Statistics
| Branch: | Revision:

root / hw / slavio_timer.c @ 77f193da

History | View | Annotate | Download (13.6 kB)

1
/*
2
 * QEMU Sparc SLAVIO timer controller emulation
3
 *
4
 * Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "sun4m.h"
26
#include "qemu-timer.h"
27

    
28
//#define DEBUG_TIMER
29

    
30
#ifdef DEBUG_TIMER
31
#define DPRINTF(fmt, args...) \
32
do { printf("TIMER: " fmt , ##args); } while (0)
33
#else
34
#define DPRINTF(fmt, args...) do {} while (0)
35
#endif
36

    
37
/*
38
 * Registers of hardware timer in sun4m.
39
 *
40
 * This is the timer/counter part of chip STP2001 (Slave I/O), also
41
 * produced as NCR89C105. See
42
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
43
 *
44
 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
45
 * are zero. Bit 31 is 1 when count has been reached.
46
 *
47
 * Per-CPU timers interrupt local CPU, system timer uses normal
48
 * interrupt routing.
49
 *
50
 */
51

    
52
#define MAX_CPUS 16
53

    
54
typedef struct SLAVIO_TIMERState {
55
    qemu_irq irq;
56
    ptimer_state *timer;
57
    uint32_t count, counthigh, reached;
58
    uint64_t limit;
59
    // processor only
60
    uint32_t running;
61
    struct SLAVIO_TIMERState *master;
62
    uint32_t slave_index;
63
    // system only
64
    uint32_t num_slaves;
65
    struct SLAVIO_TIMERState *slave[MAX_CPUS];
66
    uint32_t slave_mode;
67
} SLAVIO_TIMERState;
68

    
69
#define TIMER_MAXADDR 0x1f
70
#define SYS_TIMER_SIZE 0x14
71
#define CPU_TIMER_SIZE 0x10
72

    
73
#define SYS_TIMER_OFFSET      0x10000ULL
74
#define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu)
75

    
76
#define TIMER_LIMIT         0
77
#define TIMER_COUNTER       1
78
#define TIMER_COUNTER_NORST 2
79
#define TIMER_STATUS        3
80
#define TIMER_MODE          4
81

    
82
#define TIMER_COUNT_MASK32 0xfffffe00
83
#define TIMER_LIMIT_MASK32 0x7fffffff
84
#define TIMER_MAX_COUNT64  0x7ffffffffffffe00ULL
85
#define TIMER_MAX_COUNT32  0x7ffffe00ULL
86
#define TIMER_REACHED      0x80000000
87
#define TIMER_PERIOD       500ULL // 500ns
88
#define LIMIT_TO_PERIODS(l) ((l) >> 9)
89
#define PERIODS_TO_LIMIT(l) ((l) << 9)
90

    
91
static int slavio_timer_is_user(SLAVIO_TIMERState *s)
92
{
93
    return s->master && (s->master->slave_mode & (1 << s->slave_index));
94
}
95

    
96
// Update count, set irq, update expire_time
97
// Convert from ptimer countdown units
98
static void slavio_timer_get_out(SLAVIO_TIMERState *s)
99
{
100
    uint64_t count, limit;
101

    
102
    if (s->limit == 0) /* free-run processor or system counter */
103
        limit = TIMER_MAX_COUNT32;
104
    else
105
        limit = s->limit;
106

    
107
    if (s->timer)
108
        count = limit - PERIODS_TO_LIMIT(ptimer_get_count(s->timer));
109
    else
110
        count = 0;
111

    
112
    DPRINTF("get_out: limit %" PRIx64 " count %x%08x\n", s->limit,
113
            s->counthigh, s->count);
114
    s->count = count & TIMER_COUNT_MASK32;
115
    s->counthigh = count >> 32;
116
}
117

    
118
// timer callback
119
static void slavio_timer_irq(void *opaque)
120
{
121
    SLAVIO_TIMERState *s = opaque;
122

    
123
    slavio_timer_get_out(s);
124
    DPRINTF("callback: count %x%08x\n", s->counthigh, s->count);
125
    s->reached = TIMER_REACHED;
126
    if (!slavio_timer_is_user(s))
127
        qemu_irq_raise(s->irq);
128
}
129

    
130
static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
131
{
132
    SLAVIO_TIMERState *s = opaque;
133
    uint32_t saddr, ret;
134

