");
424
    qemu_chr_printf(chr, "\n");
425
    qemu_chr_printf(chr, "Malta ASCII\r\n");
426
    qemu_chr_printf(chr, "+--------+\r\n");
427
    qemu_chr_printf(chr, "+        +\r\n");
428
    qemu_chr_printf(chr, "+--------+\r\n");
429
}
430

    
431
static MaltaFPGAState *malta_fpga_init(target_phys_addr_t base, qemu_irq uart_irq, CharDriverState *uart_chr)
432
{
433
    MaltaFPGAState *s;
434
    int malta;
435

    
436
    s = (MaltaFPGAState *)qemu_mallocz(sizeof(MaltaFPGAState));
437

    
438
    malta = cpu_register_io_memory(malta_fpga_read,
439
                                   malta_fpga_write, s);
440

    
441
    cpu_register_physical_memory(base, 0x900, malta);
442
    /* 0xa00 is less than a page, so will still get the right offsets.  */
443
    cpu_register_physical_memory(base + 0xa00, 0x100000 - 0xa00, malta);
444

    
445
    s->display = qemu_chr_open("fpga", "vc:320x200", malta_fpga_led_init);
446

    
447
    s->uart = serial_mm_init(base + 0x900, 3, uart_irq, 230400, uart_chr, 1);
448

    
449
    malta_fpga_reset(s);
450
    qemu_register_reset(malta_fpga_reset, s);
451

    
452
    return s;
453
}
454

    
455
/* Audio support */
456
#ifdef HAS_AUDIO
457
static void audio_init (PCIBus *pci_bus)
458
{
459
    struct soundhw *c;
460
    int audio_enabled = 0;
461

    
462
    for (c = soundhw; !audio_enabled && c->name; ++c) {
463
        audio_enabled = c->enabled;
464
    }
465

    
466
    if (audio_enabled) {
467
        for (c = soundhw; c->name; ++c) {
468
            if (c->enabled) {
469
                c->init.init_pci(pci_bus);
470
            }
471
        }
472
    }
473
}
474
#endif
475

    
476
/* Network support */
477
static void network_init(void)
478
{
479
    int i;
480

    
481
    for(i = 0; i < nb_nics; i++) {
482
        NICInfo *nd = &nd_table[i];
483
        const char *default_devaddr = NULL;
484

    
485
        if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
486
            /* The malta board has a PCNet card using PCI SLOT 11 */
487
            default_devaddr = "0b";
488

    
489
        pci_nic_init(nd, "pcnet", default_devaddr);
490
    }
491
}
492

    
493
/* ROM and pseudo bootloader
494

495
   The following code implements a very very simple bootloader. It first
496
   loads the registers a0 to a3 to the values expected by the OS, and
497
   then jump at the kernel address.
498

499
   The bootloader should pass the locations of the kernel arguments and
500
   environment variables tables. Those tables contain the 32-bit address
501
   of NULL terminated strings. The environment variables table should be
502
   terminated by a NULL address.
503

504
   For a simpler implementation, the number of kernel arguments is fixed
505
   to two (the name of the kernel and the command line), and the two
506
   tables are actually the same one.
507

508
   The registers a0 to a3 should contain the following values:
509
     a0 - number of kernel arguments
510
     a1 - 32-bit address of the kernel arguments table
511
     a2 - 32-bit address of the environment variables table
512
     a3 - RAM size in bytes
513
*/
514

    
515
static void write_bootloader (CPUState *env, uint8_t *base,
516
                              int64_t kernel_entry)
517
{
518
    uint32_t *p;
519

    
520
    /* Small bootloader */
521
    p = (uint32_t *)base;
522
    stl_raw(p++, 0x0bf00160);                                      /* j 0x1fc00580 */
523
    stl_raw(p++, 0x00000000);                                      /* nop */
524

