Statistics
| Branch: | Revision:

root / disas / alpha.c @ 76cad711

History | View | Annotate | Download (79.8 kB)

1
/* alpha-dis.c -- Disassemble Alpha AXP instructions
2
   Copyright 1996, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3
   Contributed by Richard Henderson <rth@tamu.edu>,
4
   patterned after the PPC opcode handling written by Ian Lance Taylor.
5

6
This file is part of GDB, GAS, and the GNU binutils.
7

8
GDB, GAS, and the GNU binutils are free software; you can redistribute
9
them and/or modify them under the terms of the GNU General Public
10
License as published by the Free Software Foundation; either version
11
2, or (at your option) any later version.
12

13
GDB, GAS, and the GNU binutils are distributed in the hope that they
14
will be useful, but WITHOUT ANY WARRANTY; without even the implied
15
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
16
the GNU General Public License for more details.
17

18
You should have received a copy of the GNU General Public License
19
along with this file; see the file COPYING.  If not, see
20
<http://www.gnu.org/licenses/>. */
21

    
22
#include <stdio.h>
23
#include "disas/bfd.h"
24

    
25
/* MAX is redefined below, so remove any previous definition. */
26
#undef MAX
27

    
28
/* The opcode table is an array of struct alpha_opcode.  */
29

    
30
struct alpha_opcode
31
{
32
  /* The opcode name.  */
33
  const char *name;
34

    
35
  /* The opcode itself.  Those bits which will be filled in with
36
     operands are zeroes.  */
37
  unsigned opcode;
38

    
39
  /* The opcode mask.  This is used by the disassembler.  This is a
40
     mask containing ones indicating those bits which must match the
41
     opcode field, and zeroes indicating those bits which need not
42
     match (and are presumably filled in by operands).  */
43
  unsigned mask;
44

    
45
  /* One bit flags for the opcode.  These are primarily used to
46
     indicate specific processors and environments support the
47
     instructions.  The defined values are listed below. */
48
  unsigned flags;
49

    
50
  /* An array of operand codes.  Each code is an index into the
51
     operand table.  They appear in the order which the operands must
52
     appear in assembly code, and are terminated by a zero.  */
53
  unsigned char operands[4];
54
};
55

    
56
/* The table itself is sorted by major opcode number, and is otherwise
57
   in the order in which the disassembler should consider
58
   instructions.  */
59
extern const struct alpha_opcode alpha_opcodes[];
60
extern const unsigned alpha_num_opcodes;
61

    
62
/* Values defined for the flags field of a struct alpha_opcode.  */
63

    
64
/* CPU Availability */
65
#define AXP_OPCODE_BASE  0x0001  /* Base architecture -- all cpus.  */
66
#define AXP_OPCODE_EV4   0x0002  /* EV4 specific PALcode insns.  */
67
#define AXP_OPCODE_EV5   0x0004  /* EV5 specific PALcode insns.  */
68
#define AXP_OPCODE_EV6   0x0008  /* EV6 specific PALcode insns.  */
69
#define AXP_OPCODE_BWX   0x0100  /* Byte/word extension (amask bit 0).  */
70
#define AXP_OPCODE_CIX   0x0200  /* "Count" extension (amask bit 1).  */
71
#define AXP_OPCODE_MAX   0x0400  /* Multimedia extension (amask bit 8).  */
72

    
73
#define AXP_OPCODE_NOPAL (~(AXP_OPCODE_EV4|AXP_OPCODE_EV5|AXP_OPCODE_EV6))
74

    
75
/* A macro to extract the major opcode from an instruction.  */
76
#define AXP_OP(i)        (((i) >> 26) & 0x3F)
77

    
78
/* The total number of major opcodes. */
79
#define AXP_NOPS        0x40
80

    
81
 
82
/* The operands table is an array of struct alpha_operand.  */
83

    
84
struct alpha_operand
85
{
86
  /* The number of bits in the operand.  */
87
  unsigned int bits : 5;
88

    
89
  /* How far the operand is left shifted in the instruction.  */
90
  unsigned int shift : 5;
91

    
92
  /* The default relocation type for this operand.  */
93
  signed int default_reloc : 16;
94

    
95
  /* One bit syntax flags.  */
96
  unsigned int flags : 16;
97

    
98
  /* Insertion function.  This is used by the assembler.  To insert an
99
     operand value into an instruction, check this field.
100

101
     If it is NULL, execute
102
         i |= (op & ((1 << o->bits) - 1)) << o->shift;
103
     (i is the instruction which we are filling in, o is a pointer to
104
     this structure, and op is the opcode value; this assumes twos
105
     complement arithmetic).
106

107
     If this field is not NULL, then simply call it with the
108
     instruction and the operand value.  It will return the new value
109
     of the instruction.  If the ERRMSG argument is not NULL, then if
110
     the operand value is illegal, *ERRMSG will be set to a warning
111
     string (the operand will be inserted in any case).  If the
112
     operand value is legal, *ERRMSG will be unchanged (most operands
113
     can accept any value).  */
114
  unsigned (*insert) (unsigned instruction, int op,
115
                      const char **errmsg);
116

    
117
  /* Extraction function.  This is used by the disassembler.  To
118
     extract this operand type from an instruction, check this field.
119

120
     If it is NULL, compute
121
         op = ((i) >> o->shift) & ((1 << o->bits) - 1);
122
         if ((o->flags & AXP_OPERAND_SIGNED) != 0
123
             && (op & (1 << (o->bits - 1))) != 0)
124
           op -= 1 << o->bits;
125
     (i is the instruction, o is a pointer to this structure, and op
126
     is the result; this assumes twos complement arithmetic).
127

128
     If this field is not NULL, then simply call it with the
129
     instruction value.  It will return the value of the operand.  If
130
     the INVALID argument is not NULL, *INVALID will be set to
131
     non-zero if this operand type can not actually be extracted from
132
     this operand (i.e., the instruction does not match).  If the
133
     operand is valid, *INVALID will not be changed.  */
134
  int (*extract) (unsigned instruction, int *invalid);
135
};
136

    
137
/* Elements in the table are retrieved by indexing with values from
138
   the operands field of the alpha_opcodes table.  */
139

    
140
extern const struct alpha_operand alpha_operands[];
141
extern const unsigned alpha_num_operands;
142

    
143
/* Values defined for the flags field of a struct alpha_operand.  */
144

    
145
/* Mask for selecting the type for typecheck purposes */
146
#define AXP_OPERAND_TYPECHECK_MASK                                        \
147
  (AXP_OPERAND_PARENS | AXP_OPERAND_COMMA | AXP_OPERAND_IR |                \
148
   AXP_OPERAND_FPR | AXP_OPERAND_RELATIVE | AXP_OPERAND_SIGNED |         \
149
   AXP_OPERAND_UNSIGNED)
150

    
151
/* This operand does not actually exist in the assembler input.  This
152
   is used to support extended mnemonics, for which two operands fields
153
   are identical.  The assembler should call the insert function with
154
   any op value.  The disassembler should call the extract function,
155
   ignore the return value, and check the value placed in the invalid
156
   argument.  */
157
#define AXP_OPERAND_FAKE        01
158

    
159
/* The operand should be wrapped in parentheses rather than separated
160
   from the previous by a comma.  This is used for the load and store
161
   instructions which want their operands to look like "Ra,disp(Rb)".  */
162
#define AXP_OPERAND_PARENS        02
163

    
164
/* Used in combination with PARENS, this suppresses the suppression of
165
   the comma.  This is used for "jmp Ra,(Rb),hint".  */
166
#define AXP_OPERAND_COMMA        04
167

    
168
/* This operand names an integer register.  */
169
#define AXP_OPERAND_IR                010
170

    
171
/* This operand names a floating point register.  */
172
#define AXP_OPERAND_FPR                020
173

    
174
/* This operand is a relative branch displacement.  The disassembler
175
   prints these symbolically if possible.  */
176
#define AXP_OPERAND_RELATIVE        040
177

    
178
/* This operand takes signed values.  */
179
#define AXP_OPERAND_SIGNED        0100
180

    
181
/* This operand takes unsigned values.  This exists primarily so that
182
   a flags value of 0 can be treated as end-of-arguments.  */
183
#define AXP_OPERAND_UNSIGNED        0200
184

    
185
/* Suppress overflow detection on this field.  This is used for hints. */
186
#define AXP_OPERAND_NOOVERFLOW        0400
187

    
188
/* Mask for optional argument default value.  */
189
#define AXP_OPERAND_OPTIONAL_MASK 07000
190

    
191
/* This operand defaults to zero.  This is used for jump hints.  */
192
#define AXP_OPERAND_DEFAULT_ZERO 01000
193

    
194
/* This operand should default to the first (real) operand and is used
195
   in conjunction with AXP_OPERAND_OPTIONAL.  This allows
196
   "and $0,3,$0" to be written as "and $0,3", etc.  I don't like
197
   it, but it's what DEC does.  */
198
#define AXP_OPERAND_DEFAULT_FIRST 02000
199

    
200
/* Similarly, this operand should default to the second (real) operand.
201
   This allows "negl $0" instead of "negl $0,$0".  */
202
#define AXP_OPERAND_DEFAULT_SECOND 04000
203

    
204
 
205
/* Register common names */
206

    
207
#define AXP_REG_V0        0
208
#define AXP_REG_T0        1
209
#define AXP_REG_T1        2
210
#define AXP_REG_T2        3
211
#define AXP_REG_T3        4
212
#define AXP_REG_T4        5
213
#define AXP_REG_T5        6
214
#define AXP_REG_T6        7
215
#define AXP_REG_T7        8
216
#define AXP_REG_S0        9
217
#define AXP_REG_S1        10
218
#define AXP_REG_S2        11
219
#define AXP_REG_S3        12
220
#define AXP_REG_S4        13
221
#define AXP_REG_S5        14
222
#define AXP_REG_FP        15
223
#define AXP_REG_A0        16
224
#define AXP_REG_A1        17
225
#define AXP_REG_A2        18
226
#define AXP_REG_A3        19
227
#define AXP_REG_A4        20
228
#define AXP_REG_A5        21
229
#define AXP_REG_T8        22
230
#define AXP_REG_T9        23
231
#define AXP_REG_T10        24
232
#define AXP_REG_T11        25
233
#define AXP_REG_RA        26
234
#define AXP_REG_PV        27
235
#define AXP_REG_T12        27
236
#define AXP_REG_AT        28
237
#define AXP_REG_GP        29
238
#define AXP_REG_SP        30
239
#define AXP_REG_ZERO        31
240

    
241
enum bfd_reloc_code_real {
242
    BFD_RELOC_23_PCREL_S2,
243
    BFD_RELOC_ALPHA_HINT
244
};
245

    
246
/* This file holds the Alpha AXP opcode table.  The opcode table includes
247
   almost all of the extended instruction mnemonics.  This permits the
248
   disassembler to use them, and simplifies the assembler logic, at the
249
   cost of increasing the table size.  The table is strictly constant
250
   data, so the compiler should be able to put it in the text segment.
251

252
   This file also holds the operand table.  All knowledge about inserting
253
   and extracting operands from instructions is kept in this file.
254

255
   The information for the base instruction set was compiled from the
256
   _Alpha Architecture Handbook_, Digital Order Number EC-QD2KB-TE,
257
   version 2.
258

259
   The information for the post-ev5 architecture extensions BWX, CIX and
260
   MAX came from version 3 of this same document, which is also available
261
   on-line at http://ftp.digital.com/pub/Digital/info/semiconductor
262
   /literature/alphahb2.pdf
263

264
   The information for the EV4 PALcode instructions was compiled from
265
   _DECchip 21064 and DECchip 21064A Alpha AXP Microprocessors Hardware
266
   Reference Manual_, Digital Order Number EC-Q9ZUA-TE, preliminary
267
   revision dated June 1994.
268

269
   The information for the EV5 PALcode instructions was compiled from
270
   _Alpha 21164 Microprocessor Hardware Reference Manual_, Digital
271
   Order Number EC-QAEQB-TE, preliminary revision dated April 1995.  */
272
 
273
/* Local insertion and extraction functions */
274

    
275
static unsigned insert_rba (unsigned, int, const char **);
276
static unsigned insert_rca (unsigned, int, const char **);
277
static unsigned insert_za (unsigned, int, const char **);
278
static unsigned insert_zb (unsigned, int, const char **);
279
static unsigned insert_zc (unsigned, int, const char **);
280
static unsigned insert_bdisp (unsigned, int, const char **);
281
static unsigned insert_jhint (unsigned, int, const char **);
282
static unsigned insert_ev6hwjhint (unsigned, int, const char **);
283

    
284
static int extract_rba (unsigned, int *);
285
static int extract_rca (unsigned, int *);
286
static int extract_za (unsigned, int *);
287
static int extract_zb (unsigned, int *);
288
static int extract_zc (unsigned, int *);
289
static int extract_bdisp (unsigned, int *);
290
static int extract_jhint (unsigned, int *);
291
static int extract_ev6hwjhint (unsigned, int *);
292

    
293
 
294
/* The operands table  */
295

    
296
const struct alpha_operand alpha_operands[] =
297
{
298
  /* The fields are bits, shift, insert, extract, flags */
299
  /* The zero index is used to indicate end-of-list */
300
#define UNUSED                0
301
  { 0, 0, 0, 0, 0, 0 },
302

    
303
  /* The plain integer register fields */
304
#define RA                (UNUSED + 1)
305
  { 5, 21, 0, AXP_OPERAND_IR, 0, 0 },
306
#define RB                (RA + 1)
307
  { 5, 16, 0, AXP_OPERAND_IR, 0, 0 },
308
#define RC                (RB + 1)
309
  { 5, 0, 0, AXP_OPERAND_IR, 0, 0 },
310

    
311
  /* The plain fp register fields */
312
#define FA                (RC + 1)
313
  { 5, 21, 0, AXP_OPERAND_FPR, 0, 0 },
314
#define FB                (FA + 1)
315
  { 5, 16, 0, AXP_OPERAND_FPR, 0, 0 },
316
#define FC                (FB + 1)
317
  { 5, 0, 0, AXP_OPERAND_FPR, 0, 0 },
318

    
319
  /* The integer registers when they are ZERO */
320
#define ZA                (FC + 1)
321
  { 5, 21, 0, AXP_OPERAND_FAKE, insert_za, extract_za },
322
#define ZB                (ZA + 1)
323
  { 5, 16, 0, AXP_OPERAND_FAKE, insert_zb, extract_zb },
324
#define ZC                (ZB + 1)
325
  { 5, 0, 0, AXP_OPERAND_FAKE, insert_zc, extract_zc },
326

    
327
  /* The RB field when it needs parentheses */
328
#define PRB                (ZC + 1)
329
  { 5, 16, 0, AXP_OPERAND_IR|AXP_OPERAND_PARENS, 0, 0 },
330

    
331
  /* The RB field when it needs parentheses _and_ a preceding comma */
332
#define CPRB                (PRB + 1)
333
  { 5, 16, 0,
334
    AXP_OPERAND_IR|AXP_OPERAND_PARENS|AXP_OPERAND_COMMA, 0, 0 },
335

    
336
  /* The RB field when it must be the same as the RA field */
337
#define RBA                (CPRB + 1)
338
  { 5, 16, 0, AXP_OPERAND_FAKE, insert_rba, extract_rba },
339

    
340
  /* The RC field when it must be the same as the RB field */
341
#define RCA                (RBA + 1)
342
  { 5, 0, 0, AXP_OPERAND_FAKE, insert_rca, extract_rca },
343

    
344
  /* The RC field when it can *default* to RA */
345
#define DRC1                (RCA + 1)
346
  { 5, 0, 0,
347
    AXP_OPERAND_IR|AXP_OPERAND_DEFAULT_FIRST, 0, 0 },
348

    
349
  /* The RC field when it can *default* to RB */
350
#define DRC2                (DRC1 + 1)
351
  { 5, 0, 0,
352
    AXP_OPERAND_IR|AXP_OPERAND_DEFAULT_SECOND, 0, 0 },
353

    
354
  /* The FC field when it can *default* to RA */
355
#define DFC1                (DRC2 + 1)
356
  { 5, 0, 0,
357
    AXP_OPERAND_FPR|AXP_OPERAND_DEFAULT_FIRST, 0, 0 },
358

    
359
  /* The FC field when it can *default* to RB */
360
#define DFC2                (DFC1 + 1)
361
  { 5, 0, 0,
362
    AXP_OPERAND_FPR|AXP_OPERAND_DEFAULT_SECOND, 0, 0 },
363

    
364
  /* The unsigned 8-bit literal of Operate format insns */
365
#define LIT                (DFC2 + 1)
366
  { 8, 13, -LIT, AXP_OPERAND_UNSIGNED, 0, 0 },
367

