Statistics
| Branch: | Revision:

root / hw / slavio_intctl.c @ 752ff2fa

History | View | Annotate | Download (13.4 kB)

1
/*
2
 * QEMU Sparc SLAVIO interrupt controller emulation
3
 *
4
 * Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24

    
25
#include "sun4m.h"
26
#include "monitor.h"
27
#include "sysbus.h"
28

    
29
//#define DEBUG_IRQ_COUNT
30
//#define DEBUG_IRQ
31

    
32
#ifdef DEBUG_IRQ
33
#define DPRINTF(fmt, ...)                                       \
34
    do { printf("IRQ: " fmt , ## __VA_ARGS__); } while (0)
35
#else
36
#define DPRINTF(fmt, ...)
37
#endif
38

    
39
/*
40
 * Registers of interrupt controller in sun4m.
41
 *
42
 * This is the interrupt controller part of chip STP2001 (Slave I/O), also
43
 * produced as NCR89C105. See
44
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
45
 *
46
 * There is a system master controller and one for each cpu.
47
 *
48
 */
49

    
50
#define MAX_CPUS 16
51
#define MAX_PILS 16
52

    
53
struct SLAVIO_INTCTLState;
54

    
55
typedef struct SLAVIO_CPUINTCTLState {
56
    uint32_t intreg_pending;
57
    struct SLAVIO_INTCTLState *master;
58
    uint32_t cpu;
59
    uint32_t irl_out;
60
} SLAVIO_CPUINTCTLState;
61

    
62
typedef struct SLAVIO_INTCTLState {
63
    SysBusDevice busdev;
64
    uint32_t intregm_pending;
65
    uint32_t intregm_disabled;
66
    uint32_t target_cpu;
67
#ifdef DEBUG_IRQ_COUNT
68
    uint64_t irq_count[32];
69
#endif
70
    qemu_irq cpu_irqs[MAX_CPUS][MAX_PILS];
71
    SLAVIO_CPUINTCTLState slaves[MAX_CPUS];
72
} SLAVIO_INTCTLState;
73

    
74
#define INTCTL_MAXADDR 0xf
75
#define INTCTL_SIZE (INTCTL_MAXADDR + 1)
76
#define INTCTLM_SIZE 0x14
77
#define MASTER_IRQ_MASK ~0x0fa2007f
78
#define MASTER_DISABLE 0x80000000
79
#define CPU_SOFTIRQ_MASK 0xfffe0000
80
#define CPU_IRQ_INT15_IN (1 << 15)
81
#define CPU_IRQ_TIMER_IN (1 << 14)
82

    
83
static void slavio_check_interrupts(SLAVIO_INTCTLState *s, int set_irqs);
84

    
85
// per-cpu interrupt controller
86
static uint32_t slavio_intctl_mem_readl(void *opaque, target_phys_addr_t addr)
87
{
88
    SLAVIO_CPUINTCTLState *s = opaque;
89
    uint32_t saddr, ret;
90

    
91
    saddr = addr >> 2;
92
    switch (saddr) {
93
    case 0:
94
        ret = s->intreg_pending;
95
        break;
96
    default:
97
        ret = 0;
98
        break;
99
    }
100
    DPRINTF("read cpu %d reg 0x" TARGET_FMT_plx " = %x\n", s->cpu, addr, ret);
101

    
102
    return ret;
103
}
104

    
105
static void slavio_intctl_mem_writel(void *opaque, target_phys_addr_t addr,
106
                                     uint32_t val)
107
{
108
    SLAVIO_CPUINTCTLState *s = opaque;
109
    uint32_t saddr;
110

    
111
    saddr = addr >> 2;
112
    DPRINTF("write cpu %d reg 0x" TARGET_FMT_plx " = %x\n", s->cpu, addr, val);
113
    switch (saddr) {
114
    case 1: // clear pending softints
115
        val &= CPU_SOFTIRQ_MASK | CPU_IRQ_INT15_IN;
116
        s->intreg_pending &= ~val;
117
        slavio_check_interrupts(s->master, 1);
118
        DPRINTF("Cleared cpu %d irq mask %x, curmask %x\n", s->cpu, val,
119
                s->intreg_pending);
120
        break;
121
    case 2: // set softint
122
        val &= CPU_SOFTIRQ_MASK;
123
        s->intreg_pending |= val;
124
        slavio_check_interrupts(s->master, 1);
125
        DPRINTF("Set cpu %d irq mask %x, curmask %x\n", s->cpu, val,
126
                s->intreg_pending);
127
        break;
128
    default:
129
        break;
130
    }
131
}
132

