Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 75818250

History | View | Annotate | Download (89.9 kB)

1 386405f7 bellard
\input texinfo @c -*- texinfo -*-
2 debc7065 bellard
@c %**start of header
3 debc7065 bellard
@setfilename qemu-doc.info
4 8f40c388 bellard
@settitle QEMU Emulator User Documentation
5 debc7065 bellard
@exampleindent 0
6 debc7065 bellard
@paragraphindent 0
7 debc7065 bellard
@c %**end of header
8 386405f7 bellard
9 0806e3f6 bellard
@iftex
10 386405f7 bellard
@titlepage
11 386405f7 bellard
@sp 7
12 8f40c388 bellard
@center @titlefont{QEMU Emulator}
13 debc7065 bellard
@sp 1
14 debc7065 bellard
@center @titlefont{User Documentation}
15 386405f7 bellard
@sp 3
16 386405f7 bellard
@end titlepage
17 0806e3f6 bellard
@end iftex
18 386405f7 bellard
19 debc7065 bellard
@ifnottex
20 debc7065 bellard
@node Top
21 debc7065 bellard
@top
22 debc7065 bellard
23 debc7065 bellard
@menu
24 debc7065 bellard
* Introduction::
25 debc7065 bellard
* Installation::
26 debc7065 bellard
* QEMU PC System emulator::
27 debc7065 bellard
* QEMU System emulator for non PC targets::
28 83195237 bellard
* QEMU User space emulator::
29 debc7065 bellard
* compilation:: Compilation from the sources
30 debc7065 bellard
* Index::
31 debc7065 bellard
@end menu
32 debc7065 bellard
@end ifnottex
33 debc7065 bellard
34 debc7065 bellard
@contents
35 debc7065 bellard
36 debc7065 bellard
@node Introduction
37 386405f7 bellard
@chapter Introduction
38 386405f7 bellard
39 debc7065 bellard
@menu
40 debc7065 bellard
* intro_features:: Features
41 debc7065 bellard
@end menu
42 debc7065 bellard
43 debc7065 bellard
@node intro_features
44 322d0c66 bellard
@section Features
45 386405f7 bellard
46 1f673135 bellard
QEMU is a FAST! processor emulator using dynamic translation to
47 1f673135 bellard
achieve good emulation speed.
48 1eb20527 bellard
49 1eb20527 bellard
QEMU has two operating modes:
50 0806e3f6 bellard
51 0806e3f6 bellard
@itemize @minus
52 0806e3f6 bellard
53 5fafdf24 ths
@item
54 1f673135 bellard
Full system emulation. In this mode, QEMU emulates a full system (for
55 3f9f3aa1 bellard
example a PC), including one or several processors and various
56 3f9f3aa1 bellard
peripherals. It can be used to launch different Operating Systems
57 3f9f3aa1 bellard
without rebooting the PC or to debug system code.
58 1eb20527 bellard
59 5fafdf24 ths
@item
60 83195237 bellard
User mode emulation. In this mode, QEMU can launch
61 83195237 bellard
processes compiled for one CPU on another CPU. It can be used to
62 1f673135 bellard
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63 1f673135 bellard
to ease cross-compilation and cross-debugging.
64 1eb20527 bellard
65 1eb20527 bellard
@end itemize
66 1eb20527 bellard
67 7c3fc84d bellard
QEMU can run without an host kernel driver and yet gives acceptable
68 5fafdf24 ths
performance.
69 322d0c66 bellard
70 52c00a5f bellard
For system emulation, the following hardware targets are supported:
71 52c00a5f bellard
@itemize
72 9d0a8e6f bellard
@item PC (x86 or x86_64 processor)
73 3f9f3aa1 bellard
@item ISA PC (old style PC without PCI bus)
74 52c00a5f bellard
@item PREP (PowerPC processor)
75 9d0a8e6f bellard
@item G3 BW PowerMac (PowerPC processor)
76 9d0a8e6f bellard
@item Mac99 PowerMac (PowerPC processor, in progress)
77 ee76f82e blueswir1
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78 3475187d bellard
@item Sun4u (64-bit Sparc processor, in progress)
79 d9aedc32 ths
@item Malta board (32-bit and 64-bit MIPS processors)
80 88cb0a02 aurel32
@item MIPS Magnum (64-bit MIPS processor)
81 9ee6e8bb pbrook
@item ARM Integrator/CP (ARM)
82 9ee6e8bb pbrook
@item ARM Versatile baseboard (ARM)
83 9ee6e8bb pbrook
@item ARM RealView Emulation baseboard (ARM)
84 b00052e4 balrog
@item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
85 9ee6e8bb pbrook
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86 9ee6e8bb pbrook
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87 707e011b pbrook
@item Freescale MCF5208EVB (ColdFire V2).
88 209a4e69 pbrook
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
89 02645926 balrog
@item Palm Tungsten|E PDA (OMAP310 processor)
90 c30bb264 balrog
@item N800 and N810 tablets (OMAP2420 processor)
91 57cd6e97 balrog
@item MusicPal (MV88W8618 ARM processor)
92 52c00a5f bellard
@end itemize
93 386405f7 bellard
94 d9aedc32 ths
For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
95 0806e3f6 bellard
96 debc7065 bellard
@node Installation
97 5b9f457a bellard
@chapter Installation
98 5b9f457a bellard
99 15a34c63 bellard
If you want to compile QEMU yourself, see @ref{compilation}.
100 15a34c63 bellard
101 debc7065 bellard
@menu
102 debc7065 bellard
* install_linux::   Linux
103 debc7065 bellard
* install_windows:: Windows
104 debc7065 bellard
* install_mac::     Macintosh
105 debc7065 bellard
@end menu
106 debc7065 bellard
107 debc7065 bellard
@node install_linux
108 1f673135 bellard
@section Linux
109 1f673135 bellard
110 7c3fc84d bellard
If a precompiled package is available for your distribution - you just
111 7c3fc84d bellard
have to install it. Otherwise, see @ref{compilation}.
112 5b9f457a bellard
113 debc7065 bellard
@node install_windows
114 1f673135 bellard
@section Windows
115 8cd0ac2f bellard
116 15a34c63 bellard
Download the experimental binary installer at
117 debc7065 bellard
@url{http://www.free.oszoo.org/@/download.html}.
118 d691f669 bellard
119 debc7065 bellard
@node install_mac
120 1f673135 bellard
@section Mac OS X
121 d691f669 bellard
122 15a34c63 bellard
Download the experimental binary installer at
123 debc7065 bellard
@url{http://www.free.oszoo.org/@/download.html}.
124 df0f11a0 bellard
125 debc7065 bellard
@node QEMU PC System emulator
126 3f9f3aa1 bellard
@chapter QEMU PC System emulator
127 1eb20527 bellard
128 debc7065 bellard
@menu
129 debc7065 bellard
* pcsys_introduction:: Introduction
130 debc7065 bellard
* pcsys_quickstart::   Quick Start
131 debc7065 bellard
* sec_invocation::     Invocation
132 debc7065 bellard
* pcsys_keys::         Keys
133 debc7065 bellard
* pcsys_monitor::      QEMU Monitor
134 debc7065 bellard
* disk_images::        Disk Images
135 debc7065 bellard
* pcsys_network::      Network emulation
136 debc7065 bellard
* direct_linux_boot::  Direct Linux Boot
137 debc7065 bellard
* pcsys_usb::          USB emulation
138 f858dcae ths
* vnc_security::       VNC security
139 debc7065 bellard
* gdb_usage::          GDB usage
140 debc7065 bellard
* pcsys_os_specific::  Target OS specific information
141 debc7065 bellard
@end menu
142 debc7065 bellard
143 debc7065 bellard
@node pcsys_introduction
144 0806e3f6 bellard
@section Introduction
145 0806e3f6 bellard
146 0806e3f6 bellard
@c man begin DESCRIPTION
147 0806e3f6 bellard
148 3f9f3aa1 bellard
The QEMU PC System emulator simulates the
149 3f9f3aa1 bellard
following peripherals:
150 0806e3f6 bellard
151 0806e3f6 bellard
@itemize @minus
152 5fafdf24 ths
@item
153 15a34c63 bellard
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
154 0806e3f6 bellard
@item
155 15a34c63 bellard
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
156 15a34c63 bellard
extensions (hardware level, including all non standard modes).
157 0806e3f6 bellard
@item
158 0806e3f6 bellard
PS/2 mouse and keyboard
159 5fafdf24 ths
@item
160 15a34c63 bellard
2 PCI IDE interfaces with hard disk and CD-ROM support
161 1f673135 bellard
@item
162 1f673135 bellard
Floppy disk
163 5fafdf24 ths
@item
164 c4a7060c blueswir1
PCI/ISA PCI network adapters
165 0806e3f6 bellard
@item
166 05d5818c bellard
Serial ports
167 05d5818c bellard
@item
168 c0fe3827 bellard
Creative SoundBlaster 16 sound card
169 c0fe3827 bellard
@item
170 c0fe3827 bellard
ENSONIQ AudioPCI ES1370 sound card
171 c0fe3827 bellard
@item
172 e5c9a13e balrog
Intel 82801AA AC97 Audio compatible sound card
173 e5c9a13e balrog
@item
174 c0fe3827 bellard
Adlib(OPL2) - Yamaha YM3812 compatible chip
175 b389dbfb bellard
@item
176 26463dbc balrog
Gravis Ultrasound GF1 sound card
177 26463dbc balrog
@item
178 cc53d26d malc
CS4231A compatible sound card
179 cc53d26d malc
@item
180 b389dbfb bellard
PCI UHCI USB controller and a virtual USB hub.
181 0806e3f6 bellard
@end itemize
182 0806e3f6 bellard
183 3f9f3aa1 bellard
SMP is supported with up to 255 CPUs.
184 3f9f3aa1 bellard
185 cc53d26d malc
Note that adlib, ac97, gus and cs4231a are only available when QEMU
186 0c58ac1c malc
was configured with --audio-card-list option containing the name(s) of
187 e5178e8d malc
required card(s).
188 c0fe3827 bellard
189 15a34c63 bellard
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
190 15a34c63 bellard
VGA BIOS.
191 15a34c63 bellard
192 c0fe3827 bellard
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
193 c0fe3827 bellard
194 26463dbc balrog
QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
195 26463dbc balrog
by Tibor "TS" Sch?tz.
196 423d65f4 balrog
197 cc53d26d malc
CS4231A is the chip used in Windows Sound System and GUSMAX products
198 cc53d26d malc
199 0806e3f6 bellard
@c man end
200 0806e3f6 bellard
201 debc7065 bellard
@node pcsys_quickstart
202 1eb20527 bellard
@section Quick Start
203 1eb20527 bellard
204 285dc330 bellard
Download and uncompress the linux image (@file{linux.img}) and type:
205 0806e3f6 bellard
206 0806e3f6 bellard
@example
207 285dc330 bellard
qemu linux.img
208 0806e3f6 bellard
@end example
209 0806e3f6 bellard
210 0806e3f6 bellard
Linux should boot and give you a prompt.
211 0806e3f6 bellard
212 6cc721cf bellard
@node sec_invocation
213 ec410fc9 bellard
@section Invocation
214 ec410fc9 bellard
215 ec410fc9 bellard
@example
216 0806e3f6 bellard
@c man begin SYNOPSIS
217 89dfe898 ths
usage: qemu [options] [@var{disk_image}]
218 0806e3f6 bellard
@c man end
219 ec410fc9 bellard
@end example
220 ec410fc9 bellard
221 0806e3f6 bellard
@c man begin OPTIONS
222 9d4520d0 bellard
@var{disk_image} is a raw hard disk image for IDE hard disk 0.
223 ec410fc9 bellard
224 ec410fc9 bellard
General options:
225 ec410fc9 bellard
@table @option
226 89dfe898 ths
@item -M @var{machine}
227 89dfe898 ths
Select the emulated @var{machine} (@code{-M ?} for list)
228 3dbbdc25 bellard
229 89dfe898 ths
@item -fda @var{file}
230 89dfe898 ths
@item -fdb @var{file}
231 debc7065 bellard
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
232 19cb3738 bellard
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
233 2be3bc02 bellard
234 89dfe898 ths
@item -hda @var{file}
235 89dfe898 ths
@item -hdb @var{file}
236 89dfe898 ths
@item -hdc @var{file}
237 89dfe898 ths
@item -hdd @var{file}
238 debc7065 bellard
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
239 1f47a922 bellard
240 89dfe898 ths
@item -cdrom @var{file}
241 89dfe898 ths
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
242 be3edd95 bellard
@option{-cdrom} at the same time). You can use the host CD-ROM by
243 19cb3738 bellard
using @file{/dev/cdrom} as filename (@pxref{host_drives}).
244 181f1558 bellard
245 e0e7ada1 balrog
@item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
246 e0e7ada1 balrog
247 e0e7ada1 balrog
Define a new drive. Valid options are:
248 e0e7ada1 balrog
249 e0e7ada1 balrog
@table @code
250 e0e7ada1 balrog
@item file=@var{file}
251 e0e7ada1 balrog
This option defines which disk image (@pxref{disk_images}) to use with
252 609497ab balrog
this drive. If the filename contains comma, you must double it
253 609497ab balrog
(for instance, "file=my,,file" to use file "my,file").
254 e0e7ada1 balrog
@item if=@var{interface}
255 e0e7ada1 balrog
This option defines on which type on interface the drive is connected.
256 e0e7ada1 balrog
Available types are: ide, scsi, sd, mtd, floppy, pflash.
257 e0e7ada1 balrog
@item bus=@var{bus},unit=@var{unit}
258 e0e7ada1 balrog
These options define where is connected the drive by defining the bus number and
259 e0e7ada1 balrog
the unit id.
260 e0e7ada1 balrog
@item index=@var{index}
261 e0e7ada1 balrog
This option defines where is connected the drive by using an index in the list
262 e0e7ada1 balrog
of available connectors of a given interface type.
263 e0e7ada1 balrog
@item media=@var{media}
264 e0e7ada1 balrog
This option defines the type of the media: disk or cdrom.
265 e0e7ada1 balrog
@item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
266 e0e7ada1 balrog
These options have the same definition as they have in @option{-hdachs}.
267 e0e7ada1 balrog
@item snapshot=@var{snapshot}
268 e0e7ada1 balrog
@var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
269 33f00271 balrog
@item cache=@var{cache}
270 33f00271 balrog
@var{cache} is "on" or "off" and allows to disable host cache to access data.
271 1e72d3b7 aurel32
@item format=@var{format}
272 1e72d3b7 aurel32
Specify which disk @var{format} will be used rather than detecting
273 1e72d3b7 aurel32
the format.  Can be used to specifiy format=raw to avoid interpreting
274 1e72d3b7 aurel32
an untrusted format header.
275 e0e7ada1 balrog
@end table
276 e0e7ada1 balrog
277 e0e7ada1 balrog
Instead of @option{-cdrom} you can use:
278 e0e7ada1 balrog
@example
279 e0e7ada1 balrog
qemu -drive file=file,index=2,media=cdrom
280 e0e7ada1 balrog
@end example
281 e0e7ada1 balrog
282 e0e7ada1 balrog
Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
283 e0e7ada1 balrog
use:
284 e0e7ada1 balrog
@example
285 e0e7ada1 balrog
qemu -drive file=file,index=0,media=disk
286 e0e7ada1 balrog
qemu -drive file=file,index=1,media=disk
287 e0e7ada1 balrog
qemu -drive file=file,index=2,media=disk
288 e0e7ada1 balrog
qemu -drive file=file,index=3,media=disk
289 e0e7ada1 balrog
@end example
290 e0e7ada1 balrog
291 e0e7ada1 balrog
You can connect a CDROM to the slave of ide0:
292 e0e7ada1 balrog
@example
293 e0e7ada1 balrog
qemu -drive file=file,if=ide,index=1,media=cdrom
294 e0e7ada1 balrog
@end example
295 e0e7ada1 balrog
296 e0e7ada1 balrog
If you don't specify the "file=" argument, you define an empty drive:
297 e0e7ada1 balrog
@example
298 e0e7ada1 balrog
qemu -drive if=ide,index=1,media=cdrom
299 e0e7ada1 balrog
@end example
300 e0e7ada1 balrog
301 e0e7ada1 balrog
You can connect a SCSI disk with unit ID 6 on the bus #0:
302 e0e7ada1 balrog
@example
303 e0e7ada1 balrog
qemu -drive file=file,if=scsi,bus=0,unit=6
304 e0e7ada1 balrog
@end example
305 e0e7ada1 balrog
306 e0e7ada1 balrog
Instead of @option{-fda}, @option{-fdb}, you can use:
307 e0e7ada1 balrog
@example
308 e0e7ada1 balrog
qemu -drive file=file,index=0,if=floppy
309 e0e7ada1 balrog
qemu -drive file=file,index=1,if=floppy
310 e0e7ada1 balrog
@end example
311 e0e7ada1 balrog
312 e0e7ada1 balrog
By default, @var{interface} is "ide" and @var{index} is automatically
313 e0e7ada1 balrog
incremented:
314 e0e7ada1 balrog
@example
315 e0e7ada1 balrog
qemu -drive file=a -drive file=b"
316 e0e7ada1 balrog
@end example
317 e0e7ada1 balrog
is interpreted like:
318 e0e7ada1 balrog
@example
319 e0e7ada1 balrog
qemu -hda a -hdb b
320 e0e7ada1 balrog
@end example
321 e0e7ada1 balrog
322 eec85c2a ths
@item -boot [a|c|d|n]
323 eec85c2a ths
Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
324 eec85c2a ths
is the default.
325 1f47a922 bellard
326 181f1558 bellard
@item -snapshot
327 1f47a922 bellard
Write to temporary files instead of disk image files. In this case,
328 1f47a922 bellard
the raw disk image you use is not written back. You can however force
329 42550fde ths
the write back by pressing @key{C-a s} (@pxref{disk_images}).
330 ec410fc9 bellard
331 52ca8d6a bellard
@item -no-fd-bootchk
332 52ca8d6a bellard
Disable boot signature checking for floppy disks in Bochs BIOS. It may
333 52ca8d6a bellard
be needed to boot from old floppy disks.
334 52ca8d6a bellard
335 89dfe898 ths
@item -m @var{megs}
336 00f82b8a aurel32
Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB.  Optionally,
337 00f82b8a aurel32
a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
338 00f82b8a aurel32
gigabytes respectively.
339 ec410fc9 bellard
340 89dfe898 ths
@item -smp @var{n}
341 3f9f3aa1 bellard
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
342 a785e42e blueswir1
CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
343 a785e42e blueswir1
to 4.
344 3f9f3aa1 bellard
345 1d14ffa9 bellard
@item -audio-help
346 1d14ffa9 bellard
347 1d14ffa9 bellard
Will show the audio subsystem help: list of drivers, tunable
348 1d14ffa9 bellard
parameters.
349 1d14ffa9 bellard
350 89dfe898 ths
@item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
351 1d14ffa9 bellard
352 1d14ffa9 bellard
Enable audio and selected sound hardware. Use ? to print all
353 1d14ffa9 bellard
available sound hardware.
354 1d14ffa9 bellard
355 1d14ffa9 bellard
@example
356 1d14ffa9 bellard
qemu -soundhw sb16,adlib hda
357 1d14ffa9 bellard
qemu -soundhw es1370 hda
358 e5c9a13e balrog
qemu -soundhw ac97 hda
359 6a36d84e bellard
qemu -soundhw all hda
360 1d14ffa9 bellard
qemu -soundhw ?
361 1d14ffa9 bellard
@end example
362 a8c490cd bellard
363 e5c9a13e balrog
Note that Linux's i810_audio OSS kernel (for AC97) module might
364 e5c9a13e balrog
require manually specifying clocking.
365 e5c9a13e balrog
366 e5c9a13e balrog
@example
367 e5c9a13e balrog
modprobe i810_audio clocking=48000
368 e5c9a13e balrog
@end example
369 e5c9a13e balrog
370 15a34c63 bellard
@item -localtime
371 15a34c63 bellard
Set the real time clock to local time (the default is to UTC
372 15a34c63 bellard
time). This option is needed to have correct date in MS-DOS or
373 15a34c63 bellard
Windows.
