Statistics
| Branch: | Revision:

root / hw / mips_malta.c @ 78895427

History | View | Annotate | Download (32.1 kB)

1
/*
2
 * QEMU Malta board support
3
 *
4
 * Copyright (c) 2006 Aurelien Jarno
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24

    
25
#include "hw.h"
26
#include "pc.h"
27
#include "fdc.h"
28
#include "net.h"
29
#include "boards.h"
30
#include "smbus.h"
31
#include "block.h"
32
#include "flash.h"
33
#include "mips.h"
34
#include "mips_cpudevs.h"
35
#include "pci.h"
36
#include "usb-uhci.h"
37
#include "vmware_vga.h"
38
#include "qemu-char.h"
39
#include "sysemu.h"
40
#include "audio/audio.h"
41
#include "boards.h"
42
#include "qemu-log.h"
43
#include "mips-bios.h"
44
#include "ide.h"
45
#include "loader.h"
46
#include "elf.h"
47
#include "mc146818rtc.h"
48
#include "blockdev.h"
49

    
50
//#define DEBUG_BOARD_INIT
51

    
52
#define ENVP_ADDR                0x80002000l
53
#define ENVP_NB_ENTRIES                 16
54
#define ENVP_ENTRY_SIZE                 256
55

    
56
#define MAX_IDE_BUS 2
57

    
58
typedef struct {
59
    uint32_t leds;
60
    uint32_t brk;
61
    uint32_t gpout;
62
    uint32_t i2cin;
63
    uint32_t i2coe;
64
    uint32_t i2cout;
65
    uint32_t i2csel;
66
    CharDriverState *display;
67
    char display_text[9];
68
    SerialState *uart;
69
} MaltaFPGAState;
70

    
71
static PITState *pit;
72

    
73
static struct _loaderparams {
74
    int ram_size;
75
    const char *kernel_filename;
76
    const char *kernel_cmdline;
77
    const char *initrd_filename;
78
} loaderparams;
79

    
80
/* Malta FPGA */
81
static void malta_fpga_update_display(void *opaque)
82
{
83
    char leds_text[9];
84
    int i;
85
    MaltaFPGAState *s = opaque;
86

    
87
    for (i = 7 ; i >= 0 ; i--) {
88
        if (s->leds & (1 << i))
89
            leds_text[i] = '#';
90
        else
91
            leds_text[i] = ' ';
92
    }
93
    leds_text[8] = '\0';
94

    
95
    qemu_chr_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text);
96
    qemu_chr_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text);
97
}
98

    
99
/*
100
 * EEPROM 24C01 / 24C02 emulation.
101
 *
102
 * Emulation for serial EEPROMs:
103
 * 24C01 - 1024 bit (128 x 8)
104
 * 24C02 - 2048 bit (256 x 8)
105
 *
106
 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
107
 */
108

    
109
//~ #define DEBUG
110

    
111
#if defined(DEBUG)
112
#  define logout(fmt, ...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
113
#else
114
#  define logout(fmt, ...) ((void)0)
115
#endif
116

    
117
struct _eeprom24c0x_t {
118
  uint8_t tick;
119
  uint8_t address;
120
  uint8_t command;
121
  uint8_t ack;
122
  uint8_t scl;
123
  uint8_t sda;
124
  uint8_t data;
125
  //~ uint16_t size;
126
  uint8_t contents[256];
127
};
128

    
129
typedef struct _eeprom24c0x_t eeprom24c0x_t;
130

    
131
static eeprom24c0x_t eeprom = {
132
    .contents = {
133
        /* 00000000: */ 0x80,0x08,0x04,0x0D,0x0A,0x01,0x40,0x00,
134
        /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
135
        /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x0E,0x00,
136
        /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0x40,
137
        /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
138
        /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
139
        /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
140
        /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
141
        /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
142
        /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
143
        /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
144
        /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
145
        /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
146
        /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
147
        /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
148
        /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
149
    },
150
};
151

    
152
static uint8_t eeprom24c0x_read(void)
153
{
154
    logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
155
        eeprom.tick, eeprom.scl, eeprom.sda, eeprom.data);
156
    return eeprom.sda;
157
}
158

