Statistics
| Branch: | Revision:

root / hw / slavio_intctl.c @ 77f193da

History | View | Annotate | Download (11.9 kB)

1
/*
2
 * QEMU Sparc SLAVIO interrupt controller emulation
3
 *
4
 * Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "sun4m.h"
26
#include "console.h"
27

    
28
//#define DEBUG_IRQ_COUNT
29
//#define DEBUG_IRQ
30

    
31
#ifdef DEBUG_IRQ
32
#define DPRINTF(fmt, args...) \
33
do { printf("IRQ: " fmt , ##args); } while (0)
34
#else
35
#define DPRINTF(fmt, args...)
36
#endif
37

    
38
/*
39
 * Registers of interrupt controller in sun4m.
40
 *
41
 * This is the interrupt controller part of chip STP2001 (Slave I/O), also
42
 * produced as NCR89C105. See
43
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
44
 *
45
 * There is a system master controller and one for each cpu.
46
 *
47
 */
48

    
49
#define MAX_CPUS 16
50
#define MAX_PILS 16
51

    
52
typedef struct SLAVIO_INTCTLState {
53
    uint32_t intreg_pending[MAX_CPUS];
54
    uint32_t intregm_pending;
55
    uint32_t intregm_disabled;
56
    uint32_t target_cpu;
57
#ifdef DEBUG_IRQ_COUNT
58
    uint64_t irq_count[32];
59
#endif
60
    qemu_irq *cpu_irqs[MAX_CPUS];
61
    const uint32_t *intbit_to_level;
62
    uint32_t cputimer_lbit, cputimer_mbit;
63
    uint32_t pil_out[MAX_CPUS];
64
} SLAVIO_INTCTLState;
65

    
66
#define INTCTL_MAXADDR 0xf
67
#define INTCTL_SIZE (INTCTL_MAXADDR + 1)
68
#define INTCTLM_MAXADDR 0x13
69
#define INTCTLM_SIZE (INTCTLM_MAXADDR + 1)
70
#define INTCTLM_MASK 0x1f
71
#define MASTER_IRQ_MASK ~0x0fa2007f
72
#define MASTER_DISABLE 0x80000000
73
#define CPU_SOFTIRQ_MASK 0xfffe0000
74
#define CPU_HARDIRQ_MASK 0x0000fffe
75
#define CPU_IRQ_INT15_IN 0x0004000
76
#define CPU_IRQ_INT15_MASK 0x80000000
77

    
78
static void slavio_check_interrupts(void *opaque);
79

    
80
// per-cpu interrupt controller
81
static uint32_t slavio_intctl_mem_readl(void *opaque, target_phys_addr_t addr)
82
{
83
    SLAVIO_INTCTLState *s = opaque;
84
    uint32_t saddr, ret;
85
    int cpu;
86

    
87
    cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
88
    saddr = (addr & INTCTL_MAXADDR) >> 2;
89
    switch (saddr) {
90
    case 0:
91
        ret = s->intreg_pending[cpu];
92
        break;
93
    default:
94
        ret = 0;
95
        break;
96
    }
97
    DPRINTF("read cpu %d reg 0x" TARGET_FMT_plx " = %x\n", cpu, addr, ret);
98

    
99
    return ret;
100
}
101

    
102
static void slavio_intctl_mem_writel(void *opaque, target_phys_addr_t addr,
103
                                     uint32_t val)
104
{
105
    SLAVIO_INTCTLState *s = opaque;
106
    uint32_t saddr;
107
    int cpu;
108

