Statistics
| Branch: | Revision:

root / target-ppc / op.c @ 7863667f

History | View | Annotate | Download (50.6 kB)

1
/*
2
 *  PowerPC emulation micro-operations for qemu.
3
 *
4
 *  Copyright (c) 2003-2007 Jocelyn Mayer
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20

    
21
//#define DEBUG_OP
22

    
23
#include "config.h"
24
#include "exec.h"
25
#include "host-utils.h"
26
#include "helper_regs.h"
27
#include "op_helper.h"
28

    
29
#define REG 0
30
#include "op_template.h"
31

    
32
#define REG 1
33
#include "op_template.h"
34

    
35
#define REG 2
36
#include "op_template.h"
37

    
38
#define REG 3
39
#include "op_template.h"
40

    
41
#define REG 4
42
#include "op_template.h"
43

    
44
#define REG 5
45
#include "op_template.h"
46

    
47
#define REG 6
48
#include "op_template.h"
49

    
50
#define REG 7
51
#include "op_template.h"
52

    
53
#define REG 8
54
#include "op_template.h"
55

    
56
#define REG 9
57
#include "op_template.h"
58

    
59
#define REG 10
60
#include "op_template.h"
61

    
62
#define REG 11
63
#include "op_template.h"
64

    
65
#define REG 12
66
#include "op_template.h"
67

    
68
#define REG 13
69
#include "op_template.h"
70

    
71
#define REG 14
72
#include "op_template.h"
73

    
74
#define REG 15
75
#include "op_template.h"
76

    
77
#define REG 16
78
#include "op_template.h"
79

    
80
#define REG 17
81
#include "op_template.h"
82

    
83
#define REG 18
84
#include "op_template.h"
85

    
86
#define REG 19
87
#include "op_template.h"
88

    
89
#define REG 20
90
#include "op_template.h"
91

    
92
#define REG 21
93
#include "op_template.h"
94

    
95
#define REG 22
96
#include "op_template.h"
97

    
98
#define REG 23
99
#include "op_template.h"
100

    
101
#define REG 24
102
#include "op_template.h"
103

    
104
#define REG 25
105
#include "op_template.h"
106

    
107
#define REG 26
108
#include "op_template.h"
109

    
110
#define REG 27
111
#include "op_template.h"
112

    
113
#define REG 28
114
#include "op_template.h"
115

    
116
#define REG 29
117
#include "op_template.h"
118

    
119
#define REG 30
120
#include "op_template.h"
121

    
122
#define REG 31
123
#include "op_template.h"
124

    
125
void OPPROTO op_print_mem_EA (void)
126
{
127
    do_print_mem_EA(T0);
128
    RETURN();
129
}
130

    
131
/* PowerPC state maintenance operations */
132
/* set_Rc0 */
133
void OPPROTO op_set_Rc0 (void)
134
{
135
    env->crf[0] = T0 | xer_so;
136
    RETURN();
137
}
138

    
139
/* Constants load */
140
void OPPROTO op_reset_T0 (void)
141
{
142
    T0 = 0;
143
    RETURN();
144
}
145

    
146
void OPPROTO op_set_T0 (void)
147
{
148
    T0 = (uint32_t)PARAM1;
149
    RETURN();
150
}
151

    
152
#if defined(TARGET_PPC64)
153
void OPPROTO op_set_T0_64 (void)
154
{
155
    T0 = ((uint64_t)PARAM1 << 32) | (uint64_t)PARAM2;
156
    RETURN();
157
}
158
#endif
159

    
160
void OPPROTO op_set_T1 (void)
161
{
162
    T1 = (uint32_t)PARAM1;
163
    RETURN();
164
}
165

    
166
#if defined(TARGET_PPC64)
167
void OPPROTO op_set_T1_64 (void)
168
{
169
    T1 = ((uint64_t)PARAM1 << 32) | (uint64_t)PARAM2;
170
    RETURN();
171
}
172
#endif
173

    
174
#if 0 // unused
175
void OPPROTO op_set_T2 (void)
176
{
177
    T2 = (uint32_t)PARAM1;
178
    RETURN();
179
}
180
#endif
181

    
182
void OPPROTO op_move_T1_T0 (void)
183
{
184
    T1 = T0;
185
    RETURN();
186
}
187

    
188
void OPPROTO op_move_T2_T0 (void)
189
{
190
    T2 = T0;
191
    RETURN();
192
}
193

    
194
void OPPROTO op_moven_T2_T0 (void)
195
{
196
    T2 = ~T0;
197
    RETURN();
198
}
199

    
200
/* Generate exceptions */
201
void OPPROTO op_raise_exception_err (void)
202
{
203
    do_raise_exception_err(PARAM1, PARAM2);
204
}
205

    
206
void OPPROTO op_update_nip (void)
207
{
208
    env->nip = (uint32_t)PARAM1;
209
    RETURN();
210
}
211

    
212
#if defined(TARGET_PPC64)
213
void OPPROTO op_update_nip_64 (void)
214
{
215
    env->nip = ((uint64_t)PARAM1 << 32) | (uint64_t)PARAM2;
216
    RETURN();
217
}
218
#endif
219

    
220
void OPPROTO op_debug (void)
221
{
222
    do_raise_exception(EXCP_DEBUG);
223
}
224

    
225
void OPPROTO op_exit_tb (void)
226
{
227
    EXIT_TB();
228
}
229

    
230
/* Load/store special registers */
231
void OPPROTO op_load_cr (void)
232
{
233
    do_load_cr();
234
    RETURN();
235
}
236

    
237
void OPPROTO op_store_cr (void)
238
{
239
    do_store_cr(PARAM1);
240
    RETURN();
241
}
242

    
243
void OPPROTO op_load_cro (void)
244
{
245
    T0 = env->crf[PARAM1];
246
    RETURN();
247
}
248

    
249
void OPPROTO op_store_cro (void)
250
{
251
    env->crf[PARAM1] = T0;
252
    RETURN();
253
}
254

    
255
void OPPROTO op_load_xer_cr (void)
256
{
257
    T0 = (xer_so << 3) | (xer_ov << 2) | (xer_ca << 1);
258
    RETURN();
259
}
260

    
261
void OPPROTO op_clear_xer_ov (void)
262
{
263
    xer_so = 0;
264
    xer_ov = 0;
265
    RETURN();
266
}
267

    
268
void OPPROTO op_clear_xer_ca (void)
269
{
270
    xer_ca = 0;
271
    RETURN();
272
}
273

    
274
void OPPROTO op_load_xer_bc (void)
275
{
276
    T1 = xer_bc;
277
    RETURN();
278
}
279

    
280
void OPPROTO op_store_xer_bc (void)
281
{
282
    xer_bc = T0;
283
    RETURN();
284
}
285

    
286
void OPPROTO op_load_xer (void)
287
{
288
    T0 = hreg_load_xer(env);
289
    RETURN();
290
}
291

    
292
void OPPROTO op_store_xer (void)
293
{
294
    hreg_store_xer(env, T0);
295
    RETURN();
296
}
297

    
298
#if defined(TARGET_PPC64)
299
void OPPROTO op_store_pri (void)
300
{
301
    do_store_pri(PARAM1);
302
    RETURN();
303
}
304
#endif
305

    
306
#if !defined(CONFIG_USER_ONLY)
307
/* Segment registers load and store */
308
void OPPROTO op_load_sr (void)
309
{
310
    T0 = env->sr[T1];
311
    RETURN();
312
}
313

    
314
void OPPROTO op_store_sr (void)
315
{
316
    do_store_sr(env, T1, T0);
317
    RETURN();
318
}
319

    
320
#if defined(TARGET_PPC64)
321
void OPPROTO op_load_slb (void)
322
{
323
    T0 = ppc_load_slb(env, T1);
324
    RETURN();
325
}
326

    
327
void OPPROTO op_store_slb (void)
328
{
329
    ppc_store_slb(env, T1, T0);
330
    RETURN();
331
}
332
#endif /* defined(TARGET_PPC64) */
333

    
334
void OPPROTO op_load_sdr1 (void)
335
{
336
    T0 = env->sdr1;
337
    RETURN();
338
}
339

    
340
void OPPROTO op_store_sdr1 (void)
341
{
342
    do_store_sdr1(env, T0);
343
    RETURN();
344
}
345

    
346
#if defined (TARGET_PPC64)
347
void OPPROTO op_load_asr (void)
348
{
349
    T0 = env->asr;
350
    RETURN();
351
}
352

    
353
void OPPROTO op_store_asr (void)
354
{
355
    ppc_store_asr(env, T0);
356
    RETURN();
357
}
358
#endif
359

    
360
void OPPROTO op_load_msr (void)
361
{
362
    T0 = env->msr;
363
    RETURN();
364
}
365

    
366
void OPPROTO op_store_msr (void)
367
{
368
    do_store_msr();
369
    RETURN();
370
}
371

    
372
#if defined (TARGET_PPC64)
373
void OPPROTO op_store_msr_32 (void)
374
{
375
    T0 = (env->msr & ~0xFFFFFFFFULL) | (T0 & 0xFFFFFFFF);
376
    do_store_msr();
377
    RETURN();
378
}
379
#endif
380

    
381
void OPPROTO op_update_riee (void)
382
{
383
    /* We don't call do_store_msr here as we won't trigger
384
     * any special case nor change hflags
385
     */
386
    T0 &= (1 << MSR_RI) | (1 << MSR_EE);
387
    env->msr &= ~(1 << MSR_RI) | (1 << MSR_EE);
388
    env->msr |= T0;
389
    RETURN();
390
}
391
#endif
392

    
393
/* SPR */
394
void OPPROTO op_load_spr (void)
395
{
396
    T0 = env->spr[PARAM1];
397
    RETURN();
398
}
399

    
400
void OPPROTO op_store_spr (void)
401
{
402
    env->spr[PARAM1] = T0;
403
    RETURN();
404
}
405

    
406
void OPPROTO op_load_dump_spr (void)
407
{
408
    T0 = ppc_load_dump_spr(PARAM1);
409
    RETURN();
410
}
411

    
412
void OPPROTO op_store_dump_spr (void)
413
{
414
    ppc_store_dump_spr(PARAM1, T0);
415
    RETURN();
416
}
417

    
418
void OPPROTO op_mask_spr (void)
419
{
420
    env->spr[PARAM1] &= ~T0;
421
    RETURN();
422
}
423

    
424
void OPPROTO op_load_lr (void)
425
{
426
    T0 = env->lr;
427
    RETURN();
428
}
429

    
430
void OPPROTO op_store_lr (void)
431
{
432
    env->lr = T0;
433
    RETURN();
434
}
435

    
436
void OPPROTO op_load_ctr (void)
437
{
438
    T0 = env->ctr;
439
    RETURN();
440
}
441

    
442
void OPPROTO op_store_ctr (void)
443
{
444
    env->ctr = T0;
445
    RETURN();
446
}
447

    
448
void OPPROTO op_load_tbl (void)
449
{
450
    T0 = cpu_ppc_load_tbl(env);
451
    RETURN();
452
}
453

    
454
void OPPROTO op_load_tbu (void)
455
{
456
    T0 = cpu_ppc_load_tbu(env);
457
    RETURN();
458
}
459

    
460
void OPPROTO op_load_atbl (void)
461
{
462
    T0 = cpu_ppc_load_atbl(env);
463
    RETURN();
464
}
465

    
466
void OPPROTO op_load_atbu (void)
467
{
468
    T0 = cpu_ppc_load_atbu(env);
469
    RETURN();
470
}
471

    
472
#if !defined(CONFIG_USER_ONLY)
473
void OPPROTO op_store_tbl (void)
474
{
475
    cpu_ppc_store_tbl(env, T0);
476
    RETURN();
477
}
478

    
479
void OPPROTO op_store_tbu (void)
480
{
481
    cpu_ppc_store_tbu(env, T0);
482
    RETURN();
483
}
484

    
485
void OPPROTO op_store_atbl (void)
486
{
487
    cpu_ppc_store_atbl(env, T0);
488
    RETURN();
489
}
490

    
491
void OPPROTO op_store_atbu (void)
492
{
493
    cpu_ppc_store_atbu(env, T0);
494
    RETURN();
495
}
496