    
525
    /* YAMON service vector */
526
    stl_raw(base + 0x500, 0xbfc00580);      /* start: */
527
    stl_raw(base + 0x504, 0xbfc0083c);      /* print_count: */
528
    stl_raw(base + 0x520, 0xbfc00580);      /* start: */
529
    stl_raw(base + 0x52c, 0xbfc00800);      /* flush_cache: */
530
    stl_raw(base + 0x534, 0xbfc00808);      /* print: */
531
    stl_raw(base + 0x538, 0xbfc00800);      /* reg_cpu_isr: */
532
    stl_raw(base + 0x53c, 0xbfc00800);      /* unred_cpu_isr: */
533
    stl_raw(base + 0x540, 0xbfc00800);      /* reg_ic_isr: */
534
    stl_raw(base + 0x544, 0xbfc00800);      /* unred_ic_isr: */
535
    stl_raw(base + 0x548, 0xbfc00800);      /* reg_esr: */
536
    stl_raw(base + 0x54c, 0xbfc00800);      /* unreg_esr: */
537
    stl_raw(base + 0x550, 0xbfc00800);      /* getchar: */
538
    stl_raw(base + 0x554, 0xbfc00800);      /* syscon_read: */
539

    
540

    
541
    /* Second part of the bootloader */
542
    p = (uint32_t *) (base + 0x580);
543
    stl_raw(p++, 0x24040002);                                      /* addiu a0, zero, 2 */
544
    stl_raw(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
545
    stl_raw(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff));        /* ori sp, sp, low(ENVP_ADDR) */
546
    stl_raw(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff));       /* lui a1, high(ENVP_ADDR) */
547
    stl_raw(p++, 0x34a50000 | (ENVP_ADDR & 0xffff));               /* ori a1, a1, low(ENVP_ADDR) */
548
    stl_raw(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
549
    stl_raw(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff));         /* ori a2, a2, low(ENVP_ADDR + 8) */
550
    stl_raw(p++, 0x3c070000 | (loaderparams.ram_size >> 16));     /* lui a3, high(ram_size) */
551
    stl_raw(p++, 0x34e70000 | (loaderparams.ram_size & 0xffff));  /* ori a3, a3, low(ram_size) */
552

    
553
    /* Load BAR registers as done by YAMON */
554
    stl_raw(p++, 0x3c09b400);                                      /* lui t1, 0xb400 */
555

    
556
#ifdef TARGET_WORDS_BIGENDIAN
557
    stl_raw(p++, 0x3c08df00);                                      /* lui t0, 0xdf00 */
558
#else
559
    stl_raw(p++, 0x340800df);                                      /* ori t0, r0, 0x00df */
560
#endif
561
    stl_raw(p++, 0xad280068);                                      /* sw t0, 0x0068(t1) */
562

    
563
    stl_raw(p++, 0x3c09bbe0);                                      /* lui t1, 0xbbe0 */
564

    
565
#ifdef TARGET_WORDS_BIGENDIAN
566
    stl_raw(p++, 0x3c08c000);                                      /* lui t0, 0xc000 */
567
#else
568
    stl_raw(p++, 0x340800c0);                                      /* ori t0, r0, 0x00c0 */
569
#endif
570
    stl_raw(p++, 0xad280048);                                      /* sw t0, 0x0048(t1) */
571
#ifdef TARGET_WORDS_BIGENDIAN
572
    stl_raw(p++, 0x3c084000);                                      /* lui t0, 0x4000 */
573
#else
574
    stl_raw(p++, 0x34080040);                                      /* ori t0, r0, 0x0040 */
575
#endif
576
    stl_raw(p++, 0xad280050);                                      /* sw t0, 0x0050(t1) */
577

    
578
#ifdef TARGET_WORDS_BIGENDIAN
579
    stl_raw(p++, 0x3c088000);                                      /* lui t0, 0x8000 */
580
#else
581
    stl_raw(p++, 0x34080080);                                      /* ori t0, r0, 0x0080 */
582
#endif
583
    stl_raw(p++, 0xad280058);                                      /* sw t0, 0x0058(t1) */
584
#ifdef TARGET_WORDS_BIGENDIAN
585
    stl_raw(p++, 0x3c083f00);                                      /* lui t0, 0x3f00 */
586
#else
587
    stl_raw(p++, 0x3408003f);                                      /* ori t0, r0, 0x003f */
588
#endif
589
    stl_raw(p++, 0xad280060);                                      /* sw t0, 0x0060(t1) */
590

