Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ 75b10c43

History | View | Annotate | Download (48.2 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18

    
19
#include <linux/kvm.h>
20

    
21
#include "qemu-common.h"
22
#include "sysemu.h"
23
#include "kvm.h"
24
#include "cpu.h"
25
#include "gdbstub.h"
26
#include "host-utils.h"
27
#include "hw/pc.h"
28
#include "hw/apic.h"
29
#include "ioport.h"
30
#include "kvm_x86.h"
31

    
32
#ifdef CONFIG_KVM_PARA
33
#include <linux/kvm_para.h>
34
#endif
35
//
36
//#define DEBUG_KVM
37

    
38
#ifdef DEBUG_KVM
39
#define DPRINTF(fmt, ...) \
40
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
41
#else
42
#define DPRINTF(fmt, ...) \
43
    do { } while (0)
44
#endif
45

    
46
#define MSR_KVM_WALL_CLOCK  0x11
47
#define MSR_KVM_SYSTEM_TIME 0x12
48

    
49
#ifndef BUS_MCEERR_AR
50
#define BUS_MCEERR_AR 4
51
#endif
52
#ifndef BUS_MCEERR_AO
53
#define BUS_MCEERR_AO 5
54
#endif
55

    
56
#ifdef KVM_CAP_EXT_CPUID
57

    
58
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
59
{
60
    struct kvm_cpuid2 *cpuid;
61
    int r, size;
62

    
63
    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
64
    cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
65
    cpuid->nent = max;
66
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
67
    if (r == 0 && cpuid->nent >= max) {
68
        r = -E2BIG;
69
    }
70
    if (r < 0) {
71
        if (r == -E2BIG) {
72
            qemu_free(cpuid);
73
            return NULL;
74
        } else {
75
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
76
                    strerror(-r));
77
            exit(1);
78
        }
79
    }
80
    return cpuid;
81
}
82

    
83
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
84
                                      uint32_t index, int reg)
85
{
86
    struct kvm_cpuid2 *cpuid;
87
    int i, max;
88
    uint32_t ret = 0;
89
    uint32_t cpuid_1_edx;
90

    
91
    if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
92
        return -1U;
93
    }
94

    
95
    max = 1;
96
    while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
97
        max *= 2;
98
    }
99

    
100
    for (i = 0; i < cpuid->nent; ++i) {
101
        if (cpuid->entries[i].function == function &&
102
            cpuid->entries[i].index == index) {
103
            switch (reg) {
104
            case R_EAX:
105
                ret = cpuid->entries[i].eax;
106
                break;
107
            case R_EBX:
108
                ret = cpuid->entries[i].ebx;
109
                break;
110
            case R_ECX:
111
                ret = cpuid->entries[i].ecx;
112
                break;
113
            case R_EDX:
114
                ret = cpuid->entries[i].edx;
115
                switch (function) {
116
                case 1:
117
                    /* KVM before 2.6.30 misreports the following features */
118
                    ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
119
                    break;
120
                case 0x80000001:
121
                    /* On Intel, kvm returns cpuid according to the Intel spec,
122
                     * so add missing bits according to the AMD spec:
123
                     */
124
                    cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
125
                    ret |= cpuid_1_edx & 0x183f7ff;
126
                    break;
127
                }
128
                break;
129
            }
130
        }
131
    }
132

    
133
    qemu_free(cpuid);
134

    
135
    return ret;
136
}
137

    
138
#else
139

    
140
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
141
                                      uint32_t index, int reg)
142
{
143
    return -1U;
144
}
145

    
146
#endif
147

    
148
#ifdef CONFIG_KVM_PARA
149
struct kvm_para_features {
150
        int cap;
151
        int feature;
152
} para_features[] = {
153
#ifdef KVM_CAP_CLOCKSOURCE
154
        { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
155
#endif
156
#ifdef KVM_CAP_NOP_IO_DELAY
157
        { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
158
#endif
159
#ifdef KVM_CAP_PV_MMU
160
        { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
161
#endif
162
        { -1, -1 }
163
};
164

    
165
static int get_para_features(CPUState *env)
166
{
167
        int i, features = 0;
168

    
169
        for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
170
                if (kvm_check_extension(env->kvm_state, para_features[i].cap))
171
                        features |= (1 << para_features[i].feature);
172
        }
173

    
174
        return features;
175
}
176
#endif
177

    
178
#ifdef KVM_CAP_MCE
179
static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
180
                                     int *max_banks)
181
{
182
    int r;
183

    
184
    r = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_MCE);
185
    if (r > 0) {
186
        *max_banks = r;
187
        return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
188
    }
189
    return -ENOSYS;
190
}
191

    
192
static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
193
{
194
    return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
195
}
196

    
197
static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
198
{
199
    return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
200
}
201

    
202
static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
203
{
204
    struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
205
    int r;
206

    
207
    kmsrs->nmsrs = n;
208
    memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
209
    r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
210
    memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
211
    free(kmsrs);
212
    return r;
213
}
214

    
215
/* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
216
static int kvm_mce_in_exception(CPUState *env)
217
{
218
    struct kvm_msr_entry msr_mcg_status = {
219
        .index = MSR_MCG_STATUS,
220
    };
221
    int r;
222

    
223
    r = kvm_get_msr(env, &msr_mcg_status, 1);
224
    if (r == -1 || r == 0) {
225
        return -1;
226
    }
227
    return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
228
}
229

    
230
struct kvm_x86_mce_data
231
{
232
    CPUState *env;
233
    struct kvm_x86_mce *mce;
234
    int abort_on_error;
235
};
236

    
237
static void kvm_do_inject_x86_mce(void *_data)
238
{
239
    struct kvm_x86_mce_data *data = _data;
240
    int r;
241

    
242
    /* If there is an MCE exception being processed, ignore this SRAO MCE */
243
    if ((data->env->mcg_cap & MCG_SER_P) &&
244
        !(data->mce->status & MCI_STATUS_AR)) {
245
        r = kvm_mce_in_exception(data->env);
246
        if (r == -1) {
247
            fprintf(stderr, "Failed to get MCE status\n");
248
        } else if (r) {
249
            return;
250
        }
251
    }
252

    
253
    r = kvm_set_mce(data->env, data->mce);
254
    if (r < 0) {
255
        perror("kvm_set_mce FAILED");
256
        if (data->abort_on_error) {
257
            abort();
258
        }
259
    }
260
}
261
#endif
262

    
263
void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
264
                        uint64_t mcg_status, uint64_t addr, uint64_t misc,
265
                        int abort_on_error)
266
{
267
#ifdef KVM_CAP_MCE
268
    struct kvm_x86_mce mce = {
269
        .bank = bank,
270
        .status = status,
271
        .mcg_status = mcg_status,
272
        .addr = addr,
273
        .misc = misc,
274
    };
275
    struct kvm_x86_mce_data data = {
276
            .env = cenv,
277
            .mce = &mce,
278
    };
279