    
368
  /* The signed 16-bit displacement of Memory format insns.  From here
369
     we can't tell what relocation should be used, so don't use a default. */
370
#define MDISP                (LIT + 1)
371
  { 16, 0, -MDISP, AXP_OPERAND_SIGNED, 0, 0 },
372

    
373
  /* The signed "23-bit" aligned displacement of Branch format insns */
374
#define BDISP                (MDISP + 1)
375
  { 21, 0, BFD_RELOC_23_PCREL_S2,
376
    AXP_OPERAND_RELATIVE, insert_bdisp, extract_bdisp },
377

    
378
  /* The 26-bit PALcode function */
379
#define PALFN                (BDISP + 1)
380
  { 26, 0, -PALFN, AXP_OPERAND_UNSIGNED, 0, 0 },
381

    
382
  /* The optional signed "16-bit" aligned displacement of the JMP/JSR hint */
383
#define JMPHINT                (PALFN + 1)
384
  { 14, 0, BFD_RELOC_ALPHA_HINT,
385
    AXP_OPERAND_RELATIVE|AXP_OPERAND_DEFAULT_ZERO|AXP_OPERAND_NOOVERFLOW,
386
    insert_jhint, extract_jhint },
387

    
388
  /* The optional hint to RET/JSR_COROUTINE */
389
#define RETHINT                (JMPHINT + 1)
390
  { 14, 0, -RETHINT,
391
    AXP_OPERAND_UNSIGNED|AXP_OPERAND_DEFAULT_ZERO, 0, 0 },
392

    
393
  /* The 12-bit displacement for the ev[46] hw_{ld,st} (pal1b/pal1f) insns */
394
#define EV4HWDISP        (RETHINT + 1)
395
#define EV6HWDISP        (EV4HWDISP)
396
  { 12, 0, -EV4HWDISP, AXP_OPERAND_SIGNED, 0, 0 },
397

    
398
  /* The 5-bit index for the ev4 hw_m[ft]pr (pal19/pal1d) insns */
399
#define EV4HWINDEX        (EV4HWDISP + 1)
400
  { 5, 0, -EV4HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
401

    
402
  /* The 8-bit index for the oddly unqualified hw_m[tf]pr insns
403
     that occur in DEC PALcode.  */
404
#define EV4EXTHWINDEX        (EV4HWINDEX + 1)
405
  { 8, 0, -EV4EXTHWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
406

    
407
  /* The 10-bit displacement for the ev5 hw_{ld,st} (pal1b/pal1f) insns */
408
#define EV5HWDISP        (EV4EXTHWINDEX + 1)
409
  { 10, 0, -EV5HWDISP, AXP_OPERAND_SIGNED, 0, 0 },
410

    
411
  /* The 16-bit index for the ev5 hw_m[ft]pr (pal19/pal1d) insns */
412
#define EV5HWINDEX        (EV5HWDISP + 1)
413
  { 16, 0, -EV5HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
414

    
415
  /* The 16-bit combined index/scoreboard mask for the ev6
416
     hw_m[ft]pr (pal19/pal1d) insns */
417
#define EV6HWINDEX        (EV5HWINDEX + 1)
418
  { 16, 0, -EV6HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
419

    
420
  /* The 13-bit branch hint for the ev6 hw_jmp/jsr (pal1e) insn */
421
#define EV6HWJMPHINT        (EV6HWINDEX+ 1)
422
  { 8, 0, -EV6HWJMPHINT,
423
    AXP_OPERAND_RELATIVE|AXP_OPERAND_DEFAULT_ZERO|AXP_OPERAND_NOOVERFLOW,
424
    insert_ev6hwjhint, extract_ev6hwjhint }
425
};
426

    
427
const unsigned alpha_num_operands = sizeof(alpha_operands)/sizeof(*alpha_operands);
428

    
429
/* The RB field when it is the same as the RA field in the same insn.
430
   This operand is marked fake.  The insertion function just copies
431
   the RA field into the RB field, and the extraction function just
432
   checks that the fields are the same. */
433

    
434
/*ARGSUSED*/
435
static unsigned
436
insert_rba(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
437
{
438
  return insn | (((insn >> 21) & 0x1f) << 16);
439
}
440

    
441
static int
442
extract_rba(unsigned insn, int *invalid)
443
{
444
  if (invalid != (int *) NULL
445
      && ((insn >> 21) & 0x1f) != ((insn >> 16) & 0x1f))
446
    *invalid = 1;
447
  return 0;
448
}
449

    
450

    
451
/* The same for the RC field */
452

    
453
/*ARGSUSED*/
454
static unsigned
455
insert_rca(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
456
{
457
  return insn | ((insn >> 21) & 0x1f);
458
}
459

    
460
static int
461
extract_rca(unsigned insn, int *invalid)
462
{
463
  if (invalid != (int *) NULL
464
      && ((insn >> 21) & 0x1f) != (insn & 0x1f))
465
    *invalid = 1;
466
  return 0;
467
}
468

    
469

    
470
/* Fake arguments in which the registers must be set to ZERO */
471

    
472
/*ARGSUSED*/
473
static unsigned
474
insert_za(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
475
{
476
  return insn | (31 << 21);
477
}
478

    
479
static int
480
extract_za(unsigned insn, int *invalid)
481
{
482
  if (invalid != (int *) NULL && ((insn >> 21) & 0x1f) != 31)
483
    *invalid = 1;
484
  return 0;
485
}
486

    
487
/*ARGSUSED*/
488
static unsigned
489
insert_zb(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
490
{
491
  return insn | (31 << 16);
492
}
493

    
494
static int
495
extract_zb(unsigned insn, int *invalid)
496
{
497
  if (invalid != (int *) NULL && ((insn >> 16) & 0x1f) != 31)
498
    *invalid = 1;
499
  return 0;
500
}
501

    
502
/*ARGSUSED*/
503
static unsigned
504
insert_zc(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
505
{
506
  return insn | 31;
507
}
508

    
509
static int
510
extract_zc(unsigned insn, int *invalid)
511
{
512
  if (invalid != (int *) NULL && (insn & 0x1f) != 31)
513
    *invalid = 1;
514
  return 0;
515
}
516

    
517

    
518
/* The displacement field of a Branch format insn.  */
519

    
520
static unsigned
521
insert_bdisp(unsigned insn, int value, const char **errmsg)
522
{
523
  if (errmsg != (const char **)NULL && (value & 3))
524
    *errmsg = _("branch operand unaligned");
525
  return insn | ((value / 4) & 0x1FFFFF);
526
}
527

    
528
/*ARGSUSED*/
529
static int
530
extract_bdisp(unsigned insn, int *invalid ATTRIBUTE_UNUSED)
531
{
532
  return 4 * (((insn & 0x1FFFFF) ^ 0x100000) - 0x100000);
533
}
534

    
535

    
536
/* The hint field of a JMP/JSR insn.  */
537

    
538
static unsigned
539
insert_jhint(unsigned insn, int value, const char **errmsg)
540
{
541
  if (errmsg != (const char **)NULL && (value & 3))
542
    *errmsg = _("jump hint unaligned");
543
  return insn | ((value / 4) & 0x3FFF);
544
}
545

    
546
/*ARGSUSED*/
547
static int
548
extract_jhint(unsigned insn, int *invalid ATTRIBUTE_UNUSED)
549
{
550
  return 4 * (((insn & 0x3FFF) ^ 0x2000) - 0x2000);
551
}
552

    
553
/* The hint field of an EV6 HW_JMP/JSR insn.  */
554

    
555
static unsigned
556
insert_ev6hwjhint(unsigned insn, int value, const char **errmsg)
557
{
558
  if (errmsg != (const char **)NULL && (value & 3))
559
    *errmsg = _("jump hint unaligned");
560
  return insn | ((value / 4) & 0x1FFF);
561
}
562

    
563
/*ARGSUSED*/
564
static int
565
extract_ev6hwjhint(unsigned insn, int *invalid ATTRIBUTE_UNUSED)
566
{
567
  return 4 * (((insn & 0x1FFF) ^ 0x1000) - 0x1000);
568
}
569

    
570
 
571
/* Macros used to form opcodes */
572

    
573
/* The main opcode */
574
#define OP(x)                (((x) & 0x3F) << 26)
575
#define OP_MASK                0xFC000000
576

    
577
/* Branch format instructions */
578
#define BRA_(oo)        OP(oo)
579
#define BRA_MASK        OP_MASK
580
#define BRA(oo)                BRA_(oo), BRA_MASK
581

    
582
/* Floating point format instructions */
583
#define FP_(oo,fff)        (OP(oo) | (((fff) & 0x7FF) << 5))
584
#define FP_MASK                (OP_MASK | 0xFFE0)
585
#define FP(oo,fff)        FP_(oo,fff), FP_MASK
586

    
587
/* Memory format instructions */
588
#define MEM_(oo)        OP(oo)
589
#define MEM_MASK        OP_MASK
590
#define MEM(oo)                MEM_(oo), MEM_MASK
591

    
592
/* Memory/Func Code format instructions */
593
#define MFC_(oo,ffff)        (OP(oo) | ((ffff) & 0xFFFF))
594
#define MFC_MASK        (OP_MASK | 0xFFFF)
595
#define MFC(oo,ffff)        MFC_(oo,ffff), MFC_MASK
596

    
597
/* Memory/Branch format instructions */
598
#define MBR_(oo,h)        (OP(oo) | (((h) & 3) << 14))
599
#define MBR_MASK        (OP_MASK | 0xC000)
600
#define MBR(oo,h)        MBR_(oo,h), MBR_MASK
601

    
602
/* Operate format instructions.  The OPRL variant specifies a
603
   literal second argument. */
604
#define OPR_(oo,ff)        (OP(oo) | (((ff) & 0x7F) << 5))
605
#define OPRL_(oo,ff)        (OPR_((oo),(ff)) | 0x1000)
606
#define OPR_MASK        (OP_MASK | 0x1FE0)
607
#define OPR(oo,ff)        OPR_(oo,ff), OPR_MASK
608
#define OPRL(oo,ff)        OPRL_(oo,ff), OPR_MASK
609

    
610
/* Generic PALcode format instructions */
611
#define PCD_(oo)        OP(oo)
612
#define PCD_MASK        OP_MASK
613
#define PCD(oo)                PCD_(oo), PCD_MASK
614

    
615
/* Specific PALcode instructions */
616
#define SPCD_(oo,ffff)        (OP(oo) | ((ffff) & 0x3FFFFFF))
617
#define SPCD_MASK        0xFFFFFFFF
618
#define SPCD(oo,ffff)        SPCD_(oo,ffff), SPCD_MASK
619

    
620
/* Hardware memory (hw_{ld,st}) instructions */
621
#define EV4HWMEM_(oo,f)        (OP(oo) | (((f) & 0xF) << 12))
622
#define EV4HWMEM_MASK        (OP_MASK | 0xF000)
623
#define EV4HWMEM(oo,f)        EV4HWMEM_(oo,f), EV4HWMEM_MASK
624

    
625
#define EV5HWMEM_(oo,f)        (OP(oo) | (((f) & 0x3F) << 10))
626
#define EV5HWMEM_MASK        (OP_MASK | 0xF800)
627
#define EV5HWMEM(oo,f)        EV5HWMEM_(oo,f), EV5HWMEM_MASK
628

    
629
#define EV6HWMEM_(oo,f)        (OP(oo) | (((f) & 0xF) << 12))
630
#define EV6HWMEM_MASK        (OP_MASK | 0xF000)
631
#define EV6HWMEM(oo,f)        EV6HWMEM_(oo,f), EV6HWMEM_MASK
632

    
633
#define EV6HWMBR_(oo,h)        (OP(oo) | (((h) & 7) << 13))
634
#define EV6HWMBR_MASK        (OP_MASK | 0xE000)
635
#define EV6HWMBR(oo,h)        EV6HWMBR_(oo,h), EV6HWMBR_MASK
636

    
637
/* Abbreviations for instruction subsets.  */
638
#define BASE                        AXP_OPCODE_BASE
639
#define EV4                        AXP_OPCODE_EV4
640
#define EV5                        AXP_OPCODE_EV5
641
#define EV6                        AXP_OPCODE_EV6
642
#define BWX                        AXP_OPCODE_BWX
643
#define CIX                        AXP_OPCODE_CIX
644
#define MAX                        AXP_OPCODE_MAX
645

    
646
/* Common combinations of arguments */
647
#define ARG_NONE                { 0 }
648
#define ARG_BRA                        { RA, BDISP }
649
#define ARG_FBRA                { FA, BDISP }
650
#define ARG_FP                        { FA, FB, DFC1 }
651
#define ARG_FPZ1                { ZA, FB, DFC1 }
652
#define ARG_MEM                        { RA, MDISP, PRB }
653
#define ARG_FMEM                { FA, MDISP, PRB }
654
#define ARG_OPR                        { RA, RB, DRC1 }
655
#define ARG_OPRL                { RA, LIT, DRC1 }
656
#define ARG_OPRZ1                { ZA, RB, DRC1 }
657
#define ARG_OPRLZ1                { ZA, LIT, RC }
658
#define ARG_PCD                        { PALFN }
659
#define ARG_EV4HWMEM                { RA, EV4HWDISP, PRB }
660
#define ARG_EV4HWMPR                { RA, RBA, EV4HWINDEX }
661
#define ARG_EV5HWMEM                { RA, EV5HWDISP, PRB }
662
#define ARG_EV6HWMEM                { RA, EV6HWDISP, PRB }
663
 
664
/* The opcode table.
665

666
   The format of the opcode table is:
667

668
   NAME OPCODE MASK { OPERANDS }
669

670
   NAME                is the name of the instruction.
671

672
   OPCODE        is the instruction opcode.
673

674
   MASK                is the opcode mask; this is used to tell the disassembler
675
                    which bits in the actual opcode must match OPCODE.
676

677
   OPERANDS        is the list of operands.
678

679
   The preceding macros merge the text of the OPCODE and MASK fields.
680

681
   The disassembler reads the table in order and prints the first
682
   instruction which matches, so this table is sorted to put more
683
   specific instructions before more general instructions.
684

685
   Otherwise, it is sorted by major opcode and minor function code.
686

687
   There are three classes of not-really-instructions in this table:
688

689
   ALIAS        is another name for another instruction.  Some of
690
                these come from the Architecture Handbook, some
691
                come from the original gas opcode tables.  In all
692
                cases, the functionality of the opcode is unchanged.
693

694
   PSEUDO        a stylized code form endorsed by Chapter A.4 of the
695
                Architecture Handbook.
696

697
   EXTRA        a stylized code form found in the original gas tables.
698

699
   And two annotations:
700

701
   EV56 BUT        opcodes that are officially introduced as of the ev56,
702
                   but with defined results on previous implementations.
703

704
   EV56 UNA        opcodes that were introduced as of the ev56 with
705
                   presumably undefined results on previous implementations
706
                that were not assigned to a particular extension.
707
*/
708

    
709
const struct alpha_opcode alpha_opcodes[] = {
710
  { "halt",                SPCD(0x00,0x0000), BASE, ARG_NONE },
711
  { "draina",                SPCD(0x00,0x0002), BASE, ARG_NONE },
712
  { "bpt",                SPCD(0x00,0x0080), BASE, ARG_NONE },
713
  { "bugchk",                SPCD(0x00,0x0081), BASE, ARG_NONE },
714
  { "callsys",                SPCD(0x00,0x0083), BASE, ARG_NONE },
715
  { "chmk",                 SPCD(0x00,0x0083), BASE, ARG_NONE },
716
  { "imb",                SPCD(0x00,0x0086), BASE, ARG_NONE },
717
  { "rduniq",                SPCD(0x00,0x009e), BASE, ARG_NONE },
718
  { "wruniq",                SPCD(0x00,0x009f), BASE, ARG_NONE },
719
  { "gentrap",                SPCD(0x00,0x00aa), BASE, ARG_NONE },
720
  { "call_pal",                PCD(0x00), BASE, ARG_PCD },
721
  { "pal",                PCD(0x00), BASE, ARG_PCD },                /* alias */
722

    
723
  { "lda",                MEM(0x08), BASE, { RA, MDISP, ZB } },        /* pseudo */
724
  { "lda",                MEM(0x08), BASE, ARG_MEM },
725
  { "ldah",                MEM(0x09), BASE, { RA, MDISP, ZB } },        /* pseudo */
726
  { "ldah",                MEM(0x09), BASE, ARG_MEM },
727
  { "ldbu",                MEM(0x0A), BWX, ARG_MEM },
728
  { "unop",                MEM_(0x0B) | (30 << 16),
729
                        MEM_MASK, BASE, { ZA } },                /* pseudo */
730
  { "ldq_u",                MEM(0x0B), BASE, ARG_MEM },
731
  { "ldwu",                MEM(0x0C), BWX, ARG_MEM },
732
  { "stw",                MEM(0x0D), BWX, ARG_MEM },
733
  { "stb",                MEM(0x0E), BWX, ARG_MEM },
734
  { "stq_u",                MEM(0x0F), BASE, ARG_MEM },
735

