Statistics
| Branch: | Revision:

root / block / qed.c @ 77a5a000

History | View | Annotate | Download (43.4 kB)

1
/*
2
 * QEMU Enhanced Disk Format
3
 *
4
 * Copyright IBM, Corp. 2010
5
 *
6
 * Authors:
7
 *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com>
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11
 * See the COPYING.LIB file in the top-level directory.
12
 *
13
 */
14

    
15
#include "qemu-timer.h"
16
#include "trace.h"
17
#include "qed.h"
18
#include "qerror.h"
19

    
20
static void qed_aio_cancel(BlockDriverAIOCB *blockacb)
21
{
22
    QEDAIOCB *acb = (QEDAIOCB *)blockacb;
23
    bool finished = false;
24

    
25
    /* Wait for the request to finish */
26
    acb->finished = &finished;
27
    while (!finished) {
28
        qemu_aio_wait();
29
    }
30
}
31

    
32
static AIOPool qed_aio_pool = {
33
    .aiocb_size         = sizeof(QEDAIOCB),
34
    .cancel             = qed_aio_cancel,
35
};
36

    
37
static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
38
                          const char *filename)
39
{
40
    const QEDHeader *header = (const QEDHeader *)buf;
41

    
42
    if (buf_size < sizeof(*header)) {
43
        return 0;
44
    }
45
    if (le32_to_cpu(header->magic) != QED_MAGIC) {
46
        return 0;
47
    }
48
    return 100;
49
}
50

    
51
/**
52
 * Check whether an image format is raw
53
 *
54
 * @fmt:    Backing file format, may be NULL
55
 */
56
static bool qed_fmt_is_raw(const char *fmt)
57
{
58
    return fmt && strcmp(fmt, "raw") == 0;
59
}
60

    
61
static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
62
{
63
    cpu->magic = le32_to_cpu(le->magic);
64
    cpu->cluster_size = le32_to_cpu(le->cluster_size);
65
    cpu->table_size = le32_to_cpu(le->table_size);
66
    cpu->header_size = le32_to_cpu(le->header_size);
67
    cpu->features = le64_to_cpu(le->features);
68
    cpu->compat_features = le64_to_cpu(le->compat_features);
69
    cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
70
    cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
71
    cpu->image_size = le64_to_cpu(le->image_size);
72
    cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
73
    cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
74
}
75

    
76
static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
77
{
78
    le->magic = cpu_to_le32(cpu->magic);
79
    le->cluster_size = cpu_to_le32(cpu->cluster_size);
80
    le->table_size = cpu_to_le32(cpu->table_size);
81
    le->header_size = cpu_to_le32(cpu->header_size);
82
    le->features = cpu_to_le64(cpu->features);
83
    le->compat_features = cpu_to_le64(cpu->compat_features);
84
    le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
85
    le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
86
    le->image_size = cpu_to_le64(cpu->image_size);
87
    le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
88
    le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
89
}
90

    
91
static int qed_write_header_sync(BDRVQEDState *s)
92
{
93
    QEDHeader le;
94
    int ret;
95

    
96
    qed_header_cpu_to_le(&s->header, &le);
97
    ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
98
    if (ret != sizeof(le)) {
99
        return ret;
100
    }
101
    return 0;
102
}
103

    
104
typedef struct {
105
    GenericCB gencb;
106
    BDRVQEDState *s;
107
    struct iovec iov;
108
    QEMUIOVector qiov;
109
    int nsectors;
110
    uint8_t *buf;
111
} QEDWriteHeaderCB;
112

    
113
static void qed_write_header_cb(void *opaque, int ret)
114
{
115
    QEDWriteHeaderCB *write_header_cb = opaque;
116

    
117
    qemu_vfree(write_header_cb->buf);
118
    gencb_complete(write_header_cb, ret);
119
}
120

    
121
static void qed_write_header_read_cb(void *opaque, int ret)
122
{
123
    QEDWriteHeaderCB *write_header_cb = opaque;
124
    BDRVQEDState *s = write_header_cb->s;
125
    BlockDriverAIOCB *acb;
126

    
127
    if (ret) {
128
        qed_write_header_cb(write_header_cb, ret);
129
        return;
130
    }
131

    
132
    /* Update header */
133
    qed_header_cpu_to_le(&s->header, (QEDHeader *)write_header_cb->buf);
134

    
135
    acb = bdrv_aio_writev(s->bs->file, 0, &write_header_cb->qiov,
136
                          write_header_cb->nsectors, qed_write_header_cb,
137
                          write_header_cb);
138
    if (!acb) {
139
        qed_write_header_cb(write_header_cb, -EIO);
140
    }
141
}
142

    
143
/**
144
 * Update header in-place (does not rewrite backing filename or other strings)
145
 *
146
 * This function only updates known header fields in-place and does not affect
147
 * extra data after the QED header.
148
 */
149
static void qed_write_header(BDRVQEDState *s, BlockDriverCompletionFunc cb,
150
                             void *opaque)
151
{
152
    /* We must write full sectors for O_DIRECT but cannot necessarily generate
153
     * the data following the header if an unrecognized compat feature is
154
     * active.  Therefore, first read the sectors containing the header, update
155
     * them, and write back.
156
     */
157

    
158
    BlockDriverAIOCB *acb;
159
    int nsectors = (sizeof(QEDHeader) + BDRV_SECTOR_SIZE - 1) /
160
                   BDRV_SECTOR_SIZE;
161
    size_t len = nsectors * BDRV_SECTOR_SIZE;
162
    QEDWriteHeaderCB *write_header_cb = gencb_alloc(sizeof(*write_header_cb),
163
                                                    cb, opaque);
164

    
165
    write_header_cb->s = s;
166
    write_header_cb->nsectors = nsectors;
167
    write_header_cb->buf = qemu_blockalign(s->bs, len);
168
    write_header_cb->iov.iov_base = write_header_cb->buf;
169
    write_header_cb->iov.iov_len = len;
170
    qemu_iovec_init_external(&write_header_cb->qiov, &write_header_cb->iov, 1);
171

    
172
    acb = bdrv_aio_readv(s->bs->file, 0, &write_header_cb->qiov, nsectors,
173
                         qed_write_header_read_cb, write_header_cb);
174
    if (!acb) {
175
        qed_write_header_cb(write_header_cb, -EIO);
176
    }
177
}
178

    
179
static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
180
{
181
    uint64_t table_entries;
182
    uint64_t l2_size;
183

    
184
    table_entries = (table_size * cluster_size) / sizeof(uint64_t);
185
    l2_size = table_entries * cluster_size;
186