    
109
    cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
110
    saddr = (addr & INTCTL_MAXADDR) >> 2;
111
    DPRINTF("write cpu %d reg 0x" TARGET_FMT_plx " = %x\n", cpu, addr, val);
112
    switch (saddr) {
113
    case 1: // clear pending softints
114
        if (val & CPU_IRQ_INT15_IN)
115
            val |= CPU_IRQ_INT15_MASK;
116
        val &= CPU_SOFTIRQ_MASK;
117
        s->intreg_pending[cpu] &= ~val;
118
        slavio_check_interrupts(s);
119
        DPRINTF("Cleared cpu %d irq mask %x, curmask %x\n", cpu, val,
120
                s->intreg_pending[cpu]);
121
        break;
122
    case 2: // set softint
123
        val &= CPU_SOFTIRQ_MASK;
124
        s->intreg_pending[cpu] |= val;
125
        slavio_check_interrupts(s);
126
        DPRINTF("Set cpu %d irq mask %x, curmask %x\n", cpu, val,
127
                s->intreg_pending[cpu]);
128
        break;
129
    default:
130
        break;
131
    }
132
}
133

    
134
static CPUReadMemoryFunc *slavio_intctl_mem_read[3] = {
135
    NULL,
136
    NULL,
137
    slavio_intctl_mem_readl,
138
};
139

    
140
static CPUWriteMemoryFunc *slavio_intctl_mem_write[3] = {
141
    NULL,
142
    NULL,
143
    slavio_intctl_mem_writel,
144
};
145

    
146
// master system interrupt controller
147
static uint32_t slavio_intctlm_mem_readl(void *opaque, target_phys_addr_t addr)
148
{
149
    SLAVIO_INTCTLState *s = opaque;
150
    uint32_t saddr, ret;
151

    
152
    saddr = (addr & INTCTLM_MASK) >> 2;
153
    switch (saddr) {
154
    case 0:
155
        ret = s->intregm_pending & ~MASTER_DISABLE;
156
        break;
157
    case 1:
158
        ret = s->intregm_disabled & MASTER_IRQ_MASK;
159
        break;
160
    case 4:
161
        ret = s->target_cpu;
162
        break;
163
    default:
164
        ret = 0;
165
        break;
166
    }
167
    DPRINTF("read system reg 0x" TARGET_FMT_plx " = %x\n", addr, ret);
168

    
169
    return ret;
170
}
171

    
172
static void slavio_intctlm_mem_writel(void *opaque, target_phys_addr_t addr,
173
                                      uint32_t val)
174
{
175
    SLAVIO_INTCTLState *s = opaque;
176
    uint32_t saddr;
177

    
178
    saddr = (addr & INTCTLM_MASK) >> 2;
179
    DPRINTF("write system reg 0x" TARGET_FMT_plx " = %x\n", addr, val);
180
    switch (saddr) {
181
    case 2: // clear (enable)
182
        // Force clear unused bits
183
        val &= MASTER_IRQ_MASK;
184
        s->intregm_disabled &= ~val;
185
        DPRINTF("Enabled master irq mask %x, curmask %x\n", val,
186
                s->intregm_disabled);
187
        slavio_check_interrupts(s);
188
        break;
189
    case 3: // set (disable, clear pending)
190
        // Force clear unused bits
191
        val &= MASTER_IRQ_MASK;
192
        s->intregm_disabled |= val;
193
        s->intregm_pending &= ~val;
194
        slavio_check_interrupts(s);
195
        DPRINTF("Disabled master irq mask %x, curmask %x\n", val,
196
                s->intregm_disabled);
197
        break;
198
    case 4:
199
        s->target_cpu = val & (MAX_CPUS - 1);
200
        slavio_check_interrupts(s);
201
        DPRINTF("Set master irq cpu %d\n", s->target_cpu);
202
        break;
203
    default:
204
        break;
205
    }
206
}
207

    
208
static CPUReadMemoryFunc *slavio_intctlm_mem_read[3] = {
209
    NULL,
210
    NULL,
211
    slavio_intctlm_mem_readl,
212
};
213

    
214
static CPUWriteMemoryFunc *slavio_intctlm_mem_write[3] = {
215
    NULL,
216
    NULL,
217
    slavio_intctlm_mem_writel,
218
};
219

    
220
void slavio_pic_info(void *opaque)
221
{
222
    SLAVIO_INTCTLState *s = opaque;
223
    int i;
224