    
159
static void eeprom24c0x_write(int scl, int sda)
160
{
161
    if (eeprom.scl && scl && (eeprom.sda != sda)) {
162
        logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
163
                eeprom.tick, eeprom.scl, scl, eeprom.sda, sda, sda ? "stop" : "start");
164
        if (!sda) {
165
            eeprom.tick = 1;
166
            eeprom.command = 0;
167
        }
168
    } else if (eeprom.tick == 0 && !eeprom.ack) {
169
        /* Waiting for start. */
170
        logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
171
                eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
172
    } else if (!eeprom.scl && scl) {
173
        logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
174
                eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
175
        if (eeprom.ack) {
176
            logout("\ti2c ack bit = 0\n");
177
            sda = 0;
178
            eeprom.ack = 0;
179
        } else if (eeprom.sda == sda) {
180
            uint8_t bit = (sda != 0);
181
            logout("\ti2c bit = %d\n", bit);
182
            if (eeprom.tick < 9) {
183
                eeprom.command <<= 1;
184
                eeprom.command += bit;
185
                eeprom.tick++;
186
                if (eeprom.tick == 9) {
187
                    logout("\tcommand 0x%04x, %s\n", eeprom.command, bit ? "read" : "write");
188
                    eeprom.ack = 1;
189
                }
190
            } else if (eeprom.tick < 17) {
191
                if (eeprom.command & 1) {
192
                    sda = ((eeprom.data & 0x80) != 0);
193
                }
194
                eeprom.address <<= 1;
195
                eeprom.address += bit;
196
                eeprom.tick++;
197
                eeprom.data <<= 1;
198
                if (eeprom.tick == 17) {
199
                    eeprom.data = eeprom.contents[eeprom.address];
200
                    logout("\taddress 0x%04x, data 0x%02x\n", eeprom.address, eeprom.data);
201
                    eeprom.ack = 1;
202
                    eeprom.tick = 0;
203
                }
204
            } else if (eeprom.tick >= 17) {
205
                sda = 0;
206
            }
207
        } else {
208
            logout("\tsda changed with raising scl\n");
209
        }
210
    } else {
211
        logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
212
    }
213
    eeprom.scl = scl;
214
    eeprom.sda = sda;
215
}
216

    
217
static uint32_t malta_fpga_readl(void *opaque, target_phys_addr_t addr)
218
{
219
    MaltaFPGAState *s = opaque;
220
    uint32_t val = 0;
221
    uint32_t saddr;
222

    
223
    saddr = (addr & 0xfffff);
224

    
225
    switch (saddr) {
226

    
227
    /* SWITCH Register */
228
    case 0x00200:
229
        val = 0x00000000;                /* All switches closed */
230
        break;
231

    
232
    /* STATUS Register */
233
    case 0x00208:
234
#ifdef TARGET_WORDS_BIGENDIAN
235
        val = 0x00000012;
236
#else
237
        val = 0x00000010;
238
#endif
239
        break;
240

    
241
    /* JMPRS Register */
242
    case 0x00210:
243
        val = 0x00;
244
        break;
245

    
246
    /* LEDBAR Register */
247
    case 0x00408:
248
        val = s->leds;
249
        break;
250

    
251
    /* BRKRES Register */
252
    case 0x00508:
253
        val = s->brk;
254
        break;
255

    
256
    /* UART Registers are handled directly by the serial device */
257

    
258
    /* GPOUT Register */
259
    case 0x00a00:
260
        val = s->gpout;
261
        break;
262

    
263
    /* XXX: implement a real I2C controller */
264

    
265
    /* GPINP Register */
266
    case 0x00a08:
267
        /* IN = OUT until a real I2C control is implemented */
268
        if (s->i2csel)
269
            val = s->i2cout;
270
        else
271
            val = 0x00;
272
        break;
273

    
274
    /* I2CINP Register */
275
    case 0x00b00:
276
        val = ((s->i2cin & ~1) | eeprom24c0x_read());
277
        break;
278

    
279
    /* I2COE Register */
280
    case 0x00b08:
281
        val = s->i2coe;
282
        break;
283

    
284
    /* I2COUT Register */
285
    case 0x00b10:
286
        val = s->i2cout;
287
        break;
288

    
289
    /* I2CSEL Register */
290
    case 0x00b18:
291
        val = s->i2csel;
292
        break;
293

    
294
    default:
295
#if 0
296
        printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
297
                addr);
298
#endif
299
        break;
300
    }
301
    return val;
302
}
303

    
304
static void malta_fpga_writel(void *opaque, target_phys_addr_t addr,
305
                              uint32_t val)
306
{
307
    MaltaFPGAState *s = opaque;
308
    uint32_t saddr;
309

    
310
    saddr = (addr & 0xfffff);
311

    
312
    switch (saddr) {
313

    
314
    /* SWITCH Register */
315
    case 0x00200:
316
        break;
317

    
318
    /* JMPRS Register */
319
    case 0x00210:
320
        break;
321

    
322
    /* LEDBAR Register */
323
    /* XXX: implement a 8-LED array */
324
    case 0x00408:
325
        s->leds = val & 0xff;
326
        break;
327

    
328
    /* ASCIIWORD Register */
329
    case 0x00410:
330
        snprintf(s->display_text, 9, "%08X", val);
331
        malta_fpga_update_display(s);
332
        break;
333