    
497
void OPPROTO op_load_decr (void)
498
{
499
    T0 = cpu_ppc_load_decr(env);
500
    RETURN();
501
}
502

    
503
void OPPROTO op_store_decr (void)
504
{
505
    cpu_ppc_store_decr(env, T0);
506
    RETURN();
507
}
508

    
509
void OPPROTO op_load_ibat (void)
510
{
511
    T0 = env->IBAT[PARAM1][PARAM2];
512
    RETURN();
513
}
514

    
515
void OPPROTO op_store_ibatu (void)
516
{
517
    do_store_ibatu(env, PARAM1, T0);
518
    RETURN();
519
}
520

    
521
void OPPROTO op_store_ibatl (void)
522
{
523
#if 1
524
    env->IBAT[1][PARAM1] = T0;
525
#else
526
    do_store_ibatl(env, PARAM1, T0);
527
#endif
528
    RETURN();
529
}
530

    
531
void OPPROTO op_load_dbat (void)
532
{
533
    T0 = env->DBAT[PARAM1][PARAM2];
534
    RETURN();
535
}
536

    
537
void OPPROTO op_store_dbatu (void)
538
{
539
    do_store_dbatu(env, PARAM1, T0);
540
    RETURN();
541
}
542

    
543
void OPPROTO op_store_dbatl (void)
544
{
545
#if 1
546
    env->DBAT[1][PARAM1] = T0;
547
#else
548
    do_store_dbatl(env, PARAM1, T0);
549
#endif
550
    RETURN();
551
}
552
#endif /* !defined(CONFIG_USER_ONLY) */
553

    
554
/* FPSCR */
555
#ifdef CONFIG_SOFTFLOAT
556
void OPPROTO op_reset_fpstatus (void)
557
{
558
    env->fp_status.float_exception_flags = 0;
559
    RETURN();
560
}
561
#endif
562

    
563
void OPPROTO op_compute_fprf (void)
564
{
565
    do_compute_fprf(PARAM1);
566
    RETURN();
567
}
568

    
569
#ifdef CONFIG_SOFTFLOAT
570
void OPPROTO op_float_check_status (void)
571
{
572
    do_float_check_status();
573
    RETURN();
574
}
575
#else
576
void OPPROTO op_float_check_status (void)
577
{
578
    if (env->exception_index == POWERPC_EXCP_PROGRAM &&
579
        (env->error_code & POWERPC_EXCP_FP)) {
580
        /* Differred floating-point exception after target FPR update */
581
        if (msr_fe0 != 0 || msr_fe1 != 0)
582
            do_raise_exception_err(env->exception_index, env->error_code);
583
    }
584
    RETURN();
585
}
586
#endif
587

    
588
#if defined(WORDS_BIGENDIAN)
589
#define WORD0 0
590
#define WORD1 1
591
#else
592
#define WORD0 1
593
#define WORD1 0
594
#endif
595
void OPPROTO op_load_fpscr_FT0 (void)
596
{
597
    /* The 32 MSB of the target fpr are undefined.
598
     * They'll be zero...
599
     */
600
    union {
601
        float64 d;
602
        struct {
603
            uint32_t u[2];
604
        } s;
605
    } u;
606

    
607
    u.s.u[WORD0] = 0;
608
    u.s.u[WORD1] = env->fpscr;
609
    FT0 = u.d;
610
    RETURN();
611
}
612

    
613
void OPPROTO op_set_FT0 (void)
614
{
615
    union {
616
        float64 d;
617
        struct {
618
            uint32_t u[2];
619
        } s;
620
    } u;
621

    
622
    u.s.u[WORD0] = 0;
623
    u.s.u[WORD1] = PARAM1;
624
    FT0 = u.d;
625
    RETURN();
626
}
627
#undef WORD0
628
#undef WORD1
629

    
630
void OPPROTO op_load_fpscr_T0 (void)
631
{
632
    T0 = (env->fpscr >> PARAM1) & 0xF;
633
    RETURN();
634
}
635

    
636
void OPPROTO op_load_fpcc (void)
637
{
638
    T0 = fpscr_fpcc;
639
    RETURN();
640
}
641

    
642
void OPPROTO op_fpscr_resetbit (void)
643
{
644
    env->fpscr &= PARAM1;
645
    RETURN();
646
}
647

    
648
void OPPROTO op_fpscr_setbit (void)
649
{
650
    do_fpscr_setbit(PARAM1);
651
    RETURN();
652
}
653

    
654
void OPPROTO op_store_fpscr (void)
655
{
656
    do_store_fpscr(PARAM1);
657
    RETURN();
658
}
659

    
660
/* Branch */
661
#define EIP env->nip
662

    
663
void OPPROTO op_setlr (void)
664
{
665
    env->lr = (uint32_t)PARAM1;
666
    RETURN();
667
}
668

    
669
#if defined (TARGET_PPC64)
670
void OPPROTO op_setlr_64 (void)
671
{
672
    env->lr = ((uint64_t)PARAM1 << 32) | (uint64_t)PARAM2;
673
    RETURN();
674
}
675
#endif
676

    
677
void OPPROTO op_goto_tb0 (void)
678
{
679
    GOTO_TB(op_goto_tb0, PARAM1, 0);
680
}
681

    
682
void OPPROTO op_goto_tb1 (void)
683
{
684
    GOTO_TB(op_goto_tb1, PARAM1, 1);
685
}
686

    
687
void OPPROTO op_b_T1 (void)
688
{
689
    env->nip = (uint32_t)(T1 & ~3);
690
    RETURN();
691
}
692

    
693
#if defined (TARGET_PPC64)
694
void OPPROTO op_b_T1_64 (void)
695
{
696
    env->nip = (uint64_t)(T1 & ~3);
697
    RETURN();
698
}
699
#endif
700

    
701
void OPPROTO op_jz_T0 (void)
702
{
703
    if (!T0)
704
        GOTO_LABEL_PARAM(1);
705
    RETURN();
706
}
707

    
708
void OPPROTO op_btest_T1 (void)
709
{
710
    if (T0) {
711
        env->nip = (uint32_t)(T1 & ~3);
712
    } else {
713
        env->nip = (uint32_t)PARAM1;
714
    }
715
    RETURN();
716
}
717

    
718
#if defined (TARGET_PPC64)
719
void OPPROTO op_btest_T1_64 (void)
720
{
721
    if (T0) {
722
        env->nip = (uint64_t)(T1 & ~3);
723
    } else {
724
        env->nip = ((uint64_t)PARAM1 << 32) | (uint64_t)PARAM2;
725
    }
726
    RETURN();
727
}
728
#endif
729

    
730
void OPPROTO op_movl_T1_ctr (void)
731
{
732
    T1 = env->ctr;
733
    RETURN();
734
}
735

    
736
void OPPROTO op_movl_T1_lr (void)
737
{
738
    T1 = env->lr;
739
    RETURN();
740
}
741

    
742
/* tests with result in T0 */
743
void OPPROTO op_test_ctr (void)
744
{
745
    T0 = (uint32_t)env->ctr;
746
    RETURN();
747
}
748

    
749
#if defined(TARGET_PPC64)
750
void OPPROTO op_test_ctr_64 (void)
751
{
752
    T0 = (uint64_t)env->ctr;
753
    RETURN();
754
}
755
#endif
756

    
757
void OPPROTO op_test_ctr_true (void)
758
{
759
    T0 = ((uint32_t)env->ctr != 0 && (T0 & PARAM1) != 0);
760
    RETURN();
761
}
762

    
763
#if defined(TARGET_PPC64)
764
void OPPROTO op_test_ctr_true_64 (void)
765
{
766
    T0 = ((uint64_t)env->ctr != 0 && (T0 & PARAM1) != 0);
767
    RETURN();
768
}
769
#endif
770

    
771
void OPPROTO op_test_ctr_false (void)
772
{
773
    T0 = ((uint32_t)env->ctr != 0 && (T0 & PARAM1) == 0);
774
    RETURN();
775
}
776

    
777
#if defined(TARGET_PPC64)
778
void OPPROTO op_test_ctr_false_64 (void)
779
{
780
    T0 = ((uint64_t)env->ctr != 0 && (T0 & PARAM1) == 0);
781
    RETURN();
782
}
783
#endif
784

    
785
void OPPROTO op_test_ctrz (void)
786
{
787
    T0 = ((uint32_t)env->ctr == 0);
788
    RETURN();
789
}
790

    
791
#if defined(TARGET_PPC64)
792
void OPPROTO op_test_ctrz_64 (void)
793
{
794
    T0 = ((uint64_t)env->ctr == 0);
795
    RETURN();
796
}
797
#endif
798

    
799
void OPPROTO op_test_ctrz_true (void)
800
{
801
    T0 = ((uint32_t)env->ctr == 0 && (T0 & PARAM1) != 0);
802
    RETURN();
803
}
804

    
805
#if defined(TARGET_PPC64)
806
void OPPROTO op_test_ctrz_true_64 (void)
807
{
808
    T0 = ((uint64_t)env->ctr == 0 && (T0 & PARAM1) != 0);
809
    RETURN();
810
}
811
#endif
812

    
813
void OPPROTO op_test_ctrz_false (void)
814
{
815
    T0 = ((uint32_t)env->ctr == 0 && (T0 & PARAM1) == 0);
816
    RETURN();
817
}
818

    
819
#if defined(TARGET_PPC64)
820
void OPPROTO op_test_ctrz_false_64 (void)
821
{
822
    T0 = ((uint64_t)env->ctr == 0 && (T0 & PARAM1) == 0);
823
    RETURN();
824
}
825
#endif
826

    
827
void OPPROTO op_test_true (void)
828
{
829
    T0 = (T0 & PARAM1);
830
    RETURN();
831
}
832

    
833
void OPPROTO op_test_false (void)
834
{
835
    T0 = ((T0 & PARAM1) == 0);
836
    RETURN();
837
}
838

    
839
/* CTR maintenance */
840
void OPPROTO op_dec_ctr (void)
841
{
842
    env->ctr--;
843
    RETURN();
844
}
845

    
846
/***                           Integer arithmetic                          ***/
847
/* add */
848
void OPPROTO op_add (void)
849
{
850
    T0 += T1;
851
    RETURN();
852
}
853

    
854
void OPPROTO op_check_addo (void)
855
{
856
    xer_ov = (((uint32_t)T2 ^ (uint32_t)T1 ^ UINT32_MAX) &
857
              ((uint32_t)T2 ^ (uint32_t)T0)) >> 31;
858
    xer_so |= xer_ov;
859
    RETURN();
860
}
861

    
862
#if defined(TARGET_PPC64)
863
void OPPROTO op_check_addo_64 (void)
864
{
865
    xer_ov = (((uint64_t)T2 ^ (uint64_t)T1 ^ UINT64_MAX) &
866
              ((uint64_t)T2 ^ (uint64_t)T0)) >> 63;
867
    xer_so |= xer_ov;
868
    RETURN();
869
}
870
#endif
871

    
872
/* add carrying */
873
void OPPROTO op_check_addc (void)
874
{
875
    if (likely((uint32_t)T0 >= (uint32_t)T2)) {
876
        xer_ca = 0;
877
    } else {
878
        xer_ca = 1;
879
    }
880
    RETURN();
881
}
882

    
883
#if defined(TARGET_PPC64)
884
void OPPROTO op_check_addc_64 (void)
885
{
886
    if (likely((uint64_t)T0 >= (uint64_t)T2)) {
887
        xer_ca = 0;
888
    } else {
889
        xer_ca = 1;
890
    }
891
    RETURN();
892
}
893
#endif
894

    
895
/* add extended */
896
void OPPROTO op_adde (void)
897
{
898
    do_adde();
899
    RETURN();
900
}
901

    
902
#if defined(TARGET_PPC64)
903
void OPPROTO op_adde_64 (void)
904
{
905
    do_adde_64();
906
    RETURN();
907
}
908
#endif
909

    
910
/* add immediate */
911
void OPPROTO op_addi (void)
912
{
913
    T0 += (int32_t)PARAM1;
914
    RETURN();
915
}
916

    
917
/* add to minus one extended */
918
void OPPROTO op_add_me (void)
919
{
920
    T0 += xer_ca + (-1);
921
    if (likely((uint32_t)T1 != 0))
922
        xer_ca = 1;
923
    else
924
        xer_ca = 0;
925
    RETURN();
926
}
927