    
280
    if (!cenv->mcg_cap) {
281
        fprintf(stderr, "MCE support is not enabled!\n");
282
        return;
283
    }
284

    
285
    run_on_cpu(cenv, kvm_do_inject_x86_mce, &data);
286
#else
287
    if (abort_on_error)
288
        abort();
289
#endif
290
}
291

    
292
int kvm_arch_init_vcpu(CPUState *env)
293
{
294
    struct {
295
        struct kvm_cpuid2 cpuid;
296
        struct kvm_cpuid_entry2 entries[100];
297
    } __attribute__((packed)) cpuid_data;
298
    uint32_t limit, i, j, cpuid_i;
299
    uint32_t unused;
300
    struct kvm_cpuid_entry2 *c;
301
#ifdef KVM_CPUID_SIGNATURE
302
    uint32_t signature[3];
303
#endif
304

    
305
    env->mp_state = KVM_MP_STATE_RUNNABLE;
306

    
307
    env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
308

    
309
    i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
310
    env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
311
    env->cpuid_ext_features |= i;
312

    
313
    env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
314
                                                             0, R_EDX);
315
    env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
316
                                                             0, R_ECX);
317
    env->cpuid_svm_features  &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
318
                                                             0, R_EDX);
319

    
320

    
321
    cpuid_i = 0;
322

    
323
#ifdef CONFIG_KVM_PARA
324
    /* Paravirtualization CPUIDs */
325
    memcpy(signature, "KVMKVMKVM\0\0\0", 12);
326
    c = &cpuid_data.entries[cpuid_i++];
327
    memset(c, 0, sizeof(*c));
328
    c->function = KVM_CPUID_SIGNATURE;
329
    c->eax = 0;
330
    c->ebx = signature[0];
331
    c->ecx = signature[1];
332
    c->edx = signature[2];
333

    
334
    c = &cpuid_data.entries[cpuid_i++];
335
    memset(c, 0, sizeof(*c));
336
    c->function = KVM_CPUID_FEATURES;
337
    c->eax = env->cpuid_kvm_features & get_para_features(env);
338
#endif
339

    
340
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
341

    
342
    for (i = 0; i <= limit; i++) {
343
        c = &cpuid_data.entries[cpuid_i++];
344

    
345
        switch (i) {
346
        case 2: {
347
            /* Keep reading function 2 till all the input is received */
348
            int times;
349

    
350
            c->function = i;
351
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
352
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
353
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
354
            times = c->eax & 0xff;
355

    
356
            for (j = 1; j < times; ++j) {
357
                c = &cpuid_data.entries[cpuid_i++];
358
                c->function = i;
359
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
360
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
361
            }
362
            break;
363
        }
364
        case 4:
365
        case 0xb:
366
        case 0xd:
367
            for (j = 0; ; j++) {
368
                c->function = i;
369
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
370
                c->index = j;
371
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
372

    
373
                if (i == 4 && c->eax == 0)
374
                    break;
375
                if (i == 0xb && !(c->ecx & 0xff00))
376
                    break;
377
                if (i == 0xd && c->eax == 0)
378
                    break;
379

    
380
                c = &cpuid_data.entries[cpuid_i++];
381
            }
382
            break;
383
        default:
384
            c->function = i;
385
            c->flags = 0;
386
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
387
            break;
388
        }
389
    }
390
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
391

    
392
    for (i = 0x80000000; i <= limit; i++) {
393
        c = &cpuid_data.entries[cpuid_i++];
394

    
395
        c->function = i;
396
        c->flags = 0;
397
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
398
    }
399

    
400
    cpuid_data.cpuid.nent = cpuid_i;
401

    
402
#ifdef KVM_CAP_MCE
403
    if (((env->cpuid_version >> 8)&0xF) >= 6
404
        && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
405
        && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
406
        uint64_t mcg_cap;
407
        int banks;
408

    
409
        if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks))
410
            perror("kvm_get_mce_cap_supported FAILED");
411
        else {
412
            if (banks > MCE_BANKS_DEF)
413
                banks = MCE_BANKS_DEF;
414
            mcg_cap &= MCE_CAP_DEF;
415
            mcg_cap |= banks;
416
            if (kvm_setup_mce(env, &mcg_cap))
417
                perror("kvm_setup_mce FAILED");
418
            else
419
                env->mcg_cap = mcg_cap;
420
        }
421
    }
422
#endif
423

    
424
    return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
425
}
426

    
427
void kvm_arch_reset_vcpu(CPUState *env)
428
{
429
    env->exception_injected = -1;
430
    env->interrupt_injected = -1;
431
    env->nmi_injected = 0;
432
    env->nmi_pending = 0;
433
    if (kvm_irqchip_in_kernel()) {
434
        env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
435
                                          KVM_MP_STATE_UNINITIALIZED;
436
    } else {
437
        env->mp_state = KVM_MP_STATE_RUNNABLE;
438
    }
439
}
440

    
441
int has_msr_star;
442
int has_msr_hsave_pa;
443

    
444
static void kvm_supported_msrs(CPUState *env)
445
{
446
    static int kvm_supported_msrs;
447
    int ret;
448

    
449
    /* first time */
450
    if (kvm_supported_msrs == 0) {
451
        struct kvm_msr_list msr_list, *kvm_msr_list;
452

    
453
        kvm_supported_msrs = -1;
454

    
455
        /* Obtain MSR list from KVM.  These are the MSRs that we must
456
         * save/restore */
457
        msr_list.nmsrs = 0;
458
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
459
        if (ret < 0 && ret != -E2BIG) {
460
            return;
461
        }
462
        /* Old kernel modules had a bug and could write beyond the provided
463
           memory. Allocate at least a safe amount of 1K. */
464
        kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
465
                                              msr_list.nmsrs *
466
                                              sizeof(msr_list.indices[0])));
467

    
468
        kvm_msr_list->nmsrs = msr_list.nmsrs;
469
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
470
        if (ret >= 0) {
471
            int i;
472

    
473
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
474
                if (kvm_msr_list->indices[i] == MSR_STAR) {
475
                    has_msr_star = 1;
476
                    continue;
477
                }
478
                if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
479
                    has_msr_hsave_pa = 1;
480
                    continue;
481
                }
482
            }
483
        }
484

    
485
        free(kvm_msr_list);
486
    }
487

    
488
    return;
489
}
490

    
491
static int kvm_has_msr_hsave_pa(CPUState *env)
492
{
493
    kvm_supported_msrs(env);
494
    return has_msr_hsave_pa;
495
}
496

    
497
static int kvm_has_msr_star(CPUState *env)
498
{
499
    kvm_supported_msrs(env);
500
    return has_msr_star;
501
}
502