    
591
#ifdef TARGET_WORDS_BIGENDIAN
592
    stl_raw(p++, 0x3c08c100);                                      /* lui t0, 0xc100 */
593
#else
594
    stl_raw(p++, 0x340800c1);                                      /* ori t0, r0, 0x00c1 */
595
#endif
596
    stl_raw(p++, 0xad280080);                                      /* sw t0, 0x0080(t1) */
597
#ifdef TARGET_WORDS_BIGENDIAN
598
    stl_raw(p++, 0x3c085e00);                                      /* lui t0, 0x5e00 */
599
#else
600
    stl_raw(p++, 0x3408005e);                                      /* ori t0, r0, 0x005e */
601
#endif
602
    stl_raw(p++, 0xad280088);                                      /* sw t0, 0x0088(t1) */
603

    
604
    /* Jump to kernel code */
605
    stl_raw(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff));    /* lui ra, high(kernel_entry) */
606
    stl_raw(p++, 0x37ff0000 | (kernel_entry & 0xffff));            /* ori ra, ra, low(kernel_entry) */
607
    stl_raw(p++, 0x03e00008);                                      /* jr ra */
608
    stl_raw(p++, 0x00000000);                                      /* nop */
609

    
610
    /* YAMON subroutines */
611
    p = (uint32_t *) (base + 0x800);
612
    stl_raw(p++, 0x03e00008);                                     /* jr ra */
613
    stl_raw(p++, 0x24020000);                                     /* li v0,0 */
614
   /* 808 YAMON print */
615
    stl_raw(p++, 0x03e06821);                                     /* move t5,ra */
616
    stl_raw(p++, 0x00805821);                                     /* move t3,a0 */
617
    stl_raw(p++, 0x00a05021);                                     /* move t2,a1 */
618
    stl_raw(p++, 0x91440000);                                     /* lbu a0,0(t2) */
619
    stl_raw(p++, 0x254a0001);                                     /* addiu t2,t2,1 */
620
    stl_raw(p++, 0x10800005);                                     /* beqz a0,834 */
621
    stl_raw(p++, 0x00000000);                                     /* nop */
622
    stl_raw(p++, 0x0ff0021c);                                     /* jal 870 */
623
    stl_raw(p++, 0x00000000);                                     /* nop */
624
    stl_raw(p++, 0x08000205);                                     /* j 814 */
625
    stl_raw(p++, 0x00000000);                                     /* nop */
626
    stl_raw(p++, 0x01a00008);                                     /* jr t5 */
627
    stl_raw(p++, 0x01602021);                                     /* move a0,t3 */
628
    /* 0x83c YAMON print_count */
629
    stl_raw(p++, 0x03e06821);                                     /* move t5,ra */
630
    stl_raw(p++, 0x00805821);                                     /* move t3,a0 */
631
    stl_raw(p++, 0x00a05021);                                     /* move t2,a1 */
632
    stl_raw(p++, 0x00c06021);                                     /* move t4,a2 */
633
    stl_raw(p++, 0x91440000);                                     /* lbu a0,0(t2) */
634
    stl_raw(p++, 0x0ff0021c);                                     /* jal 870 */
635
    stl_raw(p++, 0x00000000);                                     /* nop */
636
    stl_raw(p++, 0x254a0001);                                     /* addiu t2,t2,1 */
637
    stl_raw(p++, 0x258cffff);                                     /* addiu t4,t4,-1 */
638
    stl_raw(p++, 0x1580fffa);                                     /* bnez t4,84c */
639
    stl_raw(p++, 0x00000000);                                     /* nop */
640
    stl_raw(p++, 0x01a00008);                                     /* jr t5 */
641
    stl_raw(p++, 0x01602021);                                     /* move a0,t3 */
642
    /* 0x870 */
643
    stl_raw(p++, 0x3c08b800);                                     /* lui t0,0xb400 */
644
    stl_raw(p++, 0x350803f8);                                     /* ori t0,t0,0x3f8 */
645
    stl_raw(p++, 0x91090005);                                     /* lbu t1,5(t0) */
646
    stl_raw(p++, 0x00000000);                                     /* nop */
647
    stl_raw(p++, 0x31290040);                                     /* andi t1,t1,0x40 */
648
    stl_raw(p++, 0x1120fffc);                                     /* beqz t1,878 <outch+0x8> */
649
    stl_raw(p++, 0x00000000);                                     /* nop */
650
    stl_raw(p++, 0x03e00008);                                     /* jr ra */
651
    stl_raw(p++, 0xa1040000);                                     /* sb a0,0(t0) */
652