    
736
  { "sextl",                OPR(0x10,0x00), BASE, ARG_OPRZ1 },        /* pseudo */
737
  { "sextl",                OPRL(0x10,0x00), BASE, ARG_OPRLZ1 },        /* pseudo */
738
  { "addl",                OPR(0x10,0x00), BASE, ARG_OPR },
739
  { "addl",                OPRL(0x10,0x00), BASE, ARG_OPRL },
740
  { "s4addl",                OPR(0x10,0x02), BASE, ARG_OPR },
741
  { "s4addl",                OPRL(0x10,0x02), BASE, ARG_OPRL },
742
  { "negl",                OPR(0x10,0x09), BASE, ARG_OPRZ1 },        /* pseudo */
743
  { "negl",                OPRL(0x10,0x09), BASE, ARG_OPRLZ1 },        /* pseudo */
744
  { "subl",                OPR(0x10,0x09), BASE, ARG_OPR },
745
  { "subl",                OPRL(0x10,0x09), BASE, ARG_OPRL },
746
  { "s4subl",                OPR(0x10,0x0B), BASE, ARG_OPR },
747
  { "s4subl",                OPRL(0x10,0x0B), BASE, ARG_OPRL },
748
  { "cmpbge",                OPR(0x10,0x0F), BASE, ARG_OPR },
749
  { "cmpbge",                OPRL(0x10,0x0F), BASE, ARG_OPRL },
750
  { "s8addl",                OPR(0x10,0x12), BASE, ARG_OPR },
751
  { "s8addl",                OPRL(0x10,0x12), BASE, ARG_OPRL },
752
  { "s8subl",                OPR(0x10,0x1B), BASE, ARG_OPR },
753
  { "s8subl",                OPRL(0x10,0x1B), BASE, ARG_OPRL },
754
  { "cmpult",                OPR(0x10,0x1D), BASE, ARG_OPR },
755
  { "cmpult",                OPRL(0x10,0x1D), BASE, ARG_OPRL },
756
  { "addq",                OPR(0x10,0x20), BASE, ARG_OPR },
757
  { "addq",                OPRL(0x10,0x20), BASE, ARG_OPRL },
758
  { "s4addq",                OPR(0x10,0x22), BASE, ARG_OPR },
759
  { "s4addq",                OPRL(0x10,0x22), BASE, ARG_OPRL },
760
  { "negq",                 OPR(0x10,0x29), BASE, ARG_OPRZ1 },        /* pseudo */
761
  { "negq",                 OPRL(0x10,0x29), BASE, ARG_OPRLZ1 },        /* pseudo */
762
  { "subq",                OPR(0x10,0x29), BASE, ARG_OPR },
763
  { "subq",                OPRL(0x10,0x29), BASE, ARG_OPRL },
764
  { "s4subq",                OPR(0x10,0x2B), BASE, ARG_OPR },
765
  { "s4subq",                OPRL(0x10,0x2B), BASE, ARG_OPRL },
766
  { "cmpeq",                OPR(0x10,0x2D), BASE, ARG_OPR },
767
  { "cmpeq",                OPRL(0x10,0x2D), BASE, ARG_OPRL },
768
  { "s8addq",                OPR(0x10,0x32), BASE, ARG_OPR },
769
  { "s8addq",                OPRL(0x10,0x32), BASE, ARG_OPRL },
770
  { "s8subq",                OPR(0x10,0x3B), BASE, ARG_OPR },
771
  { "s8subq",                OPRL(0x10,0x3B), BASE, ARG_OPRL },
772
  { "cmpule",                OPR(0x10,0x3D), BASE, ARG_OPR },
773
  { "cmpule",                OPRL(0x10,0x3D), BASE, ARG_OPRL },
774
  { "addl/v",                OPR(0x10,0x40), BASE, ARG_OPR },
775
  { "addl/v",                OPRL(0x10,0x40), BASE, ARG_OPRL },
776
  { "negl/v",                OPR(0x10,0x49), BASE, ARG_OPRZ1 },        /* pseudo */
777
  { "negl/v",                OPRL(0x10,0x49), BASE, ARG_OPRLZ1 },        /* pseudo */
778
  { "subl/v",                OPR(0x10,0x49), BASE, ARG_OPR },
779
  { "subl/v",                OPRL(0x10,0x49), BASE, ARG_OPRL },
780
  { "cmplt",                OPR(0x10,0x4D), BASE, ARG_OPR },
781
  { "cmplt",                OPRL(0x10,0x4D), BASE, ARG_OPRL },
782
  { "addq/v",                OPR(0x10,0x60), BASE, ARG_OPR },
783
  { "addq/v",                OPRL(0x10,0x60), BASE, ARG_OPRL },
784
  { "negq/v",                OPR(0x10,0x69), BASE, ARG_OPRZ1 },        /* pseudo */
785
  { "negq/v",                OPRL(0x10,0x69), BASE, ARG_OPRLZ1 },        /* pseudo */
786
  { "subq/v",                OPR(0x10,0x69), BASE, ARG_OPR },
787
  { "subq/v",                OPRL(0x10,0x69), BASE, ARG_OPRL },
788
  { "cmple",                OPR(0x10,0x6D), BASE, ARG_OPR },
789
  { "cmple",                OPRL(0x10,0x6D), BASE, ARG_OPRL },
790

    
791
  { "and",                OPR(0x11,0x00), BASE, ARG_OPR },
792
  { "and",                OPRL(0x11,0x00), BASE, ARG_OPRL },
793
  { "andnot",                OPR(0x11,0x08), BASE, ARG_OPR },        /* alias */
794
  { "andnot",                OPRL(0x11,0x08), BASE, ARG_OPRL },        /* alias */
795
  { "bic",                OPR(0x11,0x08), BASE, ARG_OPR },
796
  { "bic",                OPRL(0x11,0x08), BASE, ARG_OPRL },
797
  { "cmovlbs",                OPR(0x11,0x14), BASE, ARG_OPR },
798
  { "cmovlbs",                OPRL(0x11,0x14), BASE, ARG_OPRL },
799
  { "cmovlbc",                OPR(0x11,0x16), BASE, ARG_OPR },
800
  { "cmovlbc",                OPRL(0x11,0x16), BASE, ARG_OPRL },
801
  { "nop",                OPR(0x11,0x20), BASE, { ZA, ZB, ZC } }, /* pseudo */
802
  { "clr",                OPR(0x11,0x20), BASE, { ZA, ZB, RC } }, /* pseudo */
803
  { "mov",                OPR(0x11,0x20), BASE, { ZA, RB, RC } }, /* pseudo */
804
  { "mov",                OPR(0x11,0x20), BASE, { RA, RBA, RC } }, /* pseudo */
805
  { "mov",                OPRL(0x11,0x20), BASE, { ZA, LIT, RC } }, /* pseudo */
806
  { "or",                OPR(0x11,0x20), BASE, ARG_OPR },        /* alias */
807
  { "or",                OPRL(0x11,0x20), BASE, ARG_OPRL },        /* alias */
808
  { "bis",                OPR(0x11,0x20), BASE, ARG_OPR },
809
  { "bis",                OPRL(0x11,0x20), BASE, ARG_OPRL },
810
  { "cmoveq",                OPR(0x11,0x24), BASE, ARG_OPR },
811
  { "cmoveq",                OPRL(0x11,0x24), BASE, ARG_OPRL },
812
  { "cmovne",                OPR(0x11,0x26), BASE, ARG_OPR },
813
  { "cmovne",                OPRL(0x11,0x26), BASE, ARG_OPRL },
814
  { "not",                OPR(0x11,0x28), BASE, ARG_OPRZ1 },        /* pseudo */
815
  { "not",                OPRL(0x11,0x28), BASE, ARG_OPRLZ1 },        /* pseudo */
816
  { "ornot",                OPR(0x11,0x28), BASE, ARG_OPR },
817
  { "ornot",                OPRL(0x11,0x28), BASE, ARG_OPRL },
818
  { "xor",                OPR(0x11,0x40), BASE, ARG_OPR },
819
  { "xor",                OPRL(0x11,0x40), BASE, ARG_OPRL },
820
  { "cmovlt",                OPR(0x11,0x44), BASE, ARG_OPR },
821
  { "cmovlt",                OPRL(0x11,0x44), BASE, ARG_OPRL },
822
  { "cmovge",                OPR(0x11,0x46), BASE, ARG_OPR },
823
  { "cmovge",                OPRL(0x11,0x46), BASE, ARG_OPRL },
824
  { "eqv",                OPR(0x11,0x48), BASE, ARG_OPR },
825
  { "eqv",                OPRL(0x11,0x48), BASE, ARG_OPRL },
826
  { "xornot",                OPR(0x11,0x48), BASE, ARG_OPR },        /* alias */
827
  { "xornot",                OPRL(0x11,0x48), BASE, ARG_OPRL },        /* alias */
828
  { "amask",                OPR(0x11,0x61), BASE, ARG_OPRZ1 },        /* ev56 but */
829
  { "amask",                OPRL(0x11,0x61), BASE, ARG_OPRLZ1 },        /* ev56 but */
830
  { "cmovle",                OPR(0x11,0x64), BASE, ARG_OPR },
831
  { "cmovle",                OPRL(0x11,0x64), BASE, ARG_OPRL },
832
  { "cmovgt",                OPR(0x11,0x66), BASE, ARG_OPR },
833
  { "cmovgt",                OPRL(0x11,0x66), BASE, ARG_OPRL },
834
  { "implver",                OPRL_(0x11,0x6C)|(31<<21)|(1<<13),
835
                            0xFFFFFFE0, BASE, { RC } },                /* ev56 but */
836

    
837
  { "mskbl",                OPR(0x12,0x02), BASE, ARG_OPR },
838
  { "mskbl",                OPRL(0x12,0x02), BASE, ARG_OPRL },
839
  { "extbl",                OPR(0x12,0x06), BASE, ARG_OPR },
840
  { "extbl",                OPRL(0x12,0x06), BASE, ARG_OPRL },
841
  { "insbl",                OPR(0x12,0x0B), BASE, ARG_OPR },
842
  { "insbl",                OPRL(0x12,0x0B), BASE, ARG_OPRL },
843
  { "mskwl",                OPR(0x12,0x12), BASE, ARG_OPR },
844
  { "mskwl",                OPRL(0x12,0x12), BASE, ARG_OPRL },
845
  { "extwl",                OPR(0x12,0x16), BASE, ARG_OPR },
846
  { "extwl",                OPRL(0x12,0x16), BASE, ARG_OPRL },
847
  { "inswl",                OPR(0x12,0x1B), BASE, ARG_OPR },
848
  { "inswl",                OPRL(0x12,0x1B), BASE, ARG_OPRL },
849
  { "mskll",                OPR(0x12,0x22), BASE, ARG_OPR },
850
  { "mskll",                OPRL(0x12,0x22), BASE, ARG_OPRL },
851
  { "extll",                OPR(0x12,0x26), BASE, ARG_OPR },
852
  { "extll",                OPRL(0x12,0x26), BASE, ARG_OPRL },
853
  { "insll",                OPR(0x12,0x2B), BASE, ARG_OPR },
854
  { "insll",                OPRL(0x12,0x2B), BASE, ARG_OPRL },
855
  { "zap",                OPR(0x12,0x30), BASE, ARG_OPR },
856
  { "zap",                OPRL(0x12,0x30), BASE, ARG_OPRL },
857
  { "zapnot",                OPR(0x12,0x31), BASE, ARG_OPR },
858
  { "zapnot",                OPRL(0x12,0x31), BASE, ARG_OPRL },
859
  { "mskql",                OPR(0x12,0x32), BASE, ARG_OPR },
860
  { "mskql",                OPRL(0x12,0x32), BASE, ARG_OPRL },
861
  { "srl",                OPR(0x12,0x34), BASE, ARG_OPR },
862
  { "srl",                OPRL(0x12,0x34), BASE, ARG_OPRL },
863
  { "extql",                OPR(0x12,0x36), BASE, ARG_OPR },
864
  { "extql",                OPRL(0x12,0x36), BASE, ARG_OPRL },
865
  { "sll",                OPR(0x12,0x39), BASE, ARG_OPR },
866
  { "sll",                OPRL(0x12,0x39), BASE, ARG_OPRL },
867
  { "insql",                OPR(0x12,0x3B), BASE, ARG_OPR },
868
  { "insql",                OPRL(0x12,0x3B), BASE, ARG_OPRL },
869
  { "sra",                OPR(0x12,0x3C), BASE, ARG_OPR },
870
  { "sra",                OPRL(0x12,0x3C), BASE, ARG_OPRL },
871
  { "mskwh",                OPR(0x12,0x52), BASE, ARG_OPR },
872
  { "mskwh",                OPRL(0x12,0x52), BASE, ARG_OPRL },
873
  { "inswh",                OPR(0x12,0x57), BASE, ARG_OPR },
874
  { "inswh",                OPRL(0x12,0x57), BASE, ARG_OPRL },
875
  { "extwh",                OPR(0x12,0x5A), BASE, ARG_OPR },
876
  { "extwh",                OPRL(0x12,0x5A), BASE, ARG_OPRL },
877
  { "msklh",                OPR(0x12,0x62), BASE, ARG_OPR },
878
  { "msklh",                OPRL(0x12,0x62), BASE, ARG_OPRL },
879
  { "inslh",                OPR(0x12,0x67), BASE, ARG_OPR },
880
  { "inslh",                OPRL(0x12,0x67), BASE, ARG_OPRL },
881
  { "extlh",                OPR(0x12,0x6A), BASE, ARG_OPR },
882
  { "extlh",                OPRL(0x12,0x6A), BASE, ARG_OPRL },
883
  { "mskqh",                OPR(0x12,0x72), BASE, ARG_OPR },
884
  { "mskqh",                OPRL(0x12,0x72), BASE, ARG_OPRL },
885
  { "insqh",                OPR(0x12,0x77), BASE, ARG_OPR },
886
  { "insqh",                OPRL(0x12,0x77), BASE, ARG_OPRL },
887
  { "extqh",                OPR(0x12,0x7A), BASE, ARG_OPR },
888
  { "extqh",                OPRL(0x12,0x7A), BASE, ARG_OPRL },
889

    
890
  { "mull",                OPR(0x13,0x00), BASE, ARG_OPR },
891
  { "mull",                OPRL(0x13,0x00), BASE, ARG_OPRL },
892
  { "mulq",                OPR(0x13,0x20), BASE, ARG_OPR },
893
  { "mulq",                OPRL(0x13,0x20), BASE, ARG_OPRL },
894
  { "umulh",                OPR(0x13,0x30), BASE, ARG_OPR },
895
  { "umulh",                OPRL(0x13,0x30), BASE, ARG_OPRL },
896
  { "mull/v",                OPR(0x13,0x40), BASE, ARG_OPR },
897
  { "mull/v",                OPRL(0x13,0x40), BASE, ARG_OPRL },
898
  { "mulq/v",                OPR(0x13,0x60), BASE, ARG_OPR },
899
  { "mulq/v",                OPRL(0x13,0x60), BASE, ARG_OPRL },
900