    
928
#if defined(TARGET_PPC64)
929
void OPPROTO op_add_me_64 (void)
930
{
931
    T0 += xer_ca + (-1);
932
    if (likely((uint64_t)T1 != 0))
933
        xer_ca = 1;
934
    else
935
        xer_ca = 0;
936
    RETURN();
937
}
938
#endif
939

    
940
void OPPROTO op_addmeo (void)
941
{
942
    do_addmeo();
943
    RETURN();
944
}
945

    
946
void OPPROTO op_addmeo_64 (void)
947
{
948
    do_addmeo();
949
    RETURN();
950
}
951

    
952
/* add to zero extended */
953
void OPPROTO op_add_ze (void)
954
{
955
    T0 += xer_ca;
956
    RETURN();
957
}
958

    
959
/* divide word */
960
void OPPROTO op_divw (void)
961
{
962
    if (unlikely(((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
963
                 (int32_t)T1 == 0)) {
964
        T0 = (int32_t)(UINT32_MAX * ((uint32_t)T0 >> 31));
965
    } else {
966
        T0 = (int32_t)T0 / (int32_t)T1;
967
    }
968
    RETURN();
969
}
970

    
971
#if defined(TARGET_PPC64)
972
void OPPROTO op_divd (void)
973
{
974
    if (unlikely(((int64_t)T0 == INT64_MIN && (int64_t)T1 == (int64_t)-1LL) ||
975
                 (int64_t)T1 == 0)) {
976
        T0 = (int64_t)(UINT64_MAX * ((uint64_t)T0 >> 63));
977
    } else {
978
        T0 = (int64_t)T0 / (int64_t)T1;
979
    }
980
    RETURN();
981
}
982
#endif
983

    
984
void OPPROTO op_divwo (void)
985
{
986
    do_divwo();
987
    RETURN();
988
}
989

    
990
#if defined(TARGET_PPC64)
991
void OPPROTO op_divdo (void)
992
{
993
    do_divdo();
994
    RETURN();
995
}
996
#endif
997

    
998
/* divide word unsigned */
999
void OPPROTO op_divwu (void)
1000
{
1001
    if (unlikely(T1 == 0)) {
1002
        T0 = 0;
1003
    } else {
1004
        T0 = (uint32_t)T0 / (uint32_t)T1;
1005
    }
1006
    RETURN();
1007
}
1008

    
1009
#if defined(TARGET_PPC64)
1010
void OPPROTO op_divdu (void)
1011
{
1012
    if (unlikely(T1 == 0)) {
1013
        T0 = 0;
1014
    } else {
1015
        T0 /= T1;
1016
    }
1017
    RETURN();
1018
}
1019
#endif
1020

    
1021
void OPPROTO op_divwuo (void)
1022
{
1023
    do_divwuo();
1024
    RETURN();
1025
}
1026

    
1027
#if defined(TARGET_PPC64)
1028
void OPPROTO op_divduo (void)
1029
{
1030
    do_divduo();
1031
    RETURN();
1032
}
1033
#endif
1034

    
1035
/* multiply high word */
1036
void OPPROTO op_mulhw (void)
1037
{
1038
    T0 = ((int64_t)((int32_t)T0) * (int64_t)((int32_t)T1)) >> 32;
1039
    RETURN();
1040
}
1041

    
1042
#if defined(TARGET_PPC64)
1043
void OPPROTO op_mulhd (void)
1044
{
1045
    uint64_t tl, th;
1046

    
1047
    muls64(&tl, &th, T0, T1);
1048
    T0 = th;
1049
    RETURN();
1050
}
1051
#endif
1052

    
1053
/* multiply high word unsigned */
1054
void OPPROTO op_mulhwu (void)
1055
{
1056
    T0 = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1) >> 32;
1057
    RETURN();
1058
}
1059

    
1060
#if defined(TARGET_PPC64)
1061
void OPPROTO op_mulhdu (void)
1062
{
1063
    uint64_t tl, th;
1064

    
1065
    mulu64(&tl, &th, T0, T1);
1066
    T0 = th;
1067
    RETURN();
1068
}
1069
#endif
1070

    
1071
/* multiply low immediate */
1072
void OPPROTO op_mulli (void)
1073
{
1074
    T0 = ((int32_t)T0 * (int32_t)PARAM1);
1075
    RETURN();
1076
}
1077

    
1078
/* multiply low word */
1079
void OPPROTO op_mullw (void)
1080
{
1081
    T0 = (int32_t)(T0 * T1);
1082
    RETURN();
1083
}
1084

    
1085
#if defined(TARGET_PPC64)
1086
void OPPROTO op_mulld (void)
1087
{
1088
    T0 *= T1;
1089
    RETURN();
1090
}
1091
#endif
1092

    
1093
void OPPROTO op_mullwo (void)
1094
{
1095
    do_mullwo();
1096
    RETURN();
1097
}
1098

    
1099
#if defined(TARGET_PPC64)
1100
void OPPROTO op_mulldo (void)
1101
{
1102
    do_mulldo();
1103
    RETURN();
1104
}
1105
#endif
1106

    
1107
/* negate */
1108
void OPPROTO op_neg (void)
1109
{
1110
    if (likely(T0 != INT32_MIN)) {
1111
        T0 = -(int32_t)T0;
1112
    }
1113
    RETURN();
1114
}
1115

    
1116
#if defined(TARGET_PPC64)
1117
void OPPROTO op_neg_64 (void)
1118
{
1119
    if (likely(T0 != INT64_MIN)) {
1120
        T0 = -(int64_t)T0;
1121
    }
1122
    RETURN();
1123
}
1124
#endif
1125

    
1126
void OPPROTO op_nego (void)
1127
{
1128
    do_nego();
1129
    RETURN();
1130
}
1131

    
1132
#if defined(TARGET_PPC64)
1133
void OPPROTO op_nego_64 (void)
1134
{
1135
    do_nego_64();
1136
    RETURN();
1137
}
1138
#endif
1139

    
1140
/* subtract from */
1141
void OPPROTO op_subf (void)
1142
{
1143
    T0 = T1 - T0;
1144
    RETURN();
1145
}
1146

    
1147
/* subtract from carrying */
1148
void OPPROTO op_check_subfc (void)
1149
{
1150
    if (likely((uint32_t)T0 > (uint32_t)T1)) {
1151
        xer_ca = 0;
1152
    } else {
1153
        xer_ca = 1;
1154
    }
1155
    RETURN();
1156
}
1157

    
1158
#if defined(TARGET_PPC64)
1159
void OPPROTO op_check_subfc_64 (void)
1160
{
1161
    if (likely((uint64_t)T0 > (uint64_t)T1)) {
1162
        xer_ca = 0;
1163
    } else {
1164
        xer_ca = 1;
1165
    }
1166
    RETURN();
1167
}
1168
#endif
1169

    
1170
/* subtract from extended */
1171
void OPPROTO op_subfe (void)
1172
{
1173
    do_subfe();
1174
    RETURN();
1175
}
1176

    
1177
#if defined(TARGET_PPC64)
1178
void OPPROTO op_subfe_64 (void)
1179
{
1180
    do_subfe_64();
1181
    RETURN();
1182
}
1183
#endif
1184

    
1185
/* subtract from immediate carrying */
1186
void OPPROTO op_subfic (void)
1187
{
1188
    T0 = (int32_t)PARAM1 + ~T0 + 1;
1189
    if ((uint32_t)T0 <= (uint32_t)PARAM1) {
1190
        xer_ca = 1;
1191
    } else {
1192
        xer_ca = 0;
1193
    }
1194
    RETURN();
1195
}
1196

    
1197
#if defined(TARGET_PPC64)
1198
void OPPROTO op_subfic_64 (void)
1199
{
1200
    T0 = (int64_t)PARAM1 + ~T0 + 1;
1201
    if ((uint64_t)T0 <= (uint64_t)PARAM1) {
1202
        xer_ca = 1;
1203
    } else {
1204
        xer_ca = 0;
1205
    }
1206
    RETURN();
1207
}
1208
#endif
1209

    
1210
/* subtract from minus one extended */
1211
void OPPROTO op_subfme (void)
1212
{
1213
    T0 = ~T0 + xer_ca - 1;
1214
    if (likely((uint32_t)T0 != UINT32_MAX))
1215
        xer_ca = 1;
1216
    else
1217
        xer_ca = 0;
1218
    RETURN();
1219
}
1220

    
1221
#if defined(TARGET_PPC64)
1222
void OPPROTO op_subfme_64 (void)
1223
{
1224
    T0 = ~T0 + xer_ca - 1;
1225
    if (likely((uint64_t)T0 != UINT64_MAX))
1226
        xer_ca = 1;
1227
    else
1228
        xer_ca = 0;
1229
    RETURN();
1230
}
1231
#endif
1232

    
1233
void OPPROTO op_subfmeo (void)
1234
{
1235
    do_subfmeo();
1236
    RETURN();
1237
}
1238

    
1239
#if defined(TARGET_PPC64)
1240
void OPPROTO op_subfmeo_64 (void)
1241
{
1242
    do_subfmeo_64();
1243
    RETURN();
1244
}
1245
#endif
1246

    
1247
/* subtract from zero extended */
1248
void OPPROTO op_subfze (void)
1249
{
1250
    T1 = ~T0;
1251
    T0 = T1 + xer_ca;
1252
    if ((uint32_t)T0 < (uint32_t)T1) {
1253
        xer_ca = 1;
1254
    } else {
1255
        xer_ca = 0;
1256
    }
1257
    RETURN();
1258
}
1259

    
1260
#if defined(TARGET_PPC64)
1261
void OPPROTO op_subfze_64 (void)
1262
{
1263
    T1 = ~T0;
1264
    T0 = T1 + xer_ca;
1265
    if ((uint64_t)T0 < (uint64_t)T1) {
1266
        xer_ca = 1;
1267
    } else {
1268
        xer_ca = 0;
1269
    }
1270
    RETURN();
1271
}
1272
#endif
1273

    
1274
void OPPROTO op_subfzeo (void)
1275
{
1276
    do_subfzeo();
1277
    RETURN();
1278
}
1279

    
1280
#if defined(TARGET_PPC64)
1281
void OPPROTO op_subfzeo_64 (void)
1282
{
1283
    do_subfzeo_64();
1284
    RETURN();
1285
}
1286
#endif
1287

    
1288
/***                           Integer comparison                          ***/
1289
/* compare */
1290
void OPPROTO op_cmp (void)
1291
{
1292
    if ((int32_t)T0 < (int32_t)T1) {
1293
        T0 = 0x08;
1294
    } else if ((int32_t)T0 > (int32_t)T1) {
1295
        T0 = 0x04;
1296
    } else {
1297
        T0 = 0x02;
1298
    }
1299
    T0 |= xer_so;
1300
    RETURN();
1301
}
1302

    
1303
#if defined(TARGET_PPC64)
1304
void OPPROTO op_cmp_64 (void)
1305
{
1306
    if ((int64_t)T0 < (int64_t)T1) {
1307
        T0 = 0x08;
1308
    } else if ((int64_t)T0 > (int64_t)T1) {
1309
        T0 = 0x04;
1310
    } else {
1311
        T0 = 0x02;
1312
    }
1313
    T0 |= xer_so;
1314
    RETURN();
1315
}
1316
#endif
1317

    
1318
/* compare immediate */
1319
void OPPROTO op_cmpi (void)
1320
{
1321
    if ((int32_t)T0 < (int32_t)PARAM1) {
1322
        T0 = 0x08;
1323
    } else if ((int32_t)T0 > (int32_t)PARAM1) {
1324
        T0 = 0x04;
1325
    } else {
1326
        T0 = 0x02;
1327
    }
1328
    T0 |= xer_so;
1329
    RETURN();
1330
}
1331

    
1332
#if defined(TARGET_PPC64)
1333
void OPPROTO op_cmpi_64 (void)
1334
{
1335
    if ((int64_t)T0 < (int64_t)((int32_t)PARAM1)) {
1336
        T0 = 0x08;
1337
    } else if ((int64_t)T0 > (int64_t)((int32_t)PARAM1)) {
1338
        T0 = 0x04;
1339
    } else {
1340
        T0 = 0x02;
1341
    }
1342
    T0 |= xer_so;
1343
    RETURN();
1344
}
1345
#endif
1346