    
653
}
654

    
655
static void prom_set(int index, const char *string, ...)
656
{
657
    char buf[ENVP_ENTRY_SIZE];
658
    target_phys_addr_t p;
659
    va_list ap;
660
    int32_t table_addr;
661

    
662
    if (index >= ENVP_NB_ENTRIES)
663
        return;
664

    
665
    p = ENVP_ADDR + VIRT_TO_PHYS_ADDEND + index * 4;
666

    
667
    if (string == NULL) {
668
        stl_phys(p, 0);
669
        return;
670
    }
671

    
672
    table_addr = ENVP_ADDR + sizeof(int32_t) * ENVP_NB_ENTRIES
673
                 + index * ENVP_ENTRY_SIZE;
674
    stl_phys(p, table_addr);
675

    
676
    va_start(ap, string);
677
    vsnprintf(buf, ENVP_ENTRY_SIZE, string, ap);
678
    va_end(ap);
679
    pstrcpy_targphys(table_addr + VIRT_TO_PHYS_ADDEND, ENVP_ENTRY_SIZE, buf);
680
}
681

    
682
/* Kernel */
683
static int64_t load_kernel (CPUState *env)
684
{
685
    int64_t kernel_entry, kernel_low, kernel_high;
686
    int index = 0;
687
    long initrd_size;
688
    ram_addr_t initrd_offset;
689

    
690
    if (load_elf(loaderparams.kernel_filename, VIRT_TO_PHYS_ADDEND,
691
                 (uint64_t *)&kernel_entry, (uint64_t *)&kernel_low,
692
                 (uint64_t *)&kernel_high) < 0) {
693
        fprintf(stderr, "qemu: could not load kernel '%s'\n",
694
                loaderparams.kernel_filename);
695
        exit(1);
696
    }
697

    
698
    /* load initrd */
699
    initrd_size = 0;
700
    initrd_offset = 0;
701
    if (loaderparams.initrd_filename) {
702
        initrd_size = get_image_size (loaderparams.initrd_filename);
703
        if (initrd_size > 0) {
704
            initrd_offset = (kernel_high + ~TARGET_PAGE_MASK) & TARGET_PAGE_MASK;
705
            if (initrd_offset + initrd_size > ram_size) {
706
                fprintf(stderr,
707
                        "qemu: memory too small for initial ram disk '%s'\n",
708
                        loaderparams.initrd_filename);
709
                exit(1);
710
            }
711
            initrd_size = load_image_targphys(loaderparams.initrd_filename,
712
                                              initrd_offset,
713
                                              ram_size - initrd_offset);
714
        }
715
        if (initrd_size == (target_ulong) -1) {
716
            fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
717
                    loaderparams.initrd_filename);
718
            exit(1);
719
        }
720
    }
721

    
722
    /* Store command line.  */
723
    prom_set(index++, loaderparams.kernel_filename);
724
    if (initrd_size > 0)
725
        prom_set(index++, "rd_start=0x" TARGET_FMT_lx " rd_size=%li %s",
726
                 PHYS_TO_VIRT(initrd_offset), initrd_size,
727
                 loaderparams.kernel_cmdline);
728
    else
729
        prom_set(index++, loaderparams.kernel_cmdline);
730

    
731
    /* Setup minimum environment variables */
732
    prom_set(index++, "memsize");
733
    prom_set(index++, "%i", loaderparams.ram_size);
734
    prom_set(index++, "modetty0");
735
    prom_set(index++, "38400n8r");
736
    prom_set(index++, NULL);
737

    
738
    return kernel_entry;
739
}
740

    
741
static void main_cpu_reset(void *opaque)
742
{
743
    CPUState *env = opaque;
744
    cpu_reset(env);
745

    
746
    /* The bootload does not need to be rewritten as it is located in a
747
       read only location. The kernel location and the arguments table
748
       location does not change. */
749
    if (loaderparams.kernel_filename) {
750
        env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
751
        load_kernel (env);
752
    }
753
}
754