    
187
    return l2_size * table_entries;
188
}
189

    
190
static bool qed_is_cluster_size_valid(uint32_t cluster_size)
191
{
192
    if (cluster_size < QED_MIN_CLUSTER_SIZE ||
193
        cluster_size > QED_MAX_CLUSTER_SIZE) {
194
        return false;
195
    }
196
    if (cluster_size & (cluster_size - 1)) {
197
        return false; /* not power of 2 */
198
    }
199
    return true;
200
}
201

    
202
static bool qed_is_table_size_valid(uint32_t table_size)
203
{
204
    if (table_size < QED_MIN_TABLE_SIZE ||
205
        table_size > QED_MAX_TABLE_SIZE) {
206
        return false;
207
    }
208
    if (table_size & (table_size - 1)) {
209
        return false; /* not power of 2 */
210
    }
211
    return true;
212
}
213

    
214
static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
215
                                    uint32_t table_size)
216
{
217
    if (image_size % BDRV_SECTOR_SIZE != 0) {
218
        return false; /* not multiple of sector size */
219
    }
220
    if (image_size > qed_max_image_size(cluster_size, table_size)) {
221
        return false; /* image is too large */
222
    }
223
    return true;
224
}
225

    
226
/**
227
 * Read a string of known length from the image file
228
 *
229
 * @file:       Image file
230
 * @offset:     File offset to start of string, in bytes
231
 * @n:          String length in bytes
232
 * @buf:        Destination buffer
233
 * @buflen:     Destination buffer length in bytes
234
 * @ret:        0 on success, -errno on failure
235
 *
236
 * The string is NUL-terminated.
237
 */
238
static int qed_read_string(BlockDriverState *file, uint64_t offset, size_t n,
239
                           char *buf, size_t buflen)
240
{
241
    int ret;
242
    if (n >= buflen) {
243
        return -EINVAL;
244
    }
245
    ret = bdrv_pread(file, offset, buf, n);
246
    if (ret < 0) {
247
        return ret;
248
    }
249
    buf[n] = '\0';
250
    return 0;
251
}
252

    
253
/**
254
 * Allocate new clusters
255
 *
256
 * @s:          QED state
257
 * @n:          Number of contiguous clusters to allocate
258
 * @ret:        Offset of first allocated cluster
259
 *
260
 * This function only produces the offset where the new clusters should be
261
 * written.  It updates BDRVQEDState but does not make any changes to the image
262
 * file.
263
 */
264
static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
265
{
266
    uint64_t offset = s->file_size;
267
    s->file_size += n * s->header.cluster_size;
268
    return offset;
269
}
270

    
271
QEDTable *qed_alloc_table(BDRVQEDState *s)
272
{
273
    /* Honor O_DIRECT memory alignment requirements */
274
    return qemu_blockalign(s->bs,
275
                           s->header.cluster_size * s->header.table_size);
276
}
277

    
278
/**
279
 * Allocate a new zeroed L2 table
280
 */
281
static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
282
{
283
    CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
284

    
285
    l2_table->table = qed_alloc_table(s);
286
    l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
287

    
288
    memset(l2_table->table->offsets, 0,
289
           s->header.cluster_size * s->header.table_size);
290
    return l2_table;
291
}
292

    
293
static void qed_aio_next_io(void *opaque, int ret);
294

    
295
static void qed_plug_allocating_write_reqs(BDRVQEDState *s)
296
{
297
    assert(!s->allocating_write_reqs_plugged);
298

    
299
    s->allocating_write_reqs_plugged = true;
300
}
301

    
302
static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
303
{
304
    QEDAIOCB *acb;
305

    
306
    assert(s->allocating_write_reqs_plugged);
307

    
308
    s->allocating_write_reqs_plugged = false;
309

    
310
    acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
311
    if (acb) {
312
        qed_aio_next_io(acb, 0);
313
    }
314
}
315

    
316
static void qed_finish_clear_need_check(void *opaque, int ret)
317
{
318
    /* Do nothing */
319
}
320

    
321
static void qed_flush_after_clear_need_check(void *opaque, int ret)
322
{
323
    BDRVQEDState *s = opaque;
324

    
325
    bdrv_aio_flush(s->bs, qed_finish_clear_need_check, s);
326

    
327
    /* No need to wait until flush completes */
328
    qed_unplug_allocating_write_reqs(s);
329
}
330

    
331
static void qed_clear_need_check(void *opaque, int ret)
332
{
333
    BDRVQEDState *s = opaque;
334

    
335
    if (ret) {
336
        qed_unplug_allocating_write_reqs(s);
337
        return;
338
    }
339

    
340
    s->header.features &= ~QED_F_NEED_CHECK;
341
    qed_write_header(s, qed_flush_after_clear_need_check, s);
342
}
343

    
344
static void qed_need_check_timer_cb(void *opaque)
345
{
346
    BDRVQEDState *s = opaque;
347

    
348
    /* The timer should only fire when allocating writes have drained */
349
    assert(!QSIMPLEQ_FIRST(&s->allocating_write_reqs));
350

    
351
    trace_qed_need_check_timer_cb(s);
352

    
353
    qed_plug_allocating_write_reqs(s);
354

    
355
    /* Ensure writes are on disk before clearing flag */
356
    bdrv_aio_flush(s->bs, qed_clear_need_check, s);
357
}
358

    
359
static void qed_start_need_check_timer(BDRVQEDState *s)
360
{
361
    trace_qed_start_need_check_timer(s);
362

    
363
    /* Use vm_clock so we don't alter the image file while suspended for
364
     * migration.
365
     */
366
    qemu_mod_timer(s->need_check_timer, qemu_get_clock_ns(vm_clock) +
367
                   get_ticks_per_sec() * QED_NEED_CHECK_TIMEOUT);
368
}
369

    
370
/* It's okay to call this multiple times or when no timer is started */
371
static void qed_cancel_need_check_timer(BDRVQEDState *s)
372
{
373
    trace_qed_cancel_need_check_timer(s);
374
    qemu_del_timer(s->need_check_timer);
375
}
376

    
377
static int bdrv_qed_open(BlockDriverState *bs, int flags)
378
{
379
    BDRVQEDState *s = bs->opaque;
380
    QEDHeader le_header;
381
    int64_t file_size;
382
    int ret;
383

    
384
    s->bs = bs;
385
    QSIMPLEQ_INIT(&s->allocating_write_reqs);
386

    
387
    ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
388
    if (ret < 0) {
389
        return ret;
390
    }
391
    ret = 0; /* ret should always be 0 or -errno */
392
    qed_header_le_to_cpu(&le_header, &s->header);
393