    
901
  { "itofs",                FP(0x14,0x004), CIX, { RA, ZB, FC } },
902
  { "sqrtf/c",                FP(0x14,0x00A), CIX, ARG_FPZ1 },
903
  { "sqrts/c",                FP(0x14,0x00B), CIX, ARG_FPZ1 },
904
  { "itoff",                FP(0x14,0x014), CIX, { RA, ZB, FC } },
905
  { "itoft",                FP(0x14,0x024), CIX, { RA, ZB, FC } },
906
  { "sqrtg/c",                FP(0x14,0x02A), CIX, ARG_FPZ1 },
907
  { "sqrtt/c",                FP(0x14,0x02B), CIX, ARG_FPZ1 },
908
  { "sqrts/m",                FP(0x14,0x04B), CIX, ARG_FPZ1 },
909
  { "sqrtt/m",                FP(0x14,0x06B), CIX, ARG_FPZ1 },
910
  { "sqrtf",                FP(0x14,0x08A), CIX, ARG_FPZ1 },
911
  { "sqrts",                FP(0x14,0x08B), CIX, ARG_FPZ1 },
912
  { "sqrtg",                FP(0x14,0x0AA), CIX, ARG_FPZ1 },
913
  { "sqrtt",                FP(0x14,0x0AB), CIX, ARG_FPZ1 },
914
  { "sqrts/d",                FP(0x14,0x0CB), CIX, ARG_FPZ1 },
915
  { "sqrtt/d",                FP(0x14,0x0EB), CIX, ARG_FPZ1 },
916
  { "sqrtf/uc",                FP(0x14,0x10A), CIX, ARG_FPZ1 },
917
  { "sqrts/uc",                FP(0x14,0x10B), CIX, ARG_FPZ1 },
918
  { "sqrtg/uc",                FP(0x14,0x12A), CIX, ARG_FPZ1 },
919
  { "sqrtt/uc",                FP(0x14,0x12B), CIX, ARG_FPZ1 },
920
  { "sqrts/um",                FP(0x14,0x14B), CIX, ARG_FPZ1 },
921
  { "sqrtt/um",                FP(0x14,0x16B), CIX, ARG_FPZ1 },
922
  { "sqrtf/u",                FP(0x14,0x18A), CIX, ARG_FPZ1 },
923
  { "sqrts/u",                FP(0x14,0x18B), CIX, ARG_FPZ1 },
924
  { "sqrtg/u",                FP(0x14,0x1AA), CIX, ARG_FPZ1 },
925
  { "sqrtt/u",                FP(0x14,0x1AB), CIX, ARG_FPZ1 },
926
  { "sqrts/ud",                FP(0x14,0x1CB), CIX, ARG_FPZ1 },
927
  { "sqrtt/ud",                FP(0x14,0x1EB), CIX, ARG_FPZ1 },
928
  { "sqrtf/sc",                FP(0x14,0x40A), CIX, ARG_FPZ1 },
929
  { "sqrtg/sc",                FP(0x14,0x42A), CIX, ARG_FPZ1 },
930
  { "sqrtf/s",                FP(0x14,0x48A), CIX, ARG_FPZ1 },
931
  { "sqrtg/s",                FP(0x14,0x4AA), CIX, ARG_FPZ1 },
932
  { "sqrtf/suc",        FP(0x14,0x50A), CIX, ARG_FPZ1 },
933
  { "sqrts/suc",        FP(0x14,0x50B), CIX, ARG_FPZ1 },
934
  { "sqrtg/suc",        FP(0x14,0x52A), CIX, ARG_FPZ1 },
935
  { "sqrtt/suc",        FP(0x14,0x52B), CIX, ARG_FPZ1 },
936
  { "sqrts/sum",        FP(0x14,0x54B), CIX, ARG_FPZ1 },
937
  { "sqrtt/sum",        FP(0x14,0x56B), CIX, ARG_FPZ1 },
938
  { "sqrtf/su",                FP(0x14,0x58A), CIX, ARG_FPZ1 },
939
  { "sqrts/su",                FP(0x14,0x58B), CIX, ARG_FPZ1 },
940
  { "sqrtg/su",                FP(0x14,0x5AA), CIX, ARG_FPZ1 },
941
  { "sqrtt/su",                FP(0x14,0x5AB), CIX, ARG_FPZ1 },
942
  { "sqrts/sud",        FP(0x14,0x5CB), CIX, ARG_FPZ1 },
943
  { "sqrtt/sud",        FP(0x14,0x5EB), CIX, ARG_FPZ1 },
944
  { "sqrts/suic",        FP(0x14,0x70B), CIX, ARG_FPZ1 },
945
  { "sqrtt/suic",        FP(0x14,0x72B), CIX, ARG_FPZ1 },
946
  { "sqrts/suim",        FP(0x14,0x74B), CIX, ARG_FPZ1 },
947
  { "sqrtt/suim",        FP(0x14,0x76B), CIX, ARG_FPZ1 },
948
  { "sqrts/sui",        FP(0x14,0x78B), CIX, ARG_FPZ1 },
949
  { "sqrtt/sui",        FP(0x14,0x7AB), CIX, ARG_FPZ1 },
950
  { "sqrts/suid",        FP(0x14,0x7CB), CIX, ARG_FPZ1 },
951
  { "sqrtt/suid",        FP(0x14,0x7EB), CIX, ARG_FPZ1 },
952

    
953
  { "addf/c",                FP(0x15,0x000), BASE, ARG_FP },
954
  { "subf/c",                FP(0x15,0x001), BASE, ARG_FP },
955
  { "mulf/c",                FP(0x15,0x002), BASE, ARG_FP },
956
  { "divf/c",                FP(0x15,0x003), BASE, ARG_FP },
957
  { "cvtdg/c",                FP(0x15,0x01E), BASE, ARG_FPZ1 },
958
  { "addg/c",                FP(0x15,0x020), BASE, ARG_FP },
959
  { "subg/c",                FP(0x15,0x021), BASE, ARG_FP },
960
  { "mulg/c",                FP(0x15,0x022), BASE, ARG_FP },
961
  { "divg/c",                FP(0x15,0x023), BASE, ARG_FP },
962
  { "cvtgf/c",                FP(0x15,0x02C), BASE, ARG_FPZ1 },
963
  { "cvtgd/c",                FP(0x15,0x02D), BASE, ARG_FPZ1 },
964
  { "cvtgq/c",                FP(0x15,0x02F), BASE, ARG_FPZ1 },
965
  { "cvtqf/c",                FP(0x15,0x03C), BASE, ARG_FPZ1 },
966
  { "cvtqg/c",                FP(0x15,0x03E), BASE, ARG_FPZ1 },
967
  { "addf",                FP(0x15,0x080), BASE, ARG_FP },
968
  { "negf",                FP(0x15,0x081), BASE, ARG_FPZ1 },        /* pseudo */
969
  { "subf",                FP(0x15,0x081), BASE, ARG_FP },
970
  { "mulf",                FP(0x15,0x082), BASE, ARG_FP },
971
  { "divf",                FP(0x15,0x083), BASE, ARG_FP },
972
  { "cvtdg",                FP(0x15,0x09E), BASE, ARG_FPZ1 },
973
  { "addg",                FP(0x15,0x0A0), BASE, ARG_FP },
974
  { "negg",                FP(0x15,0x0A1), BASE, ARG_FPZ1 },        /* pseudo */
975
  { "subg",                FP(0x15,0x0A1), BASE, ARG_FP },
976
  { "mulg",                FP(0x15,0x0A2), BASE, ARG_FP },
977
  { "divg",                FP(0x15,0x0A3), BASE, ARG_FP },
978
  { "cmpgeq",                FP(0x15,0x0A5), BASE, ARG_FP },
979
  { "cmpglt",                FP(0x15,0x0A6), BASE, ARG_FP },
980
  { "cmpgle",                FP(0x15,0x0A7), BASE, ARG_FP },
981
  { "cvtgf",                FP(0x15,0x0AC), BASE, ARG_FPZ1 },
982
  { "cvtgd",                FP(0x15,0x0AD), BASE, ARG_FPZ1 },
983
  { "cvtgq",                FP(0x15,0x0AF), BASE, ARG_FPZ1 },
984
  { "cvtqf",                FP(0x15,0x0BC), BASE, ARG_FPZ1 },
985
  { "cvtqg",                FP(0x15,0x0BE), BASE, ARG_FPZ1 },
986
  { "addf/uc",                FP(0x15,0x100), BASE, ARG_FP },
987
  { "subf/uc",                FP(0x15,0x101), BASE, ARG_FP },
988
  { "mulf/uc",                FP(0x15,0x102), BASE, ARG_FP },
989
  { "divf/uc",                FP(0x15,0x103), BASE, ARG_FP },
990
  { "cvtdg/uc",                FP(0x15,0x11E), BASE, ARG_FPZ1 },
991
  { "addg/uc",                FP(0x15,0x120), BASE, ARG_FP },
992
  { "subg/uc",                FP(0x15,0x121), BASE, ARG_FP },
993
  { "mulg/uc",                FP(0x15,0x122), BASE, ARG_FP },
994
  { "divg/uc",                FP(0x15,0x123), BASE, ARG_FP },
995
  { "cvtgf/uc",                FP(0x15,0x12C), BASE, ARG_FPZ1 },
996
  { "cvtgd/uc",                FP(0x15,0x12D), BASE, ARG_FPZ1 },
997
  { "cvtgq/vc",                FP(0x15,0x12F), BASE, ARG_FPZ1 },
998
  { "addf/u",                FP(0x15,0x180), BASE, ARG_FP },
999
  { "subf/u",                FP(0x15,0x181), BASE, ARG_FP },
1000
  { "mulf/u",                FP(0x15,0x182), BASE, ARG_FP },
1001
  { "divf/u",                FP(0x15,0x183), BASE, ARG_FP },
1002
  { "cvtdg/u",                FP(0x15,0x19E), BASE, ARG_FPZ1 },
1003
  { "addg/u",                FP(0x15,0x1A0), BASE, ARG_FP },
1004
  { "subg/u",                FP(0x15,0x1A1), BASE, ARG_FP },
1005
  { "mulg/u",                FP(0x15,0x1A2), BASE, ARG_FP },
1006
  { "divg/u",                FP(0x15,0x1A3), BASE, ARG_FP },
1007
  { "cvtgf/u",                FP(0x15,0x1AC), BASE, ARG_FPZ1 },
1008
  { "cvtgd/u",                FP(0x15,0x1AD), BASE, ARG_FPZ1 },
1009
  { "cvtgq/v",                FP(0x15,0x1AF), BASE, ARG_FPZ1 },
1010
  { "addf/sc",                FP(0x15,0x400), BASE, ARG_FP },
1011
  { "subf/sc",                FP(0x15,0x401), BASE, ARG_FP },
1012
  { "mulf/sc",                FP(0x15,0x402), BASE, ARG_FP },
1013
  { "divf/sc",                FP(0x15,0x403), BASE, ARG_FP },
1014
  { "cvtdg/sc",                FP(0x15,0x41E), BASE, ARG_FPZ1 },
1015
  { "addg/sc",                FP(0x15,0x420), BASE, ARG_FP },
1016
  { "subg/sc",                FP(0x15,0x421), BASE, ARG_FP },
1017
  { "mulg/sc",                FP(0x15,0x422), BASE, ARG_FP },
1018
  { "divg/sc",                FP(0x15,0x423), BASE, ARG_FP },
1019
  { "cvtgf/sc",                FP(0x15,0x42C), BASE, ARG_FPZ1 },
1020
  { "cvtgd/sc",                FP(0x15,0x42D), BASE, ARG_FPZ1 },
1021
  { "cvtgq/sc",                FP(0x15,0x42F), BASE, ARG_FPZ1 },
1022
  { "addf/s",                FP(0x15,0x480), BASE, ARG_FP },
1023
  { "negf/s",                FP(0x15,0x481), BASE, ARG_FPZ1 },        /* pseudo */
1024
  { "subf/s",                FP(0x15,0x481), BASE, ARG_FP },
1025
  { "mulf/s",                FP(0x15,0x482), BASE, ARG_FP },
1026
  { "divf/s",                FP(0x15,0x483), BASE, ARG_FP },
1027
  { "cvtdg/s",                FP(0x15,0x49E), BASE, ARG_FPZ1 },
1028
  { "addg/s",                FP(0x15,0x4A0), BASE, ARG_FP },
1029
  { "negg/s",                FP(0x15,0x4A1), BASE, ARG_FPZ1 },        /* pseudo */
1030
  { "subg/s",                FP(0x15,0x4A1), BASE, ARG_FP },
1031
  { "mulg/s",                FP(0x15,0x4A2), BASE, ARG_FP },
1032
  { "divg/s",                FP(0x15,0x4A3), BASE, ARG_FP },
1033
  { "cmpgeq/s",                FP(0x15,0x4A5), BASE, ARG_FP },
1034
  { "cmpglt/s",                FP(0x15,0x4A6), BASE, ARG_FP },
1035
  { "cmpgle/s",                FP(0x15,0x4A7), BASE, ARG_FP },
1036
  { "cvtgf/s",                FP(0x15,0x4AC), BASE, ARG_FPZ1 },
1037
  { "cvtgd/s",                FP(0x15,0x4AD), BASE, ARG_FPZ1 },
1038
  { "cvtgq/s",                FP(0x15,0x4AF), BASE, ARG_FPZ1 },
1039
  { "addf/suc",                FP(0x15,0x500), BASE, ARG_FP },
1040
  { "subf/suc",                FP(0x15,0x501), BASE, ARG_FP },
1041
  { "mulf/suc",                FP(0x15,0x502), BASE, ARG_FP },
1042
  { "divf/suc",                FP(0x15,0x503), BASE, ARG_FP },
1043
  { "cvtdg/suc",        FP(0x15,0x51E), BASE, ARG_FPZ1 },
1044
  { "addg/suc",                FP(0x15,0x520), BASE, ARG_FP },
1045
  { "subg/suc",                FP(0x15,0x521), BASE, ARG_FP },
1046
  { "mulg/suc",                FP(0x15,0x522), BASE, ARG_FP },
1047
  { "divg/suc",                FP(0x15,0x523), BASE, ARG_FP },
1048
  { "cvtgf/suc",        FP(0x15,0x52C), BASE, ARG_FPZ1 },
1049
  { "cvtgd/suc",        FP(0x15,0x52D), BASE, ARG_FPZ1 },
1050
  { "cvtgq/svc",        FP(0x15,0x52F), BASE, ARG_FPZ1 },
1051
  { "addf/su",                FP(0x15,0x580), BASE, ARG_FP },
1052
  { "subf/su",                FP(0x15,0x581), BASE, ARG_FP },
1053
  { "mulf/su",                FP(0x15,0x582), BASE, ARG_FP },
1054
  { "divf/su",                FP(0x15,0x583), BASE, ARG_FP },
1055
  { "cvtdg/su",                FP(0x15,0x59E), BASE, ARG_FPZ1 },
1056
  { "addg/su",                FP(0x15,0x5A0), BASE, ARG_FP },
1057
  { "subg/su",                FP(0x15,0x5A1), BASE, ARG_FP },
1058
  { "mulg/su",                FP(0x15,0x5A2), BASE, ARG_FP },
1059
  { "divg/su",                FP(0x15,0x5A3), BASE, ARG_FP },
1060
  { "cvtgf/su",                FP(0x15,0x5AC), BASE, ARG_FPZ1 },
1061
  { "cvtgd/su",                FP(0x15,0x5AD), BASE, ARG_FPZ1 },
1062
  { "cvtgq/sv",                FP(0x15,0x5AF), BASE, ARG_FPZ1 },
1063