    
755
static
756
void mips_malta_init (ram_addr_t ram_size,
757
                      const char *boot_device,
758
                      const char *kernel_filename, const char *kernel_cmdline,
759
                      const char *initrd_filename, const char *cpu_model)
760
{
761
    char *filename;
762
    ram_addr_t ram_offset;
763
    ram_addr_t bios_offset;
764
    target_long bios_size;
765
    int64_t kernel_entry;
766
    PCIBus *pci_bus;
767
    CPUState *env;
768
    RTCState *rtc_state;
769
    fdctrl_t *floppy_controller;
770
    MaltaFPGAState *malta_fpga;
771
    qemu_irq *i8259;
772
    int piix4_devfn;
773
    uint8_t *eeprom_buf;
774
    i2c_bus *smbus;
775
    int i;
776
    DriveInfo *dinfo;
777
    BlockDriverState *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
778
    BlockDriverState *fd[MAX_FD];
779
    int fl_idx = 0;
780
    int fl_sectors = 0;
781

    
782
    /* init CPUs */
783
    if (cpu_model == NULL) {
784
#ifdef TARGET_MIPS64
785
        cpu_model = "20Kc";
786
#else
787
        cpu_model = "24Kf";
788
#endif
789
    }
790
    env = cpu_init(cpu_model);
791
    if (!env) {
792
        fprintf(stderr, "Unable to find CPU definition\n");
793
        exit(1);
794
    }
795
    qemu_register_reset(main_cpu_reset, env);
796

    
797
    /* allocate RAM */
798
    if (ram_size > (256 << 20)) {
799
        fprintf(stderr,
800
                "qemu: Too much memory for this machine: %d MB, maximum 256 MB\n",
801
                ((unsigned int)ram_size / (1 << 20)));
802
        exit(1);
803
    }
804
    ram_offset = qemu_ram_alloc(ram_size);
805
    bios_offset = qemu_ram_alloc(BIOS_SIZE);
806

    
807

    
808
    cpu_register_physical_memory(0, ram_size, ram_offset | IO_MEM_RAM);
809

    
810
    /* Map the bios at two physical locations, as on the real board. */
811
    cpu_register_physical_memory(0x1e000000LL,
812
                                 BIOS_SIZE, bios_offset | IO_MEM_ROM);
813
    cpu_register_physical_memory(0x1fc00000LL,
814
                                 BIOS_SIZE, bios_offset | IO_MEM_ROM);
815

    
816
    /* FPGA */
817
    malta_fpga = malta_fpga_init(0x1f000000LL, env->irq[2], serial_hds[2]);
818

    
819
    /* Load firmware in flash / BIOS unless we boot directly into a kernel. */
820
    if (kernel_filename) {
821
        /* Write a small bootloader to the flash location. */
822
        loaderparams.ram_size = ram_size;
823
        loaderparams.kernel_filename = kernel_filename;
824
        loaderparams.kernel_cmdline = kernel_cmdline;
825
        loaderparams.initrd_filename = initrd_filename;
826
        kernel_entry = load_kernel(env);
827
        env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
828
        write_bootloader(env, qemu_get_ram_ptr(bios_offset), kernel_entry);
829
    } else {
830
        dinfo = drive_get(IF_PFLASH, 0, fl_idx);
831
        if (dinfo) {
832
            /* Load firmware from flash. */
833
            bios_size = 0x400000;
834
            fl_sectors = bios_size >> 16;
835
#ifdef DEBUG_BOARD_INIT
836
            printf("Register parallel flash %d size " TARGET_FMT_lx " at "
837
                   "offset %08lx addr %08llx '%s' %x\n",
838
                   fl_idx, bios_size, bios_offset, 0x1e000000LL,
839
                   bdrv_get_device_name(dinfo->bdrv), fl_sectors);
840
#endif
841
            pflash_cfi01_register(0x1e000000LL, bios_offset,
842
                                  dinfo->bdrv, 65536, fl_sectors,
843
                                  4, 0x0000, 0x0000, 0x0000, 0x0000);
844
            fl_idx++;
845
        } else {
846
            /* Load a BIOS image. */
847
            if (bios_name == NULL)
848
                bios_name = BIOS_FILENAME;
849
            filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
850
            if (filename) {
851
                bios_size = load_image_targphys(filename, 0x1fc00000LL,
852
                                                BIOS_SIZE);
853
                qemu_free(filename);
854
            } else {
855
                bios_size = -1;
856
            }
857
            if ((bios_size < 0 || bios_size > BIOS_SIZE) && !kernel_filename) {
858
                fprintf(stderr,
859
                        "qemu: Could not load MIPS bios '%s', and no -kernel argument was specified\n",
860
                        bios_name);
861
                exit(1);
862
            }
863
        }
864
        /* In little endian mode the 32bit words in the bios are swapped,
865
           a neat trick which allows bi-endian firmware. */
866
#ifndef TARGET_WORDS_BIGENDIAN
867
        {
868
            uint32_t *addr = qemu_get_ram_ptr(bios_offset);;
869
            uint32_t *end = addr + bios_size;
870
            while (addr < end) {
871
                bswap32s(addr);
872
            }
873
        }
874
#endif
875
    }
876