    
394
    if (s->header.magic != QED_MAGIC) {
395
        return -EINVAL;
396
    }
397
    if (s->header.features & ~QED_FEATURE_MASK) {
398
        /* image uses unsupported feature bits */
399
        char buf[64];
400
        snprintf(buf, sizeof(buf), "%" PRIx64,
401
            s->header.features & ~QED_FEATURE_MASK);
402
        qerror_report(QERR_UNKNOWN_BLOCK_FORMAT_FEATURE,
403
            bs->device_name, "QED", buf);
404
        return -ENOTSUP;
405
    }
406
    if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
407
        return -EINVAL;
408
    }
409

    
410
    /* Round down file size to the last cluster */
411
    file_size = bdrv_getlength(bs->file);
412
    if (file_size < 0) {
413
        return file_size;
414
    }
415
    s->file_size = qed_start_of_cluster(s, file_size);
416

    
417
    if (!qed_is_table_size_valid(s->header.table_size)) {
418
        return -EINVAL;
419
    }
420
    if (!qed_is_image_size_valid(s->header.image_size,
421
                                 s->header.cluster_size,
422
                                 s->header.table_size)) {
423
        return -EINVAL;
424
    }
425
    if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
426
        return -EINVAL;
427
    }
428

    
429
    s->table_nelems = (s->header.cluster_size * s->header.table_size) /
430
                      sizeof(uint64_t);
431
    s->l2_shift = ffs(s->header.cluster_size) - 1;
432
    s->l2_mask = s->table_nelems - 1;
433
    s->l1_shift = s->l2_shift + ffs(s->table_nelems) - 1;
434

    
435
    if ((s->header.features & QED_F_BACKING_FILE)) {
436
        if ((uint64_t)s->header.backing_filename_offset +
437
            s->header.backing_filename_size >
438
            s->header.cluster_size * s->header.header_size) {
439
            return -EINVAL;
440
        }
441

    
442
        ret = qed_read_string(bs->file, s->header.backing_filename_offset,
443
                              s->header.backing_filename_size, bs->backing_file,
444
                              sizeof(bs->backing_file));
445
        if (ret < 0) {
446
            return ret;
447
        }
448

    
449
        if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
450
            pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
451
        }
452
    }
453

    
454
    /* Reset unknown autoclear feature bits.  This is a backwards
455
     * compatibility mechanism that allows images to be opened by older
456
     * programs, which "knock out" unknown feature bits.  When an image is
457
     * opened by a newer program again it can detect that the autoclear
458
     * feature is no longer valid.
459
     */
460
    if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
461
        !bdrv_is_read_only(bs->file)) {
462
        s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
463

    
464
        ret = qed_write_header_sync(s);
465
        if (ret) {
466
            return ret;
467
        }
468

    
469
        /* From here on only known autoclear feature bits are valid */
470
        bdrv_flush(bs->file);
471
    }
472

    
473
    s->l1_table = qed_alloc_table(s);
474
    qed_init_l2_cache(&s->l2_cache);
475

    
476
    ret = qed_read_l1_table_sync(s);
477
    if (ret) {
478
        goto out;
479
    }
480

    
481
    /* If image was not closed cleanly, check consistency */
482
    if (s->header.features & QED_F_NEED_CHECK) {
483
        /* Read-only images cannot be fixed.  There is no risk of corruption
484
         * since write operations are not possible.  Therefore, allow
485
         * potentially inconsistent images to be opened read-only.  This can
486
         * aid data recovery from an otherwise inconsistent image.
487
         */
488
        if (!bdrv_is_read_only(bs->file)) {
489
            BdrvCheckResult result = {0};
490

    
491
            ret = qed_check(s, &result, true);
492
            if (ret) {
493
                goto out;
494
            }
495
            if (!result.corruptions && !result.check_errors) {
496
                /* Ensure fixes reach storage before clearing check bit */
497
                bdrv_flush(s->bs);
498

    
499
                s->header.features &= ~QED_F_NEED_CHECK;
500
                qed_write_header_sync(s);
501
            }
502
        }
503
    }
504

    
505
    s->need_check_timer = qemu_new_timer_ns(vm_clock,
506
                                            qed_need_check_timer_cb, s);
507

    
508
out:
509
    if (ret) {
510
        qed_free_l2_cache(&s->l2_cache);
511
        qemu_vfree(s->l1_table);
512
    }
513
    return ret;
514
}
515

    
516
static void bdrv_qed_close(BlockDriverState *bs)
517
{
518
    BDRVQEDState *s = bs->opaque;
519

    
520
    qed_cancel_need_check_timer(s);
521
    qemu_free_timer(s->need_check_timer);
522

    
523
    /* Ensure writes reach stable storage */
524
    bdrv_flush(bs->file);
525

    
526
    /* Clean shutdown, no check required on next open */
527
    if (s->header.features & QED_F_NEED_CHECK) {
528
        s->header.features &= ~QED_F_NEED_CHECK;
529
        qed_write_header_sync(s);
530
    }
531

    
532
    qed_free_l2_cache(&s->l2_cache);
533
    qemu_vfree(s->l1_table);
534
}
535

    
536
static int bdrv_qed_flush(BlockDriverState *bs)
537
{
538
    return bdrv_flush(bs->file);
539
}
540

    
541
static int qed_create(const char *filename, uint32_t cluster_size,
542
                      uint64_t image_size, uint32_t table_size,
543
                      const char *backing_file, const char *backing_fmt)
544
{
545
    QEDHeader header = {
546
        .magic = QED_MAGIC,
547
        .cluster_size = cluster_size,
548
        .table_size = table_size,
549
        .header_size = 1,
550
        .features = 0,
551
        .compat_features = 0,
552
        .l1_table_offset = cluster_size,
553
        .image_size = image_size,
554
    };
555
    QEDHeader le_header;
556
    uint8_t *l1_table = NULL;
557
    size_t l1_size = header.cluster_size * header.table_size;
558
    int ret = 0;
559
    BlockDriverState *bs = NULL;
560

    
561
    ret = bdrv_create_file(filename, NULL);
562
    if (ret < 0) {
563
        return ret;
564
    }
565

    
566
    ret = bdrv_file_open(&bs, filename, BDRV_O_RDWR | BDRV_O_CACHE_WB);
567
    if (ret < 0) {
568
        return ret;
569
    }
570

    
571
    /* File must start empty and grow, check truncate is supported */
572
    ret = bdrv_truncate(bs, 0);
573
    if (ret < 0) {
574
        goto out;
575
    }
576

    
577
    if (backing_file) {
578
        header.features |= QED_F_BACKING_FILE;
579
        header.backing_filename_offset = sizeof(le_header);
580
        header.backing_filename_size = strlen(backing_file);
581

    
582
        if (qed_fmt_is_raw(backing_fmt)) {
583
            header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
584
        }
585
    }
586