    
133
static CPUReadMemoryFunc * const slavio_intctl_mem_read[3] = {
134
    NULL,
135
    NULL,
136
    slavio_intctl_mem_readl,
137
};
138

    
139
static CPUWriteMemoryFunc * const slavio_intctl_mem_write[3] = {
140
    NULL,
141
    NULL,
142
    slavio_intctl_mem_writel,
143
};
144

    
145
// master system interrupt controller
146
static uint32_t slavio_intctlm_mem_readl(void *opaque, target_phys_addr_t addr)
147
{
148
    SLAVIO_INTCTLState *s = opaque;
149
    uint32_t saddr, ret;
150

    
151
    saddr = addr >> 2;
152
    switch (saddr) {
153
    case 0:
154
        ret = s->intregm_pending & ~MASTER_DISABLE;
155
        break;
156
    case 1:
157
        ret = s->intregm_disabled & MASTER_IRQ_MASK;
158
        break;
159
    case 4:
160
        ret = s->target_cpu;
161
        break;
162
    default:
163
        ret = 0;
164
        break;
165
    }
166
    DPRINTF("read system reg 0x" TARGET_FMT_plx " = %x\n", addr, ret);
167

    
168
    return ret;
169
}
170

    
171
static void slavio_intctlm_mem_writel(void *opaque, target_phys_addr_t addr,
172
                                      uint32_t val)
173
{
174
    SLAVIO_INTCTLState *s = opaque;
175
    uint32_t saddr;
176

    
177
    saddr = addr >> 2;
178
    DPRINTF("write system reg 0x" TARGET_FMT_plx " = %x\n", addr, val);
179
    switch (saddr) {
180
    case 2: // clear (enable)
181
        // Force clear unused bits
182
        val &= MASTER_IRQ_MASK;
183
        s->intregm_disabled &= ~val;
184
        DPRINTF("Enabled master irq mask %x, curmask %x\n", val,
185
                s->intregm_disabled);
186
        slavio_check_interrupts(s, 1);
187
        break;
188
    case 3: // set (disable, clear pending)
189
        // Force clear unused bits
190
        val &= MASTER_IRQ_MASK;
191
        s->intregm_disabled |= val;
192
        s->intregm_pending &= ~val;
193
        slavio_check_interrupts(s, 1);
194
        DPRINTF("Disabled master irq mask %x, curmask %x\n", val,
195
                s->intregm_disabled);
196
        break;
197
    case 4:
198
        s->target_cpu = val & (MAX_CPUS - 1);
199
        slavio_check_interrupts(s, 1);
200
        DPRINTF("Set master irq cpu %d\n", s->target_cpu);
201
        break;
202
    default:
203
        break;
204
    }
205
}
206

    
207
static CPUReadMemoryFunc * const slavio_intctlm_mem_read[3] = {
208
    NULL,
209
    NULL,
210
    slavio_intctlm_mem_readl,
211
};
212

    
213
static CPUWriteMemoryFunc * const slavio_intctlm_mem_write[3] = {
214
    NULL,
215
    NULL,
216
    slavio_intctlm_mem_writel,
217
};
218

    
219
void slavio_pic_info(Monitor *mon, DeviceState *dev)
220
{
221
    SysBusDevice *sd;
222
    SLAVIO_INTCTLState *s;
223
    int i;
224

    
225
    sd = sysbus_from_qdev(dev);
226
    s = FROM_SYSBUS(SLAVIO_INTCTLState, sd);
227
    for (i = 0; i < MAX_CPUS; i++) {
228
        monitor_printf(mon, "per-cpu %d: pending 0x%08x\n", i,
229
                       s->slaves[i].intreg_pending);
230
    }
231
    monitor_printf(mon, "master: pending 0x%08x, disabled 0x%08x\n",
232
                   s->intregm_pending, s->intregm_disabled);
233
}
234

    
235
void slavio_irq_info(Monitor *mon, DeviceState *dev)
236
{
237
#ifndef DEBUG_IRQ_COUNT
238
    monitor_printf(mon, "irq statistic code not compiled.\n");
239
#else
240
    SysBusDevice *sd;
241
    SLAVIO_INTCTLState *s;
242
    int i;
243
    int64_t count;
244

    
245
    sd = sysbus_from_qdev(dev);
246
    s = FROM_SYSBUS(SLAVIO_INTCTLState, sd);
247
    monitor_printf(mon, "IRQ statistics:\n");
248
    for (i = 0; i < 32; i++) {
249
        count = s->irq_count[i];
250
        if (count > 0)
251
            monitor_printf(mon, "%2d: %" PRId64 "\n", i, count);
252
    }
253
#endif
254
}
255