    
225
    for (i = 0; i < MAX_CPUS; i++) {
226
        term_printf("per-cpu %d: pending 0x%08x\n", i, s->intreg_pending[i]);
227
    }
228
    term_printf("master: pending 0x%08x, disabled 0x%08x\n",
229
                s->intregm_pending, s->intregm_disabled);
230
}
231

    
232
void slavio_irq_info(void *opaque)
233
{
234
#ifndef DEBUG_IRQ_COUNT
235
    term_printf("irq statistic code not compiled.\n");
236
#else
237
    SLAVIO_INTCTLState *s = opaque;
238
    int i;
239
    int64_t count;
240

    
241
    term_printf("IRQ statistics:\n");
242
    for (i = 0; i < 32; i++) {
243
        count = s->irq_count[i];
244
        if (count > 0)
245
            term_printf("%2d: %" PRId64 "\n", i, count);
246
    }
247
#endif
248
}
249

    
250
static void slavio_check_interrupts(void *opaque)
251
{
252
    SLAVIO_INTCTLState *s = opaque;
253
    uint32_t pending = s->intregm_pending, pil_pending;
254
    unsigned int i, j;
255

    
256
    pending &= ~s->intregm_disabled;
257

    
258
    DPRINTF("pending %x disabled %x\n", pending, s->intregm_disabled);
259
    for (i = 0; i < MAX_CPUS; i++) {
260
        pil_pending = 0;
261
        if (pending && !(s->intregm_disabled & MASTER_DISABLE) &&
262
            (i == s->target_cpu)) {
263
            for (j = 0; j < 32; j++) {
264
                if (pending & (1 << j))
265
                    pil_pending |= 1 << s->intbit_to_level[j];
266
            }
267
        }
268
        pil_pending |= (s->intreg_pending[i] & CPU_SOFTIRQ_MASK) >> 16;
269

    
270
        for (j = 0; j < MAX_PILS; j++) {
271
            if (pil_pending & (1 << j)) {
272
                if (!(s->pil_out[i] & (1 << j)))
273
                    qemu_irq_raise(s->cpu_irqs[i][j]);
274
            } else {
275
                if (s->pil_out[i] & (1 << j))
276
                    qemu_irq_lower(s->cpu_irqs[i][j]);
277
            }
278
        }
279
        s->pil_out[i] = pil_pending;
280
    }
281
}
282

    
283
/*
284
 * "irq" here is the bit number in the system interrupt register to
285
 * separate serial and keyboard interrupts sharing a level.
286
 */
287
static void slavio_set_irq(void *opaque, int irq, int level)
288
{
289
    SLAVIO_INTCTLState *s = opaque;
290
    uint32_t mask = 1 << irq;
291
    uint32_t pil = s->intbit_to_level[irq];
292

    
293
    DPRINTF("Set cpu %d irq %d -> pil %d level %d\n", s->target_cpu, irq, pil,
294
            level);
295
    if (pil > 0) {
296
        if (level) {
297
#ifdef DEBUG_IRQ_COUNT
298
            s->irq_count[pil]++;
299
#endif
300
            s->intregm_pending |= mask;
301
            s->intreg_pending[s->target_cpu] |= 1 << pil;
302
        } else {
303
            s->intregm_pending &= ~mask;
304
            s->intreg_pending[s->target_cpu] &= ~(1 << pil);
305
        }
306
        slavio_check_interrupts(s);
307
    }
308
}
309

    
310
static void slavio_set_timer_irq_cpu(void *opaque, int cpu, int level)
311
{
312
    SLAVIO_INTCTLState *s = opaque;
313

    
314
    DPRINTF("Set cpu %d local timer level %d\n", cpu, level);
315

    
316
    if (level) {
317
        s->intregm_pending |= s->cputimer_mbit;
318
        s->intreg_pending[cpu] |= s->cputimer_lbit;
319
    } else {
320
        s->intregm_pending &= ~s->cputimer_mbit;
321
        s->intreg_pending[cpu] &= ~s->cputimer_lbit;
322
    }
323