    
334
    /* ASCIIPOS0 to ASCIIPOS7 Registers */
335
    case 0x00418:
336
    case 0x00420:
337
    case 0x00428:
338
    case 0x00430:
339
    case 0x00438:
340
    case 0x00440:
341
    case 0x00448:
342
    case 0x00450:
343
        s->display_text[(saddr - 0x00418) >> 3] = (char) val;
344
        malta_fpga_update_display(s);
345
        break;
346

    
347
    /* SOFTRES Register */
348
    case 0x00500:
349
        if (val == 0x42)
350
            qemu_system_reset_request ();
351
        break;
352

    
353
    /* BRKRES Register */
354
    case 0x00508:
355
        s->brk = val & 0xff;
356
        break;
357

    
358
    /* UART Registers are handled directly by the serial device */
359

    
360
    /* GPOUT Register */
361
    case 0x00a00:
362
        s->gpout = val & 0xff;
363
        break;
364

    
365
    /* I2COE Register */
366
    case 0x00b08:
367
        s->i2coe = val & 0x03;
368
        break;
369

    
370
    /* I2COUT Register */
371
    case 0x00b10:
372
        eeprom24c0x_write(val & 0x02, val & 0x01);
373
        s->i2cout = val;
374
        break;
375

    
376
    /* I2CSEL Register */
377
    case 0x00b18:
378
        s->i2csel = val & 0x01;
379
        break;
380

    
381
    default:
382
#if 0
383
        printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
384
                addr);
385
#endif
386
        break;
387
    }
388
}
389

    
390
static CPUReadMemoryFunc * const malta_fpga_read[] = {
391
   malta_fpga_readl,
392
   malta_fpga_readl,
393
   malta_fpga_readl
394
};
395

    
396
static CPUWriteMemoryFunc * const malta_fpga_write[] = {
397
   malta_fpga_writel,
398
   malta_fpga_writel,
399
   malta_fpga_writel
400
};
401

    
402
static void malta_fpga_reset(void *opaque)
403
{
404
    MaltaFPGAState *s = opaque;
405

    
406
    s->leds   = 0x00;
407
    s->brk    = 0x0a;
408
    s->gpout  = 0x00;
409
    s->i2cin  = 0x3;
410
    s->i2coe  = 0x0;
411
    s->i2cout = 0x3;
412
    s->i2csel = 0x1;
413

    
414
    s->display_text[8] = '\0';
415
    snprintf(s->display_text, 9, "        ");
416
}
417

    
418
static void malta_fpga_led_init(CharDriverState *chr)
419
{
420
    qemu_chr_printf(chr, "\e[HMalta LEDBAR\r\n");
421
    qemu_chr_printf(chr, "+--------+\r\n");
422
    qemu_chr_printf(chr, "+        +\r\n");
423
    qemu_chr_printf(chr, "+--------+\r\n");
424
    qemu_chr_printf(chr, "\n");
425
    qemu_chr_printf(chr, "Malta ASCII\r\n");
426
    qemu_chr_printf(chr, "+--------+\r\n");
427
    qemu_chr_printf(chr, "+        +\r\n");
428
    qemu_chr_printf(chr, "+--------+\r\n");
429
}
430

    
431
static MaltaFPGAState *malta_fpga_init(target_phys_addr_t base, qemu_irq uart_irq, CharDriverState *uart_chr)
432
{
433
    MaltaFPGAState *s;
434
    int malta;
435

    
436
    s = (MaltaFPGAState *)qemu_mallocz(sizeof(MaltaFPGAState));
437

    
438
    malta = cpu_register_io_memory(malta_fpga_read,
439
                                   malta_fpga_write, s);
440

    
441
    cpu_register_physical_memory(base, 0x900, malta);
442
    /* 0xa00 is less than a page, so will still get the right offsets.  */
443
    cpu_register_physical_memory(base + 0xa00, 0x100000 - 0xa00, malta);
444

    
445
    s->display = qemu_chr_open("fpga", "vc:320x200", malta_fpga_led_init);
446

    
447
#ifdef TARGET_WORDS_BIGENDIAN
448
    s->uart = serial_mm_init(base + 0x900, 3, uart_irq, 230400, uart_chr, 1, 1);
449
#else
450
    s->uart = serial_mm_init(base + 0x900, 3, uart_irq, 230400, uart_chr, 1, 0);
451
#endif
452

    
453
    malta_fpga_reset(s);
454
    qemu_register_reset(malta_fpga_reset, s);
455

    
456
    return s;
457
}
458

    
459
/* Audio support */
460
static void audio_init (PCIBus *pci_bus)
461
{
462
    struct soundhw *c;
463
    int audio_enabled = 0;
464

    
465
    for (c = soundhw; !audio_enabled && c->name; ++c) {
466
        audio_enabled = c->enabled;
467
    }
468