    
1347
/* compare logical */
1348
void OPPROTO op_cmpl (void)
1349
{
1350
    if ((uint32_t)T0 < (uint32_t)T1) {
1351
        T0 = 0x08;
1352
    } else if ((uint32_t)T0 > (uint32_t)T1) {
1353
        T0 = 0x04;
1354
    } else {
1355
        T0 = 0x02;
1356
    }
1357
    T0 |= xer_so;
1358
    RETURN();
1359
}
1360

    
1361
#if defined(TARGET_PPC64)
1362
void OPPROTO op_cmpl_64 (void)
1363
{
1364
    if ((uint64_t)T0 < (uint64_t)T1) {
1365
        T0 = 0x08;
1366
    } else if ((uint64_t)T0 > (uint64_t)T1) {
1367
        T0 = 0x04;
1368
    } else {
1369
        T0 = 0x02;
1370
    }
1371
    T0 |= xer_so;
1372
    RETURN();
1373
}
1374
#endif
1375

    
1376
/* compare logical immediate */
1377
void OPPROTO op_cmpli (void)
1378
{
1379
    if ((uint32_t)T0 < (uint32_t)PARAM1) {
1380
        T0 = 0x08;
1381
    } else if ((uint32_t)T0 > (uint32_t)PARAM1) {
1382
        T0 = 0x04;
1383
    } else {
1384
        T0 = 0x02;
1385
    }
1386
    T0 |= xer_so;
1387
    RETURN();
1388
}
1389

    
1390
#if defined(TARGET_PPC64)
1391
void OPPROTO op_cmpli_64 (void)
1392
{
1393
    if ((uint64_t)T0 < (uint64_t)PARAM1) {
1394
        T0 = 0x08;
1395
    } else if ((uint64_t)T0 > (uint64_t)PARAM1) {
1396
        T0 = 0x04;
1397
    } else {
1398
        T0 = 0x02;
1399
    }
1400
    T0 |= xer_so;
1401
    RETURN();
1402
}
1403
#endif
1404

    
1405
void OPPROTO op_isel (void)
1406
{
1407
    if (T0)
1408
        T0 = T1;
1409
    else
1410
        T0 = T2;
1411
    RETURN();
1412
}
1413

    
1414
void OPPROTO op_popcntb (void)
1415
{
1416
    do_popcntb();
1417
    RETURN();
1418
}
1419

    
1420
#if defined(TARGET_PPC64)
1421
void OPPROTO op_popcntb_64 (void)
1422
{
1423
    do_popcntb_64();
1424
    RETURN();
1425
}
1426
#endif
1427

    
1428
/***                            Integer logical                            ***/
1429
/* and */
1430
void OPPROTO op_and (void)
1431
{
1432
    T0 &= T1;
1433
    RETURN();
1434
}
1435

    
1436
/* andc */
1437
void OPPROTO op_andc (void)
1438
{
1439
    T0 &= ~T1;
1440
    RETURN();
1441
}
1442

    
1443
/* andi. */
1444
void OPPROTO op_andi_T0 (void)
1445
{
1446
    T0 &= (uint32_t)PARAM1;
1447
    RETURN();
1448
}
1449

    
1450
void OPPROTO op_andi_T1 (void)
1451
{
1452
    T1 &= (uint32_t)PARAM1;
1453
    RETURN();
1454
}
1455

    
1456
#if defined(TARGET_PPC64)
1457
void OPPROTO op_andi_T0_64 (void)
1458
{
1459
    T0 &= ((uint64_t)PARAM1 << 32) | (uint64_t)PARAM2;
1460
    RETURN();
1461
}
1462

    
1463
void OPPROTO op_andi_T1_64 (void)
1464
{
1465
    T1 &= ((uint64_t)PARAM1 << 32) | (uint64_t)PARAM2;
1466
    RETURN();
1467
}
1468
#endif
1469

    
1470
/* count leading zero */
1471
void OPPROTO op_cntlzw (void)
1472
{
1473
    do_cntlzw();
1474
    RETURN();
1475
}
1476

    
1477
#if defined(TARGET_PPC64)
1478
void OPPROTO op_cntlzd (void)
1479
{
1480
    do_cntlzd();
1481
    RETURN();
1482
}
1483
#endif
1484

    
1485
/* eqv */
1486
void OPPROTO op_eqv (void)
1487
{
1488
    T0 = ~(T0 ^ T1);
1489
    RETURN();
1490
}
1491

    
1492
/* extend sign byte */
1493
void OPPROTO op_extsb (void)
1494
{
1495
#if defined (TARGET_PPC64)
1496
    T0 = (int64_t)((int8_t)T0);
1497
#else
1498
    T0 = (int32_t)((int8_t)T0);
1499
#endif
1500
    RETURN();
1501
}
1502

    
1503
/* extend sign half word */
1504
void OPPROTO op_extsh (void)
1505
{
1506
#if defined (TARGET_PPC64)
1507
    T0 = (int64_t)((int16_t)T0);
1508
#else
1509
    T0 = (int32_t)((int16_t)T0);
1510
#endif
1511
    RETURN();
1512
}
1513

    
1514
#if defined (TARGET_PPC64)
1515
void OPPROTO op_extsw (void)
1516
{
1517
    T0 = (int64_t)((int32_t)T0);
1518
    RETURN();
1519
}
1520
#endif
1521

    
1522
/* nand */
1523
void OPPROTO op_nand (void)
1524
{
1525
    T0 = ~(T0 & T1);
1526
    RETURN();
1527
}
1528

    
1529
/* nor */
1530
void OPPROTO op_nor (void)
1531
{
1532
    T0 = ~(T0 | T1);
1533
    RETURN();
1534
}
1535

    
1536
/* or */
1537
void OPPROTO op_or (void)
1538
{
1539
    T0 |= T1;
1540
    RETURN();
1541
}
1542

    
1543
/* orc */
1544
void OPPROTO op_orc (void)
1545
{
1546
    T0 |= ~T1;
1547
    RETURN();
1548
}
1549

    
1550
/* ori */
1551
void OPPROTO op_ori (void)
1552
{
1553
    T0 |= (uint32_t)PARAM1;
1554
    RETURN();
1555
}
1556

    
1557
/* xor */
1558
void OPPROTO op_xor (void)
1559
{
1560
    T0 ^= T1;
1561
    RETURN();
1562
}
1563

    
1564
/* xori */
1565
void OPPROTO op_xori (void)
1566
{
1567
    T0 ^= (uint32_t)PARAM1;
1568
    RETURN();
1569
}
1570

    
1571
/***                             Integer rotate                            ***/
1572
void OPPROTO op_rotl32_T0_T1 (void)
1573
{
1574
    T0 = rotl32(T0, T1 & 0x1F);
1575
    RETURN();
1576
}
1577

    
1578
void OPPROTO op_rotli32_T0 (void)
1579
{
1580
    T0 = rotl32(T0, PARAM1);
1581
    RETURN();
1582
}
1583

    
1584
#if defined(TARGET_PPC64)
1585
void OPPROTO op_rotl64_T0_T1 (void)
1586
{
1587
    T0 = rotl64(T0, T1 & 0x3F);
1588
    RETURN();
1589
}
1590

    
1591
void OPPROTO op_rotli64_T0 (void)
1592
{
1593
    T0 = rotl64(T0, PARAM1);
1594
    RETURN();
1595
}
1596
#endif
1597

    
1598
/***                             Integer shift                             ***/
1599
/* shift left word */
1600
void OPPROTO op_slw (void)
1601
{
1602
    if (T1 & 0x20) {
1603
        T0 = 0;
1604
    } else {
1605
        T0 = (uint32_t)(T0 << T1);
1606
    }
1607
    RETURN();
1608
}
1609

    
1610
#if defined(TARGET_PPC64)
1611
void OPPROTO op_sld (void)
1612
{
1613
    if (T1 & 0x40) {
1614
        T0 = 0;
1615
    } else {
1616
        T0 = T0 << T1;
1617
    }
1618
    RETURN();
1619
}
1620
#endif
1621

    
1622
/* shift right algebraic word */
1623
void OPPROTO op_sraw (void)
1624
{
1625
    do_sraw();
1626
    RETURN();
1627
}
1628

    
1629
#if defined(TARGET_PPC64)
1630
void OPPROTO op_srad (void)
1631
{
1632
    do_srad();
1633
    RETURN();
1634
}
1635
#endif
1636

    
1637
/* shift right algebraic word immediate */
1638
void OPPROTO op_srawi (void)
1639
{
1640
    uint32_t mask = (uint32_t)PARAM2;
1641

    
1642
    T0 = (int32_t)T0 >> PARAM1;
1643
    if ((int32_t)T1 < 0 && (T1 & mask) != 0) {
1644
        xer_ca = 1;
1645
    } else {
1646
        xer_ca = 0;
1647
    }
1648
    RETURN();
1649
}
1650

    
1651
#if defined(TARGET_PPC64)
1652
void OPPROTO op_sradi (void)
1653
{
1654
    uint64_t mask = ((uint64_t)PARAM2 << 32) | (uint64_t)PARAM3;
1655

    
1656
    T0 = (int64_t)T0 >> PARAM1;
1657
    if ((int64_t)T1 < 0 && ((uint64_t)T1 & mask) != 0) {
1658
        xer_ca = 1;
1659
    } else {
1660
        xer_ca = 0;
1661
    }
1662
    RETURN();
1663
}
1664
#endif
1665

    
1666
/* shift right word */
1667
void OPPROTO op_srw (void)
1668
{
1669
    if (T1 & 0x20) {
1670
        T0 = 0;
1671
    } else {
1672
        T0 = (uint32_t)T0 >> T1;
1673
    }
1674
    RETURN();
1675
}
1676

    
1677
#if defined(TARGET_PPC64)
1678
void OPPROTO op_srd (void)
1679
{
1680
    if (T1 & 0x40) {
1681
        T0 = 0;
1682
    } else {
1683
        T0 = (uint64_t)T0 >> T1;
1684
    }
1685
    RETURN();
1686
}
1687
#endif
1688

    
1689
void OPPROTO op_sl_T0_T1 (void)
1690
{
1691
    T0 = T0 << T1;
1692
    RETURN();
1693
}
1694

    
1695
void OPPROTO op_sli_T0 (void)
1696
{
1697
    T0 = T0 << PARAM1;
1698
    RETURN();
1699
}
1700

    
1701
void OPPROTO op_sli_T1 (void)
1702
{
1703
    T1 = T1 << PARAM1;
1704
    RETURN();
1705
}
1706

    
1707
void OPPROTO op_srl_T0_T1 (void)
1708
{
1709
    T0 = (uint32_t)T0 >> T1;
1710
    RETURN();
1711
}
1712

    
1713
#if defined(TARGET_PPC64)
1714
void OPPROTO op_srl_T0_T1_64 (void)
1715
{
1716
    T0 = (uint32_t)T0 >> T1;
1717
    RETURN();
1718
}
1719
#endif
1720

    
1721
void OPPROTO op_srli_T0 (void)
1722
{
1723
    T0 = (uint32_t)T0 >> PARAM1;
1724
    RETURN();
1725
}
1726

    
1727
#if defined(TARGET_PPC64)
1728
void OPPROTO op_srli_T0_64 (void)
1729
{
1730
    T0 = (uint64_t)T0 >> PARAM1;
1731
    RETURN();
1732
}
1733
#endif
1734

    
1735
void OPPROTO op_srli_T1 (void)
1736
{
1737
    T1 = (uint32_t)T1 >> PARAM1;
1738
    RETURN();
1739
}
1740

    
1741
#if defined(TARGET_PPC64)
1742
void OPPROTO op_srli_T1_64 (void)
1743
{
1744
    T1 = (uint64_t)T1 >> PARAM1;
1745
    RETURN();
1746
}
1747
#endif
1748

    
1749
/***                       Floating-Point arithmetic                       ***/
1750
/* fadd - fadd. */
1751
void OPPROTO op_fadd (void)
1752
{
1753
#if USE_PRECISE_EMULATION
1754
    do_fadd();
1755
#else
1756
    FT0 = float64_add(FT0, FT1, &env->fp_status);
1757
#endif
1758
    RETURN();
1759
}
1760