    
587
    qed_header_cpu_to_le(&header, &le_header);
588
    ret = bdrv_pwrite(bs, 0, &le_header, sizeof(le_header));
589
    if (ret < 0) {
590
        goto out;
591
    }
592
    ret = bdrv_pwrite(bs, sizeof(le_header), backing_file,
593
                      header.backing_filename_size);
594
    if (ret < 0) {
595
        goto out;
596
    }
597

    
598
    l1_table = qemu_mallocz(l1_size);
599
    ret = bdrv_pwrite(bs, header.l1_table_offset, l1_table, l1_size);
600
    if (ret < 0) {
601
        goto out;
602
    }
603

    
604
    ret = 0; /* success */
605
out:
606
    qemu_free(l1_table);
607
    bdrv_delete(bs);
608
    return ret;
609
}
610

    
611
static int bdrv_qed_create(const char *filename, QEMUOptionParameter *options)
612
{
613
    uint64_t image_size = 0;
614
    uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE;
615
    uint32_t table_size = QED_DEFAULT_TABLE_SIZE;
616
    const char *backing_file = NULL;
617
    const char *backing_fmt = NULL;
618

    
619
    while (options && options->name) {
620
        if (!strcmp(options->name, BLOCK_OPT_SIZE)) {
621
            image_size = options->value.n;
622
        } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FILE)) {
623
            backing_file = options->value.s;
624
        } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FMT)) {
625
            backing_fmt = options->value.s;
626
        } else if (!strcmp(options->name, BLOCK_OPT_CLUSTER_SIZE)) {
627
            if (options->value.n) {
628
                cluster_size = options->value.n;
629
            }
630
        } else if (!strcmp(options->name, BLOCK_OPT_TABLE_SIZE)) {
631
            if (options->value.n) {
632
                table_size = options->value.n;
633
            }
634
        }
635
        options++;
636
    }
637

    
638
    if (!qed_is_cluster_size_valid(cluster_size)) {
639
        fprintf(stderr, "QED cluster size must be within range [%u, %u] and power of 2\n",
640
                QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
641
        return -EINVAL;
642
    }
643
    if (!qed_is_table_size_valid(table_size)) {
644
        fprintf(stderr, "QED table size must be within range [%u, %u] and power of 2\n",
645
                QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
646
        return -EINVAL;
647
    }
648
    if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) {
649
        fprintf(stderr, "QED image size must be a non-zero multiple of "
650
                        "cluster size and less than %" PRIu64 " bytes\n",
651
                qed_max_image_size(cluster_size, table_size));
652
        return -EINVAL;
653
    }
654

    
655
    return qed_create(filename, cluster_size, image_size, table_size,
656
                      backing_file, backing_fmt);
657
}
658

    
659
typedef struct {
660
    int is_allocated;
661
    int *pnum;
662
} QEDIsAllocatedCB;
663

    
664
static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len)
665
{
666
    QEDIsAllocatedCB *cb = opaque;
667
    *cb->pnum = len / BDRV_SECTOR_SIZE;
668
    cb->is_allocated = (ret == QED_CLUSTER_FOUND || ret == QED_CLUSTER_ZERO);
669
}
670

    
671
static int bdrv_qed_is_allocated(BlockDriverState *bs, int64_t sector_num,
672
                                  int nb_sectors, int *pnum)
673
{
674
    BDRVQEDState *s = bs->opaque;
675
    uint64_t pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
676
    size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE;
677
    QEDIsAllocatedCB cb = {
678
        .is_allocated = -1,
679
        .pnum = pnum,
680
    };
681
    QEDRequest request = { .l2_table = NULL };
682

    
683
    async_context_push();
684

    
685
    qed_find_cluster(s, &request, pos, len, qed_is_allocated_cb, &cb);
686

    
687
    while (cb.is_allocated == -1) {
688
        qemu_aio_wait();
689
    }
690

    
691
    async_context_pop();
692

    
693
    qed_unref_l2_cache_entry(request.l2_table);
694

    
695
    return cb.is_allocated;
696
}
697

    
698
static int bdrv_qed_make_empty(BlockDriverState *bs)
699
{
700
    return -ENOTSUP;
701
}
702

    
703
static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
704
{
705
    return acb->common.bs->opaque;
706
}
707

    
708
/**
709
 * Read from the backing file or zero-fill if no backing file
710
 *
711
 * @s:          QED state
712
 * @pos:        Byte position in device
713
 * @qiov:       Destination I/O vector
714
 * @cb:         Completion function
715
 * @opaque:     User data for completion function
716
 *
717
 * This function reads qiov->size bytes starting at pos from the backing file.
718
 * If there is no backing file then zeroes are read.
719
 */
720
static void qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
721
                                  QEMUIOVector *qiov,
722
                                  BlockDriverCompletionFunc *cb, void *opaque)
723
{
724
    BlockDriverAIOCB *aiocb;
725
    uint64_t backing_length = 0;
726
    size_t size;
727

    
728
    /* If there is a backing file, get its length.  Treat the absence of a
729
     * backing file like a zero length backing file.
730
     */
731
    if (s->bs->backing_hd) {
732
        int64_t l = bdrv_getlength(s->bs->backing_hd);
733
        if (l < 0) {
734
            cb(opaque, l);
735
            return;
736
        }
737
        backing_length = l;
738
    }
739

    
740
    /* Zero all sectors if reading beyond the end of the backing file */
741
    if (pos >= backing_length ||
742
        pos + qiov->size > backing_length) {
743
        qemu_iovec_memset(qiov, 0, qiov->size);
744
    }
745

    
746
    /* Complete now if there are no backing file sectors to read */
747
    if (pos >= backing_length) {
748
        cb(opaque, 0);
749
        return;
750
    }
751

    
752
    /* If the read straddles the end of the backing file, shorten it */
753
    size = MIN((uint64_t)backing_length - pos, qiov->size);
754

    
755
    BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING);
756
    aiocb = bdrv_aio_readv(s->bs->backing_hd, pos / BDRV_SECTOR_SIZE,
757
                           qiov, size / BDRV_SECTOR_SIZE, cb, opaque);
758
    if (!aiocb) {
759
        cb(opaque, -EIO);
760
    }
761
}
762

    
763
typedef struct {
764
    GenericCB gencb;
765
    BDRVQEDState *s;
766
    QEMUIOVector qiov;
767
    struct iovec iov;
768
    uint64_t offset;
769
} CopyFromBackingFileCB;
770

    
771
static void qed_copy_from_backing_file_cb(void *opaque, int ret)
772
{
773
    CopyFromBackingFileCB *copy_cb = opaque;
774
    qemu_vfree(copy_cb->iov.iov_base);
775
    gencb_complete(&copy_cb->gencb, ret);
776
}
777