    
135
    saddr = (addr & TIMER_MAXADDR) >> 2;
136
    switch (saddr) {
137
    case TIMER_LIMIT:
138
        // read limit (system counter mode) or read most signifying
139
        // part of counter (user mode)
140
        if (slavio_timer_is_user(s)) {
141
            // read user timer MSW
142
            slavio_timer_get_out(s);
143
            ret = s->counthigh | s->reached;
144
        } else {
145
            // read limit
146
            // clear irq
147
            qemu_irq_lower(s->irq);
148
            s->reached = 0;
149
            ret = s->limit & TIMER_LIMIT_MASK32;
150
        }
151
        break;
152
    case TIMER_COUNTER:
153
        // read counter and reached bit (system mode) or read lsbits
154
        // of counter (user mode)
155
        slavio_timer_get_out(s);
156
        if (slavio_timer_is_user(s)) // read user timer LSW
157
            ret = s->count & TIMER_MAX_COUNT64;
158
        else // read limit
159
            ret = (s->count & TIMER_MAX_COUNT32) | s->reached;
160
        break;
161
    case TIMER_STATUS:
162
        // only available in processor counter/timer
163
        // read start/stop status
164
        ret = s->running;
165
        break;
166
    case TIMER_MODE:
167
        // only available in system counter
168
        // read user/system mode
169
        ret = s->slave_mode;
170
        break;
171
    default:
172
        DPRINTF("invalid read address " TARGET_FMT_plx "\n", addr);
173
        ret = 0;
174
        break;
175
    }
176
    DPRINTF("read " TARGET_FMT_plx " = %08x\n", addr, ret);
177

    
178
    return ret;
179
}
180

    
181
static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr,
182
                                    uint32_t val)
183
{
184
    SLAVIO_TIMERState *s = opaque;
185
    uint32_t saddr;
186

    
187
    DPRINTF("write " TARGET_FMT_plx " %08x\n", addr, val);
188
    saddr = (addr & TIMER_MAXADDR) >> 2;
189
    switch (saddr) {
190
    case TIMER_LIMIT:
191
        if (slavio_timer_is_user(s)) {
192
            uint64_t count;
193

    
194
            // set user counter MSW, reset counter
195
            s->limit = TIMER_MAX_COUNT64;
196
            s->counthigh = val & (TIMER_MAX_COUNT64 >> 32);
197
            s->reached = 0;
198
            count = ((uint64_t)s->counthigh << 32) | s->count;
199
            DPRINTF("processor %d user timer set to %016llx\n", s->slave_index,
200
                    count);
201
            if (s->timer)
202
                ptimer_set_count(s->timer, LIMIT_TO_PERIODS(s->limit - count));
203
        } else {
204
            // set limit, reset counter
205
            qemu_irq_lower(s->irq);
206
            s->limit = val & TIMER_MAX_COUNT32;
207
            if (s->timer) {
208
                if (s->limit == 0) /* free-run */
209
                    ptimer_set_limit(s->timer,
210
                                     LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
211
                else
212
                    ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 1);
213
            }
214
        }
215
        break;
216
    case TIMER_COUNTER:
217
        if (slavio_timer_is_user(s)) {
218
            uint64_t count;
219

    
220
            // set user counter LSW, reset counter
221
            s->limit = TIMER_MAX_COUNT64;
222
            s->count = val & TIMER_MAX_COUNT64;
223
            s->reached = 0;
224
            count = ((uint64_t)s->counthigh) << 32 | s->count;
225
            DPRINTF("processor %d user timer set to %016llx\n", s->slave_index,
226
                    count);
227
            if (s->timer)
228
                ptimer_set_count(s->timer, LIMIT_TO_PERIODS(s->limit - count));
229
        } else
230
            DPRINTF("not user timer\n");
231
        break;
232
    case TIMER_COUNTER_NORST:
233
        // set limit without resetting counter
234
        s->limit = val & TIMER_MAX_COUNT32;
235
        if (s->timer) {
236
            if (s->limit == 0)        /* free-run */
237
                ptimer_set_limit(s->timer,
238
                                 LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 0);
239
            else
240
                ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 0);
241
        }
242
        break;
243
    case TIMER_STATUS:
244
        if (slavio_timer_is_user(s)) {
245
            // start/stop user counter
246
            if ((val & 1) && !s->running) {
247
                DPRINTF("processor %d user timer started\n", s->slave_index);
248
                if (s->timer)
249
                    ptimer_run(s->timer, 0);
250
                s->running = 1;
251
            } else if (!(val & 1) && s->running) {
252
                DPRINTF("processor %d user timer stopped\n", s->slave_index);
253
                if (s->timer)
254
                    ptimer_stop(s->timer);
255
                s->running = 0;
256
            }
257
        }
258
        break;
259
    case TIMER_MODE:
260
        if (s->master == NULL) {
261
            unsigned int i;
262

    
263
            for (i = 0; i < s->num_slaves; i++) {
264
                unsigned int processor = 1 << i;
265