    
503
static int kvm_init_identity_map_page(KVMState *s)
504
{
505
#ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
506
    int ret;
507
    uint64_t addr = 0xfffbc000;
508

    
509
    if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
510
        return 0;
511
    }
512

    
513
    ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
514
    if (ret < 0) {
515
        fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
516
        return ret;
517
    }
518
#endif
519
    return 0;
520
}
521

    
522
int kvm_arch_init(KVMState *s, int smp_cpus)
523
{
524
    int ret;
525

    
526
    /* create vm86 tss.  KVM uses vm86 mode to emulate 16-bit code
527
     * directly.  In order to use vm86 mode, a TSS is needed.  Since this
528
     * must be part of guest physical memory, we need to allocate it.  Older
529
     * versions of KVM just assumed that it would be at the end of physical
530
     * memory but that doesn't work with more than 4GB of memory.  We simply
531
     * refuse to work with those older versions of KVM. */
532
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
533
    if (ret <= 0) {
534
        fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
535
        return ret;
536
    }
537

    
538
    /* this address is 3 pages before the bios, and the bios should present
539
     * as unavaible memory.  FIXME, need to ensure the e820 map deals with
540
     * this?
541
     */
542
    /*
543
     * Tell fw_cfg to notify the BIOS to reserve the range.
544
     */
545
    if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
546
        perror("e820_add_entry() table is full");
547
        exit(1);
548
    }
549
    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
550
    if (ret < 0) {
551
        return ret;
552
    }
553

    
554
    return kvm_init_identity_map_page(s);
555
}
556
                    
557
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
558
{
559
    lhs->selector = rhs->selector;
560
    lhs->base = rhs->base;
561
    lhs->limit = rhs->limit;
562
    lhs->type = 3;
563
    lhs->present = 1;
564
    lhs->dpl = 3;
565
    lhs->db = 0;
566
    lhs->s = 1;
567
    lhs->l = 0;
568
    lhs->g = 0;
569
    lhs->avl = 0;
570
    lhs->unusable = 0;
571
}
572

    
573
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
574
{
575
    unsigned flags = rhs->flags;
576
    lhs->selector = rhs->selector;
577
    lhs->base = rhs->base;
578
    lhs->limit = rhs->limit;
579
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
580
    lhs->present = (flags & DESC_P_MASK) != 0;
581
    lhs->dpl = rhs->selector & 3;
582
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
583
    lhs->s = (flags & DESC_S_MASK) != 0;
584
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
585
    lhs->g = (flags & DESC_G_MASK) != 0;
586
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
587
    lhs->unusable = 0;
588
}
589

    
590
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
591
{
592
    lhs->selector = rhs->selector;
593
    lhs->base = rhs->base;
594
    lhs->limit = rhs->limit;
595
    lhs->flags =
596
        (rhs->type << DESC_TYPE_SHIFT)
597
        | (rhs->present * DESC_P_MASK)
598
        | (rhs->dpl << DESC_DPL_SHIFT)
599
        | (rhs->db << DESC_B_SHIFT)
600
        | (rhs->s * DESC_S_MASK)
601
        | (rhs->l << DESC_L_SHIFT)
602
        | (rhs->g * DESC_G_MASK)
603
        | (rhs->avl * DESC_AVL_MASK);
604
}
605

    
606
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
607
{
608
    if (set)
609
        *kvm_reg = *qemu_reg;
610
    else
611
        *qemu_reg = *kvm_reg;
612
}
613

    
614
static int kvm_getput_regs(CPUState *env, int set)
615
{
616
    struct kvm_regs regs;
617
    int ret = 0;
618

    
619
    if (!set) {
620
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
621
        if (ret < 0)
622
            return ret;
623
    }
624

    
625
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
626
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
627
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
628
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
629
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
630
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
631
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
632
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
633
#ifdef TARGET_X86_64
634
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
635
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
636
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
637
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
638
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
639
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
640
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
641
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
642
#endif
643

    
644
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
645
    kvm_getput_reg(&regs.rip, &env->eip, set);
646

    
647
    if (set)
648
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
649

    
650
    return ret;
651
}
652

    
653
static int kvm_put_fpu(CPUState *env)
654
{
655
    struct kvm_fpu fpu;
656
    int i;
657

    
658
    memset(&fpu, 0, sizeof fpu);
659
    fpu.fsw = env->fpus & ~(7 << 11);
660
    fpu.fsw |= (env->fpstt & 7) << 11;
661
    fpu.fcw = env->fpuc;
662
    for (i = 0; i < 8; ++i)
663
        fpu.ftwx |= (!env->fptags[i]) << i;
664
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
665
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
666
    fpu.mxcsr = env->mxcsr;
667

    
668
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
669
}
670

    
671
#ifdef KVM_CAP_XSAVE
672
#define XSAVE_CWD_RIP     2
673
#define XSAVE_CWD_RDP     4
674
#define XSAVE_MXCSR       6
675
#define XSAVE_ST_SPACE    8
676
#define XSAVE_XMM_SPACE   40
677
#define XSAVE_XSTATE_BV   128
678
#define XSAVE_YMMH_SPACE  144
679
#endif
680

    
681
static int kvm_put_xsave(CPUState *env)
682
{
683
#ifdef KVM_CAP_XSAVE
684
    int i, r;
685
    struct kvm_xsave* xsave;
686
    uint16_t cwd, swd, twd, fop;
687

    
688
    if (!kvm_has_xsave())
689
        return kvm_put_fpu(env);
690

    
691
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
692
    memset(xsave, 0, sizeof(struct kvm_xsave));
693
    cwd = swd = twd = fop = 0;
694
    swd = env->fpus & ~(7 << 11);
695
    swd |= (env->fpstt & 7) << 11;
696
    cwd = env->fpuc;
697
    for (i = 0; i < 8; ++i)
698
        twd |= (!env->fptags[i]) << i;
699
    xsave->region[0] = (uint32_t)(swd << 16) + cwd;
700
    xsave->region[1] = (uint32_t)(fop << 16) + twd;
701
    memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
702
            sizeof env->fpregs);
703
    memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
704
            sizeof env->xmm_regs);
705
    xsave->region[XSAVE_MXCSR] = env->mxcsr;
706
    *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
707
    memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
708
            sizeof env->ymmh_regs);
709
    r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
710
    qemu_free(xsave);
711
    return r;
712
#else
713
    return kvm_put_fpu(env);
714
#endif
715
}
716

    
717
static int kvm_put_xcrs(CPUState *env)
718
{
719
#ifdef KVM_CAP_XCRS
720
    struct kvm_xcrs xcrs;
721

    
722
    if (!kvm_has_xcrs())
723
        return 0;
724

    
725
    xcrs.nr_xcrs = 1;
726
    xcrs.flags = 0;
727
    xcrs.xcrs[0].xcr = 0;
728
    xcrs.xcrs[0].value = env->xcr0;
729
    return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
730
#else
731
    return 0;
732
#endif
733
}
734