    
778
static void qed_copy_from_backing_file_write(void *opaque, int ret)
779
{
780
    CopyFromBackingFileCB *copy_cb = opaque;
781
    BDRVQEDState *s = copy_cb->s;
782
    BlockDriverAIOCB *aiocb;
783

    
784
    if (ret) {
785
        qed_copy_from_backing_file_cb(copy_cb, ret);
786
        return;
787
    }
788

    
789
    BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
790
    aiocb = bdrv_aio_writev(s->bs->file, copy_cb->offset / BDRV_SECTOR_SIZE,
791
                            &copy_cb->qiov,
792
                            copy_cb->qiov.size / BDRV_SECTOR_SIZE,
793
                            qed_copy_from_backing_file_cb, copy_cb);
794
    if (!aiocb) {
795
        qed_copy_from_backing_file_cb(copy_cb, -EIO);
796
    }
797
}
798

    
799
/**
800
 * Copy data from backing file into the image
801
 *
802
 * @s:          QED state
803
 * @pos:        Byte position in device
804
 * @len:        Number of bytes
805
 * @offset:     Byte offset in image file
806
 * @cb:         Completion function
807
 * @opaque:     User data for completion function
808
 */
809
static void qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos,
810
                                       uint64_t len, uint64_t offset,
811
                                       BlockDriverCompletionFunc *cb,
812
                                       void *opaque)
813
{
814
    CopyFromBackingFileCB *copy_cb;
815

    
816
    /* Skip copy entirely if there is no work to do */
817
    if (len == 0) {
818
        cb(opaque, 0);
819
        return;
820
    }
821

    
822
    copy_cb = gencb_alloc(sizeof(*copy_cb), cb, opaque);
823
    copy_cb->s = s;
824
    copy_cb->offset = offset;
825
    copy_cb->iov.iov_base = qemu_blockalign(s->bs, len);
826
    copy_cb->iov.iov_len = len;
827
    qemu_iovec_init_external(&copy_cb->qiov, &copy_cb->iov, 1);
828

    
829
    qed_read_backing_file(s, pos, &copy_cb->qiov,
830
                          qed_copy_from_backing_file_write, copy_cb);
831
}
832

    
833
/**
834
 * Link one or more contiguous clusters into a table
835
 *
836
 * @s:              QED state
837
 * @table:          L2 table
838
 * @index:          First cluster index
839
 * @n:              Number of contiguous clusters
840
 * @cluster:        First cluster offset
841
 *
842
 * The cluster offset may be an allocated byte offset in the image file, the
843
 * zero cluster marker, or the unallocated cluster marker.
844
 */
845
static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index,
846
                                unsigned int n, uint64_t cluster)
847
{
848
    int i;
849
    for (i = index; i < index + n; i++) {
850
        table->offsets[i] = cluster;
851
        if (!qed_offset_is_unalloc_cluster(cluster) &&
852
            !qed_offset_is_zero_cluster(cluster)) {
853
            cluster += s->header.cluster_size;
854
        }
855
    }
856
}
857

    
858
static void qed_aio_complete_bh(void *opaque)
859
{
860
    QEDAIOCB *acb = opaque;
861
    BlockDriverCompletionFunc *cb = acb->common.cb;
862
    void *user_opaque = acb->common.opaque;
863
    int ret = acb->bh_ret;
864
    bool *finished = acb->finished;
865

    
866
    qemu_bh_delete(acb->bh);
867
    qemu_aio_release(acb);
868

    
869
    /* Invoke callback */
870
    cb(user_opaque, ret);
871

    
872
    /* Signal cancel completion */
873
    if (finished) {
874
        *finished = true;
875
    }
876
}
877

    
878
static void qed_aio_complete(QEDAIOCB *acb, int ret)
879
{
880
    BDRVQEDState *s = acb_to_s(acb);
881

    
882
    trace_qed_aio_complete(s, acb, ret);
883

    
884
    /* Free resources */
885
    qemu_iovec_destroy(&acb->cur_qiov);
886
    qed_unref_l2_cache_entry(acb->request.l2_table);
887

    
888
    /* Arrange for a bh to invoke the completion function */
889
    acb->bh_ret = ret;
890
    acb->bh = qemu_bh_new(qed_aio_complete_bh, acb);
891
    qemu_bh_schedule(acb->bh);
892

    
893
    /* Start next allocating write request waiting behind this one.  Note that
894
     * requests enqueue themselves when they first hit an unallocated cluster
895
     * but they wait until the entire request is finished before waking up the
896
     * next request in the queue.  This ensures that we don't cycle through
897
     * requests multiple times but rather finish one at a time completely.
898
     */
899
    if (acb == QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
900
        QSIMPLEQ_REMOVE_HEAD(&s->allocating_write_reqs, next);
901
        acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
902
        if (acb) {
903
            qed_aio_next_io(acb, 0);
904
        } else if (s->header.features & QED_F_NEED_CHECK) {
905
            qed_start_need_check_timer(s);
906
        }
907
    }
908
}
909

    
910
/**
911
 * Commit the current L2 table to the cache
912
 */
913
static void qed_commit_l2_update(void *opaque, int ret)
914
{
915
    QEDAIOCB *acb = opaque;
916
    BDRVQEDState *s = acb_to_s(acb);
917
    CachedL2Table *l2_table = acb->request.l2_table;
918

    
919
    qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
920

    
921
    /* This is guaranteed to succeed because we just committed the entry to the
922
     * cache.
923
     */
924
    acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache,
925
                                                    l2_table->offset);
926
    assert(acb->request.l2_table != NULL);
927

    
928
    qed_aio_next_io(opaque, ret);
929
}
930

    
931
/**
932
 * Update L1 table with new L2 table offset and write it out
933
 */
934
static void qed_aio_write_l1_update(void *opaque, int ret)
935
{
936
    QEDAIOCB *acb = opaque;
937
    BDRVQEDState *s = acb_to_s(acb);
938
    int index;
939

    
940
    if (ret) {
941
        qed_aio_complete(acb, ret);
942
        return;
943
    }
944

    
945
    index = qed_l1_index(s, acb->cur_pos);
946
    s->l1_table->offsets[index] = acb->request.l2_table->offset;
947

    
948
    qed_write_l1_table(s, index, 1, qed_commit_l2_update, acb);
949
}
950

    
951
/**
952
 * Update L2 table with new cluster offsets and write them out
953
 */
954
static void qed_aio_write_l2_update(void *opaque, int ret)
955
{
956
    QEDAIOCB *acb = opaque;
957
    BDRVQEDState *s = acb_to_s(acb);
958
    bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
959
    int index;
960