    
266
                // check for a change in timer mode for this processor
267
                if ((val & processor) != (s->slave_mode & processor)) {
268
                    if (val & processor) { // counter -> user timer
269
                        qemu_irq_lower(s->slave[i]->irq);
270
                        // counters are always running
271
                        ptimer_stop(s->slave[i]->timer);
272
                        s->slave[i]->running = 0;
273
                        // user timer limit is always the same
274
                        s->slave[i]->limit = TIMER_MAX_COUNT64;
275
                        ptimer_set_limit(s->slave[i]->timer,
276
                                         LIMIT_TO_PERIODS(s->slave[i]->limit),
277
                                         1);
278
                        // set this processors user timer bit in config
279
                        // register
280
                        s->slave_mode |= processor;
281
                        DPRINTF("processor %d changed from counter to user "
282
                                "timer\n", s->slave[i]->slave_index);
283
                    } else { // user timer -> counter
284
                        // stop the user timer if it is running
285
                        if (s->slave[i]->running)
286
                            ptimer_stop(s->slave[i]->timer);
287
                        // start the counter
288
                        ptimer_run(s->slave[i]->timer, 0);
289
                        s->slave[i]->running = 1;
290
                        // clear this processors user timer bit in config
291
                        // register
292
                        s->slave_mode &= ~processor;
293
                        DPRINTF("processor %d changed from user timer to "
294
                                "counter\n", s->slave[i]->slave_index);
295
                    }
296
                }
297
            }
298
        } else
299
            DPRINTF("not system timer\n");
300
        break;
301
    default:
302
        DPRINTF("invalid write address " TARGET_FMT_plx "\n", addr);
303
        break;
304
    }
305
}
306

    
307
static CPUReadMemoryFunc *slavio_timer_mem_read[3] = {
308
    NULL,
309
    NULL,
310
    slavio_timer_mem_readl,
311
};
312

    
313
static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = {
314
    NULL,
315
    NULL,
316
    slavio_timer_mem_writel,
317
};
318

    
319
static void slavio_timer_save(QEMUFile *f, void *opaque)
320
{
321
    SLAVIO_TIMERState *s = opaque;
322

    
323
    qemu_put_be64s(f, &s->limit);
324
    qemu_put_be32s(f, &s->count);
325
    qemu_put_be32s(f, &s->counthigh);
326
    qemu_put_be32s(f, &s->reached);
327
    qemu_put_be32s(f, &s->running);
328
    if (s->timer)
329
        qemu_put_ptimer(f, s->timer);
330
}
331

    
332
static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
333
{
334
    SLAVIO_TIMERState *s = opaque;
335

    
336
    if (version_id != 3)
337
        return -EINVAL;
338

    
339
    qemu_get_be64s(f, &s->limit);
340
    qemu_get_be32s(f, &s->count);
341
    qemu_get_be32s(f, &s->counthigh);
342
    qemu_get_be32s(f, &s->reached);
343
    qemu_get_be32s(f, &s->running);
344
    if (s->timer)
345
        qemu_get_ptimer(f, s->timer);
346

    
347
    return 0;
348
}
349

    
350
static void slavio_timer_reset(void *opaque)
351
{
352
    SLAVIO_TIMERState *s = opaque;
353

    
354
    s->limit = 0;
355
    s->count = 0;
356
    s->reached = 0;
357
    s->slave_mode = 0;
358
    if (!s->master || s->slave_index < s->master->num_slaves) {
359
        ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
360
        ptimer_run(s->timer, 0);
361
    }
362
    s->running = 1;
363
    qemu_irq_lower(s->irq);
364
}
365

    
366
static SLAVIO_TIMERState *slavio_timer_init(target_phys_addr_t addr,
367
                                            qemu_irq irq,
368
                                            SLAVIO_TIMERState *master,
369
                                            uint32_t slave_index)
370
{
371
    int slavio_timer_io_memory;
372
    SLAVIO_TIMERState *s;
373
    QEMUBH *bh;
374

    
375
    s = qemu_mallocz(sizeof(SLAVIO_TIMERState));
376
    if (!s)
377
        return s;
378
    s->irq = irq;
379
    s->master = master;
380
    s->slave_index = slave_index;
381
    if (!master || slave_index < master->num_slaves) {
382
        bh = qemu_bh_new(slavio_timer_irq, s);
383
        s->timer = ptimer_init(bh);
384
        ptimer_set_period(s->timer, TIMER_PERIOD);
385
    }
386

    
387
    slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read,
388
                                                    slavio_timer_mem_write, s);
389
    if (master)
390
        cpu_register_physical_memory(addr, CPU_TIMER_SIZE,
391
                                     slavio_timer_io_memory);
392
    else
393
        cpu_register_physical_memory(addr, SYS_TIMER_SIZE,
394
                                     slavio_timer_io_memory);
395
    register_savevm("slavio_timer", addr, 3, slavio_timer_save,
396
                    slavio_timer_load, s);
397
    qemu_register_reset(slavio_timer_reset, s);
398
    slavio_timer_reset(s);
399

    
400
    return s;
401
}
402

    
403
void slavio_timer_init_all(target_phys_addr_t base, qemu_irq master_irq,
404
                           qemu_irq *cpu_irqs, unsigned int num_cpus)
405
{
406
    SLAVIO_TIMERState *master;
407
    unsigned int i;
408

    
409
    master = slavio_timer_init(base + SYS_TIMER_OFFSET, master_irq, NULL, 0);
410

    
411
    master->num_slaves = num_cpus;
412

    
413
    for (i = 0; i < MAX_CPUS; i++) {
414
        master->slave[i] = slavio_timer_init(base + (target_phys_addr_t)
415
                                             CPU_TIMER_OFFSET(i),
416
                                             cpu_irqs[i], master, i);
417
    }
418
}