    
469
    if (audio_enabled) {
470
        for (c = soundhw; c->name; ++c) {
471
            if (c->enabled) {
472
                c->init.init_pci(pci_bus);
473
            }
474
        }
475
    }
476
}
477

    
478
/* Network support */
479
static void network_init(void)
480
{
481
    int i;
482

    
483
    for(i = 0; i < nb_nics; i++) {
484
        NICInfo *nd = &nd_table[i];
485
        const char *default_devaddr = NULL;
486

    
487
        if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
488
            /* The malta board has a PCNet card using PCI SLOT 11 */
489
            default_devaddr = "0b";
490

    
491
        pci_nic_init_nofail(nd, "pcnet", default_devaddr);
492
    }
493
}
494

    
495
/* ROM and pseudo bootloader
496

497
   The following code implements a very very simple bootloader. It first
498
   loads the registers a0 to a3 to the values expected by the OS, and
499
   then jump at the kernel address.
500

501
   The bootloader should pass the locations of the kernel arguments and
502
   environment variables tables. Those tables contain the 32-bit address
503
   of NULL terminated strings. The environment variables table should be
504
   terminated by a NULL address.
505

506
   For a simpler implementation, the number of kernel arguments is fixed
507
   to two (the name of the kernel and the command line), and the two
508
   tables are actually the same one.
509

510
   The registers a0 to a3 should contain the following values:
511
     a0 - number of kernel arguments
512
     a1 - 32-bit address of the kernel arguments table
513
     a2 - 32-bit address of the environment variables table
514
     a3 - RAM size in bytes
515
*/
516

    
517
static void write_bootloader (CPUState *env, uint8_t *base,
518
                              int64_t kernel_entry)
519
{
520
    uint32_t *p;
521

    
522
    /* Small bootloader */
523
    p = (uint32_t *)base;
524
    stl_raw(p++, 0x0bf00160);                                      /* j 0x1fc00580 */
525
    stl_raw(p++, 0x00000000);                                      /* nop */
526

    
527
    /* YAMON service vector */
528
    stl_raw(base + 0x500, 0xbfc00580);      /* start: */
529
    stl_raw(base + 0x504, 0xbfc0083c);      /* print_count: */
530
    stl_raw(base + 0x520, 0xbfc00580);      /* start: */
531
    stl_raw(base + 0x52c, 0xbfc00800);      /* flush_cache: */
532
    stl_raw(base + 0x534, 0xbfc00808);      /* print: */
533
    stl_raw(base + 0x538, 0xbfc00800);      /* reg_cpu_isr: */
534
    stl_raw(base + 0x53c, 0xbfc00800);      /* unred_cpu_isr: */
535
    stl_raw(base + 0x540, 0xbfc00800);      /* reg_ic_isr: */
536
    stl_raw(base + 0x544, 0xbfc00800);      /* unred_ic_isr: */
537
    stl_raw(base + 0x548, 0xbfc00800);      /* reg_esr: */
538
    stl_raw(base + 0x54c, 0xbfc00800);      /* unreg_esr: */
539
    stl_raw(base + 0x550, 0xbfc00800);      /* getchar: */
540
    stl_raw(base + 0x554, 0xbfc00800);      /* syscon_read: */
541

    
542

    
543
    /* Second part of the bootloader */
544
    p = (uint32_t *) (base + 0x580);
545
    stl_raw(p++, 0x24040002);                                      /* addiu a0, zero, 2 */
546
    stl_raw(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
547
    stl_raw(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff));        /* ori sp, sp, low(ENVP_ADDR) */
548
    stl_raw(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff));       /* lui a1, high(ENVP_ADDR) */
549
    stl_raw(p++, 0x34a50000 | (ENVP_ADDR & 0xffff));               /* ori a1, a1, low(ENVP_ADDR) */
550
    stl_raw(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
551
    stl_raw(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff));         /* ori a2, a2, low(ENVP_ADDR + 8) */
552
    stl_raw(p++, 0x3c070000 | (loaderparams.ram_size >> 16));     /* lui a3, high(ram_size) */
553
    stl_raw(p++, 0x34e70000 | (loaderparams.ram_size & 0xffff));  /* ori a3, a3, low(ram_size) */
554

    
555
    /* Load BAR registers as done by YAMON */
556
    stl_raw(p++, 0x3c09b400);                                      /* lui t1, 0xb400 */
557

    
558
#ifdef TARGET_WORDS_BIGENDIAN
559
    stl_raw(p++, 0x3c08df00);                                      /* lui t0, 0xdf00 */
560
#else
561
    stl_raw(p++, 0x340800df);                                      /* ori t0, r0, 0x00df */
562
#endif
563
    stl_raw(p++, 0xad280068);                                      /* sw t0, 0x0068(t1) */
564

    
565
    stl_raw(p++, 0x3c09bbe0);                                      /* lui t1, 0xbbe0 */
566