    
961
    if (ret) {
962
        goto err;
963
    }
964

    
965
    if (need_alloc) {
966
        qed_unref_l2_cache_entry(acb->request.l2_table);
967
        acb->request.l2_table = qed_new_l2_table(s);
968
    }
969

    
970
    index = qed_l2_index(s, acb->cur_pos);
971
    qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
972
                         acb->cur_cluster);
973

    
974
    if (need_alloc) {
975
        /* Write out the whole new L2 table */
976
        qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true,
977
                            qed_aio_write_l1_update, acb);
978
    } else {
979
        /* Write out only the updated part of the L2 table */
980
        qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, false,
981
                            qed_aio_next_io, acb);
982
    }
983
    return;
984

    
985
err:
986
    qed_aio_complete(acb, ret);
987
}
988

    
989
/**
990
 * Flush new data clusters before updating the L2 table
991
 *
992
 * This flush is necessary when a backing file is in use.  A crash during an
993
 * allocating write could result in empty clusters in the image.  If the write
994
 * only touched a subregion of the cluster, then backing image sectors have
995
 * been lost in the untouched region.  The solution is to flush after writing a
996
 * new data cluster and before updating the L2 table.
997
 */
998
static void qed_aio_write_flush_before_l2_update(void *opaque, int ret)
999
{
1000
    QEDAIOCB *acb = opaque;
1001
    BDRVQEDState *s = acb_to_s(acb);
1002

    
1003
    if (!bdrv_aio_flush(s->bs->file, qed_aio_write_l2_update, opaque)) {
1004
        qed_aio_complete(acb, -EIO);
1005
    }
1006
}
1007

    
1008
/**
1009
 * Write data to the image file
1010
 */
1011
static void qed_aio_write_main(void *opaque, int ret)
1012
{
1013
    QEDAIOCB *acb = opaque;
1014
    BDRVQEDState *s = acb_to_s(acb);
1015
    uint64_t offset = acb->cur_cluster +
1016
                      qed_offset_into_cluster(s, acb->cur_pos);
1017
    BlockDriverCompletionFunc *next_fn;
1018
    BlockDriverAIOCB *file_acb;
1019

    
1020
    trace_qed_aio_write_main(s, acb, ret, offset, acb->cur_qiov.size);
1021

    
1022
    if (ret) {
1023
        qed_aio_complete(acb, ret);
1024
        return;
1025
    }
1026

    
1027
    if (acb->find_cluster_ret == QED_CLUSTER_FOUND) {
1028
        next_fn = qed_aio_next_io;
1029
    } else {
1030
        if (s->bs->backing_hd) {
1031
            next_fn = qed_aio_write_flush_before_l2_update;
1032
        } else {
1033
            next_fn = qed_aio_write_l2_update;
1034
        }
1035
    }
1036

    
1037
    BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1038
    file_acb = bdrv_aio_writev(s->bs->file, offset / BDRV_SECTOR_SIZE,
1039
                               &acb->cur_qiov,
1040
                               acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1041
                               next_fn, acb);
1042
    if (!file_acb) {
1043
        qed_aio_complete(acb, -EIO);
1044
    }
1045
}
1046

    
1047
/**
1048
 * Populate back untouched region of new data cluster
1049
 */
1050
static void qed_aio_write_postfill(void *opaque, int ret)
1051
{
1052
    QEDAIOCB *acb = opaque;
1053
    BDRVQEDState *s = acb_to_s(acb);
1054
    uint64_t start = acb->cur_pos + acb->cur_qiov.size;
1055
    uint64_t len =
1056
        qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1057
    uint64_t offset = acb->cur_cluster +
1058
                      qed_offset_into_cluster(s, acb->cur_pos) +
1059
                      acb->cur_qiov.size;
1060

    
1061
    if (ret) {
1062
        qed_aio_complete(acb, ret);
1063
        return;
1064
    }
1065

    
1066
    trace_qed_aio_write_postfill(s, acb, start, len, offset);
1067
    qed_copy_from_backing_file(s, start, len, offset,
1068
                                qed_aio_write_main, acb);
1069
}
1070

    
1071
/**
1072
 * Populate front untouched region of new data cluster
1073
 */
1074
static void qed_aio_write_prefill(void *opaque, int ret)
1075
{
1076
    QEDAIOCB *acb = opaque;
1077
    BDRVQEDState *s = acb_to_s(acb);
1078
    uint64_t start = qed_start_of_cluster(s, acb->cur_pos);
1079
    uint64_t len = qed_offset_into_cluster(s, acb->cur_pos);
1080

    
1081
    trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1082
    qed_copy_from_backing_file(s, start, len, acb->cur_cluster,
1083
                                qed_aio_write_postfill, acb);
1084
}
1085

    
1086
/**
1087
 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1088
 */
1089
static bool qed_should_set_need_check(BDRVQEDState *s)
1090
{
1091
    /* The flush before L2 update path ensures consistency */
1092
    if (s->bs->backing_hd) {
1093
        return false;
1094
    }
1095

    
1096
    return !(s->header.features & QED_F_NEED_CHECK);
1097
}
1098

    
1099
/**
1100
 * Write new data cluster
1101
 *
1102
 * @acb:        Write request
1103
 * @len:        Length in bytes
1104
 *
1105
 * This path is taken when writing to previously unallocated clusters.
1106
 */
1107
static void qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1108
{
1109
    BDRVQEDState *s = acb_to_s(acb);
1110

    
1111
    /* Cancel timer when the first allocating request comes in */
1112
    if (QSIMPLEQ_EMPTY(&s->allocating_write_reqs)) {
1113
        qed_cancel_need_check_timer(s);
1114
    }
1115

    
1116
    /* Freeze this request if another allocating write is in progress */
1117
    if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
1118
        QSIMPLEQ_INSERT_TAIL(&s->allocating_write_reqs, acb, next);
1119
    }
1120
    if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs) ||
1121
        s->allocating_write_reqs_plugged) {
1122
        return; /* wait for existing request to finish */
1123
    }
1124

    
1125
    acb->cur_nclusters = qed_bytes_to_clusters(s,
1126
            qed_offset_into_cluster(s, acb->cur_pos) + len);
1127
    acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1128
    qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1129

    
1130
    if (qed_should_set_need_check(s)) {
1131
        s->header.features |= QED_F_NEED_CHECK;
1132
        qed_write_header(s, qed_aio_write_prefill, acb);
1133
    } else {
1134
        qed_aio_write_prefill(acb, 0);
1135
    }
1136
}
1137