    
1761
/* fsub - fsub. */
1762
void OPPROTO op_fsub (void)
1763
{
1764
#if USE_PRECISE_EMULATION
1765
    do_fsub();
1766
#else
1767
    FT0 = float64_sub(FT0, FT1, &env->fp_status);
1768
#endif
1769
    RETURN();
1770
}
1771

    
1772
/* fmul - fmul. */
1773
void OPPROTO op_fmul (void)
1774
{
1775
#if USE_PRECISE_EMULATION
1776
    do_fmul();
1777
#else
1778
    FT0 = float64_mul(FT0, FT1, &env->fp_status);
1779
#endif
1780
    RETURN();
1781
}
1782

    
1783
/* fdiv - fdiv. */
1784
void OPPROTO op_fdiv (void)
1785
{
1786
#if USE_PRECISE_EMULATION
1787
    do_fdiv();
1788
#else
1789
    FT0 = float64_div(FT0, FT1, &env->fp_status);
1790
#endif
1791
    RETURN();
1792
}
1793

    
1794
/* fsqrt - fsqrt. */
1795
void OPPROTO op_fsqrt (void)
1796
{
1797
    do_fsqrt();
1798
    RETURN();
1799
}
1800

    
1801
/* fre - fre. */
1802
void OPPROTO op_fre (void)
1803
{
1804
    do_fre();
1805
    RETURN();
1806
}
1807

    
1808
/* fres - fres. */
1809
void OPPROTO op_fres (void)
1810
{
1811
    do_fres();
1812
    RETURN();
1813
}
1814

    
1815
/* frsqrte  - frsqrte. */
1816
void OPPROTO op_frsqrte (void)
1817
{
1818
    do_frsqrte();
1819
    RETURN();
1820
}
1821

    
1822
/* fsel - fsel. */
1823
void OPPROTO op_fsel (void)
1824
{
1825
    do_fsel();
1826
    RETURN();
1827
}
1828

    
1829
/***                     Floating-Point multiply-and-add                   ***/
1830
/* fmadd - fmadd. */
1831
void OPPROTO op_fmadd (void)
1832
{
1833
#if USE_PRECISE_EMULATION
1834
    do_fmadd();
1835
#else
1836
    FT0 = float64_mul(FT0, FT1, &env->fp_status);
1837
    FT0 = float64_add(FT0, FT2, &env->fp_status);
1838
#endif
1839
    RETURN();
1840
}
1841

    
1842
/* fmsub - fmsub. */
1843
void OPPROTO op_fmsub (void)
1844
{
1845
#if USE_PRECISE_EMULATION
1846
    do_fmsub();
1847
#else
1848
    FT0 = float64_mul(FT0, FT1, &env->fp_status);
1849
    FT0 = float64_sub(FT0, FT2, &env->fp_status);
1850
#endif
1851
    RETURN();
1852
}
1853

    
1854
/* fnmadd - fnmadd. - fnmadds - fnmadds. */
1855
void OPPROTO op_fnmadd (void)
1856
{
1857
    do_fnmadd();
1858
    RETURN();
1859
}
1860

    
1861
/* fnmsub - fnmsub. */
1862
void OPPROTO op_fnmsub (void)
1863
{
1864
    do_fnmsub();
1865
    RETURN();
1866
}
1867

    
1868
/***                     Floating-Point round & convert                    ***/
1869
/* frsp - frsp. */
1870
void OPPROTO op_frsp (void)
1871
{
1872
#if USE_PRECISE_EMULATION
1873
    do_frsp();
1874
#else
1875
    FT0 = float64_to_float32(FT0, &env->fp_status);
1876
#endif
1877
    RETURN();
1878
}
1879

    
1880
/* fctiw - fctiw. */
1881
void OPPROTO op_fctiw (void)
1882
{
1883
    do_fctiw();
1884
    RETURN();
1885
}
1886

    
1887
/* fctiwz - fctiwz. */
1888
void OPPROTO op_fctiwz (void)
1889
{
1890
    do_fctiwz();
1891
    RETURN();
1892
}
1893

    
1894
#if defined(TARGET_PPC64)
1895
/* fcfid - fcfid. */
1896
void OPPROTO op_fcfid (void)
1897
{
1898
    do_fcfid();
1899
    RETURN();
1900
}
1901

    
1902
/* fctid - fctid. */
1903
void OPPROTO op_fctid (void)
1904
{
1905
    do_fctid();
1906
    RETURN();
1907
}
1908

    
1909
/* fctidz - fctidz. */
1910
void OPPROTO op_fctidz (void)
1911
{
1912
    do_fctidz();
1913
    RETURN();
1914
}
1915
#endif
1916

    
1917
void OPPROTO op_frin (void)
1918
{
1919
    do_frin();
1920
    RETURN();
1921
}
1922

    
1923
void OPPROTO op_friz (void)
1924
{
1925
    do_friz();
1926
    RETURN();
1927
}
1928

    
1929
void OPPROTO op_frip (void)
1930
{
1931
    do_frip();
1932
    RETURN();
1933
}
1934

    
1935
void OPPROTO op_frim (void)
1936
{
1937
    do_frim();
1938
    RETURN();
1939
}
1940

    
1941
/***                         Floating-Point compare                        ***/
1942
/* fcmpu */
1943
void OPPROTO op_fcmpu (void)
1944
{
1945
    do_fcmpu();
1946
    RETURN();
1947
}
1948

    
1949
/* fcmpo */
1950
void OPPROTO op_fcmpo (void)
1951
{
1952
    do_fcmpo();
1953
    RETURN();
1954
}
1955

    
1956
/***                         Floating-point move                           ***/
1957
/* fabs */
1958
void OPPROTO op_fabs (void)
1959
{
1960
    FT0 = float64_abs(FT0);
1961
    RETURN();
1962
}
1963

    
1964
/* fnabs */
1965
void OPPROTO op_fnabs (void)
1966
{
1967
    FT0 = float64_abs(FT0);
1968
    FT0 = float64_chs(FT0);
1969
    RETURN();
1970
}
1971

    
1972
/* fneg */
1973
void OPPROTO op_fneg (void)
1974
{
1975
    FT0 = float64_chs(FT0);
1976
    RETURN();
1977
}
1978

    
1979
/* Load and store */
1980
#define MEMSUFFIX _raw
1981
#include "op_helper.h"
1982
#include "op_mem.h"
1983
#if !defined(CONFIG_USER_ONLY)
1984
#define MEMSUFFIX _user
1985
#include "op_helper.h"
1986
#include "op_mem.h"
1987
#define MEMSUFFIX _kernel
1988
#include "op_helper.h"
1989
#include "op_mem.h"
1990
#define MEMSUFFIX _hypv
1991
#include "op_helper.h"
1992
#include "op_mem.h"
1993
#endif
1994

    
1995
/* Special op to check and maybe clear reservation */
1996
void OPPROTO op_check_reservation (void)
1997
{
1998
    if ((uint32_t)env->reserve == (uint32_t)(T0 & ~0x00000003))
1999
        env->reserve = (target_ulong)-1ULL;
2000
    RETURN();
2001
}
2002

    
2003
#if defined(TARGET_PPC64)
2004
void OPPROTO op_check_reservation_64 (void)
2005
{
2006
    if ((uint64_t)env->reserve == (uint64_t)(T0 & ~0x00000003))
2007
        env->reserve = (target_ulong)-1ULL;
2008
    RETURN();
2009
}
2010
#endif
2011

    
2012
void OPPROTO op_wait (void)
2013
{
2014
    env->halted = 1;
2015
    RETURN();
2016
}
2017

    
2018
/* Return from interrupt */
2019
#if !defined(CONFIG_USER_ONLY)
2020
void OPPROTO op_rfi (void)
2021
{
2022
    do_rfi();
2023
    RETURN();
2024
}
2025

    
2026
#if defined(TARGET_PPC64)
2027
void OPPROTO op_rfid (void)
2028
{
2029
    do_rfid();
2030
    RETURN();
2031
}
2032

    
2033
void OPPROTO op_hrfid (void)
2034
{
2035
    do_hrfid();
2036
    RETURN();
2037
}
2038
#endif
2039

    
2040
/* Exception vectors */
2041
void OPPROTO op_store_excp_prefix (void)
2042
{
2043
    T0 &= env->ivpr_mask;
2044
    env->excp_prefix = T0;
2045
    RETURN();
2046
}
2047

    
2048
void OPPROTO op_store_excp_vector (void)
2049
{
2050
    T0 &= env->ivor_mask;
2051
    env->excp_vectors[PARAM1] = T0;
2052
    RETURN();
2053
}
2054
#endif
2055

    
2056
/* Trap word */
2057
void OPPROTO op_tw (void)
2058
{
2059
    do_tw(PARAM1);
2060
    RETURN();
2061
}
2062

    
2063
#if defined(TARGET_PPC64)
2064
void OPPROTO op_td (void)
2065
{
2066
    do_td(PARAM1);
2067
    RETURN();
2068
}
2069
#endif
2070

    
2071
#if !defined(CONFIG_USER_ONLY)
2072
/* tlbia */
2073
void OPPROTO op_tlbia (void)
2074
{
2075
    ppc_tlb_invalidate_all(env);
2076
    RETURN();
2077
}
2078

    
2079
/* tlbie */
2080
void OPPROTO op_tlbie (void)
2081
{
2082
    ppc_tlb_invalidate_one(env, (uint32_t)T0);
2083
    RETURN();
2084
}
2085

    
2086
#if defined(TARGET_PPC64)
2087
void OPPROTO op_tlbie_64 (void)
2088
{
2089
    ppc_tlb_invalidate_one(env, T0);
2090
    RETURN();
2091
}
2092
#endif
2093

    
2094
#if defined(TARGET_PPC64)
2095
void OPPROTO op_slbia (void)
2096
{
2097
    ppc_slb_invalidate_all(env);
2098
    RETURN();
2099
}
2100

    
2101
void OPPROTO op_slbie (void)
2102
{
2103
    ppc_slb_invalidate_one(env, (uint32_t)T0);
2104
    RETURN();
2105
}
2106

    
2107
void OPPROTO op_slbie_64 (void)
2108
{
2109
    ppc_slb_invalidate_one(env, T0);
2110
    RETURN();
2111
}
2112
#endif
2113
#endif
2114

    
2115
#if !defined(CONFIG_USER_ONLY)
2116
/* PowerPC 602/603/755 software TLB load instructions */
2117
void OPPROTO op_6xx_tlbld (void)
2118
{
2119
    do_load_6xx_tlb(0);
2120
    RETURN();
2121
}
2122

    
2123
void OPPROTO op_6xx_tlbli (void)
2124
{
2125
    do_load_6xx_tlb(1);
2126
    RETURN();
2127
}
2128

    
2129
/* PowerPC 74xx software TLB load instructions */
2130
void OPPROTO op_74xx_tlbld (void)
2131
{
2132
    do_load_74xx_tlb(0);
2133
    RETURN();
2134
}
2135

    
2136
void OPPROTO op_74xx_tlbli (void)
2137
{
2138
    do_load_74xx_tlb(1);
2139
    RETURN();
2140
}
2141
#endif
2142

    
2143
/* 601 specific */
2144
void OPPROTO op_load_601_rtcl (void)
2145
{
2146
    T0 = cpu_ppc601_load_rtcl(env);
2147
    RETURN();
2148
}
2149

    
2150
void OPPROTO op_load_601_rtcu (void)
2151
{
2152
    T0 = cpu_ppc601_load_rtcu(env);
2153
    RETURN();
2154
}
2155

    
2156
#if !defined(CONFIG_USER_ONLY)
2157
void OPPROTO op_store_601_rtcl (void)
2158
{
2159
    cpu_ppc601_store_rtcl(env, T0);
2160
    RETURN();
2161
}
2162

    
2163
void OPPROTO op_store_601_rtcu (void)
2164
{
2165
    cpu_ppc601_store_rtcu(env, T0);
2166
    RETURN();
2167
}
2168

    
2169
void OPPROTO op_store_hid0_601 (void)
2170
{
2171
    do_store_hid0_601();
2172
    RETURN();
2173
}
2174