374 15a34c63 bellard
375 89dfe898 ths
@item -startdate @var{date}
376 7e0af5d0 bellard
Set the initial date of the real time clock. Valid format for
377 7e0af5d0 bellard
@var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
378 7e0af5d0 bellard
@code{2006-06-17}. The default value is @code{now}.
379 7e0af5d0 bellard
380 89dfe898 ths
@item -pidfile @var{file}
381 f7cce898 bellard
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
382 f7cce898 bellard
from a script.
383 f7cce898 bellard
384 71e3ceb8 ths
@item -daemonize
385 71e3ceb8 ths
Daemonize the QEMU process after initialization.  QEMU will not detach from
386 71e3ceb8 ths
standard IO until it is ready to receive connections on any of its devices.
387 71e3ceb8 ths
This option is a useful way for external programs to launch QEMU without having
388 71e3ceb8 ths
to cope with initialization race conditions.
389 71e3ceb8 ths
390 9d0a8e6f bellard
@item -win2k-hack
391 9d0a8e6f bellard
Use it when installing Windows 2000 to avoid a disk full bug. After
392 9d0a8e6f bellard
Windows 2000 is installed, you no longer need this option (this option
393 9d0a8e6f bellard
slows down the IDE transfers).
394 9d0a8e6f bellard
395 89dfe898 ths
@item -option-rom @var{file}
396 89dfe898 ths
Load the contents of @var{file} as an option ROM.
397 89dfe898 ths
This option is useful to load things like EtherBoot.
398 9ae02555 ths
399 89dfe898 ths
@item -name @var{name}
400 89dfe898 ths
Sets the @var{name} of the guest.
401 89dfe898 ths
This name will be display in the SDL window caption.
402 89dfe898 ths
The @var{name} will also be used for the VNC server.
403 c35734b2 ths
404 0806e3f6 bellard
@end table
405 0806e3f6 bellard
406 f858dcae ths
Display options:
407 f858dcae ths
@table @option
408 f858dcae ths
409 f858dcae ths
@item -nographic
410 f858dcae ths
411 f858dcae ths
Normally, QEMU uses SDL to display the VGA output. With this option,
412 f858dcae ths
you can totally disable graphical output so that QEMU is a simple
413 f858dcae ths
command line application. The emulated serial port is redirected on
414 f858dcae ths
the console. Therefore, you can still use QEMU to debug a Linux kernel
415 f858dcae ths
with a serial console.
416 f858dcae ths
417 052caf70 aurel32
@item -curses
418 052caf70 aurel32
419 052caf70 aurel32
Normally, QEMU uses SDL to display the VGA output.  With this option,
420 052caf70 aurel32
QEMU can display the VGA output when in text mode using a 
421 052caf70 aurel32
curses/ncurses interface.  Nothing is displayed in graphical mode.
422 052caf70 aurel32
423 f858dcae ths
@item -no-frame
424 f858dcae ths
425 f858dcae ths
Do not use decorations for SDL windows and start them using the whole
426 f858dcae ths
available screen space. This makes the using QEMU in a dedicated desktop
427 f858dcae ths
workspace more convenient.
428 f858dcae ths
429 99aa9e4c aurel32
@item -no-quit
430 99aa9e4c aurel32
431 99aa9e4c aurel32
Disable SDL window close capability.
432 99aa9e4c aurel32
433 f858dcae ths
@item -full-screen
434 f858dcae ths
Start in full screen.
435 f858dcae ths
436 89dfe898 ths
@item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
437 f858dcae ths
438 f858dcae ths
Normally, QEMU uses SDL to display the VGA output.  With this option,
439 f858dcae ths
you can have QEMU listen on VNC display @var{display} and redirect the VGA
440 f858dcae ths
display over the VNC session.  It is very useful to enable the usb
441 f858dcae ths
tablet device when using this option (option @option{-usbdevice
442 f858dcae ths
tablet}). When using the VNC display, you must use the @option{-k}
443 f858dcae ths
parameter to set the keyboard layout if you are not using en-us. Valid
444 f858dcae ths
syntax for the @var{display} is
445 f858dcae ths
446 f858dcae ths
@table @code
447 f858dcae ths
448 3aa3eea3 balrog
@item @var{host}:@var{d}
449 f858dcae ths
450 3aa3eea3 balrog
TCP connections will only be allowed from @var{host} on display @var{d}.
451 3aa3eea3 balrog
By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
452 3aa3eea3 balrog
be omitted in which case the server will accept connections from any host.
453 f858dcae ths
454 3aa3eea3 balrog
@item @code{unix}:@var{path}
455 f858dcae ths
456 f858dcae ths
Connections will be allowed over UNIX domain sockets where @var{path} is the
457 f858dcae ths
location of a unix socket to listen for connections on.
458 f858dcae ths
459 89dfe898 ths
@item none
460 f858dcae ths
461 3aa3eea3 balrog
VNC is initialized but not started. The monitor @code{change} command
462 3aa3eea3 balrog
can be used to later start the VNC server.
463 f858dcae ths
464 f858dcae ths
@end table
465 f858dcae ths
466 f858dcae ths
Following the @var{display} value there may be one or more @var{option} flags
467 f858dcae ths
separated by commas. Valid options are
468 f858dcae ths
469 f858dcae ths
@table @code
470 f858dcae ths
471 3aa3eea3 balrog
@item reverse
472 3aa3eea3 balrog
473 3aa3eea3 balrog
Connect to a listening VNC client via a ``reverse'' connection. The
474 3aa3eea3 balrog
client is specified by the @var{display}. For reverse network
475 3aa3eea3 balrog
connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
476 3aa3eea3 balrog
is a TCP port number, not a display number.
477 3aa3eea3 balrog
478 89dfe898 ths
@item password
479 f858dcae ths
480 f858dcae ths
Require that password based authentication is used for client connections.
481 f858dcae ths
The password must be set separately using the @code{change} command in the
482 f858dcae ths
@ref{pcsys_monitor}
483 f858dcae ths
484 89dfe898 ths
@item tls
485 f858dcae ths
486 f858dcae ths
Require that client use TLS when communicating with the VNC server. This
487 f858dcae ths
uses anonymous TLS credentials so is susceptible to a man-in-the-middle
488 f858dcae ths
attack. It is recommended that this option be combined with either the
489 f858dcae ths
@var{x509} or @var{x509verify} options.
490 f858dcae ths
491 89dfe898 ths
@item x509=@var{/path/to/certificate/dir}
492 f858dcae ths
493 89dfe898 ths
Valid if @option{tls} is specified. Require that x509 credentials are used
494 f858dcae ths
for negotiating the TLS session. The server will send its x509 certificate
495 f858dcae ths
to the client. It is recommended that a password be set on the VNC server
496 f858dcae ths
to provide authentication of the client when this is used. The path following
497 f858dcae ths
this option specifies where the x509 certificates are to be loaded from.
498 f858dcae ths
See the @ref{vnc_security} section for details on generating certificates.
499 f858dcae ths
500 89dfe898 ths
@item x509verify=@var{/path/to/certificate/dir}
501 f858dcae ths
502 89dfe898 ths
Valid if @option{tls} is specified. Require that x509 credentials are used
503 f858dcae ths
for negotiating the TLS session. The server will send its x509 certificate
504 f858dcae ths
to the client, and request that the client send its own x509 certificate.
505 f858dcae ths
The server will validate the client's certificate against the CA certificate,
506 f858dcae ths
and reject clients when validation fails. If the certificate authority is
507 f858dcae ths
trusted, this is a sufficient authentication mechanism. You may still wish
508 f858dcae ths
to set a password on the VNC server as a second authentication layer. The
509 f858dcae ths
path following this option specifies where the x509 certificates are to
510 f858dcae ths
be loaded from. See the @ref{vnc_security} section for details on generating
511 f858dcae ths
certificates.
512 f858dcae ths
513 f858dcae ths
@end table
514 f858dcae ths
515 89dfe898 ths
@item -k @var{language}
516 f858dcae ths
517 f858dcae ths
Use keyboard layout @var{language} (for example @code{fr} for
518 f858dcae ths
French). This option is only needed where it is not easy to get raw PC
519 f858dcae ths
keycodes (e.g. on Macs, with some X11 servers or with a VNC
520 f858dcae ths
display). You don't normally need to use it on PC/Linux or PC/Windows
521 f858dcae ths
hosts.
522 f858dcae ths
523 f858dcae ths
The available layouts are:
524 f858dcae ths
@example
525 f858dcae ths
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
526 f858dcae ths
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
527 f858dcae ths
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
528 f858dcae ths
@end example
529 f858dcae ths
530 f858dcae ths
The default is @code{en-us}.
531 f858dcae ths
532 f858dcae ths
@end table
533 f858dcae ths
534 b389dbfb bellard
USB options:
535 b389dbfb bellard
@table @option
536 b389dbfb bellard
537 b389dbfb bellard
@item -usb
538 b389dbfb bellard
Enable the USB driver (will be the default soon)
539 b389dbfb bellard
540 89dfe898 ths
@item -usbdevice @var{devname}
541 0aff66b5 pbrook
Add the USB device @var{devname}. @xref{usb_devices}.
542 8fccda83 ths
543 8fccda83 ths
@table @code
544 8fccda83 ths
545 8fccda83 ths
@item mouse
546 8fccda83 ths
Virtual Mouse. This will override the PS/2 mouse emulation when activated.
547 8fccda83 ths
548 8fccda83 ths
@item tablet
549 8fccda83 ths
Pointer device that uses absolute coordinates (like a touchscreen). This
550 8fccda83 ths
means qemu is able to report the mouse position without having to grab the
551 8fccda83 ths
mouse. Also overrides the PS/2 mouse emulation when activated.
552 8fccda83 ths
553 8fccda83 ths
@item disk:file
554 8fccda83 ths
Mass storage device based on file
555 8fccda83 ths
556 8fccda83 ths
@item host:bus.addr
557 8fccda83 ths
Pass through the host device identified by bus.addr (Linux only).
558 8fccda83 ths
559 8fccda83 ths
@item host:vendor_id:product_id
560 8fccda83 ths
Pass through the host device identified by vendor_id:product_id (Linux only).
561 8fccda83 ths
562 db380c06 balrog
@item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
563 db380c06 balrog
Serial converter to host character device @var{dev}, see @code{-serial} for the
564 db380c06 balrog
available devices.
565 db380c06 balrog
566 2e4d9fb1 aurel32
@item braille
567 2e4d9fb1 aurel32
Braille device.  This will use BrlAPI to display the braille output on a real
568 2e4d9fb1 aurel32
or fake device.
569 2e4d9fb1 aurel32
570 8fccda83 ths
@end table
571 8fccda83 ths
572 b389dbfb bellard
@end table
573 b389dbfb bellard
574 1f673135 bellard
Network options:
575 1f673135 bellard
576 1f673135 bellard
@table @option
577 1f673135 bellard
578 89dfe898 ths
@item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}]
579 41d03949 bellard
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
580 c4a7060c blueswir1
= 0 is the default). The NIC is an ne2k_pci by default on the PC
581 41d03949 bellard
target. Optionally, the MAC address can be changed. If no
582 41d03949 bellard
@option{-net} option is specified, a single NIC is created.
583 549444e1 balrog
Qemu can emulate several different models of network card.
584 549444e1 balrog
Valid values for @var{type} are
585 549444e1 balrog
@code{i82551}, @code{i82557b}, @code{i82559er},
586 549444e1 balrog
@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
587 7c23b892 balrog
@code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
588 c4a7060c blueswir1
Not all devices are supported on all targets.  Use -net nic,model=?
589 c4a7060c blueswir1
for a list of available devices for your target.
590 41d03949 bellard
591 89dfe898 ths
@item -net user[,vlan=@var{n}][,hostname=@var{name}]
592 7e89463d bellard
Use the user mode network stack which requires no administrator
593 4be456f1 ths
privilege to run.  @option{hostname=name} can be used to specify the client
594 115defd1 pbrook
hostname reported by the builtin DHCP server.
595 41d03949 bellard
596 89dfe898 ths
@item -net tap[,vlan=@var{n}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}]
597 41d03949 bellard
Connect the host TAP network interface @var{name} to VLAN @var{n} and
598 41d03949 bellard
use the network script @var{file} to configure it. The default
599 6a1cbf68 ths
network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
600 6a1cbf68 ths
disable script execution. If @var{name} is not
601 89dfe898 ths
provided, the OS automatically provides one. @option{fd}=@var{h} can be
602 41d03949 bellard
used to specify the handle of an already opened host TAP interface. Example:
603 1f673135 bellard
604 41d03949 bellard
@example
605 41d03949 bellard
qemu linux.img -net nic -net tap
606 41d03949 bellard
@end example
607 41d03949 bellard
608 41d03949 bellard
More complicated example (two NICs, each one connected to a TAP device)
609 41d03949 bellard
@example
610 41d03949 bellard
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
611 41d03949 bellard
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
612 41d03949 bellard
@end example
613 3f1a88f4 bellard
614 3f1a88f4 bellard
615 89dfe898 ths
@item -net socket[,vlan=@var{n}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
616 1f673135 bellard
617 41d03949 bellard
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
618 41d03949 bellard
machine using a TCP socket connection. If @option{listen} is
619 41d03949 bellard
specified, QEMU waits for incoming connections on @var{port}
620 41d03949 bellard
(@var{host} is optional). @option{connect} is used to connect to
621 89dfe898 ths
another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
622 3d830459 bellard
specifies an already opened TCP socket.
623 1f673135 bellard
624 41d03949 bellard
Example:
625 41d03949 bellard
@example
626 41d03949 bellard
# launch a first QEMU instance
627 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
628 debc7065 bellard
               -net socket,listen=:1234
629 debc7065 bellard
# connect the VLAN 0 of this instance to the VLAN 0
630 debc7065 bellard
# of the first instance
631 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
632 debc7065 bellard
               -net socket,connect=127.0.0.1:1234
633 41d03949 bellard
@end example
634 52c00a5f bellard
635 89dfe898 ths
@item -net socket[,vlan=@var{n}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
636 3d830459 bellard
637 3d830459 bellard
Create a VLAN @var{n} shared with another QEMU virtual
638 5fafdf24 ths
machines using a UDP multicast socket, effectively making a bus for
639 3d830459 bellard
every QEMU with same multicast address @var{maddr} and @var{port}.
640 3d830459 bellard
NOTES:
641 3d830459 bellard
@enumerate
642 5fafdf24 ths
@item
643 5fafdf24 ths
Several QEMU can be running on different hosts and share same bus (assuming
644 3d830459 bellard
correct multicast setup for these hosts).
645 3d830459 bellard
@item
646 3d830459 bellard
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
647 3d830459 bellard
@url{http://user-mode-linux.sf.net}.
648 4be456f1 ths
@item
649 4be456f1 ths
Use @option{fd=h} to specify an already opened UDP multicast socket.
650 3d830459 bellard
@end enumerate
651 3d830459 bellard
652 3d830459 bellard
Example:
653 3d830459 bellard
@example
654 3d830459 bellard
# launch one QEMU instance
655 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
656 debc7065 bellard
               -net socket,mcast=230.0.0.1:1234
657 3d830459 bellard
# launch another QEMU instance on same "bus"
658 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
659 debc7065 bellard
               -net socket,mcast=230.0.0.1:1234
660 3d830459 bellard
# launch yet another QEMU instance on same "bus"
661 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
662 debc7065 bellard
               -net socket,mcast=230.0.0.1:1234
663 3d830459 bellard
@end example
664 3d830459 bellard
665 3d830459 bellard
Example (User Mode Linux compat.):
666 3d830459 bellard
@example
667 debc7065 bellard
# launch QEMU instance (note mcast address selected
668 debc7065 bellard
# is UML's default)
669 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
670 debc7065 bellard
               -net socket,mcast=239.192.168.1:1102
671 3d830459 bellard
# launch UML
672 3d830459 bellard
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
673 3d830459 bellard
@end example
674 3d830459 bellard
675 41d03949 bellard
@item -net none
676 41d03949 bellard
Indicate that no network devices should be configured. It is used to
677 039af320 bellard
override the default configuration (@option{-net nic -net user}) which
678 039af320 bellard
is activated if no @option{-net} options are provided.
679 52c00a5f bellard
680 89dfe898 ths
@item -tftp @var{dir}
681 9bf05444 bellard
When using the user mode network stack, activate a built-in TFTP
682 0db1137d ths
server. The files in @var{dir} will be exposed as the root of a TFTP server.
683 0db1137d ths
The TFTP client on the guest must be configured in binary mode (use the command
684 0db1137d ths
@code{bin} of the Unix TFTP client). The host IP address on the guest is as
685 0db1137d ths
usual 10.0.2.2.
686 9bf05444 bellard
687 89dfe898 ths
@item -bootp @var{file}
688 47d5d01a ths
When using the user mode network stack, broadcast @var{file} as the BOOTP
689 47d5d01a ths
filename.  In conjunction with @option{-tftp}, this can be used to network boot
690 47d5d01a ths
a guest from a local directory.
691 47d5d01a ths
692 47d5d01a ths
Example (using pxelinux):
693 47d5d01a ths
@example
694 47d5d01a ths
qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
695 47d5d01a ths
@end example
696 47d5d01a ths
697 89dfe898 ths
@item -smb @var{dir}
698 2518bd0d bellard
When using the user mode network stack, activate a built-in SMB
699 89dfe898 ths
server so that Windows OSes can access to the host files in @file{@var{dir}}
700 2518bd0d bellard
transparently.
701 2518bd0d bellard
702 2518bd0d bellard
In the guest Windows OS, the line:
703 2518bd0d bellard
@example
704 2518bd0d bellard
10.0.2.4 smbserver
705 2518bd0d bellard
@end example
706 2518bd0d bellard
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
707 2518bd0d bellard
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
708 2518bd0d bellard
709 89dfe898 ths
Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
710 2518bd0d bellard
711 2518bd0d bellard
Note that a SAMBA server must be installed on the host OS in
712 366dfc52 ths
@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
713 6cc721cf bellard
2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
714 2518bd0d bellard
715 89dfe898 ths
@item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
716 9bf05444 bellard
717 9bf05444 bellard
When using the user mode network stack, redirect incoming TCP or UDP
718 9bf05444 bellard
connections to the host port @var{host-port} to the guest
719 9bf05444 bellard
@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
720 9bf05444 bellard
is not specified, its value is 10.0.2.15 (default address given by the
721 9bf05444 bellard
built-in DHCP server).
722 9bf05444 bellard
723 9bf05444 bellard
For example, to redirect host X11 connection from screen 1 to guest
724 9bf05444 bellard
screen 0, use the following:
725 9bf05444 bellard
726 9bf05444 bellard
@example
727 9bf05444 bellard
# on the host
728 9bf05444 bellard
qemu -redir tcp:6001::6000 [...]
729 9bf05444 bellard
# this host xterm should open in the guest X11 server
730 9bf05444 bellard
xterm -display :1
731 9bf05444 bellard
@end example
732 9bf05444 bellard
733 9bf05444 bellard
To redirect telnet connections from host port 5555 to telnet port on
734 9bf05444 bellard
the guest, use the following:
735 9bf05444 bellard
736 9bf05444 bellard
@example
737 9bf05444 bellard
# on the host
738 9bf05444 bellard
qemu -redir tcp:5555::23 [...]
739 9bf05444 bellard
telnet localhost 5555
740 9bf05444 bellard
@end example
741 9bf05444 bellard
742 9bf05444 bellard
Then when you use on the host @code{telnet localhost 5555}, you
743 9bf05444 bellard
connect to the guest telnet server.
744 9bf05444 bellard
745 1f673135 bellard
@end table
746 1f673135 bellard
747 41d03949 bellard
Linux boot specific: When using these options, you can use a given
748 1f673135 bellard
Linux kernel without installing it in the disk image. It can be useful
749 1f673135 bellard
for easier testing of various kernels.
750 1f673135 bellard
751 0806e3f6 bellard
@table @option
752 0806e3f6 bellard
753 89dfe898 ths
@item -kernel @var{bzImage}
754 0806e3f6 bellard
Use @var{bzImage} as kernel image.
755 0806e3f6 bellard
756 89dfe898 ths
@item -append @var{cmdline}
757 0806e3f6 bellard
Use @var{cmdline} as kernel command line
758 0806e3f6 bellard
759 89dfe898 ths
@item -initrd @var{file}
760 0806e3f6 bellard
Use @var{file} as initial ram disk.