    
1138
/**
1139
 * Write data cluster in place
1140
 *
1141
 * @acb:        Write request
1142
 * @offset:     Cluster offset in bytes
1143
 * @len:        Length in bytes
1144
 *
1145
 * This path is taken when writing to already allocated clusters.
1146
 */
1147
static void qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1148
{
1149
    /* Calculate the I/O vector */
1150
    acb->cur_cluster = offset;
1151
    qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1152

    
1153
    /* Do the actual write */
1154
    qed_aio_write_main(acb, 0);
1155
}
1156

    
1157
/**
1158
 * Write data cluster
1159
 *
1160
 * @opaque:     Write request
1161
 * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1162
 *              or -errno
1163
 * @offset:     Cluster offset in bytes
1164
 * @len:        Length in bytes
1165
 *
1166
 * Callback from qed_find_cluster().
1167
 */
1168
static void qed_aio_write_data(void *opaque, int ret,
1169
                               uint64_t offset, size_t len)
1170
{
1171
    QEDAIOCB *acb = opaque;
1172

    
1173
    trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1174

    
1175
    acb->find_cluster_ret = ret;
1176

    
1177
    switch (ret) {
1178
    case QED_CLUSTER_FOUND:
1179
        qed_aio_write_inplace(acb, offset, len);
1180
        break;
1181

    
1182
    case QED_CLUSTER_L2:
1183
    case QED_CLUSTER_L1:
1184
    case QED_CLUSTER_ZERO:
1185
        qed_aio_write_alloc(acb, len);
1186
        break;
1187

    
1188
    default:
1189
        qed_aio_complete(acb, ret);
1190
        break;
1191
    }
1192
}
1193

    
1194
/**
1195
 * Read data cluster
1196
 *
1197
 * @opaque:     Read request
1198
 * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1199
 *              or -errno
1200
 * @offset:     Cluster offset in bytes
1201
 * @len:        Length in bytes
1202
 *
1203
 * Callback from qed_find_cluster().
1204
 */
1205
static void qed_aio_read_data(void *opaque, int ret,
1206
                              uint64_t offset, size_t len)
1207
{
1208
    QEDAIOCB *acb = opaque;
1209
    BDRVQEDState *s = acb_to_s(acb);
1210
    BlockDriverState *bs = acb->common.bs;
1211
    BlockDriverAIOCB *file_acb;
1212

    
1213
    /* Adjust offset into cluster */
1214
    offset += qed_offset_into_cluster(s, acb->cur_pos);
1215

    
1216
    trace_qed_aio_read_data(s, acb, ret, offset, len);
1217

    
1218
    if (ret < 0) {
1219
        goto err;
1220
    }
1221

    
1222
    qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1223

    
1224
    /* Handle zero cluster and backing file reads */
1225
    if (ret == QED_CLUSTER_ZERO) {
1226
        qemu_iovec_memset(&acb->cur_qiov, 0, acb->cur_qiov.size);
1227
        qed_aio_next_io(acb, 0);
1228
        return;
1229
    } else if (ret != QED_CLUSTER_FOUND) {
1230
        qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1231
                              qed_aio_next_io, acb);
1232
        return;
1233
    }
1234

    
1235
    BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1236
    file_acb = bdrv_aio_readv(bs->file, offset / BDRV_SECTOR_SIZE,
1237
                              &acb->cur_qiov,
1238
                              acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1239
                              qed_aio_next_io, acb);
1240
    if (!file_acb) {
1241
        ret = -EIO;
1242
        goto err;
1243
    }
1244
    return;
1245

    
1246
err:
1247
    qed_aio_complete(acb, ret);
1248
}
1249

    
1250
/**
1251
 * Begin next I/O or complete the request
1252
 */
1253
static void qed_aio_next_io(void *opaque, int ret)
1254
{
1255
    QEDAIOCB *acb = opaque;
1256
    BDRVQEDState *s = acb_to_s(acb);
1257
    QEDFindClusterFunc *io_fn =
1258
        acb->is_write ? qed_aio_write_data : qed_aio_read_data;
1259

    
1260
    trace_qed_aio_next_io(s, acb, ret, acb->cur_pos + acb->cur_qiov.size);
1261

    
1262
    /* Handle I/O error */
1263
    if (ret) {
1264
        qed_aio_complete(acb, ret);
1265
        return;
1266
    }
1267

    
1268
    acb->qiov_offset += acb->cur_qiov.size;
1269
    acb->cur_pos += acb->cur_qiov.size;
1270
    qemu_iovec_reset(&acb->cur_qiov);
1271

    
1272
    /* Complete request */
1273
    if (acb->cur_pos >= acb->end_pos) {
1274
        qed_aio_complete(acb, 0);
1275
        return;
1276
    }
1277

    
1278
    /* Find next cluster and start I/O */
1279
    qed_find_cluster(s, &acb->request,
1280
                      acb->cur_pos, acb->end_pos - acb->cur_pos,
1281
                      io_fn, acb);
1282
}
1283

    
1284
static BlockDriverAIOCB *qed_aio_setup(BlockDriverState *bs,
1285
                                       int64_t sector_num,
1286
                                       QEMUIOVector *qiov, int nb_sectors,
1287
                                       BlockDriverCompletionFunc *cb,
1288
                                       void *opaque, bool is_write)
1289
{
1290
    QEDAIOCB *acb = qemu_aio_get(&qed_aio_pool, bs, cb, opaque);
1291

    
1292
    trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors,
1293
                         opaque, is_write);
1294

    
1295
    acb->is_write = is_write;
1296
    acb->finished = NULL;
1297
    acb->qiov = qiov;
1298
    acb->qiov_offset = 0;
1299
    acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
1300
    acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE;
1301
    acb->request.l2_table = NULL;
1302
    qemu_iovec_init(&acb->cur_qiov, qiov->niov);
1303

    
1304
    /* Start request */
1305
    qed_aio_next_io(acb, 0);
1306
    return &acb->common;
1307
}
1308

    
1309
static BlockDriverAIOCB *bdrv_qed_aio_readv(BlockDriverState *bs,
1310
                                            int64_t sector_num,
1311
                                            QEMUIOVector *qiov, int nb_sectors,
1312
                                            BlockDriverCompletionFunc *cb,
1313
                                            void *opaque)
1314
{
1315
    return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, false);
1316
}
1317

    
1318
static BlockDriverAIOCB *bdrv_qed_aio_writev(BlockDriverState *bs,
1319
                                             int64_t sector_num,
1320
                                             QEMUIOVector *qiov, int nb_sectors,
1321
                                             BlockDriverCompletionFunc *cb,
1322
                                             void *opaque)
1323
{
1324
    return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, true);
1325
}
1326