    
256
static const uint32_t intbit_to_level[] = {
257
    2, 3, 5, 7, 9, 11, 13, 2,   3, 5, 7, 9, 11, 13, 12, 12,
258
    6, 13, 4, 10, 8, 9, 11, 0,  0, 0, 0, 15, 15, 15, 15, 0,
259
};
260

    
261
static void slavio_check_interrupts(SLAVIO_INTCTLState *s, int set_irqs)
262
{
263
    uint32_t pending = s->intregm_pending, pil_pending;
264
    unsigned int i, j;
265

    
266
    pending &= ~s->intregm_disabled;
267

    
268
    DPRINTF("pending %x disabled %x\n", pending, s->intregm_disabled);
269
    for (i = 0; i < MAX_CPUS; i++) {
270
        pil_pending = 0;
271

    
272
        /* If we are the current interrupt target, get hard interrupts */
273
        if (pending && !(s->intregm_disabled & MASTER_DISABLE) &&
274
            (i == s->target_cpu)) {
275
            for (j = 0; j < 32; j++) {
276
                if ((pending & (1 << j)) && intbit_to_level[j]) {
277
                    pil_pending |= 1 << intbit_to_level[j];
278
                }
279
            }
280
        }
281

    
282
        /* Calculate current pending hard interrupts for display */
283
        s->slaves[i].intreg_pending &= CPU_SOFTIRQ_MASK | CPU_IRQ_INT15_IN |
284
            CPU_IRQ_TIMER_IN;
285
        if (i == s->target_cpu) {
286
            for (j = 0; j < 32; j++) {
287
                if ((s->intregm_pending & (1 << j)) && intbit_to_level[j]) {
288
                    s->slaves[i].intreg_pending |= 1 << intbit_to_level[j];
289
                }
290
            }
291
        }
292

    
293
        /* Level 15 and CPU timer interrupts are not maskable */
294
        pil_pending |= s->slaves[i].intreg_pending &
295
            (CPU_IRQ_INT15_IN | CPU_IRQ_TIMER_IN);
296

    
297
        /* Add soft interrupts */
298
        pil_pending |= (s->slaves[i].intreg_pending & CPU_SOFTIRQ_MASK) >> 16;
299

    
300
        if (set_irqs) {
301
            for (j = MAX_PILS; j > 0; j--) {
302
                if (pil_pending & (1 << j)) {
303
                    if (!(s->slaves[i].irl_out & (1 << j))) {
304
                        qemu_irq_raise(s->cpu_irqs[i][j]);
305
                    }
306
                } else {
307
                    if (s->slaves[i].irl_out & (1 << j)) {
308
                        qemu_irq_lower(s->cpu_irqs[i][j]);
309
                    }
310
                }
311
            }
312
        }
313
        s->slaves[i].irl_out = pil_pending;
314
    }
315
}
316

    
317
/*
318
 * "irq" here is the bit number in the system interrupt register to
319
 * separate serial and keyboard interrupts sharing a level.
320
 */
321
static void slavio_set_irq(void *opaque, int irq, int level)
322
{
323
    SLAVIO_INTCTLState *s = opaque;
324
    uint32_t mask = 1 << irq;
325
    uint32_t pil = intbit_to_level[irq];
326
    unsigned int i;
327

    
328
    DPRINTF("Set cpu %d irq %d -> pil %d level %d\n", s->target_cpu, irq, pil,
329
            level);
330
    if (pil > 0) {
331
        if (level) {
332
#ifdef DEBUG_IRQ_COUNT
333
            s->irq_count[pil]++;
334
#endif
335
            s->intregm_pending |= mask;
336
            if (pil == 15) {
337
                for (i = 0; i < MAX_CPUS; i++) {
338
                    s->slaves[i].intreg_pending |= 1 << pil;
339
                }
340
            }
341
        } else {
342
            s->intregm_pending &= ~mask;
343
            if (pil == 15) {
344
                for (i = 0; i < MAX_CPUS; i++) {
345
                    s->slaves[i].intreg_pending &= ~(1 << pil);
346
                }
347
            }
348
        }
349
        slavio_check_interrupts(s, 1);
350
    }
351
}
352

    
353
static void slavio_set_timer_irq_cpu(void *opaque, int cpu, int level)
354
{
355
    SLAVIO_INTCTLState *s = opaque;
356