    
877
    /* Board ID = 0x420 (Malta Board with CoreLV)
878
       XXX: theoretically 0x1e000010 should map to flash and 0x1fc00010 should
879
       map to the board ID. */
880
    stl_phys(0x1fc00010LL, 0x00000420);
881

    
882
    /* Init internal devices */
883
    cpu_mips_irq_init_cpu(env);
884
    cpu_mips_clock_init(env);
885

    
886
    /* Interrupt controller */
887
    /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
888
    i8259 = i8259_init(env->irq[2]);
889

    
890
    /* Northbridge */
891
    pci_bus = pci_gt64120_init(i8259);
892

    
893
    /* Southbridge */
894

    
895
    if (drive_get_max_bus(IF_IDE) >= MAX_IDE_BUS) {
896
        fprintf(stderr, "qemu: too many IDE bus\n");
897
        exit(1);
898
    }
899

    
900
    for(i = 0; i < MAX_IDE_BUS * MAX_IDE_DEVS; i++) {
901
        dinfo = drive_get(IF_IDE, i / MAX_IDE_DEVS, i % MAX_IDE_DEVS);
902
        hd[i] = dinfo ? dinfo->bdrv : NULL;
903
    }
904

    
905
    piix4_devfn = piix4_init(pci_bus, 80);
906
    pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1, i8259);
907
    usb_uhci_piix4_init(pci_bus, piix4_devfn + 2);
908
    smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100, i8259[9]);
909
    eeprom_buf = qemu_mallocz(8 * 256); /* XXX: make this persistent */
910
    for (i = 0; i < 8; i++) {
911
        /* TODO: Populate SPD eeprom data.  */
912
        DeviceState *eeprom;
913
        eeprom = qdev_create((BusState *)smbus, "smbus-eeprom");
914
        qdev_prop_set_uint32(eeprom, "address", 0x50 + i);
915
        qdev_prop_set_ptr(eeprom, "data", eeprom_buf + (i * 256));
916
        qdev_init(eeprom);
917
    }
918
    pit = pit_init(0x40, i8259[0]);
919
    DMA_init(0);
920

    
921
    /* Super I/O */
922
    i8042_init(i8259[1], i8259[12], 0x60);
923
    rtc_state = rtc_init(0x70, i8259[8], 2000);
924
    serial_init(0x3f8, i8259[4], 115200, serial_hds[0]);
925
    serial_init(0x2f8, i8259[3], 115200, serial_hds[1]);
926
    if (parallel_hds[0])
927
        parallel_init(0x378, i8259[7], parallel_hds[0]);
928
    for(i = 0; i < MAX_FD; i++) {
929
        dinfo = drive_get(IF_FLOPPY, 0, i);
930
        fd[i] = dinfo ? dinfo->bdrv : NULL;
931
    }
932
    floppy_controller = fdctrl_init(i8259[6], 2, 0, 0x3f0, fd);
933

    
934
    /* Sound card */
935
#ifdef HAS_AUDIO
936
    audio_init(pci_bus);
937
#endif
938

    
939
    /* Network card */
940
    network_init();
941

    
942
    /* Optional PCI video card */
943
    if (cirrus_vga_enabled) {
944
        pci_cirrus_vga_init(pci_bus);
945
    } else if (vmsvga_enabled) {
946
        pci_vmsvga_init(pci_bus);
947
    } else if (std_vga_enabled) {
948
        pci_vga_init(pci_bus, 0, 0);
949
    }
950
}
951

    
952
static QEMUMachine mips_malta_machine = {
953
    .name = "malta",
954
    .desc = "MIPS Malta Core LV",
955
    .init = mips_malta_init,
956
    .is_default = 1,
957
};
958

    
959
static void mips_malta_machine_init(void)
960
{
961
    qemu_register_machine(&mips_malta_machine);
962
}
963

    
964
machine_init(mips_malta_machine_init);