761 0806e3f6 bellard
762 ec410fc9 bellard
@end table
763 ec410fc9 bellard
764 15a34c63 bellard
Debug/Expert options:
765 ec410fc9 bellard
@table @option
766 a0a821a4 bellard
767 89dfe898 ths
@item -serial @var{dev}
768 0bab00f3 bellard
Redirect the virtual serial port to host character device
769 0bab00f3 bellard
@var{dev}. The default device is @code{vc} in graphical mode and
770 0bab00f3 bellard
@code{stdio} in non graphical mode.
771 0bab00f3 bellard
772 0bab00f3 bellard
This option can be used several times to simulate up to 4 serials
773 0bab00f3 bellard
ports.
774 0bab00f3 bellard
775 c03b0f0f bellard
Use @code{-serial none} to disable all serial ports.
776 c03b0f0f bellard
777 0bab00f3 bellard
Available character devices are:
778 a0a821a4 bellard
@table @code
779 af3a9031 ths
@item vc[:WxH]
780 af3a9031 ths
Virtual console. Optionally, a width and height can be given in pixel with
781 af3a9031 ths
@example
782 af3a9031 ths
vc:800x600
783 af3a9031 ths
@end example
784 af3a9031 ths
It is also possible to specify width or height in characters:
785 af3a9031 ths
@example
786 af3a9031 ths
vc:80Cx24C
787 af3a9031 ths
@end example
788 a0a821a4 bellard
@item pty
789 a0a821a4 bellard
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
790 c03b0f0f bellard
@item none
791 c03b0f0f bellard
No device is allocated.
792 a0a821a4 bellard
@item null
793 a0a821a4 bellard
void device
794 f8d179e3 bellard
@item /dev/XXX
795 e57a8c0e bellard
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
796 f8d179e3 bellard
parameters are set according to the emulated ones.
797 89dfe898 ths
@item /dev/parport@var{N}
798 e57a8c0e bellard
[Linux only, parallel port only] Use host parallel port
799 5867c88a ths
@var{N}. Currently SPP and EPP parallel port features can be used.
800 89dfe898 ths
@item file:@var{filename}
801 89dfe898 ths
Write output to @var{filename}. No character can be read.
802 a0a821a4 bellard
@item stdio
803 a0a821a4 bellard
[Unix only] standard input/output
804 89dfe898 ths
@item pipe:@var{filename}
805 0bab00f3 bellard
name pipe @var{filename}
806 89dfe898 ths
@item COM@var{n}
807 0bab00f3 bellard
[Windows only] Use host serial port @var{n}
808 89dfe898 ths
@item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
809 89dfe898 ths
This implements UDP Net Console.
810 89dfe898 ths
When @var{remote_host} or @var{src_ip} are not specified
811 89dfe898 ths
they default to @code{0.0.0.0}.
812 89dfe898 ths
When not using a specified @var{src_port} a random port is automatically chosen.
813 951f1351 bellard
814 951f1351 bellard
If you just want a simple readonly console you can use @code{netcat} or
815 951f1351 bellard
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
816 951f1351 bellard
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
817 951f1351 bellard
will appear in the netconsole session.
818 0bab00f3 bellard
819 0bab00f3 bellard
If you plan to send characters back via netconsole or you want to stop
820 0bab00f3 bellard
and start qemu a lot of times, you should have qemu use the same
821 0bab00f3 bellard
source port each time by using something like @code{-serial
822 951f1351 bellard
udp::4555@@:4556} to qemu. Another approach is to use a patched
823 0bab00f3 bellard
version of netcat which can listen to a TCP port and send and receive
824 0bab00f3 bellard
characters via udp.  If you have a patched version of netcat which
825 0bab00f3 bellard
activates telnet remote echo and single char transfer, then you can
826 0bab00f3 bellard
use the following options to step up a netcat redirector to allow
827 0bab00f3 bellard
telnet on port 5555 to access the qemu port.
828 0bab00f3 bellard
@table @code
829 951f1351 bellard
@item Qemu Options:
830 951f1351 bellard
-serial udp::4555@@:4556
831 951f1351 bellard
@item netcat options:
832 951f1351 bellard
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
833 951f1351 bellard
@item telnet options:
834 951f1351 bellard
localhost 5555
835 951f1351 bellard
@end table
836 951f1351 bellard
837 951f1351 bellard
838 89dfe898 ths
@item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
839 951f1351 bellard
The TCP Net Console has two modes of operation.  It can send the serial
840 951f1351 bellard
I/O to a location or wait for a connection from a location.  By default
841 951f1351 bellard
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
842 f542086d bellard
the @var{server} option QEMU will wait for a client socket application
843 f542086d bellard
to connect to the port before continuing, unless the @code{nowait}
844 f7499989 pbrook
option was specified.  The @code{nodelay} option disables the Nagle buffering
845 4be456f1 ths
algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
846 951f1351 bellard
one TCP connection at a time is accepted. You can use @code{telnet} to
847 951f1351 bellard
connect to the corresponding character device.
848 951f1351 bellard
@table @code
849 951f1351 bellard
@item Example to send tcp console to 192.168.0.2 port 4444
850 951f1351 bellard
-serial tcp:192.168.0.2:4444
851 951f1351 bellard
@item Example to listen and wait on port 4444 for connection
852 951f1351 bellard
-serial tcp::4444,server
853 951f1351 bellard
@item Example to not wait and listen on ip 192.168.0.100 port 4444
854 951f1351 bellard
-serial tcp:192.168.0.100:4444,server,nowait
855 a0a821a4 bellard
@end table
856 a0a821a4 bellard
857 89dfe898 ths
@item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
858 951f1351 bellard
The telnet protocol is used instead of raw tcp sockets.  The options
859 951f1351 bellard
work the same as if you had specified @code{-serial tcp}.  The
860 951f1351 bellard
difference is that the port acts like a telnet server or client using
861 951f1351 bellard
telnet option negotiation.  This will also allow you to send the
862 951f1351 bellard
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
863 951f1351 bellard
sequence.  Typically in unix telnet you do it with Control-] and then
864 951f1351 bellard
type "send break" followed by pressing the enter key.
865 0bab00f3 bellard
866 89dfe898 ths
@item unix:@var{path}[,server][,nowait]
867 ffd843bc ths
A unix domain socket is used instead of a tcp socket.  The option works the
868 ffd843bc ths
same as if you had specified @code{-serial tcp} except the unix domain socket
869 ffd843bc ths
@var{path} is used for connections.
870 ffd843bc ths
871 89dfe898 ths
@item mon:@var{dev_string}
872 20d8a3ed ths
This is a special option to allow the monitor to be multiplexed onto
873 20d8a3ed ths
another serial port.  The monitor is accessed with key sequence of
874 20d8a3ed ths
@key{Control-a} and then pressing @key{c}. See monitor access
875 20d8a3ed ths
@ref{pcsys_keys} in the -nographic section for more keys.
876 20d8a3ed ths
@var{dev_string} should be any one of the serial devices specified
877 20d8a3ed ths
above.  An example to multiplex the monitor onto a telnet server
878 20d8a3ed ths
listening on port 4444 would be:
879 20d8a3ed ths
@table @code
880 20d8a3ed ths
@item -serial mon:telnet::4444,server,nowait
881 20d8a3ed ths
@end table
882 20d8a3ed ths
883 2e4d9fb1 aurel32
@item braille
884 2e4d9fb1 aurel32
Braille device.  This will use BrlAPI to display the braille output on a real
885 2e4d9fb1 aurel32
or fake device.
886 2e4d9fb1 aurel32
887 0bab00f3 bellard
@end table
888 05d5818c bellard
889 89dfe898 ths
@item -parallel @var{dev}
890 e57a8c0e bellard
Redirect the virtual parallel port to host device @var{dev} (same
891 e57a8c0e bellard
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
892 e57a8c0e bellard
be used to use hardware devices connected on the corresponding host
893 e57a8c0e bellard
parallel port.
894 e57a8c0e bellard
895 e57a8c0e bellard
This option can be used several times to simulate up to 3 parallel
896 e57a8c0e bellard
ports.
897 e57a8c0e bellard
898 c03b0f0f bellard
Use @code{-parallel none} to disable all parallel ports.
899 c03b0f0f bellard
900 89dfe898 ths
@item -monitor @var{dev}
901 a0a821a4 bellard
Redirect the monitor to host device @var{dev} (same devices as the
902 a0a821a4 bellard
serial port).
903 a0a821a4 bellard
The default device is @code{vc} in graphical mode and @code{stdio} in
904 a0a821a4 bellard
non graphical mode.
905 a0a821a4 bellard
906 20d8a3ed ths
@item -echr numeric_ascii_value
907 20d8a3ed ths
Change the escape character used for switching to the monitor when using
908 20d8a3ed ths
monitor and serial sharing.  The default is @code{0x01} when using the
909 20d8a3ed ths
@code{-nographic} option.  @code{0x01} is equal to pressing
910 20d8a3ed ths
@code{Control-a}.  You can select a different character from the ascii
911 20d8a3ed ths
control keys where 1 through 26 map to Control-a through Control-z.  For
912 20d8a3ed ths
instance you could use the either of the following to change the escape
913 20d8a3ed ths
character to Control-t.
914 20d8a3ed ths
@table @code
915 20d8a3ed ths
@item -echr 0x14
916 20d8a3ed ths
@item -echr 20
917 20d8a3ed ths
@end table
918 20d8a3ed ths
919 ec410fc9 bellard
@item -s
920 5fafdf24 ths
Wait gdb connection to port 1234 (@pxref{gdb_usage}).
921 89dfe898 ths
@item -p @var{port}
922 4046d913 pbrook
Change gdb connection port.  @var{port} can be either a decimal number
923 4046d913 pbrook
to specify a TCP port, or a host device (same devices as the serial port).
924 52c00a5f bellard
@item -S
925 52c00a5f bellard
Do not start CPU at startup (you must type 'c' in the monitor).
926 3b46e624 ths
@item -d
927 9d4520d0 bellard
Output log in /tmp/qemu.log
928 89dfe898 ths
@item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
929 46d4767d bellard
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
930 46d4767d bellard
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
931 46d4767d bellard
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
932 4be456f1 ths
all those parameters. This option is useful for old MS-DOS disk
933 46d4767d bellard
images.
934 7c3fc84d bellard
935 87b47350 bellard
@item -L path
936 87b47350 bellard
Set the directory for the BIOS, VGA BIOS and keymaps.
937 87b47350 bellard
938 15a34c63 bellard
@item -std-vga
939 15a34c63 bellard
Simulate a standard VGA card with Bochs VBE extensions (default is
940 3cb0853a bellard
Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
941 3cb0853a bellard
VBE extensions (e.g. Windows XP) and if you want to use high
942 3cb0853a bellard
resolution modes (>= 1280x1024x16) then you should use this option.
943 3cb0853a bellard
944 3c656346 bellard
@item -no-acpi
945 3c656346 bellard
Disable ACPI (Advanced Configuration and Power Interface) support. Use
946 3c656346 bellard
it if your guest OS complains about ACPI problems (PC target machine
947 3c656346 bellard
only).
948 3c656346 bellard
949 d1beab82 bellard
@item -no-reboot
950 d1beab82 bellard
Exit instead of rebooting.
951 d1beab82 bellard
952 99aa9e4c aurel32
@item -no-shutdown
953 99aa9e4c aurel32
Don't exit QEMU on guest shutdown, but instead only stop the emulation.
954 99aa9e4c aurel32
This allows for instance switching to monitor to commit changes to the
955 99aa9e4c aurel32
disk image.
956 99aa9e4c aurel32
957 d63d307f bellard
@item -loadvm file
958 d63d307f bellard
Start right away with a saved state (@code{loadvm} in monitor)
959 8e71621f pbrook
960 8e71621f pbrook
@item -semihosting
961 a87295e8 pbrook
Enable semihosting syscall emulation (ARM and M68K target machines only).
962 a87295e8 pbrook
963 a87295e8 pbrook
On ARM this implements the "Angel" interface.
964 a87295e8 pbrook
On M68K this implements the "ColdFire GDB" interface used by libgloss.
965 a87295e8 pbrook
966 8e71621f pbrook
Note that this allows guest direct access to the host filesystem,
967 8e71621f pbrook
so should only be used with trusted guest OS.
968 2e70f6ef pbrook
969 2e70f6ef pbrook
@item -icount [N|auto]
970 2e70f6ef pbrook
Enable virtual instruction counter.  The virtual cpu will execute one
971 2e70f6ef pbrook
instruction every 2^N ns of virtual time.  If @code{auto} is specified
972 2e70f6ef pbrook
then the virtual cpu speed will be automatically adjusted to keep virtual
973 2e70f6ef pbrook
time within a few seconds of real time.
974 2e70f6ef pbrook
975 2e70f6ef pbrook
Note that while this option can give deterministic behavior, it does not
976 2e70f6ef pbrook
provide cycle accurate emulation.  Modern CPUs contain superscalar out of
977 dd5d6fe9 pbrook
order cores with complex cache hierarchies.  The number of instructions
978 2e70f6ef pbrook
executed often has little or no correlation with actual performance.
979 ec410fc9 bellard
@end table
980 ec410fc9 bellard
981 3e11db9a bellard
@c man end
982 3e11db9a bellard
983 debc7065 bellard
@node pcsys_keys
984 3e11db9a bellard
@section Keys
985 3e11db9a bellard
986 3e11db9a bellard
@c man begin OPTIONS
987 3e11db9a bellard
988 a1b74fe8 bellard
During the graphical emulation, you can use the following keys:
989 a1b74fe8 bellard
@table @key
990 f9859310 bellard
@item Ctrl-Alt-f
991 a1b74fe8 bellard
Toggle full screen
992 a0a821a4 bellard
993 f9859310 bellard
@item Ctrl-Alt-n
994 a0a821a4 bellard
Switch to virtual console 'n'. Standard console mappings are:
995 a0a821a4 bellard
@table @emph
996 a0a821a4 bellard
@item 1
997 a0a821a4 bellard
Target system display
998 a0a821a4 bellard
@item 2
999 a0a821a4 bellard
Monitor
1000 a0a821a4 bellard
@item 3
1001 a0a821a4 bellard
Serial port
1002 a1b74fe8 bellard
@end table
1003 a1b74fe8 bellard
1004 f9859310 bellard
@item Ctrl-Alt
1005 a0a821a4 bellard
Toggle mouse and keyboard grab.
1006 a0a821a4 bellard
@end table
1007 a0a821a4 bellard
1008 3e11db9a bellard
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
1009 3e11db9a bellard
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
1010 3e11db9a bellard
1011 a0a821a4 bellard
During emulation, if you are using the @option{-nographic} option, use
1012 a0a821a4 bellard
@key{Ctrl-a h} to get terminal commands:
1013 ec410fc9 bellard
1014 ec410fc9 bellard
@table @key
1015 a1b74fe8 bellard
@item Ctrl-a h
1016 ec410fc9 bellard
Print this help
1017 3b46e624 ths
@item Ctrl-a x
1018 366dfc52 ths
Exit emulator
1019 3b46e624 ths
@item Ctrl-a s
1020 1f47a922 bellard
Save disk data back to file (if -snapshot)
1021 20d8a3ed ths
@item Ctrl-a t
1022 20d8a3ed ths
toggle console timestamps
1023 a1b74fe8 bellard
@item Ctrl-a b
1024 1f673135 bellard
Send break (magic sysrq in Linux)
1025 a1b74fe8 bellard
@item Ctrl-a c
1026 1f673135 bellard
Switch between console and monitor
1027 a1b74fe8 bellard
@item Ctrl-a Ctrl-a
1028 a1b74fe8 bellard
Send Ctrl-a
1029 ec410fc9 bellard
@end table
1030 0806e3f6 bellard
@c man end
1031 0806e3f6 bellard
1032 0806e3f6 bellard
@ignore
1033 0806e3f6 bellard
1034 1f673135 bellard
@c man begin SEEALSO
1035 1f673135 bellard
The HTML documentation of QEMU for more precise information and Linux
1036 1f673135 bellard
user mode emulator invocation.
1037 1f673135 bellard
@c man end
1038 1f673135 bellard
1039 1f673135 bellard
@c man begin AUTHOR
1040 1f673135 bellard
Fabrice Bellard
1041 1f673135 bellard
@c man end
1042 1f673135 bellard
1043 1f673135 bellard
@end ignore
1044 1f673135 bellard
1045 debc7065 bellard
@node pcsys_monitor
1046 1f673135 bellard
@section QEMU Monitor
1047 1f673135 bellard
1048 1f673135 bellard
The QEMU monitor is used to give complex commands to the QEMU
1049 1f673135 bellard
emulator. You can use it to:
1050 1f673135 bellard
1051 1f673135 bellard
@itemize @minus
1052 1f673135 bellard
1053 1f673135 bellard
@item
1054 e598752a ths
Remove or insert removable media images
1055 89dfe898 ths
(such as CD-ROM or floppies).
1056 1f673135 bellard
1057 5fafdf24 ths
@item
1058 1f673135 bellard
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
1059 1f673135 bellard
from a disk file.
1060 1f673135 bellard
1061 1f673135 bellard
@item Inspect the VM state without an external debugger.
1062 1f673135 bellard
1063 1f673135 bellard
@end itemize
1064 1f673135 bellard
1065 1f673135 bellard
@subsection Commands
1066 1f673135 bellard
1067 1f673135 bellard
The following commands are available:
1068 1f673135 bellard
1069 1f673135 bellard
@table @option
1070 1f673135 bellard
1071 89dfe898 ths
@item help or ? [@var{cmd}]
1072 1f673135 bellard
Show the help for all commands or just for command @var{cmd}.
1073 1f673135 bellard
1074 3b46e624 ths
@item commit
1075 89dfe898 ths
Commit changes to the disk images (if -snapshot is used).
1076 1f673135 bellard
1077 89dfe898 ths
@item info @var{subcommand}
1078 89dfe898 ths
Show various information about the system state.
1079 1f673135 bellard
1080 1f673135 bellard
@table @option
1081 1f673135 bellard
@item info network
1082 41d03949 bellard
show the various VLANs and the associated devices
1083 1f673135 bellard
@item info block
1084 1f673135 bellard
show the block devices
1085 1f673135 bellard
@item info registers
1086 1f673135 bellard
show the cpu registers
1087 1f673135 bellard
@item info history
1088 1f673135 bellard
show the command line history
1089 b389dbfb bellard
@item info pci
1090 b389dbfb bellard
show emulated PCI device
1091 b389dbfb bellard
@item info usb
1092 b389dbfb bellard
show USB devices plugged on the virtual USB hub
1093 b389dbfb bellard
@item info usbhost
1094 b389dbfb bellard
show all USB host devices
1095 a3c25997 bellard
@item info capture
1096 a3c25997 bellard
show information about active capturing
1097 13a2e80f bellard
@item info snapshots
1098 13a2e80f bellard
show list of VM snapshots
1099 455204eb ths
@item info mice
1100 455204eb ths
show which guest mouse is receiving events
1101 1f673135 bellard
@end table
1102 1f673135 bellard
1103 1f673135 bellard
@item q or quit
1104 1f673135 bellard
Quit the emulator.
1105 1f673135 bellard
1106 89dfe898 ths
@item eject [-f] @var{device}
1107 e598752a ths
Eject a removable medium (use -f to force it).
1108 1f673135 bellard
1109 89dfe898 ths
@item change @var{device} @var{setting}
1110 f858dcae ths
1111 89dfe898 ths
Change the configuration of a device.
1112 f858dcae ths
1113 f858dcae ths
@table @option
1114 f858dcae ths
@item change @var{diskdevice} @var{filename}
1115 f858dcae ths
Change the medium for a removable disk device to point to @var{filename}. eg
1116 f858dcae ths
1117 f858dcae ths
@example
1118 4bf27c24 aurel32
(qemu) change ide1-cd0 /path/to/some.iso
1119 f858dcae ths
@end example
1120 f858dcae ths
1121 89dfe898 ths
@item change vnc @var{display},@var{options}
1122 f858dcae ths
Change the configuration of the VNC server. The valid syntax for @var{display}
1123 f858dcae ths
and @var{options} are described at @ref{sec_invocation}. eg
1124 f858dcae ths
1125 f858dcae ths
@example
1126 f858dcae ths
(qemu) change vnc localhost:1
1127 f858dcae ths
@end example
1128 f858dcae ths
1129 f858dcae ths
@item change vnc password
1130 f858dcae ths
1131 f858dcae ths
Change the password associated with the VNC server. The monitor will prompt for
1132 f858dcae ths
the new password to be entered. VNC passwords are only significant upto 8 letters.