    
1064
  { "adds/c",                FP(0x16,0x000), BASE, ARG_FP },
1065
  { "subs/c",                FP(0x16,0x001), BASE, ARG_FP },
1066
  { "muls/c",                FP(0x16,0x002), BASE, ARG_FP },
1067
  { "divs/c",                FP(0x16,0x003), BASE, ARG_FP },
1068
  { "addt/c",                FP(0x16,0x020), BASE, ARG_FP },
1069
  { "subt/c",                FP(0x16,0x021), BASE, ARG_FP },
1070
  { "mult/c",                FP(0x16,0x022), BASE, ARG_FP },
1071
  { "divt/c",                FP(0x16,0x023), BASE, ARG_FP },
1072
  { "cvtts/c",                FP(0x16,0x02C), BASE, ARG_FPZ1 },
1073
  { "cvttq/c",                FP(0x16,0x02F), BASE, ARG_FPZ1 },
1074
  { "cvtqs/c",                FP(0x16,0x03C), BASE, ARG_FPZ1 },
1075
  { "cvtqt/c",                FP(0x16,0x03E), BASE, ARG_FPZ1 },
1076
  { "adds/m",                FP(0x16,0x040), BASE, ARG_FP },
1077
  { "subs/m",                FP(0x16,0x041), BASE, ARG_FP },
1078
  { "muls/m",                FP(0x16,0x042), BASE, ARG_FP },
1079
  { "divs/m",                FP(0x16,0x043), BASE, ARG_FP },
1080
  { "addt/m",                FP(0x16,0x060), BASE, ARG_FP },
1081
  { "subt/m",                FP(0x16,0x061), BASE, ARG_FP },
1082
  { "mult/m",                FP(0x16,0x062), BASE, ARG_FP },
1083
  { "divt/m",                FP(0x16,0x063), BASE, ARG_FP },
1084
  { "cvtts/m",                FP(0x16,0x06C), BASE, ARG_FPZ1 },
1085
  { "cvttq/m",                FP(0x16,0x06F), BASE, ARG_FPZ1 },
1086
  { "cvtqs/m",                FP(0x16,0x07C), BASE, ARG_FPZ1 },
1087
  { "cvtqt/m",                FP(0x16,0x07E), BASE, ARG_FPZ1 },
1088
  { "adds",                FP(0x16,0x080), BASE, ARG_FP },
1089
  { "negs",                 FP(0x16,0x081), BASE, ARG_FPZ1 },        /* pseudo */
1090
  { "subs",                FP(0x16,0x081), BASE, ARG_FP },
1091
  { "muls",                FP(0x16,0x082), BASE, ARG_FP },
1092
  { "divs",                FP(0x16,0x083), BASE, ARG_FP },
1093
  { "addt",                FP(0x16,0x0A0), BASE, ARG_FP },
1094
  { "negt",                 FP(0x16,0x0A1), BASE, ARG_FPZ1 },        /* pseudo */
1095
  { "subt",                FP(0x16,0x0A1), BASE, ARG_FP },
1096
  { "mult",                FP(0x16,0x0A2), BASE, ARG_FP },
1097
  { "divt",                FP(0x16,0x0A3), BASE, ARG_FP },
1098
  { "cmptun",                FP(0x16,0x0A4), BASE, ARG_FP },
1099
  { "cmpteq",                FP(0x16,0x0A5), BASE, ARG_FP },
1100
  { "cmptlt",                FP(0x16,0x0A6), BASE, ARG_FP },
1101
  { "cmptle",                FP(0x16,0x0A7), BASE, ARG_FP },
1102
  { "cvtts",                FP(0x16,0x0AC), BASE, ARG_FPZ1 },
1103
  { "cvttq",                FP(0x16,0x0AF), BASE, ARG_FPZ1 },
1104
  { "cvtqs",                FP(0x16,0x0BC), BASE, ARG_FPZ1 },
1105
  { "cvtqt",                FP(0x16,0x0BE), BASE, ARG_FPZ1 },
1106
  { "adds/d",                FP(0x16,0x0C0), BASE, ARG_FP },
1107
  { "subs/d",                FP(0x16,0x0C1), BASE, ARG_FP },
1108
  { "muls/d",                FP(0x16,0x0C2), BASE, ARG_FP },
1109
  { "divs/d",                FP(0x16,0x0C3), BASE, ARG_FP },
1110
  { "addt/d",                FP(0x16,0x0E0), BASE, ARG_FP },
1111
  { "subt/d",                FP(0x16,0x0E1), BASE, ARG_FP },
1112
  { "mult/d",                FP(0x16,0x0E2), BASE, ARG_FP },
1113
  { "divt/d",                FP(0x16,0x0E3), BASE, ARG_FP },
1114
  { "cvtts/d",                FP(0x16,0x0EC), BASE, ARG_FPZ1 },
1115
  { "cvttq/d",                FP(0x16,0x0EF), BASE, ARG_FPZ1 },
1116
  { "cvtqs/d",                FP(0x16,0x0FC), BASE, ARG_FPZ1 },
1117
  { "cvtqt/d",                FP(0x16,0x0FE), BASE, ARG_FPZ1 },
1118
  { "adds/uc",                FP(0x16,0x100), BASE, ARG_FP },
1119
  { "subs/uc",                FP(0x16,0x101), BASE, ARG_FP },
1120
  { "muls/uc",                FP(0x16,0x102), BASE, ARG_FP },
1121
  { "divs/uc",                FP(0x16,0x103), BASE, ARG_FP },
1122
  { "addt/uc",                FP(0x16,0x120), BASE, ARG_FP },
1123
  { "subt/uc",                FP(0x16,0x121), BASE, ARG_FP },
1124
  { "mult/uc",                FP(0x16,0x122), BASE, ARG_FP },
1125
  { "divt/uc",                FP(0x16,0x123), BASE, ARG_FP },
1126
  { "cvtts/uc",                FP(0x16,0x12C), BASE, ARG_FPZ1 },
1127
  { "cvttq/vc",                FP(0x16,0x12F), BASE, ARG_FPZ1 },
1128
  { "adds/um",                FP(0x16,0x140), BASE, ARG_FP },
1129
  { "subs/um",                FP(0x16,0x141), BASE, ARG_FP },
1130
  { "muls/um",                FP(0x16,0x142), BASE, ARG_FP },
1131
  { "divs/um",                FP(0x16,0x143), BASE, ARG_FP },
1132
  { "addt/um",                FP(0x16,0x160), BASE, ARG_FP },
1133
  { "subt/um",                FP(0x16,0x161), BASE, ARG_FP },
1134
  { "mult/um",                FP(0x16,0x162), BASE, ARG_FP },
1135
  { "divt/um",                FP(0x16,0x163), BASE, ARG_FP },
1136
  { "cvtts/um",                FP(0x16,0x16C), BASE, ARG_FPZ1 },
1137
  { "cvttq/vm",                FP(0x16,0x16F), BASE, ARG_FPZ1 },
1138
  { "adds/u",                FP(0x16,0x180), BASE, ARG_FP },
1139
  { "subs/u",                FP(0x16,0x181), BASE, ARG_FP },
1140
  { "muls/u",                FP(0x16,0x182), BASE, ARG_FP },
1141
  { "divs/u",                FP(0x16,0x183), BASE, ARG_FP },
1142
  { "addt/u",                FP(0x16,0x1A0), BASE, ARG_FP },
1143
  { "subt/u",                FP(0x16,0x1A1), BASE, ARG_FP },
1144
  { "mult/u",                FP(0x16,0x1A2), BASE, ARG_FP },
1145
  { "divt/u",                FP(0x16,0x1A3), BASE, ARG_FP },
1146
  { "cvtts/u",                FP(0x16,0x1AC), BASE, ARG_FPZ1 },
1147
  { "cvttq/v",                FP(0x16,0x1AF), BASE, ARG_FPZ1 },
1148
  { "adds/ud",                FP(0x16,0x1C0), BASE, ARG_FP },
1149
  { "subs/ud",                FP(0x16,0x1C1), BASE, ARG_FP },
1150
  { "muls/ud",                FP(0x16,0x1C2), BASE, ARG_FP },
1151
  { "divs/ud",                FP(0x16,0x1C3), BASE, ARG_FP },
1152
  { "addt/ud",                FP(0x16,0x1E0), BASE, ARG_FP },
1153
  { "subt/ud",                FP(0x16,0x1E1), BASE, ARG_FP },
1154
  { "mult/ud",                FP(0x16,0x1E2), BASE, ARG_FP },
1155
  { "divt/ud",                FP(0x16,0x1E3), BASE, ARG_FP },
1156
  { "cvtts/ud",                FP(0x16,0x1EC), BASE, ARG_FPZ1 },
1157
  { "cvttq/vd",                FP(0x16,0x1EF), BASE, ARG_FPZ1 },
1158
  { "cvtst",                FP(0x16,0x2AC), BASE, ARG_FPZ1 },
1159
  { "adds/suc",                FP(0x16,0x500), BASE, ARG_FP },
1160
  { "subs/suc",                FP(0x16,0x501), BASE, ARG_FP },
1161
  { "muls/suc",                FP(0x16,0x502), BASE, ARG_FP },
1162
  { "divs/suc",                FP(0x16,0x503), BASE, ARG_FP },
1163
  { "addt/suc",                FP(0x16,0x520), BASE, ARG_FP },
1164
  { "subt/suc",                FP(0x16,0x521), BASE, ARG_FP },
1165
  { "mult/suc",                FP(0x16,0x522), BASE, ARG_FP },
1166
  { "divt/suc",                FP(0x16,0x523), BASE, ARG_FP },
1167
  { "cvtts/suc",        FP(0x16,0x52C), BASE, ARG_FPZ1 },
1168
  { "cvttq/svc",        FP(0x16,0x52F), BASE, ARG_FPZ1 },
1169
  { "adds/sum",                FP(0x16,0x540), BASE, ARG_FP },
1170
  { "subs/sum",                FP(0x16,0x541), BASE, ARG_FP },
1171
  { "muls/sum",                FP(0x16,0x542), BASE, ARG_FP },
1172
  { "divs/sum",                FP(0x16,0x543), BASE, ARG_FP },
1173
  { "addt/sum",                FP(0x16,0x560), BASE, ARG_FP },
1174
  { "subt/sum",                FP(0x16,0x561), BASE, ARG_FP },
1175
  { "mult/sum",                FP(0x16,0x562), BASE, ARG_FP },
1176
  { "divt/sum",                FP(0x16,0x563), BASE, ARG_FP },
1177
  { "cvtts/sum",        FP(0x16,0x56C), BASE, ARG_FPZ1 },
1178
  { "cvttq/svm",        FP(0x16,0x56F), BASE, ARG_FPZ1 },
1179
  { "adds/su",                FP(0x16,0x580), BASE, ARG_FP },
1180
  { "negs/su",                FP(0x16,0x581), BASE, ARG_FPZ1 },        /* pseudo */
1181
  { "subs/su",                FP(0x16,0x581), BASE, ARG_FP },
1182
  { "muls/su",                FP(0x16,0x582), BASE, ARG_FP },
1183
  { "divs/su",                FP(0x16,0x583), BASE, ARG_FP },
1184
  { "addt/su",                FP(0x16,0x5A0), BASE, ARG_FP },
1185
  { "negt/su",                FP(0x16,0x5A1), BASE, ARG_FPZ1 },        /* pseudo */
1186
  { "subt/su",                FP(0x16,0x5A1), BASE, ARG_FP },
1187
  { "mult/su",                FP(0x16,0x5A2), BASE, ARG_FP },
1188
  { "divt/su",                FP(0x16,0x5A3), BASE, ARG_FP },
1189
  { "cmptun/su",        FP(0x16,0x5A4), BASE, ARG_FP },
1190
  { "cmpteq/su",        FP(0x16,0x5A5), BASE, ARG_FP },
1191
  { "cmptlt/su",        FP(0x16,0x5A6), BASE, ARG_FP },
1192
  { "cmptle/su",        FP(0x16,0x5A7), BASE, ARG_FP },
1193
  { "cvtts/su",                FP(0x16,0x5AC), BASE, ARG_FPZ1 },
1194
  { "cvttq/sv",                FP(0x16,0x5AF), BASE, ARG_FPZ1 },
1195
  { "adds/sud",                FP(0x16,0x5C0), BASE, ARG_FP },
1196
  { "subs/sud",                FP(0x16,0x5C1), BASE, ARG_FP },
1197
  { "muls/sud",                FP(0x16,0x5C2), BASE, ARG_FP },
1198
  { "divs/sud",                FP(0x16,0x5C3), BASE, ARG_FP },
1199
  { "addt/sud",                FP(0x16,0x5E0), BASE, ARG_FP },
1200
  { "subt/sud",                FP(0x16,0x5E1), BASE, ARG_FP },
1201
  { "mult/sud",                FP(0x16,0x5E2), BASE, ARG_FP },
1202
  { "divt/sud",                FP(0x16,0x5E3), BASE, ARG_FP },
1203
  { "cvtts/sud",        FP(0x16,0x5EC), BASE, ARG_FPZ1 },
1204
  { "cvttq/svd",        FP(0x16,0x5EF), BASE, ARG_FPZ1 },
1205
  { "cvtst/s",                FP(0x16,0x6AC), BASE, ARG_FPZ1 },
1206
  { "adds/suic",        FP(0x16,0x700), BASE, ARG_FP },
1207
  { "subs/suic",        FP(0x16,0x701), BASE, ARG_FP },
1208
  { "muls/suic",        FP(0x16,0x702), BASE, ARG_FP },
1209
  { "divs/suic",        FP(0x16,0x703), BASE, ARG_FP },
1210
  { "addt/suic",        FP(0x16,0x720), BASE, ARG_FP },
1211
  { "subt/suic",        FP(0x16,0x721), BASE, ARG_FP },
1212
  { "mult/suic",        FP(0x16,0x722), BASE, ARG_FP },
1213
  { "divt/suic",        FP(0x16,0x723), BASE, ARG_FP },
1214
  { "cvtts/suic",        FP(0x16,0x72C), BASE, ARG_FPZ1 },
1215
  { "cvttq/svic",        FP(0x16,0x72F), BASE, ARG_FPZ1 },
1216
  { "cvtqs/suic",        FP(0x16,0x73C), BASE, ARG_FPZ1 },
1217
  { "cvtqt/suic",        FP(0x16,0x73E), BASE, ARG_FPZ1 },
1218
  { "adds/suim",        FP(0x16,0x740), BASE, ARG_FP },
1219
  { "subs/suim",        FP(0x16,0x741), BASE, ARG_FP },
1220
  { "muls/suim",        FP(0x16,0x742), BASE, ARG_FP },
1221
  { "divs/suim",        FP(0x16,0x743), BASE, ARG_FP },
1222
  { "addt/suim",        FP(0x16,0x760), BASE, ARG_FP },
1223
  { "subt/suim",        FP(0x16,0x761), BASE, ARG_FP },
1224
  { "mult/suim",        FP(0x16,0x762), BASE, ARG_FP },
1225
  { "divt/suim",        FP(0x16,0x763), BASE, ARG_FP },
1226
  { "cvtts/suim",        FP(0x16,0x76C), BASE, ARG_FPZ1 },
1227
  { "cvttq/svim",        FP(0x16,0x76F), BASE, ARG_FPZ1 },
1228
  { "cvtqs/suim",        FP(0x16,0x77C), BASE, ARG_FPZ1 },
1229
  { "cvtqt/suim",        FP(0x16,0x77E), BASE, ARG_FPZ1 },
1230
  { "adds/sui",                FP(0x16,0x780), BASE, ARG_FP },
1231
  { "negs/sui",         FP(0x16,0x781), BASE, ARG_FPZ1 },        /* pseudo */
1232
  { "subs/sui",                FP(0x16,0x781), BASE, ARG_FP },
1233
  { "muls/sui",                FP(0x16,0x782), BASE, ARG_FP },
1234
  { "divs/sui",                FP(0x16,0x783), BASE, ARG_FP },
1235
  { "addt/sui",                FP(0x16,0x7A0), BASE, ARG_FP },
1236
  { "negt/sui",         FP(0x16,0x7A1), BASE, ARG_FPZ1 },        /* pseudo */
1237
  { "subt/sui",                FP(0x16,0x7A1), BASE, ARG_FP },
1238
  { "mult/sui",                FP(0x16,0x7A2), BASE, ARG_FP },
1239
  { "divt/sui",                FP(0x16,0x7A3), BASE, ARG_FP },
1240
  { "cvtts/sui",        FP(0x16,0x7AC), BASE, ARG_FPZ1 },
1241
  { "cvttq/svi",        FP(0x16,0x7AF), BASE, ARG_FPZ1 },
1242
  { "cvtqs/sui",        FP(0x16,0x7BC), BASE, ARG_FPZ1 },
1243
  { "cvtqt/sui",        FP(0x16,0x7BE), BASE, ARG_FPZ1 },
1244
  { "adds/suid",        FP(0x16,0x7C0), BASE, ARG_FP },
1245
  { "subs/suid",        FP(0x16,0x7C1), BASE, ARG_FP },
1246
  { "muls/suid",        FP(0x16,0x7C2), BASE, ARG_FP },
1247
  { "divs/suid",        FP(0x16,0x7C3), BASE, ARG_FP },
1248
  { "addt/suid",        FP(0x16,0x7E0), BASE, ARG_FP },
1249
  { "subt/suid",        FP(0x16,0x7E1), BASE, ARG_FP },
1250
  { "mult/suid",        FP(0x16,0x7E2), BASE, ARG_FP },
1251
  { "divt/suid",        FP(0x16,0x7E3), BASE, ARG_FP },
1252
  { "cvtts/suid",        FP(0x16,0x7EC), BASE, ARG_FPZ1 },
1253
  { "cvttq/svid",        FP(0x16,0x7EF), BASE, ARG_FPZ1 },
1254
  { "cvtqs/suid",        FP(0x16,0x7FC), BASE, ARG_FPZ1 },
1255
  { "cvtqt/suid",        FP(0x16,0x7FE), BASE, ARG_FPZ1 },
1256

    
1257
  { "cvtlq",                FP(0x17,0x010), BASE, ARG_FPZ1 },
1258
  { "fnop",                FP(0x17,0x020), BASE, { ZA, ZB, ZC } },        /* pseudo */
1259
  { "fclr",                FP(0x17,0x020), BASE, { ZA, ZB, FC } },        /* pseudo */
1260
  { "fabs",                FP(0x17,0x020), BASE, ARG_FPZ1 },        /* pseudo */
1261
  { "fmov",                FP(0x17,0x020), BASE, { FA, RBA, FC } }, /* pseudo */
1262
  { "cpys",                FP(0x17,0x020), BASE, ARG_FP },
1263
  { "fneg",                FP(0x17,0x021), BASE, { FA, RBA, FC } }, /* pseudo */
1264
  { "cpysn",                FP(0x17,0x021), BASE, ARG_FP },
1265
  { "cpyse",                FP(0x17,0x022), BASE, ARG_FP },
1266
  { "mt_fpcr",                FP(0x17,0x024), BASE, { FA, RBA, RCA } },
1267
  { "mf_fpcr",                FP(0x17,0x025), BASE, { FA, RBA, RCA } },
1268
  { "fcmoveq",                FP(0x17,0x02A), BASE, ARG_FP },
1269
  { "fcmovne",                FP(0x17,0x02B), BASE, ARG_FP },
1270
  { "fcmovlt",                FP(0x17,0x02C), BASE, ARG_FP },
1271
  { "fcmovge",                FP(0x17,0x02D), BASE, ARG_FP },
1272
  { "fcmovle",                FP(0x17,0x02E), BASE, ARG_FP },
1273
  { "fcmovgt",                FP(0x17,0x02F), BASE, ARG_FP },
1274
  { "cvtql",                FP(0x17,0x030), BASE, ARG_FPZ1 },
1275
  { "cvtql/v",                FP(0x17,0x130), BASE, ARG_FPZ1 },
1276
  { "cvtql/sv",                FP(0x17,0x530), BASE, ARG_FPZ1 },
1277