    
567
#ifdef TARGET_WORDS_BIGENDIAN
568
    stl_raw(p++, 0x3c08c000);                                      /* lui t0, 0xc000 */
569
#else
570
    stl_raw(p++, 0x340800c0);                                      /* ori t0, r0, 0x00c0 */
571
#endif
572
    stl_raw(p++, 0xad280048);                                      /* sw t0, 0x0048(t1) */
573
#ifdef TARGET_WORDS_BIGENDIAN
574
    stl_raw(p++, 0x3c084000);                                      /* lui t0, 0x4000 */
575
#else
576
    stl_raw(p++, 0x34080040);                                      /* ori t0, r0, 0x0040 */
577
#endif
578
    stl_raw(p++, 0xad280050);                                      /* sw t0, 0x0050(t1) */
579

    
580
#ifdef TARGET_WORDS_BIGENDIAN
581
    stl_raw(p++, 0x3c088000);                                      /* lui t0, 0x8000 */
582
#else
583
    stl_raw(p++, 0x34080080);                                      /* ori t0, r0, 0x0080 */
584
#endif
585
    stl_raw(p++, 0xad280058);                                      /* sw t0, 0x0058(t1) */
586
#ifdef TARGET_WORDS_BIGENDIAN
587
    stl_raw(p++, 0x3c083f00);                                      /* lui t0, 0x3f00 */
588
#else
589
    stl_raw(p++, 0x3408003f);                                      /* ori t0, r0, 0x003f */
590
#endif
591
    stl_raw(p++, 0xad280060);                                      /* sw t0, 0x0060(t1) */
592

    
593
#ifdef TARGET_WORDS_BIGENDIAN
594
    stl_raw(p++, 0x3c08c100);                                      /* lui t0, 0xc100 */
595
#else
596
    stl_raw(p++, 0x340800c1);                                      /* ori t0, r0, 0x00c1 */
597
#endif
598
    stl_raw(p++, 0xad280080);                                      /* sw t0, 0x0080(t1) */
599
#ifdef TARGET_WORDS_BIGENDIAN
600
    stl_raw(p++, 0x3c085e00);                                      /* lui t0, 0x5e00 */
601
#else
602
    stl_raw(p++, 0x3408005e);                                      /* ori t0, r0, 0x005e */
603
#endif
604
    stl_raw(p++, 0xad280088);                                      /* sw t0, 0x0088(t1) */
605

    
606
    /* Jump to kernel code */
607
    stl_raw(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff));    /* lui ra, high(kernel_entry) */
608
    stl_raw(p++, 0x37ff0000 | (kernel_entry & 0xffff));            /* ori ra, ra, low(kernel_entry) */
609
    stl_raw(p++, 0x03e00008);                                      /* jr ra */
610
    stl_raw(p++, 0x00000000);                                      /* nop */
611

    
612
    /* YAMON subroutines */
613
    p = (uint32_t *) (base + 0x800);
614
    stl_raw(p++, 0x03e00008);                                     /* jr ra */
615
    stl_raw(p++, 0x24020000);                                     /* li v0,0 */
616
   /* 808 YAMON print */
617
    stl_raw(p++, 0x03e06821);                                     /* move t5,ra */
618
    stl_raw(p++, 0x00805821);                                     /* move t3,a0 */
619
    stl_raw(p++, 0x00a05021);                                     /* move t2,a1 */
620
    stl_raw(p++, 0x91440000);                                     /* lbu a0,0(t2) */
621
    stl_raw(p++, 0x254a0001);                                     /* addiu t2,t2,1 */
622
    stl_raw(p++, 0x10800005);                                     /* beqz a0,834 */
623
    stl_raw(p++, 0x00000000);                                     /* nop */
624
    stl_raw(p++, 0x0ff0021c);                                     /* jal 870 */
625
    stl_raw(p++, 0x00000000);                                     /* nop */
626
    stl_raw(p++, 0x08000205);                                     /* j 814 */
627
    stl_raw(p++, 0x00000000);                                     /* nop */
628
    stl_raw(p++, 0x01a00008);                                     /* jr t5 */
629
    stl_raw(p++, 0x01602021);                                     /* move a0,t3 */
630
    /* 0x83c YAMON print_count */
631
    stl_raw(p++, 0x03e06821);                                     /* move t5,ra */
632
    stl_raw(p++, 0x00805821);                                     /* move t3,a0 */
633
    stl_raw(p++, 0x00a05021);                                     /* move t2,a1 */
634
    stl_raw(p++, 0x00c06021);                                     /* move t4,a2 */
635
    stl_raw(p++, 0x91440000);                                     /* lbu a0,0(t2) */
636
    stl_raw(p++, 0x0ff0021c);                                     /* jal 870 */
637
    stl_raw(p++, 0x00000000);                                     /* nop */
638
    stl_raw(p++, 0x254a0001);                                     /* addiu t2,t2,1 */
639
    stl_raw(p++, 0x258cffff);                                     /* addiu t4,t4,-1 */
640
    stl_raw(p++, 0x1580fffa);                                     /* bnez t4,84c */
641
    stl_raw(p++, 0x00000000);                                     /* nop */
642
    stl_raw(p++, 0x01a00008);                                     /* jr t5 */
643
    stl_raw(p++, 0x01602021);                                     /* move a0,t3 */
644
    /* 0x870 */
645
    stl_raw(p++, 0x3c08b800);                                     /* lui t0,0xb400 */
646
    stl_raw(p++, 0x350803f8);                                     /* ori t0,t0,0x3f8 */
647
    stl_raw(p++, 0x91090005);                                     /* lbu t1,5(t0) */
648
    stl_raw(p++, 0x00000000);                                     /* nop */
649
    stl_raw(p++, 0x31290040);                                     /* andi t1,t1,0x40 */
650
    stl_raw(p++, 0x1120fffc);                                     /* beqz t1,878 <outch+0x8> */
651
    stl_raw(p++, 0x00000000);                                     /* nop */
652
    stl_raw(p++, 0x03e00008);                                     /* jr ra */
653
    stl_raw(p++, 0xa1040000);                                     /* sb a0,0(t0) */
654