    
324
    slavio_check_interrupts(s);
325
}
326

    
327
static void slavio_intctl_save(QEMUFile *f, void *opaque)
328
{
329
    SLAVIO_INTCTLState *s = opaque;
330
    int i;
331

    
332
    for (i = 0; i < MAX_CPUS; i++) {
333
        qemu_put_be32s(f, &s->intreg_pending[i]);
334
    }
335
    qemu_put_be32s(f, &s->intregm_pending);
336
    qemu_put_be32s(f, &s->intregm_disabled);
337
    qemu_put_be32s(f, &s->target_cpu);
338
}
339

    
340
static int slavio_intctl_load(QEMUFile *f, void *opaque, int version_id)
341
{
342
    SLAVIO_INTCTLState *s = opaque;
343
    int i;
344

    
345
    if (version_id != 1)
346
        return -EINVAL;
347

    
348
    for (i = 0; i < MAX_CPUS; i++) {
349
        qemu_get_be32s(f, &s->intreg_pending[i]);
350
    }
351
    qemu_get_be32s(f, &s->intregm_pending);
352
    qemu_get_be32s(f, &s->intregm_disabled);
353
    qemu_get_be32s(f, &s->target_cpu);
354
    slavio_check_interrupts(s);
355
    return 0;
356
}
357

    
358
static void slavio_intctl_reset(void *opaque)
359
{
360
    SLAVIO_INTCTLState *s = opaque;
361
    int i;
362

    
363
    for (i = 0; i < MAX_CPUS; i++) {
364
        s->intreg_pending[i] = 0;
365
    }
366
    s->intregm_disabled = ~MASTER_IRQ_MASK;
367
    s->intregm_pending = 0;
368
    s->target_cpu = 0;
369
    slavio_check_interrupts(s);
370
}
371

    
372
void *slavio_intctl_init(target_phys_addr_t addr, target_phys_addr_t addrg,
373
                         const uint32_t *intbit_to_level,
374
                         qemu_irq **irq, qemu_irq **cpu_irq,
375
                         qemu_irq **parent_irq, unsigned int cputimer)
376
{
377
    int slavio_intctl_io_memory, slavio_intctlm_io_memory, i;
378
    SLAVIO_INTCTLState *s;
379

    
380
    s = qemu_mallocz(sizeof(SLAVIO_INTCTLState));
381
    if (!s)
382
        return NULL;
383

    
384
    s->intbit_to_level = intbit_to_level;
385
    for (i = 0; i < MAX_CPUS; i++) {
386
        slavio_intctl_io_memory = cpu_register_io_memory(0,
387
                                                         slavio_intctl_mem_read,
388
                                                         slavio_intctl_mem_write,
389
                                                         s);
390
        cpu_register_physical_memory(addr + i * TARGET_PAGE_SIZE, INTCTL_SIZE,
391
                                     slavio_intctl_io_memory);
392
        s->cpu_irqs[i] = parent_irq[i];
393
    }
394

    
395
    slavio_intctlm_io_memory = cpu_register_io_memory(0,
396
                                                      slavio_intctlm_mem_read,
397
                                                      slavio_intctlm_mem_write,
398
                                                      s);
399
    cpu_register_physical_memory(addrg, INTCTLM_SIZE, slavio_intctlm_io_memory);
400

    
401
    register_savevm("slavio_intctl", addr, 1, slavio_intctl_save,
402
                    slavio_intctl_load, s);
403
    qemu_register_reset(slavio_intctl_reset, s);
404
    *irq = qemu_allocate_irqs(slavio_set_irq, s, 32);
405

    
406
    *cpu_irq = qemu_allocate_irqs(slavio_set_timer_irq_cpu, s, MAX_CPUS);
407
    s->cputimer_mbit = 1 << cputimer;
408
    s->cputimer_lbit = 1 << intbit_to_level[cputimer];
409
    slavio_intctl_reset(s);
410
    return s;
411
}
412