    
357
    DPRINTF("Set cpu %d local timer level %d\n", cpu, level);
358

    
359
    if (level) {
360
        s->slaves[cpu].intreg_pending |= CPU_IRQ_TIMER_IN;
361
    } else {
362
        s->slaves[cpu].intreg_pending &= ~CPU_IRQ_TIMER_IN;
363
    }
364

    
365
    slavio_check_interrupts(s, 1);
366
}
367

    
368
static void slavio_set_irq_all(void *opaque, int irq, int level)
369
{
370
    if (irq < 32) {
371
        slavio_set_irq(opaque, irq, level);
372
    } else {
373
        slavio_set_timer_irq_cpu(opaque, irq - 32, level);
374
    }
375
}
376

    
377
static int vmstate_intctl_post_load(void *opaque)
378
{
379
    SLAVIO_INTCTLState *s = opaque;
380

    
381
    slavio_check_interrupts(s, 0);
382
    return 0;
383
}
384

    
385
static const VMStateDescription vmstate_intctl_cpu = {
386
    .name ="slavio_intctl_cpu",
387
    .version_id = 1,
388
    .minimum_version_id = 1,
389
    .minimum_version_id_old = 1,
390
    .fields      = (VMStateField []) {
391
        VMSTATE_UINT32(intreg_pending, SLAVIO_CPUINTCTLState),
392
        VMSTATE_END_OF_LIST()
393
    }
394
};
395

    
396
static const VMStateDescription vmstate_intctl = {
397
    .name ="slavio_intctl",
398
    .version_id = 1,
399
    .minimum_version_id = 1,
400
    .minimum_version_id_old = 1,
401
    .post_load = vmstate_intctl_post_load,
402
    .fields      = (VMStateField []) {
403
        VMSTATE_STRUCT_ARRAY(slaves, SLAVIO_INTCTLState, MAX_CPUS, 1,
404
                             vmstate_intctl_cpu, SLAVIO_CPUINTCTLState),
405
        VMSTATE_UINT32(intregm_pending, SLAVIO_INTCTLState),
406
        VMSTATE_UINT32(intregm_disabled, SLAVIO_INTCTLState),
407
        VMSTATE_UINT32(target_cpu, SLAVIO_INTCTLState),
408
        VMSTATE_END_OF_LIST()
409
    }
410
};
411

    
412
static void slavio_intctl_reset(void *opaque)
413
{
414
    SLAVIO_INTCTLState *s = opaque;
415
    int i;
416

    
417
    for (i = 0; i < MAX_CPUS; i++) {
418
        s->slaves[i].intreg_pending = 0;
419
        s->slaves[i].irl_out = 0;
420
    }
421
    s->intregm_disabled = ~MASTER_IRQ_MASK;
422
    s->intregm_pending = 0;
423
    s->target_cpu = 0;
424
    slavio_check_interrupts(s, 0);
425
}
426

    
427
static int slavio_intctl_init1(SysBusDevice *dev)
428
{
429
    SLAVIO_INTCTLState *s = FROM_SYSBUS(SLAVIO_INTCTLState, dev);
430
    int io_memory;
431
    unsigned int i, j;
432

    
433
    qdev_init_gpio_in(&dev->qdev, slavio_set_irq_all, 32 + MAX_CPUS);
434
    io_memory = cpu_register_io_memory(slavio_intctlm_mem_read,
435
                                       slavio_intctlm_mem_write, s);
436
    sysbus_init_mmio(dev, INTCTLM_SIZE, io_memory);
437

    
438
    for (i = 0; i < MAX_CPUS; i++) {
439
        for (j = 0; j < MAX_PILS; j++) {
440
            sysbus_init_irq(dev, &s->cpu_irqs[i][j]);
441
        }
442
        io_memory = cpu_register_io_memory(slavio_intctl_mem_read,
443
                                           slavio_intctl_mem_write,
444
                                           &s->slaves[i]);
445
        sysbus_init_mmio(dev, INTCTL_SIZE, io_memory);
446
        s->slaves[i].cpu = i;
447
        s->slaves[i].master = s;
448
    }
449
    vmstate_register(-1, &vmstate_intctl, s);
450
    qemu_register_reset(slavio_intctl_reset, s);
451
    slavio_intctl_reset(s);
452
    return 0;
453
}
454

    
455
static SysBusDeviceInfo slavio_intctl_info = {
456
    .init = slavio_intctl_init1,
457
    .qdev.name  = "slavio_intctl",
458
    .qdev.size  = sizeof(SLAVIO_INTCTLState),
459
};
460

    
461
static void slavio_intctl_register_devices(void)
462
{
463
    sysbus_register_withprop(&slavio_intctl_info);
464
}
465

    
466
device_init(slavio_intctl_register_devices)