    
735
static int kvm_put_sregs(CPUState *env)
736
{
737
    struct kvm_sregs sregs;
738

    
739
    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
740
    if (env->interrupt_injected >= 0) {
741
        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
742
                (uint64_t)1 << (env->interrupt_injected % 64);
743
    }
744

    
745
    if ((env->eflags & VM_MASK)) {
746
            set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
747
            set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
748
            set_v8086_seg(&sregs.es, &env->segs[R_ES]);
749
            set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
750
            set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
751
            set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
752
    } else {
753
            set_seg(&sregs.cs, &env->segs[R_CS]);
754
            set_seg(&sregs.ds, &env->segs[R_DS]);
755
            set_seg(&sregs.es, &env->segs[R_ES]);
756
            set_seg(&sregs.fs, &env->segs[R_FS]);
757
            set_seg(&sregs.gs, &env->segs[R_GS]);
758
            set_seg(&sregs.ss, &env->segs[R_SS]);
759

    
760
            if (env->cr[0] & CR0_PE_MASK) {
761
                /* force ss cpl to cs cpl */
762
                sregs.ss.selector = (sregs.ss.selector & ~3) |
763
                        (sregs.cs.selector & 3);
764
                sregs.ss.dpl = sregs.ss.selector & 3;
765
            }
766
    }
767

    
768
    set_seg(&sregs.tr, &env->tr);
769
    set_seg(&sregs.ldt, &env->ldt);
770

    
771
    sregs.idt.limit = env->idt.limit;
772
    sregs.idt.base = env->idt.base;
773
    sregs.gdt.limit = env->gdt.limit;
774
    sregs.gdt.base = env->gdt.base;
775

    
776
    sregs.cr0 = env->cr[0];
777
    sregs.cr2 = env->cr[2];
778
    sregs.cr3 = env->cr[3];
779
    sregs.cr4 = env->cr[4];
780

    
781
    sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
782
    sregs.apic_base = cpu_get_apic_base(env->apic_state);
783

    
784
    sregs.efer = env->efer;
785

    
786
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
787
}
788

    
789
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
790
                              uint32_t index, uint64_t value)
791
{
792
    entry->index = index;
793
    entry->data = value;
794
}
795

    
796
static int kvm_put_msrs(CPUState *env, int level)
797
{
798
    struct {
799
        struct kvm_msrs info;
800
        struct kvm_msr_entry entries[100];
801
    } msr_data;
802
    struct kvm_msr_entry *msrs = msr_data.entries;
803
    int n = 0;
804

    
805
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
806
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
807
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
808
    if (kvm_has_msr_star(env))
809
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
810
    if (kvm_has_msr_hsave_pa(env))
811
        kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
812
#ifdef TARGET_X86_64
813
    /* FIXME if lm capable */
814
    kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
815
    kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
816
    kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
817
    kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
818
#endif
819
    if (level == KVM_PUT_FULL_STATE) {
820
        kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
821
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
822
                          env->system_time_msr);
823
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
824
    }
825
#ifdef KVM_CAP_MCE
826
    if (env->mcg_cap) {
827
        int i;
828
        if (level == KVM_PUT_RESET_STATE)
829
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
830
        else if (level == KVM_PUT_FULL_STATE) {
831
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
832
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
833
            for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++)
834
                kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
835
        }
836
    }
837
#endif
838

    
839
    msr_data.info.nmsrs = n;
840

    
841
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
842

    
843
}
844

    
845

    
846
static int kvm_get_fpu(CPUState *env)
847
{
848
    struct kvm_fpu fpu;
849
    int i, ret;
850

    
851
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
852
    if (ret < 0)
853
        return ret;
854

    
855
    env->fpstt = (fpu.fsw >> 11) & 7;
856
    env->fpus = fpu.fsw;
857
    env->fpuc = fpu.fcw;
858
    for (i = 0; i < 8; ++i)
859
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
860
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
861
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
862
    env->mxcsr = fpu.mxcsr;
863

    
864
    return 0;
865
}
866

    
867
static int kvm_get_xsave(CPUState *env)
868
{
869
#ifdef KVM_CAP_XSAVE
870
    struct kvm_xsave* xsave;
871
    int ret, i;
872
    uint16_t cwd, swd, twd, fop;
873

    
874
    if (!kvm_has_xsave())
875
        return kvm_get_fpu(env);
876

    
877
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
878
    ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
879
    if (ret < 0) {
880
        qemu_free(xsave);
881
        return ret;
882
    }
883

    
884
    cwd = (uint16_t)xsave->region[0];
885
    swd = (uint16_t)(xsave->region[0] >> 16);
886
    twd = (uint16_t)xsave->region[1];
887
    fop = (uint16_t)(xsave->region[1] >> 16);
888
    env->fpstt = (swd >> 11) & 7;
889
    env->fpus = swd;
890
    env->fpuc = cwd;
891
    for (i = 0; i < 8; ++i)
892
        env->fptags[i] = !((twd >> i) & 1);
893
    env->mxcsr = xsave->region[XSAVE_MXCSR];
894
    memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
895
            sizeof env->fpregs);
896
    memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
897
            sizeof env->xmm_regs);
898
    env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
899
    memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
900
            sizeof env->ymmh_regs);
901
    qemu_free(xsave);
902
    return 0;
903
#else
904
    return kvm_get_fpu(env);
905
#endif
906
}
907

    
908
static int kvm_get_xcrs(CPUState *env)
909
{
910
#ifdef KVM_CAP_XCRS
911
    int i, ret;
912
    struct kvm_xcrs xcrs;
913

    
914
    if (!kvm_has_xcrs())
915
        return 0;
916

    
917
    ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
918
    if (ret < 0)
919
        return ret;
920

    
921
    for (i = 0; i < xcrs.nr_xcrs; i++)
922
        /* Only support xcr0 now */
923
        if (xcrs.xcrs[0].xcr == 0) {
924
            env->xcr0 = xcrs.xcrs[0].value;
925
            break;
926
        }
927
    return 0;
928
#else
929
    return 0;
930
#endif
931
}
932

    
933
static int kvm_get_sregs(CPUState *env)
934
{
935
    struct kvm_sregs sregs;
936
    uint32_t hflags;
937
    int bit, i, ret;
938

    
939
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
940
    if (ret < 0)
941
        return ret;
942

    
943
    /* There can only be one pending IRQ set in the bitmap at a time, so try
944
       to find it and save its number instead (-1 for none). */
945
    env->interrupt_injected = -1;
946
    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
947
        if (sregs.interrupt_bitmap[i]) {
948
            bit = ctz64(sregs.interrupt_bitmap[i]);
949
            env->interrupt_injected = i * 64 + bit;
950
            break;
951
        }
952
    }
953