1133 f858dcae ths
eg.
1134 f858dcae ths
1135 f858dcae ths
@example
1136 f858dcae ths
(qemu) change vnc password
1137 f858dcae ths
Password: ********
1138 f858dcae ths
@end example
1139 f858dcae ths
1140 f858dcae ths
@end table
1141 1f673135 bellard
1142 89dfe898 ths
@item screendump @var{filename}
1143 1f673135 bellard
Save screen into PPM image @var{filename}.
1144 1f673135 bellard
1145 89dfe898 ths
@item mouse_move @var{dx} @var{dy} [@var{dz}]
1146 455204eb ths
Move the active mouse to the specified coordinates @var{dx} @var{dy}
1147 455204eb ths
with optional scroll axis @var{dz}.
1148 455204eb ths
1149 89dfe898 ths
@item mouse_button @var{val}
1150 455204eb ths
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1151 455204eb ths
1152 89dfe898 ths
@item mouse_set @var{index}
1153 455204eb ths
Set which mouse device receives events at given @var{index}, index
1154 455204eb ths
can be obtained with
1155 455204eb ths
@example
1156 455204eb ths
info mice
1157 455204eb ths
@end example
1158 455204eb ths
1159 89dfe898 ths
@item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1160 a3c25997 bellard
Capture audio into @var{filename}. Using sample rate @var{frequency}
1161 a3c25997 bellard
bits per sample @var{bits} and number of channels @var{channels}.
1162 a3c25997 bellard
1163 a3c25997 bellard
Defaults:
1164 a3c25997 bellard
@itemize @minus
1165 a3c25997 bellard
@item Sample rate = 44100 Hz - CD quality
1166 a3c25997 bellard
@item Bits = 16
1167 a3c25997 bellard
@item Number of channels = 2 - Stereo
1168 a3c25997 bellard
@end itemize
1169 a3c25997 bellard
1170 89dfe898 ths
@item stopcapture @var{index}
1171 a3c25997 bellard
Stop capture with a given @var{index}, index can be obtained with
1172 a3c25997 bellard
@example
1173 a3c25997 bellard
info capture
1174 a3c25997 bellard
@end example
1175 a3c25997 bellard
1176 89dfe898 ths
@item log @var{item1}[,...]
1177 1f673135 bellard
Activate logging of the specified items to @file{/tmp/qemu.log}.
1178 1f673135 bellard
1179 89dfe898 ths
@item savevm [@var{tag}|@var{id}]
1180 13a2e80f bellard
Create a snapshot of the whole virtual machine. If @var{tag} is
1181 13a2e80f bellard
provided, it is used as human readable identifier. If there is already
1182 13a2e80f bellard
a snapshot with the same tag or ID, it is replaced. More info at
1183 13a2e80f bellard
@ref{vm_snapshots}.
1184 1f673135 bellard
1185 89dfe898 ths
@item loadvm @var{tag}|@var{id}
1186 13a2e80f bellard
Set the whole virtual machine to the snapshot identified by the tag
1187 13a2e80f bellard
@var{tag} or the unique snapshot ID @var{id}.
1188 13a2e80f bellard
1189 89dfe898 ths
@item delvm @var{tag}|@var{id}
1190 13a2e80f bellard
Delete the snapshot identified by @var{tag} or @var{id}.
1191 1f673135 bellard
1192 1f673135 bellard
@item stop
1193 1f673135 bellard
Stop emulation.
1194 1f673135 bellard
1195 1f673135 bellard
@item c or cont
1196 1f673135 bellard
Resume emulation.
1197 1f673135 bellard
1198 89dfe898 ths
@item gdbserver [@var{port}]
1199 89dfe898 ths
Start gdbserver session (default @var{port}=1234)
1200 1f673135 bellard
1201 89dfe898 ths
@item x/fmt @var{addr}
1202 1f673135 bellard
Virtual memory dump starting at @var{addr}.
1203 1f673135 bellard
1204 89dfe898 ths
@item xp /@var{fmt} @var{addr}
1205 1f673135 bellard
Physical memory dump starting at @var{addr}.
1206 1f673135 bellard
1207 1f673135 bellard
@var{fmt} is a format which tells the command how to format the
1208 1f673135 bellard
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1209 1f673135 bellard
1210 1f673135 bellard
@table @var
1211 5fafdf24 ths
@item count
1212 1f673135 bellard
is the number of items to be dumped.
1213 1f673135 bellard
1214 1f673135 bellard
@item format
1215 4be456f1 ths
can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1216 1f673135 bellard
c (char) or i (asm instruction).
1217 1f673135 bellard
1218 1f673135 bellard
@item size
1219 52c00a5f bellard
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1220 52c00a5f bellard
@code{h} or @code{w} can be specified with the @code{i} format to
1221 52c00a5f bellard
respectively select 16 or 32 bit code instruction size.
1222 1f673135 bellard
1223 1f673135 bellard
@end table
1224 1f673135 bellard
1225 5fafdf24 ths
Examples:
1226 1f673135 bellard
@itemize
1227 1f673135 bellard
@item
1228 1f673135 bellard
Dump 10 instructions at the current instruction pointer:
1229 5fafdf24 ths
@example
1230 1f673135 bellard
(qemu) x/10i $eip
1231 1f673135 bellard
0x90107063:  ret
1232 1f673135 bellard
0x90107064:  sti
1233 1f673135 bellard
0x90107065:  lea    0x0(%esi,1),%esi
1234 1f673135 bellard
0x90107069:  lea    0x0(%edi,1),%edi
1235 1f673135 bellard
0x90107070:  ret
1236 1f673135 bellard
0x90107071:  jmp    0x90107080
1237 1f673135 bellard
0x90107073:  nop
1238 1f673135 bellard
0x90107074:  nop
1239 1f673135 bellard
0x90107075:  nop
1240 1f673135 bellard
0x90107076:  nop
1241 1f673135 bellard
@end example
1242 1f673135 bellard
1243 1f673135 bellard
@item
1244 1f673135 bellard
Dump 80 16 bit values at the start of the video memory.
1245 5fafdf24 ths
@smallexample
1246 1f673135 bellard
(qemu) xp/80hx 0xb8000
1247 1f673135 bellard
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1248 1f673135 bellard
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1249 1f673135 bellard
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1250 1f673135 bellard
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1251 1f673135 bellard
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1252 1f673135 bellard
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1253 1f673135 bellard
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1254 1f673135 bellard
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1255 1f673135 bellard
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1256 1f673135 bellard
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1257 debc7065 bellard
@end smallexample
1258 1f673135 bellard
@end itemize
1259 1f673135 bellard
1260 89dfe898 ths
@item p or print/@var{fmt} @var{expr}
1261 1f673135 bellard
1262 1f673135 bellard
Print expression value. Only the @var{format} part of @var{fmt} is
1263 1f673135 bellard
used.
1264 0806e3f6 bellard
1265 89dfe898 ths
@item sendkey @var{keys}
1266 a3a91a35 bellard
1267 a3a91a35 bellard
Send @var{keys} to the emulator. Use @code{-} to press several keys
1268 a3a91a35 bellard
simultaneously. Example:
1269 a3a91a35 bellard
@example
1270 a3a91a35 bellard
sendkey ctrl-alt-f1
1271 a3a91a35 bellard
@end example
1272 a3a91a35 bellard
1273 a3a91a35 bellard
This command is useful to send keys that your graphical user interface
1274 a3a91a35 bellard
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1275 a3a91a35 bellard
1276 15a34c63 bellard
@item system_reset
1277 15a34c63 bellard
1278 15a34c63 bellard
Reset the system.
1279 15a34c63 bellard
1280 0ecdffbb aurel32
@item boot_set @var{bootdevicelist}
1281 0ecdffbb aurel32
1282 0ecdffbb aurel32
Define new values for the boot device list. Those values will override
1283 0ecdffbb aurel32
the values specified on the command line through the @code{-boot} option.
1284 0ecdffbb aurel32
1285 0ecdffbb aurel32
The values that can be specified here depend on the machine type, but are
1286 0ecdffbb aurel32
the same that can be specified in the @code{-boot} command line option.
1287 0ecdffbb aurel32
1288 89dfe898 ths
@item usb_add @var{devname}
1289 b389dbfb bellard
1290 0aff66b5 pbrook
Add the USB device @var{devname}.  For details of available devices see
1291 0aff66b5 pbrook
@ref{usb_devices}
1292 b389dbfb bellard
1293 89dfe898 ths
@item usb_del @var{devname}
1294 b389dbfb bellard
1295 b389dbfb bellard
Remove the USB device @var{devname} from the QEMU virtual USB
1296 b389dbfb bellard
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1297 b389dbfb bellard
command @code{info usb} to see the devices you can remove.
1298 b389dbfb bellard
1299 1f673135 bellard
@end table
1300 0806e3f6 bellard
1301 1f673135 bellard
@subsection Integer expressions
1302 1f673135 bellard
1303 1f673135 bellard
The monitor understands integers expressions for every integer
1304 1f673135 bellard
argument. You can use register names to get the value of specifics
1305 1f673135 bellard
CPU registers by prefixing them with @emph{$}.
1306 ec410fc9 bellard
1307 1f47a922 bellard
@node disk_images
1308 1f47a922 bellard
@section Disk Images
1309 1f47a922 bellard
1310 acd935ef bellard
Since version 0.6.1, QEMU supports many disk image formats, including
1311 acd935ef bellard
growable disk images (their size increase as non empty sectors are
1312 13a2e80f bellard
written), compressed and encrypted disk images. Version 0.8.3 added
1313 13a2e80f bellard
the new qcow2 disk image format which is essential to support VM
1314 13a2e80f bellard
snapshots.
1315 1f47a922 bellard
1316 debc7065 bellard
@menu
1317 debc7065 bellard
* disk_images_quickstart::    Quick start for disk image creation
1318 debc7065 bellard
* disk_images_snapshot_mode:: Snapshot mode
1319 13a2e80f bellard
* vm_snapshots::              VM snapshots
1320 debc7065 bellard
* qemu_img_invocation::       qemu-img Invocation
1321 975b092b ths
* qemu_nbd_invocation::       qemu-nbd Invocation
1322 19cb3738 bellard
* host_drives::               Using host drives
1323 debc7065 bellard
* disk_images_fat_images::    Virtual FAT disk images
1324 75818250 ths
* disk_images_nbd::           NBD access
1325 debc7065 bellard
@end menu
1326 debc7065 bellard
1327 debc7065 bellard
@node disk_images_quickstart
1328 acd935ef bellard
@subsection Quick start for disk image creation
1329 acd935ef bellard
1330 acd935ef bellard
You can create a disk image with the command:
1331 1f47a922 bellard
@example
1332 acd935ef bellard
qemu-img create myimage.img mysize
1333 1f47a922 bellard
@end example
1334 acd935ef bellard
where @var{myimage.img} is the disk image filename and @var{mysize} is its
1335 acd935ef bellard
size in kilobytes. You can add an @code{M} suffix to give the size in
1336 acd935ef bellard
megabytes and a @code{G} suffix for gigabytes.
1337 acd935ef bellard
1338 debc7065 bellard
See @ref{qemu_img_invocation} for more information.
1339 1f47a922 bellard
1340 debc7065 bellard
@node disk_images_snapshot_mode
1341 1f47a922 bellard
@subsection Snapshot mode
1342 1f47a922 bellard
1343 1f47a922 bellard
If you use the option @option{-snapshot}, all disk images are
1344 1f47a922 bellard
considered as read only. When sectors in written, they are written in
1345 1f47a922 bellard
a temporary file created in @file{/tmp}. You can however force the
1346 acd935ef bellard
write back to the raw disk images by using the @code{commit} monitor
1347 acd935ef bellard
command (or @key{C-a s} in the serial console).
1348 1f47a922 bellard
1349 13a2e80f bellard
@node vm_snapshots
1350 13a2e80f bellard
@subsection VM snapshots
1351 13a2e80f bellard
1352 13a2e80f bellard
VM snapshots are snapshots of the complete virtual machine including
1353 13a2e80f bellard
CPU state, RAM, device state and the content of all the writable
1354 13a2e80f bellard
disks. In order to use VM snapshots, you must have at least one non
1355 13a2e80f bellard
removable and writable block device using the @code{qcow2} disk image
1356 13a2e80f bellard
format. Normally this device is the first virtual hard drive.
1357 13a2e80f bellard
1358 13a2e80f bellard
Use the monitor command @code{savevm} to create a new VM snapshot or
1359 13a2e80f bellard
replace an existing one. A human readable name can be assigned to each
1360 19d36792 bellard
snapshot in addition to its numerical ID.
1361 13a2e80f bellard
1362 13a2e80f bellard
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1363 13a2e80f bellard
a VM snapshot. @code{info snapshots} lists the available snapshots
1364 13a2e80f bellard
with their associated information:
1365 13a2e80f bellard
1366 13a2e80f bellard
@example
1367 13a2e80f bellard
(qemu) info snapshots
1368 13a2e80f bellard
Snapshot devices: hda
1369 13a2e80f bellard
Snapshot list (from hda):
1370 13a2e80f bellard
ID        TAG                 VM SIZE                DATE       VM CLOCK
1371 13a2e80f bellard
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1372 13a2e80f bellard
2                                 40M 2006-08-06 12:43:29   00:00:18.633
1373 13a2e80f bellard
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1374 13a2e80f bellard
@end example
1375 13a2e80f bellard
1376 13a2e80f bellard
A VM snapshot is made of a VM state info (its size is shown in
1377 13a2e80f bellard
@code{info snapshots}) and a snapshot of every writable disk image.
1378 13a2e80f bellard
The VM state info is stored in the first @code{qcow2} non removable
1379 13a2e80f bellard
and writable block device. The disk image snapshots are stored in
1380 13a2e80f bellard
every disk image. The size of a snapshot in a disk image is difficult
1381 13a2e80f bellard
to evaluate and is not shown by @code{info snapshots} because the
1382 13a2e80f bellard
associated disk sectors are shared among all the snapshots to save
1383 19d36792 bellard
disk space (otherwise each snapshot would need a full copy of all the
1384 19d36792 bellard
disk images).
1385 13a2e80f bellard
1386 13a2e80f bellard
When using the (unrelated) @code{-snapshot} option
1387 13a2e80f bellard
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1388 13a2e80f bellard
but they are deleted as soon as you exit QEMU.
1389 13a2e80f bellard
1390 13a2e80f bellard
VM snapshots currently have the following known limitations:
1391 13a2e80f bellard
@itemize
1392 5fafdf24 ths
@item
1393 13a2e80f bellard
They cannot cope with removable devices if they are removed or
1394 13a2e80f bellard
inserted after a snapshot is done.
1395 5fafdf24 ths
@item
1396 13a2e80f bellard
A few device drivers still have incomplete snapshot support so their
1397 13a2e80f bellard
state is not saved or restored properly (in particular USB).
1398 13a2e80f bellard
@end itemize
1399 13a2e80f bellard
1400 acd935ef bellard
@node qemu_img_invocation
1401 acd935ef bellard
@subsection @code{qemu-img} Invocation
1402 1f47a922 bellard
1403 acd935ef bellard
@include qemu-img.texi
1404 05efe46e bellard
1405 975b092b ths
@node qemu_nbd_invocation
1406 975b092b ths
@subsection @code{qemu-nbd} Invocation
1407 975b092b ths
1408 975b092b ths
@include qemu-nbd.texi
1409 975b092b ths
1410 19cb3738 bellard
@node host_drives
1411 19cb3738 bellard
@subsection Using host drives
1412 19cb3738 bellard
1413 19cb3738 bellard
In addition to disk image files, QEMU can directly access host
1414 19cb3738 bellard
devices. We describe here the usage for QEMU version >= 0.8.3.
1415 19cb3738 bellard
1416 19cb3738 bellard
@subsubsection Linux
1417 19cb3738 bellard
1418 19cb3738 bellard
On Linux, you can directly use the host device filename instead of a
1419 4be456f1 ths
disk image filename provided you have enough privileges to access
1420 19cb3738 bellard
it. For example, use @file{/dev/cdrom} to access to the CDROM or
1421 19cb3738 bellard
@file{/dev/fd0} for the floppy.
1422 19cb3738 bellard
1423 f542086d bellard
@table @code
1424 19cb3738 bellard
@item CD
1425 19cb3738 bellard
You can specify a CDROM device even if no CDROM is loaded. QEMU has
1426 19cb3738 bellard
specific code to detect CDROM insertion or removal. CDROM ejection by
1427 19cb3738 bellard
the guest OS is supported. Currently only data CDs are supported.
1428 19cb3738 bellard
@item Floppy
1429 19cb3738 bellard
You can specify a floppy device even if no floppy is loaded. Floppy
1430 19cb3738 bellard
removal is currently not detected accurately (if you change floppy
1431 19cb3738 bellard
without doing floppy access while the floppy is not loaded, the guest
1432 19cb3738 bellard
OS will think that the same floppy is loaded).
1433 19cb3738 bellard
@item Hard disks
1434 19cb3738 bellard
Hard disks can be used. Normally you must specify the whole disk
1435 19cb3738 bellard
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1436 19cb3738 bellard
see it as a partitioned disk. WARNING: unless you know what you do, it
1437 19cb3738 bellard
is better to only make READ-ONLY accesses to the hard disk otherwise
1438 19cb3738 bellard
you may corrupt your host data (use the @option{-snapshot} command
1439 19cb3738 bellard
line option or modify the device permissions accordingly).
1440 19cb3738 bellard
@end table
1441 19cb3738 bellard
1442 19cb3738 bellard
@subsubsection Windows
1443 19cb3738 bellard
1444 01781963 bellard
@table @code
1445 01781963 bellard
@item CD
1446 4be456f1 ths
The preferred syntax is the drive letter (e.g. @file{d:}). The
1447 01781963 bellard
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1448 01781963 bellard
supported as an alias to the first CDROM drive.
1449 19cb3738 bellard
1450 e598752a ths
Currently there is no specific code to handle removable media, so it
1451 19cb3738 bellard
is better to use the @code{change} or @code{eject} monitor commands to
1452 19cb3738 bellard
change or eject media.
1453 01781963 bellard
@item Hard disks
1454 89dfe898 ths
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
1455 01781963 bellard
where @var{N} is the drive number (0 is the first hard disk).
1456 01781963 bellard
1457 01781963 bellard
WARNING: unless you know what you do, it is better to only make
1458 01781963 bellard
READ-ONLY accesses to the hard disk otherwise you may corrupt your
1459 01781963 bellard
host data (use the @option{-snapshot} command line so that the
1460 01781963 bellard
modifications are written in a temporary file).
1461 01781963 bellard
@end table
1462 01781963 bellard
1463 19cb3738 bellard
1464 19cb3738 bellard
@subsubsection Mac OS X
1465 19cb3738 bellard
1466 5fafdf24 ths
@file{/dev/cdrom} is an alias to the first CDROM.
1467 19cb3738 bellard
1468 e598752a ths
Currently there is no specific code to handle removable media, so it
1469 19cb3738 bellard
is better to use the @code{change} or @code{eject} monitor commands to
1470 19cb3738 bellard
change or eject media.
1471 19cb3738 bellard
1472 debc7065 bellard
@node disk_images_fat_images
1473 2c6cadd4 bellard
@subsection Virtual FAT disk images
1474 2c6cadd4 bellard
1475 2c6cadd4 bellard
QEMU can automatically create a virtual FAT disk image from a
1476 2c6cadd4 bellard
directory tree. In order to use it, just type:
1477 2c6cadd4 bellard
1478 5fafdf24 ths
@example
1479 2c6cadd4 bellard
qemu linux.img -hdb fat:/my_directory
1480 2c6cadd4 bellard
@end example
1481 2c6cadd4 bellard
1482 2c6cadd4 bellard
Then you access access to all the files in the @file{/my_directory}
1483 2c6cadd4 bellard
directory without having to copy them in a disk image or to export
1484 2c6cadd4 bellard
them via SAMBA or NFS. The default access is @emph{read-only}.