    
1278
  { "trapb",                MFC(0x18,0x0000), BASE, ARG_NONE },
1279
  { "draint",                MFC(0x18,0x0000), BASE, ARG_NONE },        /* alias */
1280
  { "excb",                MFC(0x18,0x0400), BASE, ARG_NONE },
1281
  { "mb",                MFC(0x18,0x4000), BASE, ARG_NONE },
1282
  { "wmb",                MFC(0x18,0x4400), BASE, ARG_NONE },
1283
  { "fetch",                MFC(0x18,0x8000), BASE, { ZA, PRB } },
1284
  { "fetch_m",                MFC(0x18,0xA000), BASE, { ZA, PRB } },
1285
  { "rpcc",                MFC(0x18,0xC000), BASE, { RA } },
1286
  { "rc",                MFC(0x18,0xE000), BASE, { RA } },
1287
  { "ecb",                MFC(0x18,0xE800), BASE, { ZA, PRB } },        /* ev56 una */
1288
  { "rs",                MFC(0x18,0xF000), BASE, { RA } },
1289
  { "wh64",                MFC(0x18,0xF800), BASE, { ZA, PRB } },        /* ev56 una */
1290
  { "wh64en",                MFC(0x18,0xFC00), BASE, { ZA, PRB } },        /* ev7 una */
1291

    
1292
  { "hw_mfpr",                OPR(0x19,0x00), EV4, { RA, RBA, EV4EXTHWINDEX } },
1293
  { "hw_mfpr",                OP(0x19), OP_MASK, EV5, { RA, RBA, EV5HWINDEX } },
1294
  { "hw_mfpr",                OP(0x19), OP_MASK, EV6, { RA, ZB, EV6HWINDEX } },
1295
  { "hw_mfpr/i",        OPR(0x19,0x01), EV4, ARG_EV4HWMPR },
1296
  { "hw_mfpr/a",        OPR(0x19,0x02), EV4, ARG_EV4HWMPR },
1297
  { "hw_mfpr/ai",        OPR(0x19,0x03), EV4, ARG_EV4HWMPR },
1298
  { "hw_mfpr/p",        OPR(0x19,0x04), EV4, ARG_EV4HWMPR },
1299
  { "hw_mfpr/pi",        OPR(0x19,0x05), EV4, ARG_EV4HWMPR },
1300
  { "hw_mfpr/pa",        OPR(0x19,0x06), EV4, ARG_EV4HWMPR },
1301
  { "hw_mfpr/pai",        OPR(0x19,0x07), EV4, ARG_EV4HWMPR },
1302
  { "pal19",                PCD(0x19), BASE, ARG_PCD },
1303

    
1304
  { "jmp",                MBR_(0x1A,0), MBR_MASK | 0x3FFF,        /* pseudo */
1305
                        BASE, { ZA, CPRB } },
1306
  { "jmp",                MBR(0x1A,0), BASE, { RA, CPRB, JMPHINT } },
1307
  { "jsr",                MBR(0x1A,1), BASE, { RA, CPRB, JMPHINT } },
1308
  { "ret",                MBR_(0x1A,2) | (31 << 21) | (26 << 16) | 1,/* pseudo */
1309
                        0xFFFFFFFF, BASE, { 0 } },
1310
  { "ret",                MBR(0x1A,2), BASE, { RA, CPRB, RETHINT } },
1311
  { "jcr",                MBR(0x1A,3), BASE, { RA, CPRB, RETHINT } }, /* alias */
1312
  { "jsr_coroutine",        MBR(0x1A,3), BASE, { RA, CPRB, RETHINT } },
1313

    
1314
  { "hw_ldl",                EV4HWMEM(0x1B,0x0), EV4, ARG_EV4HWMEM },
1315
  { "hw_ldl",                EV5HWMEM(0x1B,0x00), EV5, ARG_EV5HWMEM },
1316
  { "hw_ldl",                EV6HWMEM(0x1B,0x8), EV6, ARG_EV6HWMEM },
1317
  { "hw_ldl/a",                EV4HWMEM(0x1B,0x4), EV4, ARG_EV4HWMEM },
1318
  { "hw_ldl/a",                EV5HWMEM(0x1B,0x10), EV5, ARG_EV5HWMEM },
1319
  { "hw_ldl/a",                EV6HWMEM(0x1B,0xC), EV6, ARG_EV6HWMEM },
1320
  { "hw_ldl/al",        EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1321
  { "hw_ldl/ar",        EV4HWMEM(0x1B,0x6), EV4, ARG_EV4HWMEM },
1322
  { "hw_ldl/av",        EV5HWMEM(0x1B,0x12), EV5, ARG_EV5HWMEM },
1323
  { "hw_ldl/avl",        EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1324
  { "hw_ldl/aw",        EV5HWMEM(0x1B,0x18), EV5, ARG_EV5HWMEM },
1325
  { "hw_ldl/awl",        EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1326
  { "hw_ldl/awv",        EV5HWMEM(0x1B,0x1a), EV5, ARG_EV5HWMEM },
1327
  { "hw_ldl/awvl",        EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1328
  { "hw_ldl/l",                EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1329
  { "hw_ldl/p",                EV4HWMEM(0x1B,0x8), EV4, ARG_EV4HWMEM },
1330
  { "hw_ldl/p",                EV5HWMEM(0x1B,0x20), EV5, ARG_EV5HWMEM },
1331
  { "hw_ldl/p",                EV6HWMEM(0x1B,0x0), EV6, ARG_EV6HWMEM },
1332
  { "hw_ldl/pa",        EV4HWMEM(0x1B,0xC), EV4, ARG_EV4HWMEM },
1333
  { "hw_ldl/pa",        EV5HWMEM(0x1B,0x30), EV5, ARG_EV5HWMEM },
1334
  { "hw_ldl/pal",        EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1335
  { "hw_ldl/par",        EV4HWMEM(0x1B,0xE), EV4, ARG_EV4HWMEM },
1336
  { "hw_ldl/pav",        EV5HWMEM(0x1B,0x32), EV5, ARG_EV5HWMEM },
1337
  { "hw_ldl/pavl",        EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1338
  { "hw_ldl/paw",        EV5HWMEM(0x1B,0x38), EV5, ARG_EV5HWMEM },
1339
  { "hw_ldl/pawl",        EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1340
  { "hw_ldl/pawv",        EV5HWMEM(0x1B,0x3a), EV5, ARG_EV5HWMEM },
1341
  { "hw_ldl/pawvl",        EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1342
  { "hw_ldl/pl",        EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1343
  { "hw_ldl/pr",        EV4HWMEM(0x1B,0xA), EV4, ARG_EV4HWMEM },
1344
  { "hw_ldl/pv",        EV5HWMEM(0x1B,0x22), EV5, ARG_EV5HWMEM },
1345
  { "hw_ldl/pvl",        EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1346
  { "hw_ldl/pw",        EV5HWMEM(0x1B,0x28), EV5, ARG_EV5HWMEM },
1347
  { "hw_ldl/pwl",        EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1348
  { "hw_ldl/pwv",        EV5HWMEM(0x1B,0x2a), EV5, ARG_EV5HWMEM },
1349
  { "hw_ldl/pwvl",        EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1350
  { "hw_ldl/r",                EV4HWMEM(0x1B,0x2), EV4, ARG_EV4HWMEM },
1351
  { "hw_ldl/v",                EV5HWMEM(0x1B,0x02), EV5, ARG_EV5HWMEM },
1352
  { "hw_ldl/v",                EV6HWMEM(0x1B,0x4), EV6, ARG_EV6HWMEM },
1353
  { "hw_ldl/vl",        EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1354
  { "hw_ldl/w",                EV5HWMEM(0x1B,0x08), EV5, ARG_EV5HWMEM },
1355
  { "hw_ldl/w",                EV6HWMEM(0x1B,0xA), EV6, ARG_EV6HWMEM },
1356
  { "hw_ldl/wa",        EV6HWMEM(0x1B,0xE), EV6, ARG_EV6HWMEM },
1357
  { "hw_ldl/wl",        EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1358
  { "hw_ldl/wv",        EV5HWMEM(0x1B,0x0a), EV5, ARG_EV5HWMEM },
1359
  { "hw_ldl/wvl",        EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1360
  { "hw_ldl_l",                EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1361
  { "hw_ldl_l/a",        EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1362
  { "hw_ldl_l/av",        EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1363
  { "hw_ldl_l/aw",        EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1364
  { "hw_ldl_l/awv",        EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1365
  { "hw_ldl_l/p",        EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1366
  { "hw_ldl_l/p",        EV6HWMEM(0x1B,0x2), EV6, ARG_EV6HWMEM },
1367
  { "hw_ldl_l/pa",        EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1368
  { "hw_ldl_l/pav",        EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1369
  { "hw_ldl_l/paw",        EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1370
  { "hw_ldl_l/pawv",        EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1371
  { "hw_ldl_l/pv",        EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1372
  { "hw_ldl_l/pw",        EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1373
  { "hw_ldl_l/pwv",        EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1374
  { "hw_ldl_l/v",        EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1375
  { "hw_ldl_l/w",        EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1376
  { "hw_ldl_l/wv",        EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1377
  { "hw_ldq",                EV4HWMEM(0x1B,0x1), EV4, ARG_EV4HWMEM },
1378
  { "hw_ldq",                EV5HWMEM(0x1B,0x04), EV5, ARG_EV5HWMEM },
1379
  { "hw_ldq",                EV6HWMEM(0x1B,0x9), EV6, ARG_EV6HWMEM },
1380
  { "hw_ldq/a",                EV4HWMEM(0x1B,0x5), EV4, ARG_EV4HWMEM },
1381
  { "hw_ldq/a",                EV5HWMEM(0x1B,0x14), EV5, ARG_EV5HWMEM },
1382
  { "hw_ldq/a",                EV6HWMEM(0x1B,0xD), EV6, ARG_EV6HWMEM },
1383
  { "hw_ldq/al",        EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1384
  { "hw_ldq/ar",        EV4HWMEM(0x1B,0x7), EV4, ARG_EV4HWMEM },
1385
  { "hw_ldq/av",        EV5HWMEM(0x1B,0x16), EV5, ARG_EV5HWMEM },
1386
  { "hw_ldq/avl",        EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1387
  { "hw_ldq/aw",        EV5HWMEM(0x1B,0x1c), EV5, ARG_EV5HWMEM },
1388
  { "hw_ldq/awl",        EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1389
  { "hw_ldq/awv",        EV5HWMEM(0x1B,0x1e), EV5, ARG_EV5HWMEM },
1390
  { "hw_ldq/awvl",        EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1391
  { "hw_ldq/l",                EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1392
  { "hw_ldq/p",                EV4HWMEM(0x1B,0x9), EV4, ARG_EV4HWMEM },
1393
  { "hw_ldq/p",                EV5HWMEM(0x1B,0x24), EV5, ARG_EV5HWMEM },
1394
  { "hw_ldq/p",                EV6HWMEM(0x1B,0x1), EV6, ARG_EV6HWMEM },
1395
  { "hw_ldq/pa",        EV4HWMEM(0x1B,0xD), EV4, ARG_EV4HWMEM },
1396
  { "hw_ldq/pa",        EV5HWMEM(0x1B,0x34), EV5, ARG_EV5HWMEM },
1397
  { "hw_ldq/pal",        EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1398
  { "hw_ldq/par",        EV4HWMEM(0x1B,0xF), EV4, ARG_EV4HWMEM },
1399
  { "hw_ldq/pav",        EV5HWMEM(0x1B,0x36), EV5, ARG_EV5HWMEM },
1400
  { "hw_ldq/pavl",        EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1401
  { "hw_ldq/paw",        EV5HWMEM(0x1B,0x3c), EV5, ARG_EV5HWMEM },
1402
  { "hw_ldq/pawl",        EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1403
  { "hw_ldq/pawv",        EV5HWMEM(0x1B,0x3e), EV5, ARG_EV5HWMEM },
1404
  { "hw_ldq/pawvl",        EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1405
  { "hw_ldq/pl",        EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1406
  { "hw_ldq/pr",        EV4HWMEM(0x1B,0xB), EV4, ARG_EV4HWMEM },
1407
  { "hw_ldq/pv",        EV5HWMEM(0x1B,0x26), EV5, ARG_EV5HWMEM },
1408
  { "hw_ldq/pvl",        EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1409
  { "hw_ldq/pw",        EV5HWMEM(0x1B,0x2c), EV5, ARG_EV5HWMEM },
1410
  { "hw_ldq/pwl",        EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1411
  { "hw_ldq/pwv",        EV5HWMEM(0x1B,0x2e), EV5, ARG_EV5HWMEM },
1412
  { "hw_ldq/pwvl",        EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1413
  { "hw_ldq/r",                EV4HWMEM(0x1B,0x3), EV4, ARG_EV4HWMEM },
1414
  { "hw_ldq/v",                EV5HWMEM(0x1B,0x06), EV5, ARG_EV5HWMEM },
1415
  { "hw_ldq/v",                EV6HWMEM(0x1B,0x5), EV6, ARG_EV6HWMEM },
1416
  { "hw_ldq/vl",        EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1417
  { "hw_ldq/w",                EV5HWMEM(0x1B,0x0c), EV5, ARG_EV5HWMEM },
1418
  { "hw_ldq/w",                EV6HWMEM(0x1B,0xB), EV6, ARG_EV6HWMEM },
1419
  { "hw_ldq/wa",        EV6HWMEM(0x1B,0xF), EV6, ARG_EV6HWMEM },
1420
  { "hw_ldq/wl",        EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1421
  { "hw_ldq/wv",        EV5HWMEM(0x1B,0x0e), EV5, ARG_EV5HWMEM },
1422
  { "hw_ldq/wvl",        EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1423
  { "hw_ldq_l",                EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1424
  { "hw_ldq_l/a",        EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1425
  { "hw_ldq_l/av",        EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1426
  { "hw_ldq_l/aw",        EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1427
  { "hw_ldq_l/awv",        EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1428
  { "hw_ldq_l/p",        EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1429
  { "hw_ldq_l/p",        EV6HWMEM(0x1B,0x3), EV6, ARG_EV6HWMEM },
1430
  { "hw_ldq_l/pa",        EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1431
  { "hw_ldq_l/pav",        EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1432
  { "hw_ldq_l/paw",        EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1433
  { "hw_ldq_l/pawv",        EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1434
  { "hw_ldq_l/pv",        EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1435
  { "hw_ldq_l/pw",        EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1436
  { "hw_ldq_l/pwv",        EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1437
  { "hw_ldq_l/v",        EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1438
  { "hw_ldq_l/w",        EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1439
  { "hw_ldq_l/wv",        EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1440
  { "hw_ld",                EV4HWMEM(0x1B,0x0), EV4, ARG_EV4HWMEM },
1441
  { "hw_ld",                EV5HWMEM(0x1B,0x00), EV5, ARG_EV5HWMEM },
1442
  { "hw_ld/a",                EV4HWMEM(0x1B,0x4), EV4, ARG_EV4HWMEM },
1443
  { "hw_ld/a",                EV5HWMEM(0x1B,0x10), EV5, ARG_EV5HWMEM },
1444
  { "hw_ld/al",                EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1445
  { "hw_ld/aq",                EV4HWMEM(0x1B,0x5), EV4, ARG_EV4HWMEM },
1446
  { "hw_ld/aq",                EV5HWMEM(0x1B,0x14), EV5, ARG_EV5HWMEM },
1447
  { "hw_ld/aql",        EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1448
  { "hw_ld/aqv",        EV5HWMEM(0x1B,0x16), EV5, ARG_EV5HWMEM },
1449
  { "hw_ld/aqvl",        EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1450
  { "hw_ld/ar",                EV4HWMEM(0x1B,0x6), EV4, ARG_EV4HWMEM },
1451
  { "hw_ld/arq",        EV4HWMEM(0x1B,0x7), EV4, ARG_EV4HWMEM },
1452
  { "hw_ld/av",                EV5HWMEM(0x1B,0x12), EV5, ARG_EV5HWMEM },
1453
  { "hw_ld/avl",        EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1454
  { "hw_ld/aw",                EV5HWMEM(0x1B,0x18), EV5, ARG_EV5HWMEM },
1455
  { "hw_ld/awl",        EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1456
  { "hw_ld/awq",        EV5HWMEM(0x1B,0x1c), EV5, ARG_EV5HWMEM },
1457
  { "hw_ld/awql",        EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1458
  { "hw_ld/awqv",        EV5HWMEM(0x1B,0x1e), EV5, ARG_EV5HWMEM },
1459
  { "hw_ld/awqvl",        EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1460
  { "hw_ld/awv",        EV5HWMEM(0x1B,0x1a), EV5, ARG_EV5HWMEM },
1461
  { "hw_ld/awvl",        EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1462
  { "hw_ld/l",                EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1463
  { "hw_ld/p",                EV4HWMEM(0x1B,0x8), EV4, ARG_EV4HWMEM },
1464
  { "hw_ld/p",                EV5HWMEM(0x1B,0x20), EV5, ARG_EV5HWMEM },
1465
  { "hw_ld/pa",                EV4HWMEM(0x1B,0xC), EV4, ARG_EV4HWMEM },
1466
  { "hw_ld/pa",                EV5HWMEM(0x1B,0x30), EV5, ARG_EV5HWMEM },
1467
  { "hw_ld/pal",        EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1468
  { "hw_ld/paq",        EV4HWMEM(0x1B,0xD), EV4, ARG_EV4HWMEM },
1469
  { "hw_ld/paq",        EV5HWMEM(0x1B,0x34), EV5, ARG_EV5HWMEM },
1470
  { "hw_ld/paql",        EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1471
  { "hw_ld/paqv",        EV5HWMEM(0x1B,0x36), EV5, ARG_EV5HWMEM },
1472
  { "hw_ld/paqvl",        EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1473
  { "hw_ld/par",        EV4HWMEM(0x1B,0xE), EV4, ARG_EV4HWMEM },
1474
  { "hw_ld/parq",        EV4HWMEM(0x1B,0xF), EV4, ARG_EV4HWMEM },
1475
  { "hw_ld/pav",        EV5HWMEM(0x1B,0x32), EV5, ARG_EV5HWMEM },
1476
  { "hw_ld/pavl",        EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1477
  { "hw_ld/paw",        EV5HWMEM(0x1B,0x38), EV5, ARG_EV5HWMEM },
1478
  { "hw_ld/pawl",        EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1479
  { "hw_ld/pawq",        EV5HWMEM(0x1B,0x3c), EV5, ARG_EV5HWMEM },
1480
  { "hw_ld/pawql",        EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1481
  { "hw_ld/pawqv",        EV5HWMEM(0x1B,0x3e), EV5, ARG_EV5HWMEM },
1482
  { "hw_ld/pawqvl",        EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1483
  { "hw_ld/pawv",        EV5HWMEM(0x1B,0x3a), EV5, ARG_EV5HWMEM },
1484
  { "hw_ld/pawvl",        EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1485
  { "hw_ld/pl",                EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1486
  { "hw_ld/pq",                EV4HWMEM(0x1B,0x9), EV4, ARG_EV4HWMEM },
1487
  { "hw_ld/pq",                EV5HWMEM(0x1B,0x24), EV5, ARG_EV5HWMEM },
1488
  { "hw_ld/pql",        EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1489
  { "hw_ld/pqv",        EV5HWMEM(0x1B,0x26), EV5, ARG_EV5HWMEM },
1490
  { "hw_ld/pqvl",        EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1491
  { "hw_ld/pr",                EV4HWMEM(0x1B,0xA), EV4, ARG_EV4HWMEM },
1492
  { "hw_ld/prq",        EV4HWMEM(0x1B,0xB), EV4, ARG_EV4HWMEM },
1493
  { "hw_ld/pv",                EV5HWMEM(0x1B,0x22), EV5, ARG_EV5HWMEM },
1494
  { "hw_ld/pvl",        EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1495
  { "hw_ld/pw",                EV5HWMEM(0x1B,0x28), EV5, ARG_EV5HWMEM },
1496
  { "hw_ld/pwl",        EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1497
  { "hw_ld/pwq",        EV5HWMEM(0x1B,0x2c), EV5, ARG_EV5HWMEM },
1498
  { "hw_ld/pwql",        EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1499
  { "hw_ld/pwqv",        EV5HWMEM(0x1B,0x2e), EV5, ARG_EV5HWMEM },
1500
  { "hw_ld/pwqvl",        EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1501
  { "hw_ld/pwv",        EV5HWMEM(0x1B,0x2a), EV5, ARG_EV5HWMEM },
1502
  { "hw_ld/pwvl",        EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1503
  { "hw_ld/q",                EV4HWMEM(0x1B,0x1), EV4, ARG_EV4HWMEM },
1504
  { "hw_ld/q",                EV5HWMEM(0x1B,0x04), EV5, ARG_EV5HWMEM },
1505
  { "hw_ld/ql",                EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1506
  { "hw_ld/qv",                EV5HWMEM(0x1B,0x06), EV5, ARG_EV5HWMEM },
1507
  { "hw_ld/qvl",        EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1508
  { "hw_ld/r",                EV4HWMEM(0x1B,0x2), EV4, ARG_EV4HWMEM },
1509
  { "hw_ld/rq",                EV4HWMEM(0x1B,0x3), EV4, ARG_EV4HWMEM },
1510
  { "hw_ld/v",                EV5HWMEM(0x1B,0x02), EV5, ARG_EV5HWMEM },
1511
  { "hw_ld/vl",                EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1512
  { "hw_ld/w",                EV5HWMEM(0x1B,0x08), EV5, ARG_EV5HWMEM },
1513
  { "hw_ld/wl",                EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1514
  { "hw_ld/wq",                EV5HWMEM(0x1B,0x0c), EV5, ARG_EV5HWMEM },
1515
  { "hw_ld/wql",        EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1516
  { "hw_ld/wqv",        EV5HWMEM(0x1B,0x0e), EV5, ARG_EV5HWMEM },
1517
  { "hw_ld/wqvl",        EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1518
  { "hw_ld/wv",                EV5HWMEM(0x1B,0x0a), EV5, ARG_EV5HWMEM },
1519
  { "hw_ld/wvl",        EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1520
  { "pal1b",                PCD(0x1B), BASE, ARG_PCD },
1521