    
954
    get_seg(&env->segs[R_CS], &sregs.cs);
955
    get_seg(&env->segs[R_DS], &sregs.ds);
956
    get_seg(&env->segs[R_ES], &sregs.es);
957
    get_seg(&env->segs[R_FS], &sregs.fs);
958
    get_seg(&env->segs[R_GS], &sregs.gs);
959
    get_seg(&env->segs[R_SS], &sregs.ss);
960

    
961
    get_seg(&env->tr, &sregs.tr);
962
    get_seg(&env->ldt, &sregs.ldt);
963

    
964
    env->idt.limit = sregs.idt.limit;
965
    env->idt.base = sregs.idt.base;
966
    env->gdt.limit = sregs.gdt.limit;
967
    env->gdt.base = sregs.gdt.base;
968

    
969
    env->cr[0] = sregs.cr0;
970
    env->cr[2] = sregs.cr2;
971
    env->cr[3] = sregs.cr3;
972
    env->cr[4] = sregs.cr4;
973

    
974
    cpu_set_apic_base(env->apic_state, sregs.apic_base);
975

    
976
    env->efer = sregs.efer;
977
    //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
978

    
979
#define HFLAG_COPY_MASK ~( \
980
                        HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
981
                        HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
982
                        HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
983
                        HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
984

    
985

    
986

    
987
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
988
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
989
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
990
            (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
991
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
992
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
993
            (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
994

    
995
    if (env->efer & MSR_EFER_LMA) {
996
        hflags |= HF_LMA_MASK;
997
    }
998

    
999
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1000
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1001
    } else {
1002
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1003
                (DESC_B_SHIFT - HF_CS32_SHIFT);
1004
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1005
                (DESC_B_SHIFT - HF_SS32_SHIFT);
1006
        if (!(env->cr[0] & CR0_PE_MASK) ||
1007
                   (env->eflags & VM_MASK) ||
1008
                   !(hflags & HF_CS32_MASK)) {
1009
                hflags |= HF_ADDSEG_MASK;
1010
            } else {
1011
                hflags |= ((env->segs[R_DS].base |
1012
                                env->segs[R_ES].base |
1013
                                env->segs[R_SS].base) != 0) <<
1014
                    HF_ADDSEG_SHIFT;
1015
            }
1016
    }
1017
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1018

    
1019
    return 0;
1020
}
1021

    
1022
static int kvm_get_msrs(CPUState *env)
1023
{
1024
    struct {
1025
        struct kvm_msrs info;
1026
        struct kvm_msr_entry entries[100];
1027
    } msr_data;
1028
    struct kvm_msr_entry *msrs = msr_data.entries;
1029
    int ret, i, n;
1030

    
1031
    n = 0;
1032
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
1033
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1034
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1035
    if (kvm_has_msr_star(env))
1036
        msrs[n++].index = MSR_STAR;
1037
    if (kvm_has_msr_hsave_pa(env))
1038
        msrs[n++].index = MSR_VM_HSAVE_PA;
1039
    msrs[n++].index = MSR_IA32_TSC;
1040
#ifdef TARGET_X86_64
1041
    /* FIXME lm_capable_kernel */
1042
    msrs[n++].index = MSR_CSTAR;
1043
    msrs[n++].index = MSR_KERNELGSBASE;
1044
    msrs[n++].index = MSR_FMASK;
1045
    msrs[n++].index = MSR_LSTAR;
1046
#endif
1047
    msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1048
    msrs[n++].index = MSR_KVM_WALL_CLOCK;
1049

    
1050
#ifdef KVM_CAP_MCE
1051
    if (env->mcg_cap) {
1052
        msrs[n++].index = MSR_MCG_STATUS;
1053
        msrs[n++].index = MSR_MCG_CTL;
1054
        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++)
1055
            msrs[n++].index = MSR_MC0_CTL + i;
1056
    }
1057
#endif
1058

    
1059
    msr_data.info.nmsrs = n;
1060
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1061
    if (ret < 0)
1062
        return ret;
1063

    
1064
    for (i = 0; i < ret; i++) {
1065
        switch (msrs[i].index) {
1066
        case MSR_IA32_SYSENTER_CS:
1067
            env->sysenter_cs = msrs[i].data;
1068
            break;
1069
        case MSR_IA32_SYSENTER_ESP:
1070
            env->sysenter_esp = msrs[i].data;
1071
            break;
1072
        case MSR_IA32_SYSENTER_EIP:
1073
            env->sysenter_eip = msrs[i].data;
1074
            break;
1075
        case MSR_STAR:
1076
            env->star = msrs[i].data;
1077
            break;
1078
#ifdef TARGET_X86_64
1079
        case MSR_CSTAR:
1080
            env->cstar = msrs[i].data;
1081
            break;
1082
        case MSR_KERNELGSBASE:
1083
            env->kernelgsbase = msrs[i].data;
1084
            break;
1085
        case MSR_FMASK:
1086
            env->fmask = msrs[i].data;
1087
            break;
1088
        case MSR_LSTAR:
1089
            env->lstar = msrs[i].data;
1090
            break;
1091
#endif
1092
        case MSR_IA32_TSC:
1093
            env->tsc = msrs[i].data;
1094
            break;
1095
        case MSR_VM_HSAVE_PA:
1096
            env->vm_hsave = msrs[i].data;
1097
            break;
1098
        case MSR_KVM_SYSTEM_TIME:
1099
            env->system_time_msr = msrs[i].data;
1100
            break;
1101
        case MSR_KVM_WALL_CLOCK:
1102
            env->wall_clock_msr = msrs[i].data;
1103
            break;
1104
#ifdef KVM_CAP_MCE
1105
        case MSR_MCG_STATUS:
1106
            env->mcg_status = msrs[i].data;
1107
            break;
1108
        case MSR_MCG_CTL:
1109
            env->mcg_ctl = msrs[i].data;
1110
            break;
1111
#endif
1112
        default:
1113
#ifdef KVM_CAP_MCE
1114
            if (msrs[i].index >= MSR_MC0_CTL &&
1115
                msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1116
                env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1117
            }
1118
#endif
1119
            break;
1120
        }
1121
    }
1122

    
1123
    return 0;
1124
}
1125

    
1126
static int kvm_put_mp_state(CPUState *env)
1127
{
1128
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1129

    
1130
    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1131
}
1132

    
1133
static int kvm_get_mp_state(CPUState *env)
1134
{
1135
    struct kvm_mp_state mp_state;
1136
    int ret;
1137

    
1138
    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1139
    if (ret < 0) {
1140
        return ret;
1141
    }
1142
    env->mp_state = mp_state.mp_state;
1143
    return 0;
1144
}
1145

    
1146
static int kvm_put_vcpu_events(CPUState *env, int level)
1147
{
1148
#ifdef KVM_CAP_VCPU_EVENTS
1149
    struct kvm_vcpu_events events;
1150