1485 2c6cadd4 bellard
1486 2c6cadd4 bellard
Floppies can be emulated with the @code{:floppy:} option:
1487 2c6cadd4 bellard
1488 5fafdf24 ths
@example
1489 2c6cadd4 bellard
qemu linux.img -fda fat:floppy:/my_directory
1490 2c6cadd4 bellard
@end example
1491 2c6cadd4 bellard
1492 2c6cadd4 bellard
A read/write support is available for testing (beta stage) with the
1493 2c6cadd4 bellard
@code{:rw:} option:
1494 2c6cadd4 bellard
1495 5fafdf24 ths
@example
1496 2c6cadd4 bellard
qemu linux.img -fda fat:floppy:rw:/my_directory
1497 2c6cadd4 bellard
@end example
1498 2c6cadd4 bellard
1499 2c6cadd4 bellard
What you should @emph{never} do:
1500 2c6cadd4 bellard
@itemize
1501 2c6cadd4 bellard
@item use non-ASCII filenames ;
1502 2c6cadd4 bellard
@item use "-snapshot" together with ":rw:" ;
1503 85b2c688 bellard
@item expect it to work when loadvm'ing ;
1504 85b2c688 bellard
@item write to the FAT directory on the host system while accessing it with the guest system.
1505 2c6cadd4 bellard
@end itemize
1506 2c6cadd4 bellard
1507 75818250 ths
@node disk_images_nbd
1508 75818250 ths
@subsection NBD access
1509 75818250 ths
1510 75818250 ths
QEMU can access directly to block device exported using the Network Block Device
1511 75818250 ths
protocol.
1512 75818250 ths
1513 75818250 ths
@example
1514 75818250 ths
qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
1515 75818250 ths
@end example
1516 75818250 ths
1517 75818250 ths
If the NBD server is located on the same host, you can use an unix socket instead
1518 75818250 ths
of an inet socket:
1519 75818250 ths
1520 75818250 ths
@example
1521 75818250 ths
qemu linux.img -hdb nbd:unix:/tmp/my_socket
1522 75818250 ths
@end example
1523 75818250 ths
1524 75818250 ths
In this case, the block device must be exported using qemu-nbd:
1525 75818250 ths
1526 75818250 ths
@example
1527 75818250 ths
qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
1528 75818250 ths
@end example
1529 75818250 ths
1530 75818250 ths
The use of qemu-nbd allows to share a disk between several guests:
1531 75818250 ths
@example
1532 75818250 ths
qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
1533 75818250 ths
@end example
1534 75818250 ths
1535 75818250 ths
and then you can use it with two guests:
1536 75818250 ths
@example
1537 75818250 ths
qemu linux1.img -hdb nbd:unix:/tmp/my_socket
1538 75818250 ths
qemu linux2.img -hdb nbd:unix:/tmp/my_socket
1539 75818250 ths
@end example
1540 75818250 ths
1541 debc7065 bellard
@node pcsys_network
1542 9d4fb82e bellard
@section Network emulation
1543 9d4fb82e bellard
1544 4be456f1 ths
QEMU can simulate several network cards (PCI or ISA cards on the PC
1545 41d03949 bellard
target) and can connect them to an arbitrary number of Virtual Local
1546 41d03949 bellard
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1547 41d03949 bellard
VLAN. VLAN can be connected between separate instances of QEMU to
1548 4be456f1 ths
simulate large networks. For simpler usage, a non privileged user mode
1549 41d03949 bellard
network stack can replace the TAP device to have a basic network
1550 41d03949 bellard
connection.
1551 41d03949 bellard
1552 41d03949 bellard
@subsection VLANs
1553 9d4fb82e bellard
1554 41d03949 bellard
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1555 41d03949 bellard
connection between several network devices. These devices can be for
1556 41d03949 bellard
example QEMU virtual Ethernet cards or virtual Host ethernet devices
1557 41d03949 bellard
(TAP devices).
1558 9d4fb82e bellard
1559 41d03949 bellard
@subsection Using TAP network interfaces
1560 41d03949 bellard
1561 41d03949 bellard
This is the standard way to connect QEMU to a real network. QEMU adds
1562 41d03949 bellard
a virtual network device on your host (called @code{tapN}), and you
1563 41d03949 bellard
can then configure it as if it was a real ethernet card.
1564 9d4fb82e bellard
1565 8f40c388 bellard
@subsubsection Linux host
1566 8f40c388 bellard
1567 9d4fb82e bellard
As an example, you can download the @file{linux-test-xxx.tar.gz}
1568 9d4fb82e bellard
archive and copy the script @file{qemu-ifup} in @file{/etc} and
1569 9d4fb82e bellard
configure properly @code{sudo} so that the command @code{ifconfig}
1570 9d4fb82e bellard
contained in @file{qemu-ifup} can be executed as root. You must verify
1571 41d03949 bellard
that your host kernel supports the TAP network interfaces: the
1572 9d4fb82e bellard
device @file{/dev/net/tun} must be present.
1573 9d4fb82e bellard
1574 ee0f4751 bellard
See @ref{sec_invocation} to have examples of command lines using the
1575 ee0f4751 bellard
TAP network interfaces.
1576 9d4fb82e bellard
1577 8f40c388 bellard
@subsubsection Windows host
1578 8f40c388 bellard
1579 8f40c388 bellard
There is a virtual ethernet driver for Windows 2000/XP systems, called
1580 8f40c388 bellard
TAP-Win32. But it is not included in standard QEMU for Windows,
1581 8f40c388 bellard
so you will need to get it separately. It is part of OpenVPN package,
1582 8f40c388 bellard
so download OpenVPN from : @url{http://openvpn.net/}.
1583 8f40c388 bellard
1584 9d4fb82e bellard
@subsection Using the user mode network stack
1585 9d4fb82e bellard
1586 41d03949 bellard
By using the option @option{-net user} (default configuration if no
1587 41d03949 bellard
@option{-net} option is specified), QEMU uses a completely user mode
1588 4be456f1 ths
network stack (you don't need root privilege to use the virtual
1589 41d03949 bellard
network). The virtual network configuration is the following:
1590 9d4fb82e bellard
1591 9d4fb82e bellard
@example
1592 9d4fb82e bellard
1593 41d03949 bellard
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1594 41d03949 bellard
                           |          (10.0.2.2)
1595 9d4fb82e bellard
                           |
1596 2518bd0d bellard
                           ---->  DNS server (10.0.2.3)
1597 3b46e624 ths
                           |
1598 2518bd0d bellard
                           ---->  SMB server (10.0.2.4)
1599 9d4fb82e bellard
@end example
1600 9d4fb82e bellard
1601 9d4fb82e bellard
The QEMU VM behaves as if it was behind a firewall which blocks all
1602 9d4fb82e bellard
incoming connections. You can use a DHCP client to automatically
1603 41d03949 bellard
configure the network in the QEMU VM. The DHCP server assign addresses
1604 41d03949 bellard
to the hosts starting from 10.0.2.15.
1605 9d4fb82e bellard
1606 9d4fb82e bellard
In order to check that the user mode network is working, you can ping
1607 9d4fb82e bellard
the address 10.0.2.2 and verify that you got an address in the range
1608 9d4fb82e bellard
10.0.2.x from the QEMU virtual DHCP server.
1609 9d4fb82e bellard
1610 b415a407 bellard
Note that @code{ping} is not supported reliably to the internet as it
1611 4be456f1 ths
would require root privileges. It means you can only ping the local
1612 b415a407 bellard
router (10.0.2.2).
1613 b415a407 bellard
1614 9bf05444 bellard
When using the built-in TFTP server, the router is also the TFTP
1615 9bf05444 bellard
server.
1616 9bf05444 bellard
1617 9bf05444 bellard
When using the @option{-redir} option, TCP or UDP connections can be
1618 9bf05444 bellard
redirected from the host to the guest. It allows for example to
1619 9bf05444 bellard
redirect X11, telnet or SSH connections.
1620 443f1376 bellard
1621 41d03949 bellard
@subsection Connecting VLANs between QEMU instances
1622 41d03949 bellard
1623 41d03949 bellard
Using the @option{-net socket} option, it is possible to make VLANs
1624 41d03949 bellard
that span several QEMU instances. See @ref{sec_invocation} to have a
1625 41d03949 bellard
basic example.
1626 41d03949 bellard
1627 9d4fb82e bellard
@node direct_linux_boot
1628 9d4fb82e bellard
@section Direct Linux Boot
1629 1f673135 bellard
1630 1f673135 bellard
This section explains how to launch a Linux kernel inside QEMU without
1631 1f673135 bellard
having to make a full bootable image. It is very useful for fast Linux
1632 ee0f4751 bellard
kernel testing.
1633 1f673135 bellard
1634 ee0f4751 bellard
The syntax is:
1635 1f673135 bellard
@example
1636 ee0f4751 bellard
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1637 1f673135 bellard
@end example
1638 1f673135 bellard
1639 ee0f4751 bellard
Use @option{-kernel} to provide the Linux kernel image and
1640 ee0f4751 bellard
@option{-append} to give the kernel command line arguments. The
1641 ee0f4751 bellard
@option{-initrd} option can be used to provide an INITRD image.
1642 1f673135 bellard
1643 ee0f4751 bellard
When using the direct Linux boot, a disk image for the first hard disk
1644 ee0f4751 bellard
@file{hda} is required because its boot sector is used to launch the
1645 ee0f4751 bellard
Linux kernel.
1646 1f673135 bellard
1647 ee0f4751 bellard
If you do not need graphical output, you can disable it and redirect
1648 ee0f4751 bellard
the virtual serial port and the QEMU monitor to the console with the
1649 ee0f4751 bellard
@option{-nographic} option. The typical command line is:
1650 1f673135 bellard
@example
1651 ee0f4751 bellard
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1652 ee0f4751 bellard
     -append "root=/dev/hda console=ttyS0" -nographic
1653 1f673135 bellard
@end example
1654 1f673135 bellard
1655 ee0f4751 bellard
Use @key{Ctrl-a c} to switch between the serial console and the
1656 ee0f4751 bellard
monitor (@pxref{pcsys_keys}).
1657 1f673135 bellard
1658 debc7065 bellard
@node pcsys_usb
1659 b389dbfb bellard
@section USB emulation
1660 b389dbfb bellard
1661 0aff66b5 pbrook
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1662 0aff66b5 pbrook
virtual USB devices or real host USB devices (experimental, works only
1663 0aff66b5 pbrook
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1664 f542086d bellard
as necessary to connect multiple USB devices.
1665 b389dbfb bellard
1666 0aff66b5 pbrook
@menu
1667 0aff66b5 pbrook
* usb_devices::
1668 0aff66b5 pbrook
* host_usb_devices::
1669 0aff66b5 pbrook
@end menu
1670 0aff66b5 pbrook
@node usb_devices
1671 0aff66b5 pbrook
@subsection Connecting USB devices
1672 b389dbfb bellard
1673 0aff66b5 pbrook
USB devices can be connected with the @option{-usbdevice} commandline option
1674 0aff66b5 pbrook
or the @code{usb_add} monitor command.  Available devices are:
1675 b389dbfb bellard
1676 db380c06 balrog
@table @code
1677 db380c06 balrog
@item mouse
1678 0aff66b5 pbrook
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1679 db380c06 balrog
@item tablet
1680 c6d46c20 bellard
Pointer device that uses absolute coordinates (like a touchscreen).
1681 0aff66b5 pbrook
This means qemu is able to report the mouse position without having
1682 0aff66b5 pbrook
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1683 db380c06 balrog
@item disk:@var{file}
1684 0aff66b5 pbrook
Mass storage device based on @var{file} (@pxref{disk_images})
1685 db380c06 balrog
@item host:@var{bus.addr}
1686 0aff66b5 pbrook
Pass through the host device identified by @var{bus.addr}
1687 0aff66b5 pbrook
(Linux only)
1688 db380c06 balrog
@item host:@var{vendor_id:product_id}
1689 0aff66b5 pbrook
Pass through the host device identified by @var{vendor_id:product_id}
1690 0aff66b5 pbrook
(Linux only)
1691 db380c06 balrog
@item wacom-tablet
1692 f6d2a316 balrog
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1693 f6d2a316 balrog
above but it can be used with the tslib library because in addition to touch
1694 f6d2a316 balrog
coordinates it reports touch pressure.
1695 db380c06 balrog
@item keyboard
1696 47b2d338 balrog
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1697 db380c06 balrog
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1698 db380c06 balrog
Serial converter. This emulates an FTDI FT232BM chip connected to host character
1699 db380c06 balrog
device @var{dev}. The available character devices are the same as for the
1700 db380c06 balrog
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1701 a11d070e balrog
used to override the default 0403:6001. For instance, 
1702 db380c06 balrog
@example
1703 db380c06 balrog
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1704 db380c06 balrog
@end example
1705 db380c06 balrog
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1706 db380c06 balrog
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1707 2e4d9fb1 aurel32
@item braille
1708 2e4d9fb1 aurel32
Braille device.  This will use BrlAPI to display the braille output on a real
1709 2e4d9fb1 aurel32
or fake device.
1710 0aff66b5 pbrook
@end table
1711 b389dbfb bellard
1712 0aff66b5 pbrook
@node host_usb_devices
1713 b389dbfb bellard
@subsection Using host USB devices on a Linux host
1714 b389dbfb bellard
1715 b389dbfb bellard
WARNING: this is an experimental feature. QEMU will slow down when
1716 b389dbfb bellard
using it. USB devices requiring real time streaming (i.e. USB Video
1717 b389dbfb bellard
Cameras) are not supported yet.
1718 b389dbfb bellard
1719 b389dbfb bellard
@enumerate
1720 5fafdf24 ths
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1721 b389dbfb bellard
is actually using the USB device. A simple way to do that is simply to
1722 b389dbfb bellard
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1723 b389dbfb bellard
to @file{mydriver.o.disabled}.
1724 b389dbfb bellard
1725 b389dbfb bellard
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1726 b389dbfb bellard
@example
1727 b389dbfb bellard
ls /proc/bus/usb
1728 b389dbfb bellard
001  devices  drivers
1729 b389dbfb bellard
@end example
1730 b389dbfb bellard
1731 b389dbfb bellard
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1732 b389dbfb bellard
@example
1733 b389dbfb bellard
chown -R myuid /proc/bus/usb
1734 b389dbfb bellard
@end example
1735 b389dbfb bellard
1736 b389dbfb bellard
@item Launch QEMU and do in the monitor:
1737 5fafdf24 ths
@example
1738 b389dbfb bellard
info usbhost
1739 b389dbfb bellard
  Device 1.2, speed 480 Mb/s
1740 b389dbfb bellard
    Class 00: USB device 1234:5678, USB DISK
1741 b389dbfb bellard
@end example
1742 b389dbfb bellard
You should see the list of the devices you can use (Never try to use
1743 b389dbfb bellard
hubs, it won't work).
1744 b389dbfb bellard
1745 b389dbfb bellard
@item Add the device in QEMU by using:
1746 5fafdf24 ths
@example
1747 b389dbfb bellard
usb_add host:1234:5678
1748 b389dbfb bellard
@end example
1749 b389dbfb bellard
1750 b389dbfb bellard
Normally the guest OS should report that a new USB device is
1751 b389dbfb bellard
plugged. You can use the option @option{-usbdevice} to do the same.
1752 b389dbfb bellard
1753 b389dbfb bellard
@item Now you can try to use the host USB device in QEMU.
1754 b389dbfb bellard
1755 b389dbfb bellard
@end enumerate
1756 b389dbfb bellard
1757 b389dbfb bellard
When relaunching QEMU, you may have to unplug and plug again the USB
1758 b389dbfb bellard
device to make it work again (this is a bug).
1759 b389dbfb bellard
1760 f858dcae ths
@node vnc_security
1761 f858dcae ths
@section VNC security
1762 f858dcae ths
1763 f858dcae ths
The VNC server capability provides access to the graphical console
1764 f858dcae ths
of the guest VM across the network. This has a number of security
1765 f858dcae ths
considerations depending on the deployment scenarios.
1766 f858dcae ths
1767 f858dcae ths
@menu
1768 f858dcae ths
* vnc_sec_none::
1769 f858dcae ths
* vnc_sec_password::
1770 f858dcae ths
* vnc_sec_certificate::
1771 f858dcae ths
* vnc_sec_certificate_verify::
1772 f858dcae ths
* vnc_sec_certificate_pw::
1773 f858dcae ths
* vnc_generate_cert::
1774 f858dcae ths
@end menu
1775 f858dcae ths
@node vnc_sec_none
1776 f858dcae ths
@subsection Without passwords
1777 f858dcae ths
1778 f858dcae ths
The simplest VNC server setup does not include any form of authentication.
1779 f858dcae ths
For this setup it is recommended to restrict it to listen on a UNIX domain
1780 f858dcae ths
socket only. For example
1781 f858dcae ths
1782 f858dcae ths
@example
1783 f858dcae ths
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1784 f858dcae ths
@end example
1785 f858dcae ths
1786 f858dcae ths
This ensures that only users on local box with read/write access to that
1787 f858dcae ths
path can access the VNC server. To securely access the VNC server from a
1788 f858dcae ths
remote machine, a combination of netcat+ssh can be used to provide a secure
1789 f858dcae ths
tunnel.
1790 f858dcae ths
1791 f858dcae ths
@node vnc_sec_password
1792 f858dcae ths
@subsection With passwords
1793 f858dcae ths
1794 f858dcae ths
The VNC protocol has limited support for password based authentication. Since
1795 f858dcae ths
the protocol limits passwords to 8 characters it should not be considered
1796 f858dcae ths
to provide high security. The password can be fairly easily brute-forced by
1797 f858dcae ths
a client making repeat connections. For this reason, a VNC server using password
1798 f858dcae ths
authentication should be restricted to only listen on the loopback interface
1799 f858dcae ths
or UNIX domain sockets. Password ayuthentication is requested with the @code{password}
1800 f858dcae ths
option, and then once QEMU is running the password is set with the monitor. Until
1801 f858dcae ths
the monitor is used to set the password all clients will be rejected.
1802 f858dcae ths
1803 f858dcae ths
@example
1804 f858dcae ths
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1805 f858dcae ths
(qemu) change vnc password
1806 f858dcae ths
Password: ********
1807 f858dcae ths
(qemu)
1808 f858dcae ths
@end example
1809 f858dcae ths
1810 f858dcae ths
@node vnc_sec_certificate
1811 f858dcae ths
@subsection With x509 certificates
1812 f858dcae ths
1813 f858dcae ths
The QEMU VNC server also implements the VeNCrypt extension allowing use of
1814 f858dcae ths
TLS for encryption of the session, and x509 certificates for authentication.
1815 f858dcae ths
The use of x509 certificates is strongly recommended, because TLS on its
1816 f858dcae ths
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1817 f858dcae ths
support provides a secure session, but no authentication. This allows any
1818 f858dcae ths
client to connect, and provides an encrypted session.
1819 f858dcae ths
1820 f858dcae ths
@example
1821 f858dcae ths
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1822 f858dcae ths
@end example
1823 f858dcae ths
1824 f858dcae ths
In the above example @code{/etc/pki/qemu} should contain at least three files,
1825 f858dcae ths
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1826 f858dcae ths
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1827 f858dcae ths
NB the @code{server-key.pem} file should be protected with file mode 0600 to
1828 f858dcae ths
only be readable by the user owning it.
1829 f858dcae ths
1830 f858dcae ths
@node vnc_sec_certificate_verify
1831 f858dcae ths
@subsection With x509 certificates and client verification
1832 f858dcae ths
1833 f858dcae ths
Certificates can also provide a means to authenticate the client connecting.
1834 f858dcae ths
The server will request that the client provide a certificate, which it will
1835 f858dcae ths
then validate against the CA certificate. This is a good choice if deploying
1836 f858dcae ths
in an environment with a private internal certificate authority.
1837 f858dcae ths
1838 f858dcae ths
@example
1839 f858dcae ths
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1840 f858dcae ths
@end example
1841 f858dcae ths
1842 f858dcae ths
1843 f858dcae ths
@node vnc_sec_certificate_pw
1844 f858dcae ths
@subsection With x509 certificates, client verification and passwords
1845 f858dcae ths
1846 f858dcae ths
Finally, the previous method can be combined with VNC password authentication
1847 f858dcae ths
to provide two layers of authentication for clients.