    
2175
void OPPROTO op_load_601_bat (void)
2176
{
2177
    T0 = env->IBAT[PARAM1][PARAM2];
2178
    RETURN();
2179
}
2180

    
2181
void OPPROTO op_store_601_batl (void)
2182
{
2183
    do_store_ibatl_601(env, PARAM1, T0);
2184
    RETURN();
2185
}
2186

    
2187
void OPPROTO op_store_601_batu (void)
2188
{
2189
    do_store_ibatu_601(env, PARAM1, T0);
2190
    RETURN();
2191
}
2192
#endif /* !defined(CONFIG_USER_ONLY) */
2193

    
2194
/* PowerPC 601 specific instructions (POWER bridge) */
2195
/* XXX: those micro-ops need tests ! */
2196
void OPPROTO op_POWER_abs (void)
2197
{
2198
    if ((int32_t)T0 == INT32_MIN)
2199
        T0 = INT32_MAX;
2200
    else if ((int32_t)T0 < 0)
2201
        T0 = -T0;
2202
    RETURN();
2203
}
2204

    
2205
void OPPROTO op_POWER_abso (void)
2206
{
2207
    do_POWER_abso();
2208
    RETURN();
2209
}
2210

    
2211
void OPPROTO op_POWER_clcs (void)
2212
{
2213
    do_POWER_clcs();
2214
    RETURN();
2215
}
2216

    
2217
void OPPROTO op_POWER_div (void)
2218
{
2219
    do_POWER_div();
2220
    RETURN();
2221
}
2222

    
2223
void OPPROTO op_POWER_divo (void)
2224
{
2225
    do_POWER_divo();
2226
    RETURN();
2227
}
2228

    
2229
void OPPROTO op_POWER_divs (void)
2230
{
2231
    do_POWER_divs();
2232
    RETURN();
2233
}
2234

    
2235
void OPPROTO op_POWER_divso (void)
2236
{
2237
    do_POWER_divso();
2238
    RETURN();
2239
}
2240

    
2241
void OPPROTO op_POWER_doz (void)
2242
{
2243
    if ((int32_t)T1 > (int32_t)T0)
2244
        T0 = T1 - T0;
2245
    else
2246
        T0 = 0;
2247
    RETURN();
2248
}
2249

    
2250
void OPPROTO op_POWER_dozo (void)
2251
{
2252
    do_POWER_dozo();
2253
    RETURN();
2254
}
2255

    
2256
void OPPROTO op_load_xer_cmp (void)
2257
{
2258
    T2 = xer_cmp;
2259
    RETURN();
2260
}
2261

    
2262
void OPPROTO op_POWER_maskg (void)
2263
{
2264
    do_POWER_maskg();
2265
    RETURN();
2266
}
2267

    
2268
void OPPROTO op_POWER_maskir (void)
2269
{
2270
    T0 = (T0 & ~T2) | (T1 & T2);
2271
    RETURN();
2272
}
2273

    
2274
void OPPROTO op_POWER_mul (void)
2275
{
2276
    uint64_t tmp;
2277

    
2278
    tmp = (uint64_t)T0 * (uint64_t)T1;
2279
    env->spr[SPR_MQ] = tmp >> 32;
2280
    T0 = tmp;
2281
    RETURN();
2282
}
2283

    
2284
void OPPROTO op_POWER_mulo (void)
2285
{
2286
    do_POWER_mulo();
2287
    RETURN();
2288
}
2289

    
2290
void OPPROTO op_POWER_nabs (void)
2291
{
2292
    if (T0 > 0)
2293
        T0 = -T0;
2294
    RETURN();
2295
}
2296

    
2297
void OPPROTO op_POWER_nabso (void)
2298
{
2299
    /* nabs never overflows */
2300
    if (T0 > 0)
2301
        T0 = -T0;
2302
    xer_ov = 0;
2303
    RETURN();
2304
}
2305

    
2306
/* XXX: factorise POWER rotates... */
2307
void OPPROTO op_POWER_rlmi (void)
2308
{
2309
    T0 = rotl32(T0, T2) & PARAM1;
2310
    T0 |= T1 & (uint32_t)PARAM2;
2311
    RETURN();
2312
}
2313

    
2314
void OPPROTO op_POWER_rrib (void)
2315
{
2316
    T2 &= 0x1FUL;
2317
    T0 = rotl32(T0 & INT32_MIN, T2);
2318
    T0 |= T1 & ~rotl32(INT32_MIN, T2);
2319
    RETURN();
2320
}
2321

    
2322
void OPPROTO op_POWER_sle (void)
2323
{
2324
    T1 &= 0x1FUL;
2325
    env->spr[SPR_MQ] = rotl32(T0, T1);
2326
    T0 = T0 << T1;
2327
    RETURN();
2328
}
2329

    
2330
void OPPROTO op_POWER_sleq (void)
2331
{
2332
    uint32_t tmp = env->spr[SPR_MQ];
2333

    
2334
    T1 &= 0x1FUL;
2335
    env->spr[SPR_MQ] = rotl32(T0, T1);
2336
    T0 = T0 << T1;
2337
    T0 |= tmp >> (32 - T1);
2338
    RETURN();
2339
}
2340

    
2341
void OPPROTO op_POWER_sllq (void)
2342
{
2343
    uint32_t msk = UINT32_MAX;
2344

    
2345
    msk = msk << (T1 & 0x1FUL);
2346
    if (T1 & 0x20UL)
2347
        msk = ~msk;
2348
    T1 &= 0x1FUL;
2349
    T0 = (T0 << T1) & msk;
2350
    T0 |= env->spr[SPR_MQ] & ~msk;
2351
    RETURN();
2352
}
2353

    
2354
void OPPROTO op_POWER_slq (void)
2355
{
2356
    uint32_t msk = UINT32_MAX, tmp;
2357

    
2358
    msk = msk << (T1 & 0x1FUL);
2359
    if (T1 & 0x20UL)
2360
        msk = ~msk;
2361
    T1 &= 0x1FUL;
2362
    tmp = rotl32(T0, T1);
2363
    T0 = tmp & msk;
2364
    env->spr[SPR_MQ] = tmp;
2365
    RETURN();
2366
}
2367

    
2368
void OPPROTO op_POWER_sraq (void)
2369
{
2370
    env->spr[SPR_MQ] = rotl32(T0, 32 - (T1 & 0x1FUL));
2371
    if (T1 & 0x20UL)
2372
        T0 = UINT32_MAX;
2373
    else
2374
        T0 = (int32_t)T0 >> T1;
2375
    RETURN();
2376
}
2377

    
2378
void OPPROTO op_POWER_sre (void)
2379
{
2380
    T1 &= 0x1FUL;
2381
    env->spr[SPR_MQ] = rotl32(T0, 32 - T1);
2382
    T0 = (int32_t)T0 >> T1;
2383
    RETURN();
2384
}
2385

    
2386
void OPPROTO op_POWER_srea (void)
2387
{
2388
    T1 &= 0x1FUL;
2389
    env->spr[SPR_MQ] = T0 >> T1;
2390
    T0 = (int32_t)T0 >> T1;
2391
    RETURN();
2392
}
2393

    
2394
void OPPROTO op_POWER_sreq (void)
2395
{
2396
    uint32_t tmp;
2397
    int32_t msk;
2398

    
2399
    T1 &= 0x1FUL;
2400
    msk = INT32_MIN >> T1;
2401
    tmp = env->spr[SPR_MQ];
2402
    env->spr[SPR_MQ] = rotl32(T0, 32 - T1);
2403
    T0 = T0 >> T1;
2404
    T0 |= tmp & msk;
2405
    RETURN();
2406
}
2407

    
2408
void OPPROTO op_POWER_srlq (void)
2409
{
2410
    uint32_t tmp;
2411
    int32_t msk;
2412

    
2413
    msk = INT32_MIN >> (T1 & 0x1FUL);
2414
    if (T1 & 0x20UL)
2415
        msk = ~msk;
2416
    T1 &= 0x1FUL;
2417
    tmp = env->spr[SPR_MQ];
2418
    env->spr[SPR_MQ] = rotl32(T0, 32 - T1);
2419
    T0 = T0 >> T1;
2420
    T0 &= msk;
2421
    T0 |= tmp & ~msk;
2422
    RETURN();
2423
}
2424

    
2425
void OPPROTO op_POWER_srq (void)
2426
{
2427
    T1 &= 0x1FUL;
2428
    env->spr[SPR_MQ] = rotl32(T0, 32 - T1);
2429
    T0 = T0 >> T1;
2430
    RETURN();
2431
}
2432

    
2433
/* POWER instructions not implemented in PowerPC 601 */
2434
#if !defined(CONFIG_USER_ONLY)
2435
void OPPROTO op_POWER_mfsri (void)
2436
{
2437
    T1 = T0 >> 28;
2438
    T0 = env->sr[T1];
2439
    RETURN();
2440
}
2441

    
2442
void OPPROTO op_POWER_rac (void)
2443
{
2444
    do_POWER_rac();
2445
    RETURN();
2446
}
2447

    
2448
void OPPROTO op_POWER_rfsvc (void)
2449
{
2450
    do_POWER_rfsvc();
2451
    RETURN();
2452
}
2453
#endif
2454

    
2455
/* PowerPC 602 specific instruction */
2456
#if !defined(CONFIG_USER_ONLY)
2457
void OPPROTO op_602_mfrom (void)
2458
{
2459
    do_op_602_mfrom();
2460
    RETURN();
2461
}
2462
#endif
2463

    
2464
/* PowerPC 4xx specific micro-ops */
2465
void OPPROTO op_405_add_T0_T2 (void)
2466
{
2467
    T0 = (int32_t)T0 + (int32_t)T2;
2468
    RETURN();
2469
}
2470

    
2471
void OPPROTO op_405_mulchw (void)
2472
{
2473
    T0 = ((int16_t)T0) * ((int16_t)(T1 >> 16));
2474
    RETURN();
2475
}
2476

    
2477
void OPPROTO op_405_mulchwu (void)
2478
{
2479
    T0 = ((uint16_t)T0) * ((uint16_t)(T1 >> 16));
2480
    RETURN();
2481
}
2482

    
2483
void OPPROTO op_405_mulhhw (void)
2484
{
2485
    T0 = ((int16_t)(T0 >> 16)) * ((int16_t)(T1 >> 16));
2486
    RETURN();
2487
}
2488

    
2489
void OPPROTO op_405_mulhhwu (void)
2490
{
2491
    T0 = ((uint16_t)(T0 >> 16)) * ((uint16_t)(T1 >> 16));
2492
    RETURN();
2493
}
2494

    
2495
void OPPROTO op_405_mullhw (void)
2496
{
2497
    T0 = ((int16_t)T0) * ((int16_t)T1);
2498
    RETURN();
2499
}
2500

    
2501
void OPPROTO op_405_mullhwu (void)
2502
{
2503
    T0 = ((uint16_t)T0) * ((uint16_t)T1);
2504
    RETURN();
2505
}
2506

    
2507
void OPPROTO op_405_check_sat (void)
2508
{
2509
    do_405_check_sat();
2510
    RETURN();
2511
}
2512

    
2513
void OPPROTO op_405_check_ovu (void)
2514
{
2515
    if (likely(T0 >= T2)) {
2516
        xer_ov = 0;
2517
    } else {
2518
        xer_ov = 1;
2519
        xer_so = 1;
2520
    }
2521
    RETURN();
2522
}
2523

    
2524
void OPPROTO op_405_check_satu (void)
2525
{
2526
    if (unlikely(T0 < T2)) {
2527
        /* Saturate result */
2528
        T0 = UINT32_MAX;
2529
    }
2530
    RETURN();
2531
}
2532

    
2533
void OPPROTO op_load_dcr (void)
2534
{
2535
    do_load_dcr();
2536
    RETURN();
2537
}
2538

    
2539
void OPPROTO op_store_dcr (void)
2540
{
2541
    do_store_dcr();
2542
    RETURN();
2543
}
2544

    
2545
#if !defined(CONFIG_USER_ONLY)
2546
/* Return from critical interrupt :
2547
 * same as rfi, except nip & MSR are loaded from SRR2/3 instead of SRR0/1
2548
 */
2549
void OPPROTO op_40x_rfci (void)
2550
{
2551
    do_40x_rfci();
2552
    RETURN();
2553
}
2554