    
1151
    if (!kvm_has_vcpu_events()) {
1152
        return 0;
1153
    }
1154

    
1155
    events.exception.injected = (env->exception_injected >= 0);
1156
    events.exception.nr = env->exception_injected;
1157
    events.exception.has_error_code = env->has_error_code;
1158
    events.exception.error_code = env->error_code;
1159

    
1160
    events.interrupt.injected = (env->interrupt_injected >= 0);
1161
    events.interrupt.nr = env->interrupt_injected;
1162
    events.interrupt.soft = env->soft_interrupt;
1163

    
1164
    events.nmi.injected = env->nmi_injected;
1165
    events.nmi.pending = env->nmi_pending;
1166
    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1167

    
1168
    events.sipi_vector = env->sipi_vector;
1169

    
1170
    events.flags = 0;
1171
    if (level >= KVM_PUT_RESET_STATE) {
1172
        events.flags |=
1173
            KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1174
    }
1175

    
1176
    return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1177
#else
1178
    return 0;
1179
#endif
1180
}
1181

    
1182
static int kvm_get_vcpu_events(CPUState *env)
1183
{
1184
#ifdef KVM_CAP_VCPU_EVENTS
1185
    struct kvm_vcpu_events events;
1186
    int ret;
1187

    
1188
    if (!kvm_has_vcpu_events()) {
1189
        return 0;
1190
    }
1191

    
1192
    ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1193
    if (ret < 0) {
1194
       return ret;
1195
    }
1196
    env->exception_injected =
1197
       events.exception.injected ? events.exception.nr : -1;
1198
    env->has_error_code = events.exception.has_error_code;
1199
    env->error_code = events.exception.error_code;
1200

    
1201
    env->interrupt_injected =
1202
        events.interrupt.injected ? events.interrupt.nr : -1;
1203
    env->soft_interrupt = events.interrupt.soft;
1204

    
1205
    env->nmi_injected = events.nmi.injected;
1206
    env->nmi_pending = events.nmi.pending;
1207
    if (events.nmi.masked) {
1208
        env->hflags2 |= HF2_NMI_MASK;
1209
    } else {
1210
        env->hflags2 &= ~HF2_NMI_MASK;
1211
    }
1212

    
1213
    env->sipi_vector = events.sipi_vector;
1214
#endif
1215

    
1216
    return 0;
1217
}
1218

    
1219
static int kvm_guest_debug_workarounds(CPUState *env)
1220
{
1221
    int ret = 0;
1222
#ifdef KVM_CAP_SET_GUEST_DEBUG
1223
    unsigned long reinject_trap = 0;
1224

    
1225
    if (!kvm_has_vcpu_events()) {
1226
        if (env->exception_injected == 1) {
1227
            reinject_trap = KVM_GUESTDBG_INJECT_DB;
1228
        } else if (env->exception_injected == 3) {
1229
            reinject_trap = KVM_GUESTDBG_INJECT_BP;
1230
        }
1231
        env->exception_injected = -1;
1232
    }
1233

    
1234
    /*
1235
     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1236
     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1237
     * by updating the debug state once again if single-stepping is on.
1238
     * Another reason to call kvm_update_guest_debug here is a pending debug
1239
     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1240
     * reinject them via SET_GUEST_DEBUG.
1241
     */
1242
    if (reinject_trap ||
1243
        (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1244
        ret = kvm_update_guest_debug(env, reinject_trap);
1245
    }
1246
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1247
    return ret;
1248
}
1249

    
1250
static int kvm_put_debugregs(CPUState *env)
1251
{
1252
#ifdef KVM_CAP_DEBUGREGS
1253
    struct kvm_debugregs dbgregs;
1254
    int i;
1255

    
1256
    if (!kvm_has_debugregs()) {
1257
        return 0;
1258
    }
1259

    
1260
    for (i = 0; i < 4; i++) {
1261
        dbgregs.db[i] = env->dr[i];
1262
    }
1263
    dbgregs.dr6 = env->dr[6];
1264
    dbgregs.dr7 = env->dr[7];
1265
    dbgregs.flags = 0;
1266

    
1267
    return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1268
#else
1269
    return 0;
1270
#endif
1271
}
1272

    
1273
static int kvm_get_debugregs(CPUState *env)
1274
{
1275
#ifdef KVM_CAP_DEBUGREGS
1276
    struct kvm_debugregs dbgregs;
1277
    int i, ret;
1278

    
1279
    if (!kvm_has_debugregs()) {
1280
        return 0;
1281
    }
1282

    
1283
    ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1284
    if (ret < 0) {
1285
       return ret;
1286
    }
1287
    for (i = 0; i < 4; i++) {
1288
        env->dr[i] = dbgregs.db[i];
1289
    }
1290
    env->dr[4] = env->dr[6] = dbgregs.dr6;
1291
    env->dr[5] = env->dr[7] = dbgregs.dr7;
1292
#endif
1293

    
1294
    return 0;
1295
}
1296

    
1297
int kvm_arch_put_registers(CPUState *env, int level)
1298
{
1299
    int ret;
1300

    
1301
    assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1302

    
1303
    ret = kvm_getput_regs(env, 1);
1304
    if (ret < 0)
1305
        return ret;
1306

    
1307
    ret = kvm_put_xsave(env);
1308
    if (ret < 0)
1309
        return ret;
1310

    
1311
    ret = kvm_put_xcrs(env);
1312
    if (ret < 0)
1313
        return ret;
1314

    
1315
    ret = kvm_put_sregs(env);
1316
    if (ret < 0)
1317
        return ret;
1318

    
1319
    ret = kvm_put_msrs(env, level);
1320
    if (ret < 0)
1321
        return ret;
1322

    
1323
    if (level >= KVM_PUT_RESET_STATE) {
1324
        ret = kvm_put_mp_state(env);
1325
        if (ret < 0)
1326
            return ret;
1327
    }
1328

    
1329
    ret = kvm_put_vcpu_events(env, level);
1330
    if (ret < 0)
1331
        return ret;
1332

    
1333
    /* must be last */
1334
    ret = kvm_guest_debug_workarounds(env);
1335
    if (ret < 0)
1336
        return ret;
1337

    
1338
    ret = kvm_put_debugregs(env);
1339
    if (ret < 0)
1340
        return ret;
1341

    
1342
    return 0;
1343
}
1344

    
1345
int kvm_arch_get_registers(CPUState *env)
1346
{
1347
    int ret;
1348

    
1349
    assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1350

    
1351
    ret = kvm_getput_regs(env, 0);
1352
    if (ret < 0)
1353
        return ret;
1354

    
1355
    ret = kvm_get_xsave(env);
1356
    if (ret < 0)
1357
        return ret;
1358