1848 f858dcae ths
1849 f858dcae ths
@example
1850 f858dcae ths
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1851 f858dcae ths
(qemu) change vnc password
1852 f858dcae ths
Password: ********
1853 f858dcae ths
(qemu)
1854 f858dcae ths
@end example
1855 f858dcae ths
1856 f858dcae ths
@node vnc_generate_cert
1857 f858dcae ths
@subsection Generating certificates for VNC
1858 f858dcae ths
1859 f858dcae ths
The GNU TLS packages provides a command called @code{certtool} which can
1860 f858dcae ths
be used to generate certificates and keys in PEM format. At a minimum it
1861 f858dcae ths
is neccessary to setup a certificate authority, and issue certificates to
1862 f858dcae ths
each server. If using certificates for authentication, then each client
1863 f858dcae ths
will also need to be issued a certificate. The recommendation is for the
1864 f858dcae ths
server to keep its certificates in either @code{/etc/pki/qemu} or for
1865 f858dcae ths
unprivileged users in @code{$HOME/.pki/qemu}.
1866 f858dcae ths
1867 f858dcae ths
@menu
1868 f858dcae ths
* vnc_generate_ca::
1869 f858dcae ths
* vnc_generate_server::
1870 f858dcae ths
* vnc_generate_client::
1871 f858dcae ths
@end menu
1872 f858dcae ths
@node vnc_generate_ca
1873 f858dcae ths
@subsubsection Setup the Certificate Authority
1874 f858dcae ths
1875 f858dcae ths
This step only needs to be performed once per organization / organizational
1876 f858dcae ths
unit. First the CA needs a private key. This key must be kept VERY secret
1877 f858dcae ths
and secure. If this key is compromised the entire trust chain of the certificates
1878 f858dcae ths
issued with it is lost.
1879 f858dcae ths
1880 f858dcae ths
@example
1881 f858dcae ths
# certtool --generate-privkey > ca-key.pem
1882 f858dcae ths
@end example
1883 f858dcae ths
1884 f858dcae ths
A CA needs to have a public certificate. For simplicity it can be a self-signed
1885 f858dcae ths
certificate, or one issue by a commercial certificate issuing authority. To
1886 f858dcae ths
generate a self-signed certificate requires one core piece of information, the
1887 f858dcae ths
name of the organization.
1888 f858dcae ths
1889 f858dcae ths
@example
1890 f858dcae ths
# cat > ca.info <<EOF
1891 f858dcae ths
cn = Name of your organization
1892 f858dcae ths
ca
1893 f858dcae ths
cert_signing_key
1894 f858dcae ths
EOF
1895 f858dcae ths
# certtool --generate-self-signed \
1896 f858dcae ths
           --load-privkey ca-key.pem
1897 f858dcae ths
           --template ca.info \
1898 f858dcae ths
           --outfile ca-cert.pem
1899 f858dcae ths
@end example
1900 f858dcae ths
1901 f858dcae ths
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1902 f858dcae ths
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1903 f858dcae ths
1904 f858dcae ths
@node vnc_generate_server
1905 f858dcae ths
@subsubsection Issuing server certificates
1906 f858dcae ths
1907 f858dcae ths
Each server (or host) needs to be issued with a key and certificate. When connecting
1908 f858dcae ths
the certificate is sent to the client which validates it against the CA certificate.
1909 f858dcae ths
The core piece of information for a server certificate is the hostname. This should
1910 f858dcae ths
be the fully qualified hostname that the client will connect with, since the client
1911 f858dcae ths
will typically also verify the hostname in the certificate. On the host holding the
1912 f858dcae ths
secure CA private key:
1913 f858dcae ths
1914 f858dcae ths
@example
1915 f858dcae ths
# cat > server.info <<EOF
1916 f858dcae ths
organization = Name  of your organization
1917 f858dcae ths
cn = server.foo.example.com
1918 f858dcae ths
tls_www_server
1919 f858dcae ths
encryption_key
1920 f858dcae ths
signing_key
1921 f858dcae ths
EOF
1922 f858dcae ths
# certtool --generate-privkey > server-key.pem
1923 f858dcae ths
# certtool --generate-certificate \
1924 f858dcae ths
           --load-ca-certificate ca-cert.pem \
1925 f858dcae ths
           --load-ca-privkey ca-key.pem \
1926 f858dcae ths
           --load-privkey server server-key.pem \
1927 f858dcae ths
           --template server.info \
1928 f858dcae ths
           --outfile server-cert.pem
1929 f858dcae ths
@end example
1930 f858dcae ths
1931 f858dcae ths
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1932 f858dcae ths
to the server for which they were generated. The @code{server-key.pem} is security
1933 f858dcae ths
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1934 f858dcae ths
1935 f858dcae ths
@node vnc_generate_client
1936 f858dcae ths
@subsubsection Issuing client certificates
1937 f858dcae ths
1938 f858dcae ths
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1939 f858dcae ths
certificates as its authentication mechanism, each client also needs to be issued
1940 f858dcae ths
a certificate. The client certificate contains enough metadata to uniquely identify
1941 f858dcae ths
the client, typically organization, state, city, building, etc. On the host holding
1942 f858dcae ths
the secure CA private key:
1943 f858dcae ths
1944 f858dcae ths
@example
1945 f858dcae ths
# cat > client.info <<EOF
1946 f858dcae ths
country = GB
1947 f858dcae ths
state = London
1948 f858dcae ths
locality = London
1949 f858dcae ths
organiazation = Name of your organization
1950 f858dcae ths
cn = client.foo.example.com
1951 f858dcae ths
tls_www_client
1952 f858dcae ths
encryption_key
1953 f858dcae ths
signing_key
1954 f858dcae ths
EOF
1955 f858dcae ths
# certtool --generate-privkey > client-key.pem
1956 f858dcae ths
# certtool --generate-certificate \
1957 f858dcae ths
           --load-ca-certificate ca-cert.pem \
1958 f858dcae ths
           --load-ca-privkey ca-key.pem \
1959 f858dcae ths
           --load-privkey client-key.pem \
1960 f858dcae ths
           --template client.info \
1961 f858dcae ths
           --outfile client-cert.pem
1962 f858dcae ths
@end example
1963 f858dcae ths
1964 f858dcae ths
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1965 f858dcae ths
copied to the client for which they were generated.
1966 f858dcae ths
1967 0806e3f6 bellard
@node gdb_usage
1968 da415d54 bellard
@section GDB usage
1969 da415d54 bellard
1970 da415d54 bellard
QEMU has a primitive support to work with gdb, so that you can do
1971 0806e3f6 bellard
'Ctrl-C' while the virtual machine is running and inspect its state.
1972 da415d54 bellard
1973 9d4520d0 bellard
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1974 da415d54 bellard
gdb connection:
1975 da415d54 bellard
@example
1976 debc7065 bellard
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1977 debc7065 bellard
       -append "root=/dev/hda"
1978 da415d54 bellard
Connected to host network interface: tun0
1979 da415d54 bellard
Waiting gdb connection on port 1234
1980 da415d54 bellard
@end example
1981 da415d54 bellard
1982 da415d54 bellard
Then launch gdb on the 'vmlinux' executable:
1983 da415d54 bellard
@example
1984 da415d54 bellard
> gdb vmlinux
1985 da415d54 bellard
@end example
1986 da415d54 bellard
1987 da415d54 bellard
In gdb, connect to QEMU:
1988 da415d54 bellard
@example
1989 6c9bf893 bellard
(gdb) target remote localhost:1234
1990 da415d54 bellard
@end example
1991 da415d54 bellard
1992 da415d54 bellard
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1993 da415d54 bellard
@example
1994 da415d54 bellard
(gdb) c
1995 da415d54 bellard
@end example
1996 da415d54 bellard
1997 0806e3f6 bellard
Here are some useful tips in order to use gdb on system code:
1998 0806e3f6 bellard
1999 0806e3f6 bellard
@enumerate
2000 0806e3f6 bellard
@item
2001 0806e3f6 bellard
Use @code{info reg} to display all the CPU registers.
2002 0806e3f6 bellard
@item
2003 0806e3f6 bellard
Use @code{x/10i $eip} to display the code at the PC position.
2004 0806e3f6 bellard
@item
2005 0806e3f6 bellard
Use @code{set architecture i8086} to dump 16 bit code. Then use
2006 294e8637 bellard
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
2007 0806e3f6 bellard
@end enumerate
2008 0806e3f6 bellard
2009 60897d36 edgar_igl
Advanced debugging options:
2010 60897d36 edgar_igl
2011 60897d36 edgar_igl
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
2012 94d45e44 edgar_igl
@table @code
2013 60897d36 edgar_igl
@item maintenance packet qqemu.sstepbits
2014 60897d36 edgar_igl
2015 60897d36 edgar_igl
This will display the MASK bits used to control the single stepping IE:
2016 60897d36 edgar_igl
@example
2017 60897d36 edgar_igl
(gdb) maintenance packet qqemu.sstepbits
2018 60897d36 edgar_igl
sending: "qqemu.sstepbits"
2019 60897d36 edgar_igl
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
2020 60897d36 edgar_igl
@end example
2021 60897d36 edgar_igl
@item maintenance packet qqemu.sstep
2022 60897d36 edgar_igl
2023 60897d36 edgar_igl
This will display the current value of the mask used when single stepping IE:
2024 60897d36 edgar_igl
@example
2025 60897d36 edgar_igl
(gdb) maintenance packet qqemu.sstep
2026 60897d36 edgar_igl
sending: "qqemu.sstep"
2027 60897d36 edgar_igl
received: "0x7"
2028 60897d36 edgar_igl
@end example
2029 60897d36 edgar_igl
@item maintenance packet Qqemu.sstep=HEX_VALUE
2030 60897d36 edgar_igl
2031 60897d36 edgar_igl
This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
2032 60897d36 edgar_igl
@example
2033 60897d36 edgar_igl
(gdb) maintenance packet Qqemu.sstep=0x5
2034 60897d36 edgar_igl
sending: "qemu.sstep=0x5"
2035 60897d36 edgar_igl
received: "OK"
2036 60897d36 edgar_igl
@end example
2037 94d45e44 edgar_igl
@end table
2038 60897d36 edgar_igl
2039 debc7065 bellard
@node pcsys_os_specific
2040 1a084f3d bellard
@section Target OS specific information
2041 1a084f3d bellard
2042 1a084f3d bellard
@subsection Linux
2043 1a084f3d bellard
2044 15a34c63 bellard
To have access to SVGA graphic modes under X11, use the @code{vesa} or
2045 15a34c63 bellard
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
2046 15a34c63 bellard
color depth in the guest and the host OS.
2047 1a084f3d bellard
2048 e3371e62 bellard
When using a 2.6 guest Linux kernel, you should add the option
2049 e3371e62 bellard
@code{clock=pit} on the kernel command line because the 2.6 Linux
2050 e3371e62 bellard
kernels make very strict real time clock checks by default that QEMU
2051 e3371e62 bellard
cannot simulate exactly.
2052 e3371e62 bellard
2053 7c3fc84d bellard
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
2054 7c3fc84d bellard
not activated because QEMU is slower with this patch. The QEMU
2055 7c3fc84d bellard
Accelerator Module is also much slower in this case. Earlier Fedora
2056 4be456f1 ths
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
2057 7c3fc84d bellard
patch by default. Newer kernels don't have it.
2058 7c3fc84d bellard
2059 1a084f3d bellard
@subsection Windows
2060 1a084f3d bellard
2061 1a084f3d bellard
If you have a slow host, using Windows 95 is better as it gives the
2062 1a084f3d bellard
best speed. Windows 2000 is also a good choice.
2063 1a084f3d bellard
2064 e3371e62 bellard
@subsubsection SVGA graphic modes support
2065 e3371e62 bellard
2066 e3371e62 bellard
QEMU emulates a Cirrus Logic GD5446 Video
2067 15a34c63 bellard
card. All Windows versions starting from Windows 95 should recognize
2068 15a34c63 bellard
and use this graphic card. For optimal performances, use 16 bit color
2069 15a34c63 bellard
depth in the guest and the host OS.
2070 1a084f3d bellard
2071 3cb0853a bellard
If you are using Windows XP as guest OS and if you want to use high
2072 3cb0853a bellard
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
2073 3cb0853a bellard
1280x1024x16), then you should use the VESA VBE virtual graphic card
2074 3cb0853a bellard
(option @option{-std-vga}).
2075 3cb0853a bellard
2076 e3371e62 bellard
@subsubsection CPU usage reduction
2077 e3371e62 bellard
2078 e3371e62 bellard
Windows 9x does not correctly use the CPU HLT
2079 15a34c63 bellard
instruction. The result is that it takes host CPU cycles even when
2080 15a34c63 bellard
idle. You can install the utility from
2081 15a34c63 bellard
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
2082 15a34c63 bellard
problem. Note that no such tool is needed for NT, 2000 or XP.
2083 1a084f3d bellard
2084 9d0a8e6f bellard
@subsubsection Windows 2000 disk full problem
2085 e3371e62 bellard
2086 9d0a8e6f bellard
Windows 2000 has a bug which gives a disk full problem during its
2087 9d0a8e6f bellard
installation. When installing it, use the @option{-win2k-hack} QEMU
2088 9d0a8e6f bellard
option to enable a specific workaround. After Windows 2000 is
2089 9d0a8e6f bellard
installed, you no longer need this option (this option slows down the
2090 9d0a8e6f bellard
IDE transfers).
2091 e3371e62 bellard
2092 6cc721cf bellard
@subsubsection Windows 2000 shutdown
2093 6cc721cf bellard
2094 6cc721cf bellard
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
2095 6cc721cf bellard
can. It comes from the fact that Windows 2000 does not automatically
2096 6cc721cf bellard
use the APM driver provided by the BIOS.
2097 6cc721cf bellard
2098 6cc721cf bellard
In order to correct that, do the following (thanks to Struan
2099 6cc721cf bellard
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
2100 6cc721cf bellard
Add/Troubleshoot a device => Add a new device & Next => No, select the
2101 6cc721cf bellard
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
2102 6cc721cf bellard
(again) a few times. Now the driver is installed and Windows 2000 now
2103 5fafdf24 ths
correctly instructs QEMU to shutdown at the appropriate moment.
2104 6cc721cf bellard
2105 6cc721cf bellard
@subsubsection Share a directory between Unix and Windows
2106 6cc721cf bellard
2107 6cc721cf bellard
See @ref{sec_invocation} about the help of the option @option{-smb}.
2108 6cc721cf bellard
2109 2192c332 bellard
@subsubsection Windows XP security problem
2110 e3371e62 bellard
2111 e3371e62 bellard
Some releases of Windows XP install correctly but give a security
2112 e3371e62 bellard
error when booting:
2113 e3371e62 bellard
@example
2114 e3371e62 bellard
A problem is preventing Windows from accurately checking the
2115 e3371e62 bellard
license for this computer. Error code: 0x800703e6.
2116 e3371e62 bellard
@end example
2117 e3371e62 bellard
2118 2192c332 bellard
The workaround is to install a service pack for XP after a boot in safe
2119 2192c332 bellard
mode. Then reboot, and the problem should go away. Since there is no
2120 2192c332 bellard
network while in safe mode, its recommended to download the full
2121 2192c332 bellard
installation of SP1 or SP2 and transfer that via an ISO or using the
2122 2192c332 bellard
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
2123 e3371e62 bellard
2124 a0a821a4 bellard
@subsection MS-DOS and FreeDOS
2125 a0a821a4 bellard
2126 a0a821a4 bellard
@subsubsection CPU usage reduction
2127 a0a821a4 bellard
2128 a0a821a4 bellard
DOS does not correctly use the CPU HLT instruction. The result is that
2129 a0a821a4 bellard
it takes host CPU cycles even when idle. You can install the utility
2130 a0a821a4 bellard
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
2131 a0a821a4 bellard
problem.
2132 a0a821a4 bellard
2133 debc7065 bellard
@node QEMU System emulator for non PC targets
2134 3f9f3aa1 bellard
@chapter QEMU System emulator for non PC targets
2135 3f9f3aa1 bellard
2136 3f9f3aa1 bellard
QEMU is a generic emulator and it emulates many non PC
2137 3f9f3aa1 bellard
machines. Most of the options are similar to the PC emulator. The
2138 4be456f1 ths
differences are mentioned in the following sections.
2139 3f9f3aa1 bellard
2140 debc7065 bellard
@menu
2141 debc7065 bellard
* QEMU PowerPC System emulator::
2142 24d4de45 ths
* Sparc32 System emulator::
2143 24d4de45 ths
* Sparc64 System emulator::
2144 24d4de45 ths
* MIPS System emulator::
2145 24d4de45 ths
* ARM System emulator::
2146 24d4de45 ths
* ColdFire System emulator::
2147 debc7065 bellard
@end menu
2148 debc7065 bellard
2149 debc7065 bellard
@node QEMU PowerPC System emulator
2150 3f9f3aa1 bellard
@section QEMU PowerPC System emulator
2151 1a084f3d bellard
2152 15a34c63 bellard
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2153 15a34c63 bellard
or PowerMac PowerPC system.
2154 1a084f3d bellard
2155 b671f9ed bellard
QEMU emulates the following PowerMac peripherals:
2156 1a084f3d bellard
2157 15a34c63 bellard
@itemize @minus
2158 5fafdf24 ths
@item
2159 5fafdf24 ths
UniNorth PCI Bridge
2160 15a34c63 bellard
@item
2161 15a34c63 bellard
PCI VGA compatible card with VESA Bochs Extensions
2162 5fafdf24 ths
@item
2163 15a34c63 bellard
2 PMAC IDE interfaces with hard disk and CD-ROM support
2164 5fafdf24 ths
@item
2165 15a34c63 bellard
NE2000 PCI adapters
2166 15a34c63 bellard
@item
2167 15a34c63 bellard
Non Volatile RAM
2168 15a34c63 bellard
@item
2169 15a34c63 bellard
VIA-CUDA with ADB keyboard and mouse.
2170 1a084f3d bellard
@end itemize
2171 1a084f3d bellard
2172 b671f9ed bellard
QEMU emulates the following PREP peripherals:
2173 52c00a5f bellard
2174 52c00a5f bellard
@itemize @minus
2175 5fafdf24 ths
@item
2176 15a34c63 bellard
PCI Bridge
2177 15a34c63 bellard
@item
2178 15a34c63 bellard
PCI VGA compatible card with VESA Bochs Extensions
2179 5fafdf24 ths
@item
2180 52c00a5f bellard
2 IDE interfaces with hard disk and CD-ROM support
2181 52c00a5f bellard
@item
2182 52c00a5f bellard
Floppy disk
2183 5fafdf24 ths
@item
2184 15a34c63 bellard
NE2000 network adapters
2185 52c00a5f bellard
@item
2186 52c00a5f bellard
Serial port
2187 52c00a5f bellard
@item
2188 52c00a5f bellard
PREP Non Volatile RAM
2189 15a34c63 bellard
@item
2190 15a34c63 bellard
PC compatible keyboard and mouse.
2191 52c00a5f bellard
@end itemize
2192 52c00a5f bellard
2193 15a34c63 bellard
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2194 3f9f3aa1 bellard
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2195 52c00a5f bellard
2196 15a34c63 bellard
@c man begin OPTIONS
2197 15a34c63 bellard
2198 15a34c63 bellard
The following options are specific to the PowerPC emulation:
2199 15a34c63 bellard
2200 15a34c63 bellard
@table @option
2201 15a34c63 bellard
2202 3b46e624 ths
@item -g WxH[xDEPTH]
2203 15a34c63 bellard
2204 15a34c63 bellard
Set the initial VGA graphic mode. The default is 800x600x15.
2205 15a34c63 bellard
2206 15a34c63 bellard
@end table
2207 15a34c63 bellard
2208 5fafdf24 ths
@c man end
2209 15a34c63 bellard
2210 15a34c63 bellard
2211 52c00a5f bellard
More information is available at
2212 3f9f3aa1 bellard
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2213 52c00a5f bellard
2214 24d4de45 ths
@node Sparc32 System emulator
2215 24d4de45 ths
@section Sparc32 System emulator
2216 e80cfcfc bellard
2217 6a3b9cc9 blueswir1
Use the executable @file{qemu-system-sparc} to simulate a SPARCstation
2218 ee76f82e blueswir1
5, SPARCstation 10, SPARCstation 20, SPARCserver 600MP (sun4m
2219 ee76f82e blueswir1
architecture), SPARCstation 2 (sun4c architecture), SPARCserver 1000,
2220 ee76f82e blueswir1
or SPARCcenter 2000 (sun4d architecture). The emulation is somewhat
2221 ee76f82e blueswir1
complete.  SMP up to 16 CPUs is supported, but Linux limits the number
2222 ee76f82e blueswir1
of usable CPUs to 4.