    
1522
  { "sextb",                OPR(0x1C, 0x00), BWX, ARG_OPRZ1 },
1523
  { "sextw",                OPR(0x1C, 0x01), BWX, ARG_OPRZ1 },
1524
  { "ctpop",                OPR(0x1C, 0x30), CIX, ARG_OPRZ1 },
1525
  { "perr",                OPR(0x1C, 0x31), MAX, ARG_OPR },
1526
  { "ctlz",                OPR(0x1C, 0x32), CIX, ARG_OPRZ1 },
1527
  { "cttz",                OPR(0x1C, 0x33), CIX, ARG_OPRZ1 },
1528
  { "unpkbw",                OPR(0x1C, 0x34), MAX, ARG_OPRZ1 },
1529
  { "unpkbl",                OPR(0x1C, 0x35), MAX, ARG_OPRZ1 },
1530
  { "pkwb",                OPR(0x1C, 0x36), MAX, ARG_OPRZ1 },
1531
  { "pklb",                OPR(0x1C, 0x37), MAX, ARG_OPRZ1 },
1532
  { "minsb8",                 OPR(0x1C, 0x38), MAX, ARG_OPR },
1533
  { "minsb8",                 OPRL(0x1C, 0x38), MAX, ARG_OPRL },
1534
  { "minsw4",                 OPR(0x1C, 0x39), MAX, ARG_OPR },
1535
  { "minsw4",                 OPRL(0x1C, 0x39), MAX, ARG_OPRL },
1536
  { "minub8",                 OPR(0x1C, 0x3A), MAX, ARG_OPR },
1537
  { "minub8",                 OPRL(0x1C, 0x3A), MAX, ARG_OPRL },
1538
  { "minuw4",                 OPR(0x1C, 0x3B), MAX, ARG_OPR },
1539
  { "minuw4",                 OPRL(0x1C, 0x3B), MAX, ARG_OPRL },
1540
  { "maxub8",                OPR(0x1C, 0x3C), MAX, ARG_OPR },
1541
  { "maxub8",                OPRL(0x1C, 0x3C), MAX, ARG_OPRL },
1542
  { "maxuw4",                OPR(0x1C, 0x3D), MAX, ARG_OPR },
1543
  { "maxuw4",                OPRL(0x1C, 0x3D), MAX, ARG_OPRL },
1544
  { "maxsb8",                OPR(0x1C, 0x3E), MAX, ARG_OPR },
1545
  { "maxsb8",                OPRL(0x1C, 0x3E), MAX, ARG_OPRL },
1546
  { "maxsw4",                OPR(0x1C, 0x3F), MAX, ARG_OPR },
1547
  { "maxsw4",                OPRL(0x1C, 0x3F), MAX, ARG_OPRL },
1548
  { "ftoit",                FP(0x1C, 0x70), CIX, { FA, ZB, RC } },
1549
  { "ftois",                FP(0x1C, 0x78), CIX, { FA, ZB, RC } },
1550

    
1551
  { "hw_mtpr",                OPR(0x1D,0x00), EV4, { RA, RBA, EV4EXTHWINDEX } },
1552
  { "hw_mtpr",                OP(0x1D), OP_MASK, EV5, { RA, RBA, EV5HWINDEX } },
1553
  { "hw_mtpr",                OP(0x1D), OP_MASK, EV6, { ZA, RB, EV6HWINDEX } },
1554
  { "hw_mtpr/i",         OPR(0x1D,0x01), EV4, ARG_EV4HWMPR },
1555
  { "hw_mtpr/a",         OPR(0x1D,0x02), EV4, ARG_EV4HWMPR },
1556
  { "hw_mtpr/ai",        OPR(0x1D,0x03), EV4, ARG_EV4HWMPR },
1557
  { "hw_mtpr/p",         OPR(0x1D,0x04), EV4, ARG_EV4HWMPR },
1558
  { "hw_mtpr/pi",        OPR(0x1D,0x05), EV4, ARG_EV4HWMPR },
1559
  { "hw_mtpr/pa",        OPR(0x1D,0x06), EV4, ARG_EV4HWMPR },
1560
  { "hw_mtpr/pai",        OPR(0x1D,0x07), EV4, ARG_EV4HWMPR },
1561
  { "pal1d",                PCD(0x1D), BASE, ARG_PCD },
1562

    
1563
  { "hw_rei",                SPCD(0x1E,0x3FF8000), EV4|EV5, ARG_NONE },
1564
  { "hw_rei_stall",        SPCD(0x1E,0x3FFC000), EV5, ARG_NONE },
1565
  { "hw_jmp",                 EV6HWMBR(0x1E,0x0), EV6, { ZA, PRB, EV6HWJMPHINT } },
1566
  { "hw_jsr",                 EV6HWMBR(0x1E,0x2), EV6, { ZA, PRB, EV6HWJMPHINT } },
1567
  { "hw_ret",                 EV6HWMBR(0x1E,0x4), EV6, { ZA, PRB } },
1568
  { "hw_jcr",                 EV6HWMBR(0x1E,0x6), EV6, { ZA, PRB } },
1569
  { "hw_coroutine",        EV6HWMBR(0x1E,0x6), EV6, { ZA, PRB } }, /* alias */
1570
  { "hw_jmp/stall",        EV6HWMBR(0x1E,0x1), EV6, { ZA, PRB, EV6HWJMPHINT } },
1571
  { "hw_jsr/stall",         EV6HWMBR(0x1E,0x3), EV6, { ZA, PRB, EV6HWJMPHINT } },
1572
  { "hw_ret/stall",        EV6HWMBR(0x1E,0x5), EV6, { ZA, PRB } },
1573
  { "hw_jcr/stall",         EV6HWMBR(0x1E,0x7), EV6, { ZA, PRB } },
1574
  { "hw_coroutine/stall", EV6HWMBR(0x1E,0x7), EV6, { ZA, PRB } }, /* alias */
1575
  { "pal1e",                PCD(0x1E), BASE, ARG_PCD },
1576