    
655
}
656

    
657
static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t* prom_buf, int index,
658
                                        const char *string, ...)
659
{
660
    va_list ap;
661
    int32_t table_addr;
662

    
663
    if (index >= ENVP_NB_ENTRIES)
664
        return;
665

    
666
    if (string == NULL) {
667
        prom_buf[index] = 0;
668
        return;
669
    }
670

    
671
    table_addr = sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
672
    prom_buf[index] = tswap32(ENVP_ADDR + table_addr);
673

    
674
    va_start(ap, string);
675
    vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
676
    va_end(ap);
677
}
678

    
679
/* Kernel */
680
static int64_t load_kernel (void)
681
{
682
    int64_t kernel_entry, kernel_high;
683
    long initrd_size;
684
    ram_addr_t initrd_offset;
685
    int big_endian;
686
    uint32_t *prom_buf;
687
    long prom_size;
688
    int prom_index = 0;
689

    
690
#ifdef TARGET_WORDS_BIGENDIAN
691
    big_endian = 1;
692
#else
693
    big_endian = 0;
694
#endif
695

    
696
    if (load_elf(loaderparams.kernel_filename, cpu_mips_kseg0_to_phys, NULL,
697
                 (uint64_t *)&kernel_entry, NULL, (uint64_t *)&kernel_high,
698
                 big_endian, ELF_MACHINE, 1) < 0) {
699
        fprintf(stderr, "qemu: could not load kernel '%s'\n",
700
                loaderparams.kernel_filename);
701
        exit(1);
702
    }
703

    
704
    /* load initrd */
705
    initrd_size = 0;
706
    initrd_offset = 0;
707
    if (loaderparams.initrd_filename) {
708
        initrd_size = get_image_size (loaderparams.initrd_filename);
709
        if (initrd_size > 0) {
710
            initrd_offset = (kernel_high + ~TARGET_PAGE_MASK) & TARGET_PAGE_MASK;
711
            if (initrd_offset + initrd_size > ram_size) {
712
                fprintf(stderr,
713
                        "qemu: memory too small for initial ram disk '%s'\n",
714
                        loaderparams.initrd_filename);
715
                exit(1);
716
            }
717
            initrd_size = load_image_targphys(loaderparams.initrd_filename,
718
                                              initrd_offset,
719
                                              ram_size - initrd_offset);
720
        }
721
        if (initrd_size == (target_ulong) -1) {
722
            fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
723
                    loaderparams.initrd_filename);
724
            exit(1);
725
        }
726
    }
727

    
728
    /* Setup prom parameters. */
729
    prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
730
    prom_buf = qemu_malloc(prom_size);
731

    
732
    prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
733
    if (initrd_size > 0) {
734
        prom_set(prom_buf, prom_index++, "rd_start=0x%" PRIx64 " rd_size=%li %s",
735
                 cpu_mips_phys_to_kseg0(NULL, initrd_offset), initrd_size,
736
                 loaderparams.kernel_cmdline);
737
    } else {
738
        prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
739
    }
740

    
741
    prom_set(prom_buf, prom_index++, "memsize");
742
    prom_set(prom_buf, prom_index++, "%i", loaderparams.ram_size);
743
    prom_set(prom_buf, prom_index++, "modetty0");
744
    prom_set(prom_buf, prom_index++, "38400n8r");
745
    prom_set(prom_buf, prom_index++, NULL);
746

    
747
    rom_add_blob_fixed("prom", prom_buf, prom_size,
748
                       cpu_mips_kseg0_to_phys(NULL, ENVP_ADDR));
749