    
1359
    ret = kvm_get_xcrs(env);
1360
    if (ret < 0)
1361
        return ret;
1362

    
1363
    ret = kvm_get_sregs(env);
1364
    if (ret < 0)
1365
        return ret;
1366

    
1367
    ret = kvm_get_msrs(env);
1368
    if (ret < 0)
1369
        return ret;
1370

    
1371
    ret = kvm_get_mp_state(env);
1372
    if (ret < 0)
1373
        return ret;
1374

    
1375
    ret = kvm_get_vcpu_events(env);
1376
    if (ret < 0)
1377
        return ret;
1378

    
1379
    ret = kvm_get_debugregs(env);
1380
    if (ret < 0)
1381
        return ret;
1382

    
1383
    return 0;
1384
}
1385

    
1386
int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1387
{
1388
    /* Try to inject an interrupt if the guest can accept it */
1389
    if (run->ready_for_interrupt_injection &&
1390
        (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1391
        (env->eflags & IF_MASK)) {
1392
        int irq;
1393

    
1394
        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1395
        irq = cpu_get_pic_interrupt(env);
1396
        if (irq >= 0) {
1397
            struct kvm_interrupt intr;
1398
            intr.irq = irq;
1399
            /* FIXME: errors */
1400
            DPRINTF("injected interrupt %d\n", irq);
1401
            kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1402
        }
1403
    }
1404

    
1405
    /* If we have an interrupt but the guest is not ready to receive an
1406
     * interrupt, request an interrupt window exit.  This will
1407
     * cause a return to userspace as soon as the guest is ready to
1408
     * receive interrupts. */
1409
    if ((env->interrupt_request & CPU_INTERRUPT_HARD))
1410
        run->request_interrupt_window = 1;
1411
    else
1412
        run->request_interrupt_window = 0;
1413

    
1414
    DPRINTF("setting tpr\n");
1415
    run->cr8 = cpu_get_apic_tpr(env->apic_state);
1416

    
1417
    return 0;
1418
}
1419

    
1420
int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1421
{
1422
    if (run->if_flag)
1423
        env->eflags |= IF_MASK;
1424
    else
1425
        env->eflags &= ~IF_MASK;
1426
    
1427
    cpu_set_apic_tpr(env->apic_state, run->cr8);
1428
    cpu_set_apic_base(env->apic_state, run->apic_base);
1429

    
1430
    return 0;
1431
}
1432

    
1433
int kvm_arch_process_irqchip_events(CPUState *env)
1434
{
1435
    if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1436
        kvm_cpu_synchronize_state(env);
1437
        do_cpu_init(env);
1438
        env->exception_index = EXCP_HALTED;
1439
    }
1440

    
1441
    if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1442
        kvm_cpu_synchronize_state(env);
1443
        do_cpu_sipi(env);
1444
    }
1445

    
1446
    return env->halted;
1447
}
1448

    
1449
static int kvm_handle_halt(CPUState *env)
1450
{
1451
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1452
          (env->eflags & IF_MASK)) &&
1453
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1454
        env->halted = 1;
1455
        env->exception_index = EXCP_HLT;
1456
        return 0;
1457
    }
1458

    
1459
    return 1;
1460
}
1461

    
1462
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1463
{
1464
    int ret = 0;
1465

    
1466
    switch (run->exit_reason) {
1467
    case KVM_EXIT_HLT:
1468
        DPRINTF("handle_hlt\n");
1469
        ret = kvm_handle_halt(env);
1470
        break;
1471
    }
1472

    
1473
    return ret;
1474
}
1475

    
1476
#ifdef KVM_CAP_SET_GUEST_DEBUG
1477
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1478
{
1479
    static const uint8_t int3 = 0xcc;
1480

    
1481
    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1482
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
1483
        return -EINVAL;
1484
    return 0;
1485
}
1486

    
1487
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1488
{
1489
    uint8_t int3;
1490

    
1491
    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1492
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
1493
        return -EINVAL;
1494
    return 0;
1495
}
1496

    
1497
static struct {
1498
    target_ulong addr;
1499
    int len;
1500
    int type;
1501
} hw_breakpoint[4];
1502

    
1503
static int nb_hw_breakpoint;
1504

    
1505
static int find_hw_breakpoint(target_ulong addr, int len, int type)
1506
{
1507
    int n;
1508

    
1509
    for (n = 0; n < nb_hw_breakpoint; n++)
1510
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1511
            (hw_breakpoint[n].len == len || len == -1))
1512
            return n;
1513
    return -1;
1514
}
1515

    
1516
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1517
                                  target_ulong len, int type)
1518
{
1519
    switch (type) {
1520
    case GDB_BREAKPOINT_HW:
1521
        len = 1;
1522
        break;
1523
    case GDB_WATCHPOINT_WRITE:
1524
    case GDB_WATCHPOINT_ACCESS:
1525
        switch (len) {
1526
        case 1:
1527
            break;
1528
        case 2:
1529
        case 4:
1530
        case 8:
1531
            if (addr & (len - 1))
1532
                return -EINVAL;
1533
            break;
1534
        default:
1535
            return -EINVAL;
1536
        }
1537
        break;
1538
    default:
1539
        return -ENOSYS;
1540
    }
1541

    
1542
    if (nb_hw_breakpoint == 4)
1543
        return -ENOBUFS;
1544

    
1545
    if (find_hw_breakpoint(addr, len, type) >= 0)
1546
        return -EEXIST;
1547

    
1548
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
1549
    hw_breakpoint[nb_hw_breakpoint].len = len;
1550
    hw_breakpoint[nb_hw_breakpoint].type = type;
1551
    nb_hw_breakpoint++;
1552

    
1553
    return 0;
1554
}
1555

    
1556
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1557
                                  target_ulong len, int type)
1558
{
1559
    int n;
1560

    
1561
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1562
    if (n < 0)
1563
        return -ENOENT;
1564

    
1565
    nb_hw_breakpoint--;
1566
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1567

    
1568
    return 0;
1569
}
1570

    
1571
void kvm_arch_remove_all_hw_breakpoints(void)
1572
{
1573
    nb_hw_breakpoint = 0;
1574
}
1575

    
1576
static CPUWatchpoint hw_watchpoint;
1577

    
1578
int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1579
{
1580
    int handle = 0;
1581
    int n;
1582

    
1583
    if (arch_info->exception == 1) {
1584
        if (arch_info->dr6 & (1 << 14)) {
1585
            if (cpu_single_env->singlestep_enabled)
1586
                handle = 1;
1587
        } else {
1588
            for (n = 0; n < 4; n++)
1589
                if (arch_info->dr6 & (1 << n))
1590
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1591
                    case 0x0:
1592
                        handle = 1;
1593
                        break;
1594
                    case 0x1:
1595
                        handle = 1;
1596
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1597
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1598
                        hw_watchpoint.flags = BP_MEM_WRITE;
1599
                        break;
1600
                    case 0x3:
1601
                        handle = 1;
1602
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1603
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1604
                        hw_watchpoint.flags = BP_MEM_ACCESS;
1605
                        break;
1606
                    }
1607
        }
1608
    } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1609
        handle = 1;
1610