2223 e80cfcfc bellard
2224 7d85892b blueswir1
QEMU emulates the following sun4m/sun4d peripherals:
2225 e80cfcfc bellard
2226 e80cfcfc bellard
@itemize @minus
2227 3475187d bellard
@item
2228 7d85892b blueswir1
IOMMU or IO-UNITs
2229 e80cfcfc bellard
@item
2230 e80cfcfc bellard
TCX Frame buffer
2231 5fafdf24 ths
@item
2232 e80cfcfc bellard
Lance (Am7990) Ethernet
2233 e80cfcfc bellard
@item
2234 e80cfcfc bellard
Non Volatile RAM M48T08
2235 e80cfcfc bellard
@item
2236 3475187d bellard
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2237 3475187d bellard
and power/reset logic
2238 3475187d bellard
@item
2239 3475187d bellard
ESP SCSI controller with hard disk and CD-ROM support
2240 3475187d bellard
@item
2241 6a3b9cc9 blueswir1
Floppy drive (not on SS-600MP)
2242 a2502b58 blueswir1
@item
2243 a2502b58 blueswir1
CS4231 sound device (only on SS-5, not working yet)
2244 e80cfcfc bellard
@end itemize
2245 e80cfcfc bellard
2246 6a3b9cc9 blueswir1
The number of peripherals is fixed in the architecture.  Maximum
2247 6a3b9cc9 blueswir1
memory size depends on the machine type, for SS-5 it is 256MB and for
2248 7d85892b blueswir1
others 2047MB.
2249 3475187d bellard
2250 30a604f3 bellard
Since version 0.8.2, QEMU uses OpenBIOS
2251 0986ac3b bellard
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2252 0986ac3b bellard
firmware implementation. The goal is to implement a 100% IEEE
2253 0986ac3b bellard
1275-1994 (referred to as Open Firmware) compliant firmware.
2254 3475187d bellard
2255 3475187d bellard
A sample Linux 2.6 series kernel and ram disk image are available on
2256 0986ac3b bellard
the QEMU web site. Please note that currently NetBSD, OpenBSD or
2257 0986ac3b bellard
Solaris kernels don't work.
2258 3475187d bellard
2259 3475187d bellard
@c man begin OPTIONS
2260 3475187d bellard
2261 a2502b58 blueswir1
The following options are specific to the Sparc32 emulation:
2262 3475187d bellard
2263 3475187d bellard
@table @option
2264 3475187d bellard
2265 a2502b58 blueswir1
@item -g WxHx[xDEPTH]
2266 3475187d bellard
2267 a2502b58 blueswir1
Set the initial TCX graphic mode. The default is 1024x768x8, currently
2268 a2502b58 blueswir1
the only other possible mode is 1024x768x24.
2269 3475187d bellard
2270 66508601 blueswir1
@item -prom-env string
2271 66508601 blueswir1
2272 66508601 blueswir1
Set OpenBIOS variables in NVRAM, for example:
2273 66508601 blueswir1
2274 66508601 blueswir1
@example
2275 66508601 blueswir1
qemu-system-sparc -prom-env 'auto-boot?=false' \
2276 66508601 blueswir1
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2277 66508601 blueswir1
@end example
2278 66508601 blueswir1
2279 ee76f82e blueswir1
@item -M [SS-5|SS-10|SS-20|SS-600MP|SS-2|SS-1000|SS-2000]
2280 a2502b58 blueswir1
2281 a2502b58 blueswir1
Set the emulated machine type. Default is SS-5.
2282 a2502b58 blueswir1
2283 3475187d bellard
@end table
2284 3475187d bellard
2285 5fafdf24 ths
@c man end
2286 3475187d bellard
2287 24d4de45 ths
@node Sparc64 System emulator
2288 24d4de45 ths
@section Sparc64 System emulator
2289 e80cfcfc bellard
2290 3475187d bellard
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
2291 3475187d bellard
The emulator is not usable for anything yet.
2292 b756921a bellard
2293 83469015 bellard
QEMU emulates the following sun4u peripherals:
2294 83469015 bellard
2295 83469015 bellard
@itemize @minus
2296 83469015 bellard
@item
2297 5fafdf24 ths
UltraSparc IIi APB PCI Bridge
2298 83469015 bellard
@item
2299 83469015 bellard
PCI VGA compatible card with VESA Bochs Extensions
2300 83469015 bellard
@item
2301 83469015 bellard
Non Volatile RAM M48T59
2302 83469015 bellard
@item
2303 83469015 bellard
PC-compatible serial ports
2304 83469015 bellard
@end itemize
2305 83469015 bellard
2306 24d4de45 ths
@node MIPS System emulator
2307 24d4de45 ths
@section MIPS System emulator
2308 9d0a8e6f bellard
2309 d9aedc32 ths
Four executables cover simulation of 32 and 64-bit MIPS systems in
2310 d9aedc32 ths
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2311 d9aedc32 ths
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2312 88cb0a02 aurel32
Five different machine types are emulated:
2313 24d4de45 ths
2314 24d4de45 ths
@itemize @minus
2315 24d4de45 ths
@item
2316 24d4de45 ths
A generic ISA PC-like machine "mips"
2317 24d4de45 ths
@item
2318 24d4de45 ths
The MIPS Malta prototype board "malta"
2319 24d4de45 ths
@item
2320 d9aedc32 ths
An ACER Pica "pica61". This machine needs the 64-bit emulator.
2321 6bf5b4e8 ths
@item
2322 f0fc6f8f ths
MIPS emulator pseudo board "mipssim"
2323 88cb0a02 aurel32
@item
2324 88cb0a02 aurel32
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2325 24d4de45 ths
@end itemize
2326 24d4de45 ths
2327 24d4de45 ths
The generic emulation is supported by Debian 'Etch' and is able to
2328 24d4de45 ths
install Debian into a virtual disk image. The following devices are
2329 24d4de45 ths
emulated:
2330 3f9f3aa1 bellard
2331 3f9f3aa1 bellard
@itemize @minus
2332 5fafdf24 ths
@item
2333 6bf5b4e8 ths
A range of MIPS CPUs, default is the 24Kf
2334 3f9f3aa1 bellard
@item
2335 3f9f3aa1 bellard
PC style serial port
2336 3f9f3aa1 bellard
@item
2337 24d4de45 ths
PC style IDE disk
2338 24d4de45 ths
@item
2339 3f9f3aa1 bellard
NE2000 network card
2340 3f9f3aa1 bellard
@end itemize
2341 3f9f3aa1 bellard
2342 24d4de45 ths
The Malta emulation supports the following devices:
2343 24d4de45 ths
2344 24d4de45 ths
@itemize @minus
2345 24d4de45 ths
@item
2346 0b64d008 ths
Core board with MIPS 24Kf CPU and Galileo system controller
2347 24d4de45 ths
@item
2348 24d4de45 ths
PIIX4 PCI/USB/SMbus controller
2349 24d4de45 ths
@item
2350 24d4de45 ths
The Multi-I/O chip's serial device
2351 24d4de45 ths
@item
2352 24d4de45 ths
PCnet32 PCI network card
2353 24d4de45 ths
@item
2354 24d4de45 ths
Malta FPGA serial device
2355 24d4de45 ths
@item
2356 24d4de45 ths
Cirrus VGA graphics card
2357 24d4de45 ths
@end itemize
2358 24d4de45 ths
2359 24d4de45 ths
The ACER Pica emulation supports:
2360 24d4de45 ths
2361 24d4de45 ths
@itemize @minus
2362 24d4de45 ths
@item
2363 24d4de45 ths
MIPS R4000 CPU
2364 24d4de45 ths
@item
2365 24d4de45 ths
PC-style IRQ and DMA controllers
2366 24d4de45 ths
@item
2367 24d4de45 ths
PC Keyboard
2368 24d4de45 ths
@item
2369 24d4de45 ths
IDE controller
2370 24d4de45 ths
@end itemize
2371 3f9f3aa1 bellard
2372 f0fc6f8f ths
The mipssim pseudo board emulation provides an environment similiar
2373 f0fc6f8f ths
to what the proprietary MIPS emulator uses for running Linux.
2374 f0fc6f8f ths
It supports:
2375 6bf5b4e8 ths
2376 6bf5b4e8 ths
@itemize @minus
2377 6bf5b4e8 ths
@item
2378 6bf5b4e8 ths
A range of MIPS CPUs, default is the 24Kf
2379 6bf5b4e8 ths
@item
2380 6bf5b4e8 ths
PC style serial port
2381 6bf5b4e8 ths
@item
2382 6bf5b4e8 ths
MIPSnet network emulation
2383 6bf5b4e8 ths
@end itemize
2384 6bf5b4e8 ths
2385 88cb0a02 aurel32
The MIPS Magnum R4000 emulation supports:
2386 88cb0a02 aurel32
2387 88cb0a02 aurel32
@itemize @minus
2388 88cb0a02 aurel32
@item
2389 88cb0a02 aurel32
MIPS R4000 CPU
2390 88cb0a02 aurel32
@item
2391 88cb0a02 aurel32
PC-style IRQ controller
2392 88cb0a02 aurel32
@item
2393 88cb0a02 aurel32
PC Keyboard
2394 88cb0a02 aurel32
@item
2395 88cb0a02 aurel32
SCSI controller
2396 88cb0a02 aurel32
@item
2397 88cb0a02 aurel32
G364 framebuffer
2398 88cb0a02 aurel32
@end itemize
2399 88cb0a02 aurel32
2400 88cb0a02 aurel32
2401 24d4de45 ths
@node ARM System emulator
2402 24d4de45 ths
@section ARM System emulator
2403 3f9f3aa1 bellard
2404 3f9f3aa1 bellard
Use the executable @file{qemu-system-arm} to simulate a ARM
2405 3f9f3aa1 bellard
machine. The ARM Integrator/CP board is emulated with the following
2406 3f9f3aa1 bellard
devices:
2407 3f9f3aa1 bellard
2408 3f9f3aa1 bellard
@itemize @minus
2409 3f9f3aa1 bellard
@item
2410 9ee6e8bb pbrook
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2411 3f9f3aa1 bellard
@item
2412 3f9f3aa1 bellard
Two PL011 UARTs
2413 5fafdf24 ths
@item
2414 3f9f3aa1 bellard
SMC 91c111 Ethernet adapter
2415 00a9bf19 pbrook
@item
2416 00a9bf19 pbrook
PL110 LCD controller
2417 00a9bf19 pbrook
@item
2418 00a9bf19 pbrook
PL050 KMI with PS/2 keyboard and mouse.
2419 a1bb27b1 pbrook
@item
2420 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
2421 00a9bf19 pbrook
@end itemize
2422 00a9bf19 pbrook
2423 00a9bf19 pbrook
The ARM Versatile baseboard is emulated with the following devices:
2424 00a9bf19 pbrook
2425 00a9bf19 pbrook
@itemize @minus
2426 00a9bf19 pbrook
@item
2427 9ee6e8bb pbrook
ARM926E, ARM1136 or Cortex-A8 CPU
2428 00a9bf19 pbrook
@item
2429 00a9bf19 pbrook
PL190 Vectored Interrupt Controller
2430 00a9bf19 pbrook
@item
2431 00a9bf19 pbrook
Four PL011 UARTs
2432 5fafdf24 ths
@item
2433 00a9bf19 pbrook
SMC 91c111 Ethernet adapter
2434 00a9bf19 pbrook
@item
2435 00a9bf19 pbrook
PL110 LCD controller
2436 00a9bf19 pbrook
@item
2437 00a9bf19 pbrook
PL050 KMI with PS/2 keyboard and mouse.
2438 00a9bf19 pbrook
@item
2439 00a9bf19 pbrook
PCI host bridge.  Note the emulated PCI bridge only provides access to
2440 00a9bf19 pbrook
PCI memory space.  It does not provide access to PCI IO space.
2441 4be456f1 ths
This means some devices (eg. ne2k_pci NIC) are not usable, and others
2442 4be456f1 ths
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2443 00a9bf19 pbrook
mapped control registers.
2444 e6de1bad pbrook
@item
2445 e6de1bad pbrook
PCI OHCI USB controller.
2446 e6de1bad pbrook
@item
2447 e6de1bad pbrook
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2448 a1bb27b1 pbrook
@item
2449 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
2450 3f9f3aa1 bellard
@end itemize
2451 3f9f3aa1 bellard
2452 d7739d75 pbrook
The ARM RealView Emulation baseboard is emulated with the following devices:
2453 d7739d75 pbrook
2454 d7739d75 pbrook
@itemize @minus
2455 d7739d75 pbrook
@item
2456 9ee6e8bb pbrook
ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2457 d7739d75 pbrook
@item
2458 d7739d75 pbrook
ARM AMBA Generic/Distributed Interrupt Controller
2459 d7739d75 pbrook
@item
2460 d7739d75 pbrook
Four PL011 UARTs
2461 5fafdf24 ths
@item
2462 d7739d75 pbrook
SMC 91c111 Ethernet adapter
2463 d7739d75 pbrook
@item
2464 d7739d75 pbrook
PL110 LCD controller
2465 d7739d75 pbrook
@item
2466 d7739d75 pbrook
PL050 KMI with PS/2 keyboard and mouse
2467 d7739d75 pbrook
@item
2468 d7739d75 pbrook
PCI host bridge
2469 d7739d75 pbrook
@item
2470 d7739d75 pbrook
PCI OHCI USB controller
2471 d7739d75 pbrook
@item
2472 d7739d75 pbrook
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2473 a1bb27b1 pbrook
@item
2474 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
2475 d7739d75 pbrook
@end itemize
2476 d7739d75 pbrook
2477 b00052e4 balrog
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2478 b00052e4 balrog
and "Terrier") emulation includes the following peripherals:
2479 b00052e4 balrog
2480 b00052e4 balrog
@itemize @minus
2481 b00052e4 balrog
@item
2482 b00052e4 balrog
Intel PXA270 System-on-chip (ARM V5TE core)
2483 b00052e4 balrog
@item
2484 b00052e4 balrog
NAND Flash memory
2485 b00052e4 balrog
@item
2486 b00052e4 balrog
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2487 b00052e4 balrog
@item
2488 b00052e4 balrog
On-chip OHCI USB controller
2489 b00052e4 balrog
@item
2490 b00052e4 balrog
On-chip LCD controller
2491 b00052e4 balrog
@item
2492 b00052e4 balrog
On-chip Real Time Clock
2493 b00052e4 balrog
@item
2494 b00052e4 balrog
TI ADS7846 touchscreen controller on SSP bus
2495 b00052e4 balrog
@item
2496 b00052e4 balrog
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2497 b00052e4 balrog
@item
2498 b00052e4 balrog
GPIO-connected keyboard controller and LEDs
2499 b00052e4 balrog
@item
2500 549444e1 balrog
Secure Digital card connected to PXA MMC/SD host
2501 b00052e4 balrog
@item
2502 b00052e4 balrog
Three on-chip UARTs
2503 b00052e4 balrog
@item
2504 b00052e4 balrog
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2505 b00052e4 balrog
@end itemize
2506 b00052e4 balrog
2507 02645926 balrog
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2508 02645926 balrog
following elements:
2509 02645926 balrog
2510 02645926 balrog
@itemize @minus
2511 02645926 balrog
@item
2512 02645926 balrog
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2513 02645926 balrog
@item
2514 02645926 balrog
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2515 02645926 balrog
@item
2516 02645926 balrog
On-chip LCD controller
2517 02645926 balrog
@item
2518 02645926 balrog
On-chip Real Time Clock
2519 02645926 balrog
@item
2520 02645926 balrog
TI TSC2102i touchscreen controller / analog-digital converter / Audio
2521 02645926 balrog
CODEC, connected through MicroWire and I@math{^2}S busses
2522 02645926 balrog
@item
2523 02645926 balrog
GPIO-connected matrix keypad
2524 02645926 balrog
@item
2525 02645926 balrog
Secure Digital card connected to OMAP MMC/SD host
2526 02645926 balrog
@item
2527 02645926 balrog
Three on-chip UARTs
2528 02645926 balrog
@end itemize
2529 02645926 balrog
2530 c30bb264 balrog
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2531 c30bb264 balrog
emulation supports the following elements:
2532 c30bb264 balrog
2533 c30bb264 balrog
@itemize @minus
2534 c30bb264 balrog
@item
2535 c30bb264 balrog
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2536 c30bb264 balrog
@item
2537 c30bb264 balrog
RAM and non-volatile OneNAND Flash memories
2538 c30bb264 balrog
@item
2539 c30bb264 balrog
Display connected to EPSON remote framebuffer chip and OMAP on-chip
2540 c30bb264 balrog
display controller and a LS041y3 MIPI DBI-C controller
2541 c30bb264 balrog
@item
2542 c30bb264 balrog
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2543 c30bb264 balrog
driven through SPI bus
2544 c30bb264 balrog
@item
2545 c30bb264 balrog
National Semiconductor LM8323-controlled qwerty keyboard driven
2546 c30bb264 balrog
through I@math{^2}C bus
2547 c30bb264 balrog
@item
2548 c30bb264 balrog
Secure Digital card connected to OMAP MMC/SD host
2549 c30bb264 balrog
@item
2550 c30bb264 balrog
Three OMAP on-chip UARTs and on-chip STI debugging console
2551 c30bb264 balrog
@item
2552 c30bb264 balrog
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2553 c30bb264 balrog
TUSB6010 chip - only USB host mode is supported
2554 c30bb264 balrog
@item
2555 c30bb264 balrog
TI TMP105 temperature sensor driven through I@math{^2}C bus
2556 c30bb264 balrog
@item
2557 c30bb264 balrog
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2558 c30bb264 balrog
@item
2559 c30bb264 balrog
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2560 c30bb264 balrog
through CBUS
2561 c30bb264 balrog
@end itemize
2562 c30bb264 balrog
2563 9ee6e8bb pbrook
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2564 9ee6e8bb pbrook
devices:
2565 9ee6e8bb pbrook
2566 9ee6e8bb pbrook
@itemize @minus
2567 9ee6e8bb pbrook
@item
2568 9ee6e8bb pbrook
Cortex-M3 CPU core.
2569 9ee6e8bb pbrook
@item
2570 9ee6e8bb pbrook
64k Flash and 8k SRAM.
2571 9ee6e8bb pbrook
@item
2572 9ee6e8bb pbrook
Timers, UARTs, ADC and I@math{^2}C interface.
2573 9ee6e8bb pbrook
@item
2574 9ee6e8bb pbrook
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2575 9ee6e8bb pbrook
@end itemize
2576 9ee6e8bb pbrook
2577 9ee6e8bb pbrook
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2578 9ee6e8bb pbrook
devices:
2579 9ee6e8bb pbrook
2580 9ee6e8bb pbrook
@itemize @minus
2581 9ee6e8bb pbrook
@item
2582 9ee6e8bb pbrook
Cortex-M3 CPU core.
2583 9ee6e8bb pbrook
@item
2584 9ee6e8bb pbrook
256k Flash and 64k SRAM.
2585 9ee6e8bb pbrook
@item
2586 9ee6e8bb pbrook
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2587 9ee6e8bb pbrook
@item
2588 9ee6e8bb pbrook
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2589 9ee6e8bb pbrook
@end itemize
2590 9ee6e8bb pbrook
2591 57cd6e97 balrog
The Freecom MusicPal internet radio emulation includes the following
2592 57cd6e97 balrog
elements:
2593 57cd6e97 balrog
2594 57cd6e97 balrog
@itemize @minus
2595 57cd6e97 balrog
@item
2596 57cd6e97 balrog
Marvell MV88W8618 ARM core.