    
750
    return kernel_entry;
751
}
752

    
753
static void main_cpu_reset(void *opaque)
754
{
755
    CPUState *env = opaque;
756
    cpu_reset(env);
757

    
758
    /* The bootloader does not need to be rewritten as it is located in a
759
       read only location. The kernel location and the arguments table
760
       location does not change. */
761
    if (loaderparams.kernel_filename) {
762
        env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
763
    }
764
}
765

    
766
static void cpu_request_exit(void *opaque, int irq, int level)
767
{
768
    CPUState *env = cpu_single_env;
769

    
770
    if (env && level) {
771
        cpu_exit(env);
772
    }
773
}
774

    
775
static
776
void mips_malta_init (ram_addr_t ram_size,
777
                      const char *boot_device,
778
                      const char *kernel_filename, const char *kernel_cmdline,
779
                      const char *initrd_filename, const char *cpu_model)
780
{
781
    char *filename;
782
    ram_addr_t ram_offset;
783
    ram_addr_t bios_offset;
784
    target_long bios_size;
785
    int64_t kernel_entry;
786
    PCIBus *pci_bus;
787
    CPUState *env;
788
    qemu_irq *i8259;
789
    qemu_irq *cpu_exit_irq;
790
    int piix4_devfn;
791
    uint8_t *eeprom_buf;
792
    i2c_bus *smbus;
793
    int i;
794
    DriveInfo *dinfo;
795
    DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
796
    DriveInfo *fd[MAX_FD];
797
    int fl_idx = 0;
798
    int fl_sectors = 0;
799
    int be;
800

    
801
    /* Make sure the first 3 serial ports are associated with a device. */
802
    for(i = 0; i < 3; i++) {
803
        if (!serial_hds[i]) {
804
            char label[32];
805
            snprintf(label, sizeof(label), "serial%d", i);
806
            serial_hds[i] = qemu_chr_open(label, "null", NULL);
807
        }
808
    }
809

    
810
    /* init CPUs */
811
    if (cpu_model == NULL) {
812
#ifdef TARGET_MIPS64
813
        cpu_model = "20Kc";
814
#else
815
        cpu_model = "24Kf";
816
#endif
817
    }
818
    env = cpu_init(cpu_model);
819
    if (!env) {
820
        fprintf(stderr, "Unable to find CPU definition\n");
821
        exit(1);
822
    }
823
    qemu_register_reset(main_cpu_reset, env);
824

    
825
    /* allocate RAM */
826
    if (ram_size > (256 << 20)) {
827
        fprintf(stderr,
828
                "qemu: Too much memory for this machine: %d MB, maximum 256 MB\n",
829
                ((unsigned int)ram_size / (1 << 20)));
830
        exit(1);
831
    }
832
    ram_offset = qemu_ram_alloc(NULL, "mips_malta.ram", ram_size);
833
    bios_offset = qemu_ram_alloc(NULL, "mips_malta.bios", BIOS_SIZE);
834

    
835

    
836
    cpu_register_physical_memory(0, ram_size, ram_offset | IO_MEM_RAM);
837

    
838
    /* Map the bios at two physical locations, as on the real board. */
839
    cpu_register_physical_memory(0x1e000000LL,
840
                                 BIOS_SIZE, bios_offset | IO_MEM_ROM);
841
    cpu_register_physical_memory(0x1fc00000LL,
842
                                 BIOS_SIZE, bios_offset | IO_MEM_ROM);
843

    
844
#ifdef TARGET_WORDS_BIGENDIAN
845
    be = 1;
846
#else
847
    be = 0;
848
#endif
849
    /* FPGA */
850
    malta_fpga_init(0x1f000000LL, env->irq[2], serial_hds[2]);
851