    
1611
    if (!handle) {
1612
        cpu_synchronize_state(cpu_single_env);
1613
        assert(cpu_single_env->exception_injected == -1);
1614

    
1615
        cpu_single_env->exception_injected = arch_info->exception;
1616
        cpu_single_env->has_error_code = 0;
1617
    }
1618

    
1619
    return handle;
1620
}
1621

    
1622
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1623
{
1624
    const uint8_t type_code[] = {
1625
        [GDB_BREAKPOINT_HW] = 0x0,
1626
        [GDB_WATCHPOINT_WRITE] = 0x1,
1627
        [GDB_WATCHPOINT_ACCESS] = 0x3
1628
    };
1629
    const uint8_t len_code[] = {
1630
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1631
    };
1632
    int n;
1633

    
1634
    if (kvm_sw_breakpoints_active(env))
1635
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1636

    
1637
    if (nb_hw_breakpoint > 0) {
1638
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1639
        dbg->arch.debugreg[7] = 0x0600;
1640
        for (n = 0; n < nb_hw_breakpoint; n++) {
1641
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1642
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1643
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1644
                (len_code[hw_breakpoint[n].len] << (18 + n*4));
1645
        }
1646
    }
1647
    /* Legal xcr0 for loading */
1648
    env->xcr0 = 1;
1649
}
1650
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1651

    
1652
bool kvm_arch_stop_on_emulation_error(CPUState *env)
1653
{
1654
      return !(env->cr[0] & CR0_PE_MASK) ||
1655
              ((env->segs[R_CS].selector  & 3) != 3);
1656
}
1657

    
1658
static void hardware_memory_error(void)
1659
{
1660
    fprintf(stderr, "Hardware memory error!\n");
1661
    exit(1);
1662
}
1663

    
1664
#ifdef KVM_CAP_MCE
1665
static void kvm_mce_broadcast_rest(CPUState *env)
1666
{
1667
    CPUState *cenv;
1668
    int family, model, cpuver = env->cpuid_version;
1669

    
1670
    family = (cpuver >> 8) & 0xf;
1671
    model = ((cpuver >> 12) & 0xf0) + ((cpuver >> 4) & 0xf);
1672

    
1673
    /* Broadcast MCA signal for processor version 06H_EH and above */
1674
    if ((family == 6 && model >= 14) || family > 6) {
1675
        for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) {
1676
            if (cenv == env) {
1677
                continue;
1678
            }
1679
            kvm_inject_x86_mce(cenv, 1, MCI_STATUS_VAL | MCI_STATUS_UC,
1680
                               MCG_STATUS_MCIP | MCG_STATUS_RIPV, 0, 0, 1);
1681
        }
1682
    }
1683
}
1684
#endif
1685

    
1686
int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1687
{
1688
#if defined(KVM_CAP_MCE)
1689
    struct kvm_x86_mce mce = {
1690
            .bank = 9,
1691
    };
1692
    void *vaddr;
1693
    ram_addr_t ram_addr;
1694
    target_phys_addr_t paddr;
1695
    int r;
1696

    
1697
    if ((env->mcg_cap & MCG_SER_P) && addr
1698
        && (code == BUS_MCEERR_AR
1699
            || code == BUS_MCEERR_AO)) {
1700
        if (code == BUS_MCEERR_AR) {
1701
            /* Fake an Intel architectural Data Load SRAR UCR */
1702
            mce.status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1703
                | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1704
                | MCI_STATUS_AR | 0x134;
1705
            mce.misc = (MCM_ADDR_PHYS << 6) | 0xc;
1706
            mce.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV;
1707
        } else {
1708
            /*
1709
             * If there is an MCE excpetion being processed, ignore
1710
             * this SRAO MCE
1711
             */
1712
            r = kvm_mce_in_exception(env);
1713
            if (r == -1) {
1714
                fprintf(stderr, "Failed to get MCE status\n");
1715
            } else if (r) {
1716
                return 0;
1717
            }
1718
            /* Fake an Intel architectural Memory scrubbing UCR */
1719
            mce.status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1720
                | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1721
                | 0xc0;
1722
            mce.misc = (MCM_ADDR_PHYS << 6) | 0xc;
1723
            mce.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
1724
        }
1725
        vaddr = (void *)addr;
1726
        if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1727
            !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
1728
            fprintf(stderr, "Hardware memory error for memory used by "
1729
                    "QEMU itself instead of guest system!\n");
1730
            /* Hope we are lucky for AO MCE */
1731
            if (code == BUS_MCEERR_AO) {
1732
                return 0;
1733
            } else {
1734
                hardware_memory_error();
1735
            }
1736
        }
1737
        mce.addr = paddr;
1738
        r = kvm_set_mce(env, &mce);
1739
        if (r < 0) {
1740
            fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1741
            abort();
1742
        }
1743
        kvm_mce_broadcast_rest(env);
1744
    } else
1745
#endif
1746
    {
1747
        if (code == BUS_MCEERR_AO) {
1748
            return 0;
1749
        } else if (code == BUS_MCEERR_AR) {
1750
            hardware_memory_error();
1751
        } else {
1752
            return 1;
1753
        }
1754
    }
1755
    return 0;
1756
}
1757

    
1758
int kvm_on_sigbus(int code, void *addr)
1759
{
1760
#if defined(KVM_CAP_MCE)
1761
    if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
1762
        uint64_t status;
1763
        void *vaddr;
1764
        ram_addr_t ram_addr;
1765
        target_phys_addr_t paddr;
1766

    
1767
        /* Hope we are lucky for AO MCE */
1768
        vaddr = addr;
1769
        if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1770
            !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) {
1771
            fprintf(stderr, "Hardware memory error for memory used by "
1772
                    "QEMU itself instead of guest system!: %p\n", addr);
1773
            return 0;
1774
        }
1775
        status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1776
            | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1777
            | 0xc0;
1778
        kvm_inject_x86_mce(first_cpu, 9, status,
1779
                           MCG_STATUS_MCIP | MCG_STATUS_RIPV, paddr,
1780
                           (MCM_ADDR_PHYS << 6) | 0xc, 1);
1781
        kvm_mce_broadcast_rest(first_cpu);
1782
    } else
1783
#endif
1784
    {
1785
        if (code == BUS_MCEERR_AO) {
1786
            return 0;
1787
        } else if (code == BUS_MCEERR_AR) {
1788
            hardware_memory_error();
1789
        } else {
1790
            return 1;
1791
        }
1792
    }
1793
    return 0;
1794
}