2597 57cd6e97 balrog
@item
2598 57cd6e97 balrog
32 MB RAM, 256 KB SRAM, 8 MB flash.
2599 57cd6e97 balrog
@item
2600 57cd6e97 balrog
Up to 2 16550 UARTs
2601 57cd6e97 balrog
@item
2602 57cd6e97 balrog
MV88W8xx8 Ethernet controller
2603 57cd6e97 balrog
@item
2604 57cd6e97 balrog
MV88W8618 audio controller, WM8750 CODEC and mixer
2605 57cd6e97 balrog
@item
2606 57cd6e97 balrog
128?64 display with brightness control
2607 57cd6e97 balrog
@item
2608 57cd6e97 balrog
2 buttons, 2 navigation wheels with button function
2609 57cd6e97 balrog
@end itemize
2610 57cd6e97 balrog
2611 3f9f3aa1 bellard
A Linux 2.6 test image is available on the QEMU web site. More
2612 3f9f3aa1 bellard
information is available in the QEMU mailing-list archive.
2613 9d0a8e6f bellard
2614 24d4de45 ths
@node ColdFire System emulator
2615 24d4de45 ths
@section ColdFire System emulator
2616 209a4e69 pbrook
2617 209a4e69 pbrook
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2618 209a4e69 pbrook
The emulator is able to boot a uClinux kernel.
2619 707e011b pbrook
2620 707e011b pbrook
The M5208EVB emulation includes the following devices:
2621 707e011b pbrook
2622 707e011b pbrook
@itemize @minus
2623 5fafdf24 ths
@item
2624 707e011b pbrook
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2625 707e011b pbrook
@item
2626 707e011b pbrook
Three Two on-chip UARTs.
2627 707e011b pbrook
@item
2628 707e011b pbrook
Fast Ethernet Controller (FEC)
2629 707e011b pbrook
@end itemize
2630 707e011b pbrook
2631 707e011b pbrook
The AN5206 emulation includes the following devices:
2632 209a4e69 pbrook
2633 209a4e69 pbrook
@itemize @minus
2634 5fafdf24 ths
@item
2635 209a4e69 pbrook
MCF5206 ColdFire V2 Microprocessor.
2636 209a4e69 pbrook
@item
2637 209a4e69 pbrook
Two on-chip UARTs.
2638 209a4e69 pbrook
@end itemize
2639 209a4e69 pbrook
2640 5fafdf24 ths
@node QEMU User space emulator
2641 5fafdf24 ths
@chapter QEMU User space emulator
2642 83195237 bellard
2643 83195237 bellard
@menu
2644 83195237 bellard
* Supported Operating Systems ::
2645 83195237 bellard
* Linux User space emulator::
2646 83195237 bellard
* Mac OS X/Darwin User space emulator ::
2647 83195237 bellard
@end menu
2648 83195237 bellard
2649 83195237 bellard
@node Supported Operating Systems
2650 83195237 bellard
@section Supported Operating Systems
2651 83195237 bellard
2652 83195237 bellard
The following OS are supported in user space emulation:
2653 83195237 bellard
2654 83195237 bellard
@itemize @minus
2655 83195237 bellard
@item
2656 4be456f1 ths
Linux (referred as qemu-linux-user)
2657 83195237 bellard
@item
2658 4be456f1 ths
Mac OS X/Darwin (referred as qemu-darwin-user)
2659 83195237 bellard
@end itemize
2660 83195237 bellard
2661 83195237 bellard
@node Linux User space emulator
2662 83195237 bellard
@section Linux User space emulator
2663 386405f7 bellard
2664 debc7065 bellard
@menu
2665 debc7065 bellard
* Quick Start::
2666 debc7065 bellard
* Wine launch::
2667 debc7065 bellard
* Command line options::
2668 79737e4a pbrook
* Other binaries::
2669 debc7065 bellard
@end menu
2670 debc7065 bellard
2671 debc7065 bellard
@node Quick Start
2672 83195237 bellard
@subsection Quick Start
2673 df0f11a0 bellard
2674 1f673135 bellard
In order to launch a Linux process, QEMU needs the process executable
2675 5fafdf24 ths
itself and all the target (x86) dynamic libraries used by it.
2676 386405f7 bellard
2677 1f673135 bellard
@itemize
2678 386405f7 bellard
2679 1f673135 bellard
@item On x86, you can just try to launch any process by using the native
2680 1f673135 bellard
libraries:
2681 386405f7 bellard
2682 5fafdf24 ths
@example
2683 1f673135 bellard
qemu-i386 -L / /bin/ls
2684 1f673135 bellard
@end example
2685 386405f7 bellard
2686 1f673135 bellard
@code{-L /} tells that the x86 dynamic linker must be searched with a
2687 1f673135 bellard
@file{/} prefix.
2688 386405f7 bellard
2689 dbcf5e82 ths
@item Since QEMU is also a linux process, you can launch qemu with
2690 dbcf5e82 ths
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2691 386405f7 bellard
2692 5fafdf24 ths
@example
2693 1f673135 bellard
qemu-i386 -L / qemu-i386 -L / /bin/ls
2694 1f673135 bellard
@end example
2695 386405f7 bellard
2696 1f673135 bellard
@item On non x86 CPUs, you need first to download at least an x86 glibc
2697 1f673135 bellard
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2698 1f673135 bellard
@code{LD_LIBRARY_PATH} is not set:
2699 df0f11a0 bellard
2700 1f673135 bellard
@example
2701 5fafdf24 ths
unset LD_LIBRARY_PATH
2702 1f673135 bellard
@end example
2703 1eb87257 bellard
2704 1f673135 bellard
Then you can launch the precompiled @file{ls} x86 executable:
2705 1eb87257 bellard
2706 1f673135 bellard
@example
2707 1f673135 bellard
qemu-i386 tests/i386/ls
2708 1f673135 bellard
@end example
2709 1f673135 bellard
You can look at @file{qemu-binfmt-conf.sh} so that
2710 1f673135 bellard
QEMU is automatically launched by the Linux kernel when you try to
2711 1f673135 bellard
launch x86 executables. It requires the @code{binfmt_misc} module in the
2712 1f673135 bellard
Linux kernel.
2713 1eb87257 bellard
2714 1f673135 bellard
@item The x86 version of QEMU is also included. You can try weird things such as:
2715 1f673135 bellard
@example
2716 debc7065 bellard
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2717 debc7065 bellard
          /usr/local/qemu-i386/bin/ls-i386
2718 1f673135 bellard
@end example
2719 1eb20527 bellard
2720 1f673135 bellard
@end itemize
2721 1eb20527 bellard
2722 debc7065 bellard
@node Wine launch
2723 83195237 bellard
@subsection Wine launch
2724 1eb20527 bellard
2725 1f673135 bellard
@itemize
2726 386405f7 bellard
2727 1f673135 bellard
@item Ensure that you have a working QEMU with the x86 glibc
2728 1f673135 bellard
distribution (see previous section). In order to verify it, you must be
2729 1f673135 bellard
able to do:
2730 386405f7 bellard
2731 1f673135 bellard
@example
2732 1f673135 bellard
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2733 1f673135 bellard
@end example
2734 386405f7 bellard
2735 1f673135 bellard
@item Download the binary x86 Wine install
2736 5fafdf24 ths
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2737 386405f7 bellard
2738 1f673135 bellard
@item Configure Wine on your account. Look at the provided script
2739 debc7065 bellard
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2740 1f673135 bellard
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2741 386405f7 bellard
2742 1f673135 bellard
@item Then you can try the example @file{putty.exe}:
2743 386405f7 bellard
2744 1f673135 bellard
@example
2745 debc7065 bellard
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2746 debc7065 bellard
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2747 1f673135 bellard
@end example
2748 386405f7 bellard
2749 1f673135 bellard
@end itemize
2750 fd429f2f bellard
2751 debc7065 bellard
@node Command line options
2752 83195237 bellard
@subsection Command line options
2753 1eb20527 bellard
2754 1f673135 bellard
@example
2755 1f673135 bellard
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2756 1f673135 bellard
@end example
2757 1eb20527 bellard
2758 1f673135 bellard
@table @option
2759 1f673135 bellard
@item -h
2760 1f673135 bellard
Print the help
2761 3b46e624 ths
@item -L path
2762 1f673135 bellard
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2763 1f673135 bellard
@item -s size
2764 1f673135 bellard
Set the x86 stack size in bytes (default=524288)
2765 386405f7 bellard
@end table
2766 386405f7 bellard
2767 1f673135 bellard
Debug options:
2768 386405f7 bellard
2769 1f673135 bellard
@table @option
2770 1f673135 bellard
@item -d
2771 1f673135 bellard
Activate log (logfile=/tmp/qemu.log)
2772 1f673135 bellard
@item -p pagesize
2773 1f673135 bellard
Act as if the host page size was 'pagesize' bytes
2774 1f673135 bellard
@end table
2775 386405f7 bellard
2776 b01bcae6 balrog
Environment variables:
2777 b01bcae6 balrog
2778 b01bcae6 balrog
@table @env
2779 b01bcae6 balrog
@item QEMU_STRACE
2780 b01bcae6 balrog
Print system calls and arguments similar to the 'strace' program
2781 b01bcae6 balrog
(NOTE: the actual 'strace' program will not work because the user
2782 b01bcae6 balrog
space emulator hasn't implemented ptrace).  At the moment this is
2783 b01bcae6 balrog
incomplete.  All system calls that don't have a specific argument
2784 b01bcae6 balrog
format are printed with information for six arguments.  Many
2785 b01bcae6 balrog
flag-style arguments don't have decoders and will show up as numbers.
2786 5cfdf930 ths
@end table
2787 b01bcae6 balrog
2788 79737e4a pbrook
@node Other binaries
2789 83195237 bellard
@subsection Other binaries
2790 79737e4a pbrook
2791 79737e4a pbrook
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2792 79737e4a pbrook
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2793 79737e4a pbrook
configurations), and arm-uclinux bFLT format binaries.
2794 79737e4a pbrook
2795 e6e5906b pbrook
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2796 e6e5906b pbrook
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2797 e6e5906b pbrook
coldfire uClinux bFLT format binaries.
2798 e6e5906b pbrook
2799 79737e4a pbrook
The binary format is detected automatically.
2800 79737e4a pbrook
2801 a785e42e blueswir1
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2802 a785e42e blueswir1
(Sparc64 CPU, 32 bit ABI).
2803 a785e42e blueswir1
2804 a785e42e blueswir1
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2805 a785e42e blueswir1
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2806 a785e42e blueswir1
2807 83195237 bellard
@node Mac OS X/Darwin User space emulator
2808 83195237 bellard
@section Mac OS X/Darwin User space emulator
2809 83195237 bellard
2810 83195237 bellard
@menu
2811 83195237 bellard
* Mac OS X/Darwin Status::
2812 83195237 bellard
* Mac OS X/Darwin Quick Start::
2813 83195237 bellard
* Mac OS X/Darwin Command line options::
2814 83195237 bellard
@end menu
2815 83195237 bellard
2816 83195237 bellard
@node Mac OS X/Darwin Status
2817 83195237 bellard
@subsection Mac OS X/Darwin Status
2818 83195237 bellard
2819 83195237 bellard
@itemize @minus
2820 83195237 bellard
@item
2821 83195237 bellard
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2822 83195237 bellard
@item
2823 83195237 bellard
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2824 83195237 bellard
@item
2825 dbcf5e82 ths
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2826 83195237 bellard
@item
2827 83195237 bellard
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2828 83195237 bellard
@end itemize
2829 83195237 bellard
2830 83195237 bellard
[1] If you're host commpage can be executed by qemu.
2831 83195237 bellard
2832 83195237 bellard
@node Mac OS X/Darwin Quick Start
2833 83195237 bellard
@subsection Quick Start
2834 83195237 bellard
2835 83195237 bellard
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2836 83195237 bellard
itself and all the target dynamic libraries used by it. If you don't have the FAT
2837 83195237 bellard
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2838 83195237 bellard
CD or compile them by hand.
2839 83195237 bellard
2840 83195237 bellard
@itemize
2841 83195237 bellard
2842 83195237 bellard
@item On x86, you can just try to launch any process by using the native
2843 83195237 bellard
libraries:
2844 83195237 bellard
2845 5fafdf24 ths
@example
2846 dbcf5e82 ths
qemu-i386 /bin/ls
2847 83195237 bellard
@end example
2848 83195237 bellard
2849 83195237 bellard
or to run the ppc version of the executable:
2850 83195237 bellard
2851 5fafdf24 ths
@example
2852 dbcf5e82 ths
qemu-ppc /bin/ls
2853 83195237 bellard
@end example
2854 83195237 bellard
2855 83195237 bellard
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2856 83195237 bellard
are installed:
2857 83195237 bellard
2858 5fafdf24 ths
@example
2859 dbcf5e82 ths
qemu-i386 -L /opt/x86_root/ /bin/ls
2860 83195237 bellard
@end example
2861 83195237 bellard
2862 83195237 bellard
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2863 83195237 bellard
@file{/opt/x86_root/usr/bin/dyld}.
2864 83195237 bellard
2865 83195237 bellard
@end itemize
2866 83195237 bellard
2867 83195237 bellard
@node Mac OS X/Darwin Command line options
2868 83195237 bellard
@subsection Command line options
2869 83195237 bellard
2870 83195237 bellard
@example
2871 dbcf5e82 ths
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2872 83195237 bellard
@end example
2873 83195237 bellard
2874 83195237 bellard
@table @option
2875 83195237 bellard
@item -h
2876 83195237 bellard
Print the help
2877 3b46e624 ths
@item -L path
2878 83195237 bellard
Set the library root path (default=/)
2879 83195237 bellard
@item -s size
2880 83195237 bellard
Set the stack size in bytes (default=524288)
2881 83195237 bellard
@end table
2882 83195237 bellard
2883 83195237 bellard
Debug options:
2884 83195237 bellard
2885 83195237 bellard
@table @option
2886 83195237 bellard
@item -d
2887 83195237 bellard
Activate log (logfile=/tmp/qemu.log)
2888 83195237 bellard
@item -p pagesize
2889 83195237 bellard
Act as if the host page size was 'pagesize' bytes
2890 83195237 bellard
@end table
2891 83195237 bellard
2892 15a34c63 bellard
@node compilation
2893 15a34c63 bellard
@chapter Compilation from the sources
2894 15a34c63 bellard
2895 debc7065 bellard
@menu
2896 debc7065 bellard
* Linux/Unix::
2897 debc7065 bellard
* Windows::
2898 debc7065 bellard
* Cross compilation for Windows with Linux::
2899 debc7065 bellard
* Mac OS X::
2900 debc7065 bellard
@end menu
2901 debc7065 bellard
2902 debc7065 bellard
@node Linux/Unix
2903 7c3fc84d bellard
@section Linux/Unix
2904 7c3fc84d bellard
2905 7c3fc84d bellard
@subsection Compilation
2906 7c3fc84d bellard
2907 7c3fc84d bellard
First you must decompress the sources:
2908 7c3fc84d bellard
@example
2909 7c3fc84d bellard
cd /tmp
2910 7c3fc84d bellard
tar zxvf qemu-x.y.z.tar.gz
2911 7c3fc84d bellard
cd qemu-x.y.z
2912 7c3fc84d bellard
@end example
2913 7c3fc84d bellard
2914 7c3fc84d bellard
Then you configure QEMU and build it (usually no options are needed):
2915 7c3fc84d bellard
@example
2916 7c3fc84d bellard
./configure
2917 7c3fc84d bellard
make
2918 7c3fc84d bellard
@end example
2919 7c3fc84d bellard
2920 7c3fc84d bellard
Then type as root user:
2921 7c3fc84d bellard
@example
2922 7c3fc84d bellard
make install
2923 7c3fc84d bellard
@end example
2924 7c3fc84d bellard
to install QEMU in @file{/usr/local}.
2925 7c3fc84d bellard
2926 4fe8b87a bellard
@subsection GCC version
2927 7c3fc84d bellard
2928 366dfc52 ths
In order to compile QEMU successfully, it is very important that you
2929 4fe8b87a bellard
have the right tools. The most important one is gcc. On most hosts and
2930 4fe8b87a bellard
in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2931 4fe8b87a bellard
Linux distribution includes a gcc 4.x compiler, you can usually
2932 4fe8b87a bellard
install an older version (it is invoked by @code{gcc32} or
2933 4fe8b87a bellard
@code{gcc34}). The QEMU configure script automatically probes for
2934 4be456f1 ths
these older versions so that usually you don't have to do anything.
2935 15a34c63 bellard
2936 debc7065 bellard
@node Windows
2937 15a34c63 bellard
@section Windows
2938 15a34c63 bellard
2939 15a34c63 bellard
@itemize
2940 15a34c63 bellard
@item Install the current versions of MSYS and MinGW from
2941 15a34c63 bellard
@url{http://www.mingw.org/}. You can find detailed installation
2942 15a34c63 bellard
instructions in the download section and the FAQ.
2943 15a34c63 bellard
2944 5fafdf24 ths
@item Download
2945 15a34c63 bellard
the MinGW development library of SDL 1.2.x
2946 debc7065 bellard
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2947 15a34c63 bellard
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
2948 15a34c63 bellard
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2949 15a34c63 bellard
directory. Edit the @file{sdl-config} script so that it gives the
2950 15a34c63 bellard
correct SDL directory when invoked.
2951 15a34c63 bellard
2952 15a34c63 bellard
@item Extract the current version of QEMU.
2953 5fafdf24 ths
2954 15a34c63 bellard
@item Start the MSYS shell (file @file{msys.bat}).
2955 15a34c63 bellard
2956 5fafdf24 ths
@item Change to the QEMU directory. Launch @file{./configure} and
2957 15a34c63 bellard
@file{make}.  If you have problems using SDL, verify that
2958 15a34c63 bellard
@file{sdl-config} can be launched from the MSYS command line.
2959 15a34c63 bellard
2960 5fafdf24 ths
@item You can install QEMU in @file{Program Files/Qemu} by typing
2961 15a34c63 bellard
@file{make install}. Don't forget to copy @file{SDL.dll} in
2962 15a34c63 bellard
@file{Program Files/Qemu}.
2963 15a34c63 bellard
2964 15a34c63 bellard
@end itemize
2965 15a34c63 bellard
2966 debc7065 bellard
@node Cross compilation for Windows with Linux
2967 15a34c63 bellard
@section Cross compilation for Windows with Linux
2968 15a34c63 bellard
2969 15a34c63 bellard
@itemize
2970 15a34c63 bellard
@item
2971 15a34c63 bellard
Install the MinGW cross compilation tools available at
2972 15a34c63 bellard
@url{http://www.mingw.org/}.
2973 15a34c63 bellard
2974 5fafdf24 ths
@item
2975 15a34c63 bellard
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2976 15a34c63 bellard
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2977 15a34c63 bellard
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2978 15a34c63 bellard
the QEMU configuration script.
2979 15a34c63 bellard
2980 5fafdf24 ths
@item
2981 15a34c63 bellard
Configure QEMU for Windows cross compilation:
2982 15a34c63 bellard
@example
2983 15a34c63 bellard
./configure --enable-mingw32
2984 15a34c63 bellard
@end example
2985 15a34c63 bellard
If necessary, you can change the cross-prefix according to the prefix
2986 4be456f1 ths
chosen for the MinGW tools with --cross-prefix. You can also use
2987 15a34c63 bellard
--prefix to set the Win32 install path.
2988 15a34c63 bellard
2989 5fafdf24 ths
@item You can install QEMU in the installation directory by typing
2990 15a34c63 bellard
@file{make install}. Don't forget to copy @file{SDL.dll} in the
2991 5fafdf24 ths
installation directory.
2992 15a34c63 bellard
2993 15a34c63 bellard
@end itemize
2994 15a34c63 bellard
2995 15a34c63 bellard
Note: Currently, Wine does not seem able to launch
2996 15a34c63 bellard
QEMU for Win32.
2997 15a34c63 bellard
2998 debc7065 bellard
@node Mac OS X
2999 15a34c63 bellard
@section Mac OS X
3000 15a34c63 bellard
3001 15a34c63 bellard
The Mac OS X patches are not fully merged in QEMU, so you should look
3002 15a34c63 bellard
at the QEMU mailing list archive to have all the necessary
3003 15a34c63 bellard
information.
3004 15a34c63 bellard
3005 debc7065 bellard
@node Index
3006 debc7065 bellard
@chapter Index
3007 debc7065 bellard
@printindex cp
3008 debc7065 bellard
3009 debc7065 bellard
@bye