    
2555
void OPPROTO op_rfci (void)
2556
{
2557
    do_rfci();
2558
    RETURN();
2559
}
2560

    
2561
void OPPROTO op_rfdi (void)
2562
{
2563
    do_rfdi();
2564
    RETURN();
2565
}
2566

    
2567
void OPPROTO op_rfmci (void)
2568
{
2569
    do_rfmci();
2570
    RETURN();
2571
}
2572

    
2573
void OPPROTO op_wrte (void)
2574
{
2575
    /* We don't call do_store_msr here as we won't trigger
2576
     * any special case nor change hflags
2577
     */
2578
    T0 &= 1 << MSR_EE;
2579
    env->msr &= ~(1 << MSR_EE);
2580
    env->msr |= T0;
2581
    RETURN();
2582
}
2583

    
2584
void OPPROTO op_440_tlbre (void)
2585
{
2586
    do_440_tlbre(PARAM1);
2587
    RETURN();
2588
}
2589

    
2590
void OPPROTO op_440_tlbsx (void)
2591
{
2592
    T0 = ppcemb_tlb_search(env, T0, env->spr[SPR_440_MMUCR] & 0xFF);
2593
    RETURN();
2594
}
2595

    
2596
void OPPROTO op_4xx_tlbsx_check (void)
2597
{
2598
    int tmp;
2599

    
2600
    tmp = xer_so;
2601
    if ((int)T0 != -1)
2602
        tmp |= 0x02;
2603
    env->crf[0] = tmp;
2604
    RETURN();
2605
}
2606

    
2607
void OPPROTO op_440_tlbwe (void)
2608
{
2609
    do_440_tlbwe(PARAM1);
2610
    RETURN();
2611
}
2612

    
2613
void OPPROTO op_4xx_tlbre_lo (void)
2614
{
2615
    do_4xx_tlbre_lo();
2616
    RETURN();
2617
}
2618

    
2619
void OPPROTO op_4xx_tlbre_hi (void)
2620
{
2621
    do_4xx_tlbre_hi();
2622
    RETURN();
2623
}
2624

    
2625
void OPPROTO op_4xx_tlbsx (void)
2626
{
2627
    T0 = ppcemb_tlb_search(env, T0, env->spr[SPR_40x_PID]);
2628
    RETURN();
2629
}
2630

    
2631
void OPPROTO op_4xx_tlbwe_lo (void)
2632
{
2633
    do_4xx_tlbwe_lo();
2634
    RETURN();
2635
}
2636

    
2637
void OPPROTO op_4xx_tlbwe_hi (void)
2638
{
2639
    do_4xx_tlbwe_hi();
2640
    RETURN();
2641
}
2642
#endif
2643

    
2644
/* SPR micro-ops */
2645
/* 440 specific */
2646
void OPPROTO op_440_dlmzb (void)
2647
{
2648
    do_440_dlmzb();
2649
    RETURN();
2650
}
2651

    
2652
void OPPROTO op_440_dlmzb_update_Rc (void)
2653
{
2654
    if (T0 == 8)
2655
        T0 = 0x2;
2656
    else if (T0 < 4)
2657
        T0 = 0x4;
2658
    else
2659
        T0 = 0x8;
2660
    RETURN();
2661
}
2662

    
2663
#if !defined(CONFIG_USER_ONLY)
2664
void OPPROTO op_store_pir (void)
2665
{
2666
    env->spr[SPR_PIR] = T0 & 0x0000000FUL;
2667
    RETURN();
2668
}
2669

    
2670
void OPPROTO op_load_403_pb (void)
2671
{
2672
    do_load_403_pb(PARAM1);
2673
    RETURN();
2674
}
2675

    
2676
void OPPROTO op_store_403_pb (void)
2677
{
2678
    do_store_403_pb(PARAM1);
2679
    RETURN();
2680
}
2681

    
2682
void OPPROTO op_load_40x_pit (void)
2683
{
2684
    T0 = load_40x_pit(env);
2685
    RETURN();
2686
}
2687

    
2688
void OPPROTO op_store_40x_pit (void)
2689
{
2690
    store_40x_pit(env, T0);
2691
    RETURN();
2692
}
2693

    
2694
void OPPROTO op_store_40x_dbcr0 (void)
2695
{
2696
    store_40x_dbcr0(env, T0);
2697
    RETURN();
2698
}
2699

    
2700
void OPPROTO op_store_40x_sler (void)
2701
{
2702
    store_40x_sler(env, T0);
2703
    RETURN();
2704
}
2705

    
2706
void OPPROTO op_store_booke_tcr (void)
2707
{
2708
    store_booke_tcr(env, T0);
2709
    RETURN();
2710
}
2711

    
2712
void OPPROTO op_store_booke_tsr (void)
2713
{
2714
    store_booke_tsr(env, T0);
2715
    RETURN();
2716
}
2717
#endif /* !defined(CONFIG_USER_ONLY) */
2718

    
2719
/* SPE extension */
2720
void OPPROTO op_splatw_T1_64 (void)
2721
{
2722
    T1_64 = (T1_64 << 32) | (T1_64 & 0x00000000FFFFFFFFULL);
2723
    RETURN();
2724
}
2725

    
2726
void OPPROTO op_splatwi_T0_64 (void)
2727
{
2728
    uint64_t tmp = PARAM1;
2729

    
2730
    T0_64 = (tmp << 32) | tmp;
2731
    RETURN();
2732
}
2733

    
2734
void OPPROTO op_splatwi_T1_64 (void)
2735
{
2736
    uint64_t tmp = PARAM1;
2737

    
2738
    T1_64 = (tmp << 32) | tmp;
2739
    RETURN();
2740
}
2741

    
2742
void OPPROTO op_extsh_T1_64 (void)
2743
{
2744
    T1_64 = (int32_t)((int16_t)T1_64);
2745
    RETURN();
2746
}
2747

    
2748
void OPPROTO op_sli16_T1_64 (void)
2749
{
2750
    T1_64 = T1_64 << 16;
2751
    RETURN();
2752
}
2753

    
2754
void OPPROTO op_sli32_T1_64 (void)
2755
{
2756
    T1_64 = T1_64 << 32;
2757
    RETURN();
2758
}
2759

    
2760
void OPPROTO op_srli32_T1_64 (void)
2761
{
2762
    T1_64 = T1_64 >> 32;
2763
    RETURN();
2764
}
2765

    
2766
void OPPROTO op_evsel (void)
2767
{
2768
    do_evsel();
2769
    RETURN();
2770
}
2771

    
2772
void OPPROTO op_evaddw (void)
2773
{
2774
    do_evaddw();
2775
    RETURN();
2776
}
2777

    
2778
void OPPROTO op_evsubfw (void)
2779
{
2780
    do_evsubfw();
2781
    RETURN();
2782
}
2783

    
2784
void OPPROTO op_evneg (void)
2785
{
2786
    do_evneg();
2787
    RETURN();
2788
}
2789

    
2790
void OPPROTO op_evabs (void)
2791
{
2792
    do_evabs();
2793
    RETURN();
2794
}
2795

    
2796
void OPPROTO op_evextsh (void)
2797
{
2798
    T0_64 = ((uint64_t)((int32_t)(int16_t)(T0_64 >> 32)) << 32) |
2799
        (uint64_t)((int32_t)(int16_t)T0_64);
2800
    RETURN();
2801
}
2802

    
2803
void OPPROTO op_evextsb (void)
2804
{
2805
    T0_64 = ((uint64_t)((int32_t)(int8_t)(T0_64 >> 32)) << 32) |
2806
        (uint64_t)((int32_t)(int8_t)T0_64);
2807
    RETURN();
2808
}
2809

    
2810
void OPPROTO op_evcntlzw (void)
2811
{
2812
    do_evcntlzw();
2813
    RETURN();
2814
}
2815

    
2816
void OPPROTO op_evrndw (void)
2817
{
2818
    do_evrndw();
2819
    RETURN();
2820
}
2821

    
2822
void OPPROTO op_brinc (void)
2823
{
2824
    do_brinc();
2825
    RETURN();
2826
}
2827

    
2828
void OPPROTO op_evcntlsw (void)
2829
{
2830
    do_evcntlsw();
2831
    RETURN();
2832
}
2833

    
2834
void OPPROTO op_evand (void)
2835
{
2836
    T0_64 &= T1_64;
2837
    RETURN();
2838
}
2839

    
2840
void OPPROTO op_evandc (void)
2841
{
2842
    T0_64 &= ~T1_64;
2843
    RETURN();
2844
}
2845

    
2846
void OPPROTO op_evor (void)
2847
{
2848
    T0_64 |= T1_64;
2849
    RETURN();
2850
}
2851

    
2852
void OPPROTO op_evxor (void)
2853
{
2854
    T0_64 ^= T1_64;
2855
    RETURN();
2856
}
2857

    
2858
void OPPROTO op_eveqv (void)
2859
{
2860
    T0_64 = ~(T0_64 ^ T1_64);
2861
    RETURN();
2862
}
2863

    
2864
void OPPROTO op_evnor (void)
2865
{
2866
    T0_64 = ~(T0_64 | T1_64);
2867
    RETURN();
2868
}
2869

    
2870
void OPPROTO op_evorc (void)
2871
{
2872
    T0_64 |= ~T1_64;
2873
    RETURN();
2874
}
2875

    
2876
void OPPROTO op_evnand (void)
2877
{
2878
    T0_64 = ~(T0_64 & T1_64);
2879
    RETURN();
2880
}
2881

    
2882
void OPPROTO op_evsrws (void)
2883
{
2884
    do_evsrws();
2885
    RETURN();
2886
}
2887

    
2888
void OPPROTO op_evsrwu (void)
2889
{
2890
    do_evsrwu();
2891
    RETURN();
2892
}
2893

    
2894
void OPPROTO op_evslw (void)
2895
{
2896
    do_evslw();
2897
    RETURN();
2898
}
2899

    
2900
void OPPROTO op_evrlw (void)
2901
{
2902
    do_evrlw();
2903
    RETURN();
2904
}
2905

    
2906
void OPPROTO op_evmergelo (void)
2907
{
2908
    T0_64 = (T0_64 << 32) | (T1_64 & 0x00000000FFFFFFFFULL);
2909
    RETURN();
2910
}
2911

    
2912
void OPPROTO op_evmergehi (void)
2913
{
2914
    T0_64 = (T0_64 & 0xFFFFFFFF00000000ULL) | (T1_64 >> 32);
2915
    RETURN();
2916
}
2917

    
2918
void OPPROTO op_evmergelohi (void)
2919
{
2920
    T0_64 = (T0_64 << 32) | (T1_64 >> 32);
2921
    RETURN();
2922
}
2923

    
2924
void OPPROTO op_evmergehilo (void)
2925
{
2926
    T0_64 = (T0_64 & 0xFFFFFFFF00000000ULL) | (T1_64 & 0x00000000FFFFFFFFULL);
2927
    RETURN();
2928
}
2929

    
2930
void OPPROTO op_evcmpgts (void)
2931
{
2932
    do_evcmpgts();
2933
    RETURN();
2934
}
2935

    
2936
void OPPROTO op_evcmpgtu (void)
2937
{
2938
    do_evcmpgtu();
2939
    RETURN();
2940
}
2941

    
2942
void OPPROTO op_evcmplts (void)
2943
{
2944
    do_evcmplts();
2945
    RETURN();
2946
}
2947

    
2948
void OPPROTO op_evcmpltu (void)
2949
{
2950
    do_evcmpltu();
2951
    RETURN();
2952
}
2953

    
2954
void OPPROTO op_evcmpeq (void)
2955
{
2956
    do_evcmpeq();
2957
    RETURN();
2958
}
2959

    
2960
void OPPROTO op_evfssub (void)
2961
{
2962
    do_evfssub();
2963
    RETURN();
2964
}
2965

    
2966
void OPPROTO op_evfsadd (void)
2967
{
2968
    do_evfsadd();
2969
    RETURN();
2970
}
2971

    
2972
void OPPROTO op_evfsnabs (void)
2973
{
2974
    do_evfsnabs();
2975
    RETURN();
2976
}
2977