    
1327
static BlockDriverAIOCB *bdrv_qed_aio_flush(BlockDriverState *bs,
1328
                                            BlockDriverCompletionFunc *cb,
1329
                                            void *opaque)
1330
{
1331
    return bdrv_aio_flush(bs->file, cb, opaque);
1332
}
1333

    
1334
static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset)
1335
{
1336
    BDRVQEDState *s = bs->opaque;
1337
    uint64_t old_image_size;
1338
    int ret;
1339

    
1340
    if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1341
                                 s->header.table_size)) {
1342
        return -EINVAL;
1343
    }
1344

    
1345
    /* Shrinking is currently not supported */
1346
    if ((uint64_t)offset < s->header.image_size) {
1347
        return -ENOTSUP;
1348
    }
1349

    
1350
    old_image_size = s->header.image_size;
1351
    s->header.image_size = offset;
1352
    ret = qed_write_header_sync(s);
1353
    if (ret < 0) {
1354
        s->header.image_size = old_image_size;
1355
    }
1356
    return ret;
1357
}
1358

    
1359
static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1360
{
1361
    BDRVQEDState *s = bs->opaque;
1362
    return s->header.image_size;
1363
}
1364

    
1365
static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1366
{
1367
    BDRVQEDState *s = bs->opaque;
1368

    
1369
    memset(bdi, 0, sizeof(*bdi));
1370
    bdi->cluster_size = s->header.cluster_size;
1371
    return 0;
1372
}
1373

    
1374
static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1375
                                        const char *backing_file,
1376
                                        const char *backing_fmt)
1377
{
1378
    BDRVQEDState *s = bs->opaque;
1379
    QEDHeader new_header, le_header;
1380
    void *buffer;
1381
    size_t buffer_len, backing_file_len;
1382
    int ret;
1383

    
1384
    /* Refuse to set backing filename if unknown compat feature bits are
1385
     * active.  If the image uses an unknown compat feature then we may not
1386
     * know the layout of data following the header structure and cannot safely
1387
     * add a new string.
1388
     */
1389
    if (backing_file && (s->header.compat_features &
1390
                         ~QED_COMPAT_FEATURE_MASK)) {
1391
        return -ENOTSUP;
1392
    }
1393

    
1394
    memcpy(&new_header, &s->header, sizeof(new_header));
1395

    
1396
    new_header.features &= ~(QED_F_BACKING_FILE |
1397
                             QED_F_BACKING_FORMAT_NO_PROBE);
1398

    
1399
    /* Adjust feature flags */
1400
    if (backing_file) {
1401
        new_header.features |= QED_F_BACKING_FILE;
1402

    
1403
        if (qed_fmt_is_raw(backing_fmt)) {
1404
            new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1405
        }
1406
    }
1407

    
1408
    /* Calculate new header size */
1409
    backing_file_len = 0;
1410

    
1411
    if (backing_file) {
1412
        backing_file_len = strlen(backing_file);
1413
    }
1414

    
1415
    buffer_len = sizeof(new_header);
1416
    new_header.backing_filename_offset = buffer_len;
1417
    new_header.backing_filename_size = backing_file_len;
1418
    buffer_len += backing_file_len;
1419

    
1420
    /* Make sure we can rewrite header without failing */
1421
    if (buffer_len > new_header.header_size * new_header.cluster_size) {
1422
        return -ENOSPC;
1423
    }
1424

    
1425
    /* Prepare new header */
1426
    buffer = qemu_malloc(buffer_len);
1427

    
1428
    qed_header_cpu_to_le(&new_header, &le_header);
1429
    memcpy(buffer, &le_header, sizeof(le_header));
1430
    buffer_len = sizeof(le_header);
1431

    
1432
    memcpy(buffer + buffer_len, backing_file, backing_file_len);
1433
    buffer_len += backing_file_len;
1434

    
1435
    /* Write new header */
1436
    ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1437
    qemu_free(buffer);
1438
    if (ret == 0) {
1439
        memcpy(&s->header, &new_header, sizeof(new_header));
1440
    }
1441
    return ret;
1442
}
1443

    
1444
static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result)
1445
{
1446
    BDRVQEDState *s = bs->opaque;
1447

    
1448
    return qed_check(s, result, false);
1449
}
1450

    
1451
static QEMUOptionParameter qed_create_options[] = {
1452
    {
1453
        .name = BLOCK_OPT_SIZE,
1454
        .type = OPT_SIZE,
1455
        .help = "Virtual disk size (in bytes)"
1456
    }, {
1457
        .name = BLOCK_OPT_BACKING_FILE,
1458
        .type = OPT_STRING,
1459
        .help = "File name of a base image"
1460
    }, {
1461
        .name = BLOCK_OPT_BACKING_FMT,
1462
        .type = OPT_STRING,
1463
        .help = "Image format of the base image"
1464
    }, {
1465
        .name = BLOCK_OPT_CLUSTER_SIZE,
1466
        .type = OPT_SIZE,
1467
        .help = "Cluster size (in bytes)"
1468
    }, {
1469
        .name = BLOCK_OPT_TABLE_SIZE,
1470
        .type = OPT_SIZE,
1471
        .help = "L1/L2 table size (in clusters)"
1472
    },
1473
    { /* end of list */ }
1474
};
1475

    
1476
static BlockDriver bdrv_qed = {
1477
    .format_name              = "qed",
1478
    .instance_size            = sizeof(BDRVQEDState),
1479
    .create_options           = qed_create_options,
1480

    
1481
    .bdrv_probe               = bdrv_qed_probe,
1482
    .bdrv_open                = bdrv_qed_open,
1483
    .bdrv_close               = bdrv_qed_close,
1484
    .bdrv_create              = bdrv_qed_create,
1485
    .bdrv_flush               = bdrv_qed_flush,
1486
    .bdrv_is_allocated        = bdrv_qed_is_allocated,
1487
    .bdrv_make_empty          = bdrv_qed_make_empty,
1488
    .bdrv_aio_readv           = bdrv_qed_aio_readv,
1489
    .bdrv_aio_writev          = bdrv_qed_aio_writev,
1490
    .bdrv_aio_flush           = bdrv_qed_aio_flush,
1491
    .bdrv_truncate            = bdrv_qed_truncate,
1492
    .bdrv_getlength           = bdrv_qed_getlength,
1493
    .bdrv_get_info            = bdrv_qed_get_info,
1494
    .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1495
    .bdrv_check               = bdrv_qed_check,
1496
};
1497

    
1498
static void bdrv_qed_init(void)
1499
{
1500
    bdrv_register(&bdrv_qed);
1501
}
1502

    
1503
block_init(bdrv_qed_init);