    
1577
  { "hw_stl",                EV4HWMEM(0x1F,0x0), EV4, ARG_EV4HWMEM },
1578
  { "hw_stl",                EV5HWMEM(0x1F,0x00), EV5, ARG_EV5HWMEM },
1579
  { "hw_stl",                EV6HWMEM(0x1F,0x4), EV6, ARG_EV6HWMEM }, /* ??? 8 */
1580
  { "hw_stl/a",                EV4HWMEM(0x1F,0x4), EV4, ARG_EV4HWMEM },
1581
  { "hw_stl/a",                EV5HWMEM(0x1F,0x10), EV5, ARG_EV5HWMEM },
1582
  { "hw_stl/a",                EV6HWMEM(0x1F,0xC), EV6, ARG_EV6HWMEM },
1583
  { "hw_stl/ac",        EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1584
  { "hw_stl/ar",        EV4HWMEM(0x1F,0x6), EV4, ARG_EV4HWMEM },
1585
  { "hw_stl/av",        EV5HWMEM(0x1F,0x12), EV5, ARG_EV5HWMEM },
1586
  { "hw_stl/avc",        EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1587
  { "hw_stl/c",                EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1588
  { "hw_stl/p",                EV4HWMEM(0x1F,0x8), EV4, ARG_EV4HWMEM },
1589
  { "hw_stl/p",                EV5HWMEM(0x1F,0x20), EV5, ARG_EV5HWMEM },
1590
  { "hw_stl/p",                EV6HWMEM(0x1F,0x0), EV6, ARG_EV6HWMEM },
1591
  { "hw_stl/pa",        EV4HWMEM(0x1F,0xC), EV4, ARG_EV4HWMEM },
1592
  { "hw_stl/pa",        EV5HWMEM(0x1F,0x30), EV5, ARG_EV5HWMEM },
1593
  { "hw_stl/pac",        EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1594
  { "hw_stl/pav",        EV5HWMEM(0x1F,0x32), EV5, ARG_EV5HWMEM },
1595
  { "hw_stl/pavc",        EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1596
  { "hw_stl/pc",        EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1597
  { "hw_stl/pr",        EV4HWMEM(0x1F,0xA), EV4, ARG_EV4HWMEM },
1598
  { "hw_stl/pv",        EV5HWMEM(0x1F,0x22), EV5, ARG_EV5HWMEM },
1599
  { "hw_stl/pvc",        EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1600
  { "hw_stl/r",                EV4HWMEM(0x1F,0x2), EV4, ARG_EV4HWMEM },
1601
  { "hw_stl/v",                EV5HWMEM(0x1F,0x02), EV5, ARG_EV5HWMEM },
1602
  { "hw_stl/vc",        EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1603
  { "hw_stl_c",                EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1604
  { "hw_stl_c/a",        EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1605
  { "hw_stl_c/av",        EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1606
  { "hw_stl_c/p",        EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1607
  { "hw_stl_c/p",        EV6HWMEM(0x1F,0x2), EV6, ARG_EV6HWMEM },
1608
  { "hw_stl_c/pa",        EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1609
  { "hw_stl_c/pav",        EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1610
  { "hw_stl_c/pv",        EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1611
  { "hw_stl_c/v",        EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1612
  { "hw_stq",                EV4HWMEM(0x1F,0x1), EV4, ARG_EV4HWMEM },
1613
  { "hw_stq",                EV5HWMEM(0x1F,0x04), EV5, ARG_EV5HWMEM },
1614
  { "hw_stq",                EV6HWMEM(0x1F,0x5), EV6, ARG_EV6HWMEM }, /* ??? 9 */
1615
  { "hw_stq/a",                EV4HWMEM(0x1F,0x5), EV4, ARG_EV4HWMEM },
1616
  { "hw_stq/a",                EV5HWMEM(0x1F,0x14), EV5, ARG_EV5HWMEM },
1617
  { "hw_stq/a",                EV6HWMEM(0x1F,0xD), EV6, ARG_EV6HWMEM },
1618
  { "hw_stq/ac",        EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1619
  { "hw_stq/ar",        EV4HWMEM(0x1F,0x7), EV4, ARG_EV4HWMEM },
1620
  { "hw_stq/av",        EV5HWMEM(0x1F,0x16), EV5, ARG_EV5HWMEM },
1621
  { "hw_stq/avc",        EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1622
  { "hw_stq/c",                EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1623
  { "hw_stq/p",                EV4HWMEM(0x1F,0x9), EV4, ARG_EV4HWMEM },
1624
  { "hw_stq/p",                EV5HWMEM(0x1F,0x24), EV5, ARG_EV5HWMEM },
1625
  { "hw_stq/p",                EV6HWMEM(0x1F,0x1), EV6, ARG_EV6HWMEM },
1626
  { "hw_stq/pa",        EV4HWMEM(0x1F,0xD), EV4, ARG_EV4HWMEM },
1627
  { "hw_stq/pa",        EV5HWMEM(0x1F,0x34), EV5, ARG_EV5HWMEM },
1628
  { "hw_stq/pac",        EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1629
  { "hw_stq/par",        EV4HWMEM(0x1F,0xE), EV4, ARG_EV4HWMEM },
1630
  { "hw_stq/par",        EV4HWMEM(0x1F,0xF), EV4, ARG_EV4HWMEM },
1631
  { "hw_stq/pav",        EV5HWMEM(0x1F,0x36), EV5, ARG_EV5HWMEM },
1632
  { "hw_stq/pavc",        EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1633
  { "hw_stq/pc",        EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1634
  { "hw_stq/pr",        EV4HWMEM(0x1F,0xB), EV4, ARG_EV4HWMEM },
1635
  { "hw_stq/pv",        EV5HWMEM(0x1F,0x26), EV5, ARG_EV5HWMEM },
1636
  { "hw_stq/pvc",        EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1637
  { "hw_stq/r",                EV4HWMEM(0x1F,0x3), EV4, ARG_EV4HWMEM },
1638
  { "hw_stq/v",                EV5HWMEM(0x1F,0x06), EV5, ARG_EV5HWMEM },
1639
  { "hw_stq/vc",        EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1640
  { "hw_stq_c",                EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1641
  { "hw_stq_c/a",        EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1642
  { "hw_stq_c/av",        EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1643
  { "hw_stq_c/p",        EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1644
  { "hw_stq_c/p",        EV6HWMEM(0x1F,0x3), EV6, ARG_EV6HWMEM },
1645
  { "hw_stq_c/pa",        EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1646
  { "hw_stq_c/pav",        EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1647
  { "hw_stq_c/pv",        EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1648
  { "hw_stq_c/v",        EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1649
  { "hw_st",                EV4HWMEM(0x1F,0x0), EV4, ARG_EV4HWMEM },
1650
  { "hw_st",                EV5HWMEM(0x1F,0x00), EV5, ARG_EV5HWMEM },
1651
  { "hw_st/a",                EV4HWMEM(0x1F,0x4), EV4, ARG_EV4HWMEM },
1652
  { "hw_st/a",                EV5HWMEM(0x1F,0x10), EV5, ARG_EV5HWMEM },
1653
  { "hw_st/ac",                EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1654
  { "hw_st/aq",                EV4HWMEM(0x1F,0x5), EV4, ARG_EV4HWMEM },
1655
  { "hw_st/aq",                EV5HWMEM(0x1F,0x14), EV5, ARG_EV5HWMEM },
1656
  { "hw_st/aqc",        EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1657
  { "hw_st/aqv",        EV5HWMEM(0x1F,0x16), EV5, ARG_EV5HWMEM },
1658
  { "hw_st/aqvc",        EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1659
  { "hw_st/ar",                EV4HWMEM(0x1F,0x6), EV4, ARG_EV4HWMEM },
1660
  { "hw_st/arq",        EV4HWMEM(0x1F,0x7), EV4, ARG_EV4HWMEM },
1661
  { "hw_st/av",                EV5HWMEM(0x1F,0x12), EV5, ARG_EV5HWMEM },
1662
  { "hw_st/avc",        EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1663
  { "hw_st/c",                EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1664
  { "hw_st/p",                EV4HWMEM(0x1F,0x8), EV4, ARG_EV4HWMEM },
1665
  { "hw_st/p",                EV5HWMEM(0x1F,0x20), EV5, ARG_EV5HWMEM },
1666
  { "hw_st/pa",                EV4HWMEM(0x1F,0xC), EV4, ARG_EV4HWMEM },
1667
  { "hw_st/pa",                EV5HWMEM(0x1F,0x30), EV5, ARG_EV5HWMEM },
1668
  { "hw_st/pac",        EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1669
  { "hw_st/paq",        EV4HWMEM(0x1F,0xD), EV4, ARG_EV4HWMEM },
1670
  { "hw_st/paq",        EV5HWMEM(0x1F,0x34), EV5, ARG_EV5HWMEM },
1671
  { "hw_st/paqc",        EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1672
  { "hw_st/paqv",        EV5HWMEM(0x1F,0x36), EV5, ARG_EV5HWMEM },
1673
  { "hw_st/paqvc",        EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1674
  { "hw_st/par",        EV4HWMEM(0x1F,0xE), EV4, ARG_EV4HWMEM },
1675
  { "hw_st/parq",        EV4HWMEM(0x1F,0xF), EV4, ARG_EV4HWMEM },
1676
  { "hw_st/pav",        EV5HWMEM(0x1F,0x32), EV5, ARG_EV5HWMEM },
1677
  { "hw_st/pavc",        EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1678
  { "hw_st/pc",                EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1679
  { "hw_st/pq",                EV4HWMEM(0x1F,0x9), EV4, ARG_EV4HWMEM },
1680
  { "hw_st/pq",                EV5HWMEM(0x1F,0x24), EV5, ARG_EV5HWMEM },
1681
  { "hw_st/pqc",        EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1682
  { "hw_st/pqv",        EV5HWMEM(0x1F,0x26), EV5, ARG_EV5HWMEM },
1683
  { "hw_st/pqvc",        EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1684
  { "hw_st/pr",                EV4HWMEM(0x1F,0xA), EV4, ARG_EV4HWMEM },
1685
  { "hw_st/prq",        EV4HWMEM(0x1F,0xB), EV4, ARG_EV4HWMEM },
1686
  { "hw_st/pv",                EV5HWMEM(0x1F,0x22), EV5, ARG_EV5HWMEM },
1687
  { "hw_st/pvc",        EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1688
  { "hw_st/q",                EV4HWMEM(0x1F,0x1), EV4, ARG_EV4HWMEM },
1689
  { "hw_st/q",                EV5HWMEM(0x1F,0x04), EV5, ARG_EV5HWMEM },
1690
  { "hw_st/qc",                EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1691
  { "hw_st/qv",                EV5HWMEM(0x1F,0x06), EV5, ARG_EV5HWMEM },
1692
  { "hw_st/qvc",        EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1693
  { "hw_st/r",                EV4HWMEM(0x1F,0x2), EV4, ARG_EV4HWMEM },
1694
  { "hw_st/v",                EV5HWMEM(0x1F,0x02), EV5, ARG_EV5HWMEM },
1695
  { "hw_st/vc",                EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1696
  { "pal1f",                PCD(0x1F), BASE, ARG_PCD },
1697

    
1698
  { "ldf",                MEM(0x20), BASE, ARG_FMEM },
1699
  { "ldg",                MEM(0x21), BASE, ARG_FMEM },
1700
  { "lds",                MEM(0x22), BASE, ARG_FMEM },
1701
  { "ldt",                MEM(0x23), BASE, ARG_FMEM },
1702
  { "stf",                MEM(0x24), BASE, ARG_FMEM },
1703
  { "stg",                MEM(0x25), BASE, ARG_FMEM },
1704
  { "sts",                MEM(0x26), BASE, ARG_FMEM },
1705
  { "stt",                MEM(0x27), BASE, ARG_FMEM },
1706

    
1707
  { "ldl",                MEM(0x28), BASE, ARG_MEM },
1708
  { "ldq",                MEM(0x29), BASE, ARG_MEM },
1709
  { "ldl_l",                MEM(0x2A), BASE, ARG_MEM },
1710
  { "ldq_l",                MEM(0x2B), BASE, ARG_MEM },
1711
  { "stl",                MEM(0x2C), BASE, ARG_MEM },
1712
  { "stq",                MEM(0x2D), BASE, ARG_MEM },
1713
  { "stl_c",                MEM(0x2E), BASE, ARG_MEM },
1714
  { "stq_c",                MEM(0x2F), BASE, ARG_MEM },
1715

    
1716
  { "br",                BRA(0x30), BASE, { ZA, BDISP } },        /* pseudo */
1717
  { "br",                BRA(0x30), BASE, ARG_BRA },
1718
  { "fbeq",                BRA(0x31), BASE, ARG_FBRA },
1719
  { "fblt",                BRA(0x32), BASE, ARG_FBRA },
1720
  { "fble",                BRA(0x33), BASE, ARG_FBRA },
1721
  { "bsr",                BRA(0x34), BASE, ARG_BRA },
1722
  { "fbne",                BRA(0x35), BASE, ARG_FBRA },
1723
  { "fbge",                BRA(0x36), BASE, ARG_FBRA },
1724
  { "fbgt",                BRA(0x37), BASE, ARG_FBRA },
1725
  { "blbc",                BRA(0x38), BASE, ARG_BRA },
1726
  { "beq",                BRA(0x39), BASE, ARG_BRA },
1727
  { "blt",                BRA(0x3A), BASE, ARG_BRA },
1728
  { "ble",                BRA(0x3B), BASE, ARG_BRA },
1729
  { "blbs",                BRA(0x3C), BASE, ARG_BRA },
1730
  { "bne",                BRA(0x3D), BASE, ARG_BRA },
1731
  { "bge",                BRA(0x3E), BASE, ARG_BRA },
1732
  { "bgt",                BRA(0x3F), BASE, ARG_BRA },
1733
};
1734

    
1735
const unsigned alpha_num_opcodes = sizeof(alpha_opcodes)/sizeof(*alpha_opcodes);
1736

    
1737
/* OSF register names.  */
1738

    
1739
static const char * const osf_regnames[64] = {
1740
  "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
1741
  "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
1742
  "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
1743
  "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
1744
  "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7",
1745
  "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",
1746
  "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",
1747
  "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31"
1748
};
1749

    
1750
/* VMS register names.  */
1751

    
1752
static const char * const vms_regnames[64] = {
1753
  "R0", "R1", "R2", "R3", "R4", "R5", "R6", "R7",
1754
  "R8", "R9", "R10", "R11", "R12", "R13", "R14", "R15",
1755
  "R16", "R17", "R18", "R19", "R20", "R21", "R22", "R23",
1756
  "R24", "AI", "RA", "PV", "AT", "FP", "SP", "RZ",
1757
  "F0", "F1", "F2", "F3", "F4", "F5", "F6", "F7",
1758
  "F8", "F9", "F10", "F11", "F12", "F13", "F14", "F15",
1759
  "F16", "F17", "F18", "F19", "F20", "F21", "F22", "F23",
1760
  "F24", "F25", "F26", "F27", "F28", "F29", "F30", "FZ"
1761
};
1762

    
1763
/* Disassemble Alpha instructions.  */
1764

    
1765
int
1766
print_insn_alpha (bfd_vma memaddr, struct disassemble_info *info)
1767
{
1768
  static const struct alpha_opcode *opcode_index[AXP_NOPS+1];
1769
  const char * const * regnames;
1770
  const struct alpha_opcode *opcode, *opcode_end;
1771
  const unsigned char *opindex;
1772
  unsigned insn, op, isa_mask;
1773
  int need_comma;
1774

    
1775
  /* Initialize the majorop table the first time through */
1776
  if (!opcode_index[0])
1777
    {
1778
      opcode = alpha_opcodes;
1779
      opcode_end = opcode + alpha_num_opcodes;
1780

    
1781
      for (op = 0; op < AXP_NOPS; ++op)
1782
        {
1783
          opcode_index[op] = opcode;
1784
          while (opcode < opcode_end && op == AXP_OP (opcode->opcode))
1785
            ++opcode;
1786
        }
1787
      opcode_index[op] = opcode;
1788
    }
1789

    
1790
  if (info->flavour == bfd_target_evax_flavour)
1791
    regnames = vms_regnames;
1792
  else
1793
    regnames = osf_regnames;
1794

    
1795
  isa_mask = AXP_OPCODE_NOPAL;
1796
  switch (info->mach)
1797
    {
1798
    case bfd_mach_alpha_ev4:
1799
      isa_mask |= AXP_OPCODE_EV4;
1800
      break;
1801
    case bfd_mach_alpha_ev5:
1802
      isa_mask |= AXP_OPCODE_EV5;
1803
      break;
1804
    case bfd_mach_alpha_ev6:
1805
      isa_mask |= AXP_OPCODE_EV6;
1806
      break;
1807
    }
1808

    
1809
  /* Read the insn into a host word */
1810
  {
1811
    bfd_byte buffer[4];
1812
    int status = (*info->read_memory_func) (memaddr, buffer, 4, info);
1813
    if (status != 0)
1814
      {
1815
        (*info->memory_error_func) (status, memaddr, info);
1816
        return -1;
1817
      }
1818
    insn = bfd_getl32 (buffer);
1819
  }
1820

    
1821
  /* Get the major opcode of the instruction.  */
1822
  op = AXP_OP (insn);
1823

    
1824
  /* Find the first match in the opcode table.  */
1825
  opcode_end = opcode_index[op + 1];
1826
  for (opcode = opcode_index[op]; opcode < opcode_end; ++opcode)
1827
    {
1828
      if ((insn ^ opcode->opcode) & opcode->mask)
1829
        continue;
1830

    
1831
      if (!(opcode->flags & isa_mask))
1832
        continue;
1833

    
1834
      /* Make two passes over the operands.  First see if any of them
1835
         have extraction functions, and, if they do, make sure the
1836
         instruction is valid.  */
1837
      {
1838
        int invalid = 0;
1839
        for (opindex = opcode->operands; *opindex != 0; opindex++)
1840
          {
1841
            const struct alpha_operand *operand = alpha_operands + *opindex;
1842
            if (operand->extract)
1843
              (*operand->extract) (insn, &invalid);
1844
          }
1845
        if (invalid)
1846
          continue;
1847
      }
1848

    
1849
      /* The instruction is valid.  */
1850
      goto found;
1851
    }
1852

    
1853
  /* No instruction found */
1854
  (*info->fprintf_func) (info->stream, ".long %#08x", insn);
1855

    
1856
  return 4;
1857

    
1858
found:
1859
  (*info->fprintf_func) (info->stream, "%s", opcode->name);
1860
  if (opcode->operands[0] != 0)
1861
    (*info->fprintf_func) (info->stream, "\t");
1862

    
1863
  /* Now extract and print the operands.  */
1864
  need_comma = 0;
1865
  for (opindex = opcode->operands; *opindex != 0; opindex++)
1866
    {
1867
      const struct alpha_operand *operand = alpha_operands + *opindex;
1868
      int value;
1869

    
1870
      /* Operands that are marked FAKE are simply ignored.  We
1871
         already made sure that the extract function considered
1872
         the instruction to be valid.  */
1873
      if ((operand->flags & AXP_OPERAND_FAKE) != 0)
1874
        continue;
1875

    
1876
      /* Extract the value from the instruction.  */
1877
      if (operand->extract)
1878
        value = (*operand->extract) (insn, (int *) NULL);
1879
      else
1880
        {
1881
          value = (insn >> operand->shift) & ((1 << operand->bits) - 1);
1882
          if (operand->flags & AXP_OPERAND_SIGNED)
1883
            {
1884
              int signbit = 1 << (operand->bits - 1);
1885
              value = (value ^ signbit) - signbit;
1886
            }
1887
        }
1888

    
1889
      if (need_comma &&
1890
          ((operand->flags & (AXP_OPERAND_PARENS | AXP_OPERAND_COMMA))
1891
           != AXP_OPERAND_PARENS))
1892
        {
1893
          (*info->fprintf_func) (info->stream, ",");
1894
        }
1895
      if (operand->flags & AXP_OPERAND_PARENS)
1896
        (*info->fprintf_func) (info->stream, "(");
1897

    
1898
      /* Print the operand as directed by the flags.  */
1899
      if (operand->flags & AXP_OPERAND_IR)
1900
        (*info->fprintf_func) (info->stream, "%s", regnames[value]);
1901
      else if (operand->flags & AXP_OPERAND_FPR)
1902
        (*info->fprintf_func) (info->stream, "%s", regnames[value + 32]);
1903
      else if (operand->flags & AXP_OPERAND_RELATIVE)
1904
        (*info->print_address_func) (memaddr + 4 + value, info);
1905
      else if (operand->flags & AXP_OPERAND_SIGNED)
1906
        (*info->fprintf_func) (info->stream, "%d", value);
1907
      else
1908
        (*info->fprintf_func) (info->stream, "%#x", value);
1909

    
1910
      if (operand->flags & AXP_OPERAND_PARENS)
1911
        (*info->fprintf_func) (info->stream, ")");
1912
      need_comma = 1;
1913
    }
1914

    
1915
  return 4;
1916
}