    
2978
void OPPROTO op_evfsabs (void)
2979
{
2980
    do_evfsabs();
2981
    RETURN();
2982
}
2983

    
2984
void OPPROTO op_evfsneg (void)
2985
{
2986
    do_evfsneg();
2987
    RETURN();
2988
}
2989

    
2990
void OPPROTO op_evfsdiv (void)
2991
{
2992
    do_evfsdiv();
2993
    RETURN();
2994
}
2995

    
2996
void OPPROTO op_evfsmul (void)
2997
{
2998
    do_evfsmul();
2999
    RETURN();
3000
}
3001

    
3002
void OPPROTO op_evfscmplt (void)
3003
{
3004
    do_evfscmplt();
3005
    RETURN();
3006
}
3007

    
3008
void OPPROTO op_evfscmpgt (void)
3009
{
3010
    do_evfscmpgt();
3011
    RETURN();
3012
}
3013

    
3014
void OPPROTO op_evfscmpeq (void)
3015
{
3016
    do_evfscmpeq();
3017
    RETURN();
3018
}
3019

    
3020
void OPPROTO op_evfscfsi (void)
3021
{
3022
    do_evfscfsi();
3023
    RETURN();
3024
}
3025

    
3026
void OPPROTO op_evfscfui (void)
3027
{
3028
    do_evfscfui();
3029
    RETURN();
3030
}
3031

    
3032
void OPPROTO op_evfscfsf (void)
3033
{
3034
    do_evfscfsf();
3035
    RETURN();
3036
}
3037

    
3038
void OPPROTO op_evfscfuf (void)
3039
{
3040
    do_evfscfuf();
3041
    RETURN();
3042
}
3043

    
3044
void OPPROTO op_evfsctsi (void)
3045
{
3046
    do_evfsctsi();
3047
    RETURN();
3048
}
3049

    
3050
void OPPROTO op_evfsctui (void)
3051
{
3052
    do_evfsctui();
3053
    RETURN();
3054
}
3055

    
3056
void OPPROTO op_evfsctsf (void)
3057
{
3058
    do_evfsctsf();
3059
    RETURN();
3060
}
3061

    
3062
void OPPROTO op_evfsctuf (void)
3063
{
3064
    do_evfsctuf();
3065
    RETURN();
3066
}
3067

    
3068
void OPPROTO op_evfsctuiz (void)
3069
{
3070
    do_evfsctuiz();
3071
    RETURN();
3072
}
3073

    
3074
void OPPROTO op_evfsctsiz (void)
3075
{
3076
    do_evfsctsiz();
3077
    RETURN();
3078
}
3079

    
3080
void OPPROTO op_evfststlt (void)
3081
{
3082
    do_evfststlt();
3083
    RETURN();
3084
}
3085

    
3086
void OPPROTO op_evfststgt (void)
3087
{
3088
    do_evfststgt();
3089
    RETURN();
3090
}
3091

    
3092
void OPPROTO op_evfststeq (void)
3093
{
3094
    do_evfststeq();
3095
    RETURN();
3096
}
3097

    
3098
void OPPROTO op_efssub (void)
3099
{
3100
    T0_64 = _do_efssub(T0_64, T1_64);
3101
    RETURN();
3102
}
3103

    
3104
void OPPROTO op_efsadd (void)
3105
{
3106
    T0_64 = _do_efsadd(T0_64, T1_64);
3107
    RETURN();
3108
}
3109

    
3110
void OPPROTO op_efsnabs (void)
3111
{
3112
    T0_64 = _do_efsnabs(T0_64);
3113
    RETURN();
3114
}
3115

    
3116
void OPPROTO op_efsabs (void)
3117
{
3118
    T0_64 = _do_efsabs(T0_64);
3119
    RETURN();
3120
}
3121

    
3122
void OPPROTO op_efsneg (void)
3123
{
3124
    T0_64 = _do_efsneg(T0_64);
3125
    RETURN();
3126
}
3127

    
3128
void OPPROTO op_efsdiv (void)
3129
{
3130
    T0_64 = _do_efsdiv(T0_64, T1_64);
3131
    RETURN();
3132
}
3133

    
3134
void OPPROTO op_efsmul (void)
3135
{
3136
    T0_64 = _do_efsmul(T0_64, T1_64);
3137
    RETURN();
3138
}
3139

    
3140
void OPPROTO op_efscmplt (void)
3141
{
3142
    do_efscmplt();
3143
    RETURN();
3144
}
3145

    
3146
void OPPROTO op_efscmpgt (void)
3147
{
3148
    do_efscmpgt();
3149
    RETURN();
3150
}
3151

    
3152
void OPPROTO op_efscfd (void)
3153
{
3154
    do_efscfd();
3155
    RETURN();
3156
}
3157

    
3158
void OPPROTO op_efscmpeq (void)
3159
{
3160
    do_efscmpeq();
3161
    RETURN();
3162
}
3163

    
3164
void OPPROTO op_efscfsi (void)
3165
{
3166
    do_efscfsi();
3167
    RETURN();
3168
}
3169

    
3170
void OPPROTO op_efscfui (void)
3171
{
3172
    do_efscfui();
3173
    RETURN();
3174
}
3175

    
3176
void OPPROTO op_efscfsf (void)
3177
{
3178
    do_efscfsf();
3179
    RETURN();
3180
}
3181

    
3182
void OPPROTO op_efscfuf (void)
3183
{
3184
    do_efscfuf();
3185
    RETURN();
3186
}
3187

    
3188
void OPPROTO op_efsctsi (void)
3189
{
3190
    do_efsctsi();
3191
    RETURN();
3192
}
3193

    
3194
void OPPROTO op_efsctui (void)
3195
{
3196
    do_efsctui();
3197
    RETURN();
3198
}
3199

    
3200
void OPPROTO op_efsctsf (void)
3201
{
3202
    do_efsctsf();
3203
    RETURN();
3204
}
3205

    
3206
void OPPROTO op_efsctuf (void)
3207
{
3208
    do_efsctuf();
3209
    RETURN();
3210
}
3211

    
3212
void OPPROTO op_efsctsiz (void)
3213
{
3214
    do_efsctsiz();
3215
    RETURN();
3216
}
3217

    
3218
void OPPROTO op_efsctuiz (void)
3219
{
3220
    do_efsctuiz();
3221
    RETURN();
3222
}
3223

    
3224
void OPPROTO op_efststlt (void)
3225
{
3226
    T0 = _do_efststlt(T0_64, T1_64);
3227
    RETURN();
3228
}
3229

    
3230
void OPPROTO op_efststgt (void)
3231
{
3232
    T0 = _do_efststgt(T0_64, T1_64);
3233
    RETURN();
3234
}
3235

    
3236
void OPPROTO op_efststeq (void)
3237
{
3238
    T0 = _do_efststeq(T0_64, T1_64);
3239
    RETURN();
3240
}
3241

    
3242
void OPPROTO op_efdsub (void)
3243
{
3244
    union {
3245
        uint64_t u;
3246
        float64 f;
3247
    } u1, u2;
3248
    u1.u = T0_64;
3249
    u2.u = T1_64;
3250
    u1.f = float64_sub(u1.f, u2.f, &env->spe_status);
3251
    T0_64 = u1.u;
3252
    RETURN();
3253
}
3254

    
3255
void OPPROTO op_efdadd (void)
3256
{
3257
    union {
3258
        uint64_t u;
3259
        float64 f;
3260
    } u1, u2;
3261
    u1.u = T0_64;
3262
    u2.u = T1_64;
3263
    u1.f = float64_add(u1.f, u2.f, &env->spe_status);
3264
    T0_64 = u1.u;
3265
    RETURN();
3266
}
3267

    
3268
void OPPROTO op_efdcfsid (void)
3269
{
3270
    do_efdcfsi();
3271
    RETURN();
3272
}
3273

    
3274
void OPPROTO op_efdcfuid (void)
3275
{
3276
    do_efdcfui();
3277
    RETURN();
3278
}
3279

    
3280
void OPPROTO op_efdnabs (void)
3281
{
3282
    T0_64 |= 0x8000000000000000ULL;
3283
    RETURN();
3284
}
3285

    
3286
void OPPROTO op_efdabs (void)
3287
{
3288
    T0_64 &= ~0x8000000000000000ULL;
3289
    RETURN();
3290
}
3291

    
3292
void OPPROTO op_efdneg (void)
3293
{
3294
    T0_64 ^= 0x8000000000000000ULL;
3295
    RETURN();
3296
}
3297

    
3298
void OPPROTO op_efddiv (void)
3299
{
3300
    union {
3301
        uint64_t u;
3302
        float64 f;
3303
    } u1, u2;
3304
    u1.u = T0_64;
3305
    u2.u = T1_64;
3306
    u1.f = float64_div(u1.f, u2.f, &env->spe_status);
3307
    T0_64 = u1.u;
3308
    RETURN();
3309
}
3310

    
3311
void OPPROTO op_efdmul (void)
3312
{
3313
    union {
3314
        uint64_t u;
3315
        float64 f;
3316
    } u1, u2;
3317
    u1.u = T0_64;
3318
    u2.u = T1_64;
3319
    u1.f = float64_mul(u1.f, u2.f, &env->spe_status);
3320
    T0_64 = u1.u;
3321
    RETURN();
3322
}
3323

    
3324
void OPPROTO op_efdctsidz (void)
3325
{
3326
    do_efdctsiz();
3327
    RETURN();
3328
}
3329

    
3330
void OPPROTO op_efdctuidz (void)
3331
{
3332
    do_efdctuiz();
3333
    RETURN();
3334
}
3335

    
3336
void OPPROTO op_efdcmplt (void)
3337
{
3338
    do_efdcmplt();
3339
    RETURN();
3340
}
3341

    
3342
void OPPROTO op_efdcmpgt (void)
3343
{
3344
    do_efdcmpgt();
3345
    RETURN();
3346
}
3347

    
3348
void OPPROTO op_efdcfs (void)
3349
{
3350
    do_efdcfs();
3351
    RETURN();
3352
}
3353

    
3354
void OPPROTO op_efdcmpeq (void)
3355
{
3356
    do_efdcmpeq();
3357
    RETURN();
3358
}
3359

    
3360
void OPPROTO op_efdcfsi (void)
3361
{
3362
    do_efdcfsi();
3363
    RETURN();
3364
}
3365

    
3366
void OPPROTO op_efdcfui (void)
3367
{
3368
    do_efdcfui();
3369
    RETURN();
3370
}
3371

    
3372
void OPPROTO op_efdcfsf (void)
3373
{
3374
    do_efdcfsf();
3375
    RETURN();
3376
}
3377

    
3378
void OPPROTO op_efdcfuf (void)
3379
{
3380
    do_efdcfuf();
3381
    RETURN();
3382
}
3383

    
3384
void OPPROTO op_efdctsi (void)
3385
{
3386
    do_efdctsi();
3387
    RETURN();
3388
}
3389

    
3390
void OPPROTO op_efdctui (void)
3391
{
3392
    do_efdctui();
3393
    RETURN();
3394
}
3395

    
3396
void OPPROTO op_efdctsf (void)
3397
{
3398
    do_efdctsf();
3399
    RETURN();
3400
}
3401

    
3402
void OPPROTO op_efdctuf (void)
3403
{
3404
    do_efdctuf();
3405
    RETURN();
3406
}
3407

    
3408
void OPPROTO op_efdctuiz (void)
3409
{
3410
    do_efdctuiz();
3411
    RETURN();
3412
}
3413

    
3414
void OPPROTO op_efdctsiz (void)
3415
{
3416
    do_efdctsiz();
3417
    RETURN();
3418
}
3419

    
3420
void OPPROTO op_efdtstlt (void)
3421
{
3422
    T0 = _do_efdtstlt(T0_64, T1_64);
3423
    RETURN();
3424
}
3425

    
3426
void OPPROTO op_efdtstgt (void)
3427
{
3428
    T0 = _do_efdtstgt(T0_64, T1_64);
3429
    RETURN();
3430
}
3431

    
3432
void OPPROTO op_efdtsteq (void)
3433
{
3434
    T0 = _do_efdtsteq(T0_64, T1_64);
3435
    RETURN();
3436
}