    
852
    /* Load firmware in flash / BIOS unless we boot directly into a kernel. */
853
    if (kernel_filename) {
854
        /* Write a small bootloader to the flash location. */
855
        loaderparams.ram_size = ram_size;
856
        loaderparams.kernel_filename = kernel_filename;
857
        loaderparams.kernel_cmdline = kernel_cmdline;
858
        loaderparams.initrd_filename = initrd_filename;
859
        kernel_entry = load_kernel();
860
        write_bootloader(env, qemu_get_ram_ptr(bios_offset), kernel_entry);
861
    } else {
862
        dinfo = drive_get(IF_PFLASH, 0, fl_idx);
863
        if (dinfo) {
864
            /* Load firmware from flash. */
865
            bios_size = 0x400000;
866
            fl_sectors = bios_size >> 16;
867
#ifdef DEBUG_BOARD_INIT
868
            printf("Register parallel flash %d size " TARGET_FMT_lx " at "
869
                   "offset %08lx addr %08llx '%s' %x\n",
870
                   fl_idx, bios_size, bios_offset, 0x1e000000LL,
871
                   bdrv_get_device_name(dinfo->bdrv), fl_sectors);
872
#endif
873
            pflash_cfi01_register(0x1e000000LL, bios_offset,
874
                                  dinfo->bdrv, 65536, fl_sectors,
875
                                  4, 0x0000, 0x0000, 0x0000, 0x0000, be);
876
            fl_idx++;
877
        } else {
878
            /* Load a BIOS image. */
879
            if (bios_name == NULL)
880
                bios_name = BIOS_FILENAME;
881
            filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
882
            if (filename) {
883
                bios_size = load_image_targphys(filename, 0x1fc00000LL,
884
                                                BIOS_SIZE);
885
                qemu_free(filename);
886
            } else {
887
                bios_size = -1;
888
            }
889
            if ((bios_size < 0 || bios_size > BIOS_SIZE) && !kernel_filename) {
890
                fprintf(stderr,
891
                        "qemu: Could not load MIPS bios '%s', and no -kernel argument was specified\n",
892
                        bios_name);
893
                exit(1);
894
            }
895
        }
896
        /* In little endian mode the 32bit words in the bios are swapped,
897
           a neat trick which allows bi-endian firmware. */
898
#ifndef TARGET_WORDS_BIGENDIAN
899
        {
900
            uint32_t *addr = qemu_get_ram_ptr(bios_offset);;
901
            uint32_t *end = addr + bios_size;
902
            while (addr < end) {
903
                bswap32s(addr);
904
            }
905
        }
906
#endif
907
    }
908

    
909
    /* Board ID = 0x420 (Malta Board with CoreLV)
910
       XXX: theoretically 0x1e000010 should map to flash and 0x1fc00010 should
911
       map to the board ID. */
912
    stl_phys(0x1fc00010LL, 0x00000420);
913

    
914
    /* Init internal devices */
915
    cpu_mips_irq_init_cpu(env);
916
    cpu_mips_clock_init(env);
917

    
918
    /* Interrupt controller */
919
    /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
920
    i8259 = i8259_init(env->irq[2]);
921

    
922
    /* Northbridge */
923
    pci_bus = pci_gt64120_init(i8259);
924

    
925
    /* Southbridge */
926

    
927
    if (drive_get_max_bus(IF_IDE) >= MAX_IDE_BUS) {
928
        fprintf(stderr, "qemu: too many IDE bus\n");
929
        exit(1);
930
    }
931

    
932
    for(i = 0; i < MAX_IDE_BUS * MAX_IDE_DEVS; i++) {
933
        hd[i] = drive_get(IF_IDE, i / MAX_IDE_DEVS, i % MAX_IDE_DEVS);
934
    }
935

    
936
    piix4_devfn = piix4_init(pci_bus, 80);
937
    isa_bus_irqs(i8259);
938
    pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1);
939
    usb_uhci_piix4_init(pci_bus, piix4_devfn + 2);
940
    smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100, isa_reserve_irq(9),
941
                          NULL, NULL, 0);
942
    eeprom_buf = qemu_mallocz(8 * 256); /* XXX: make this persistent */
943
    for (i = 0; i < 8; i++) {
944
        /* TODO: Populate SPD eeprom data.  */
945
        DeviceState *eeprom;
946
        eeprom = qdev_create((BusState *)smbus, "smbus-eeprom");
947
        qdev_prop_set_uint8(eeprom, "address", 0x50 + i);
948
        qdev_prop_set_ptr(eeprom, "data", eeprom_buf + (i * 256));
949
        qdev_init_nofail(eeprom);
950
    }
951
    pit = pit_init(0x40, isa_reserve_irq(0));
952
    cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
953
    DMA_init(0, cpu_exit_irq);
954

    
955
    /* Super I/O */
956
    isa_create_simple("i8042");
957

    
958
    rtc_init(2000, NULL);
959
    serial_isa_init(0, serial_hds[0]);
960
    serial_isa_init(1, serial_hds[1]);
961
    if (parallel_hds[0])
962
        parallel_init(0, parallel_hds[0]);
963
    for(i = 0; i < MAX_FD; i++) {
964
        fd[i] = drive_get(IF_FLOPPY, 0, i);
965
    }
966
    fdctrl_init_isa(fd);
967

    
968
    /* Sound card */
969
    audio_init(pci_bus);
970

    
971
    /* Network card */
972
    network_init();
973

    
974
    /* Optional PCI video card */
975
    if (cirrus_vga_enabled) {
976
        pci_cirrus_vga_init(pci_bus);
977
    } else if (vmsvga_enabled) {
978
        pci_vmsvga_init(pci_bus);
979
    } else if (std_vga_enabled) {
980
        pci_vga_init(pci_bus);
981
    }
982
}
983

    
984
static QEMUMachine mips_malta_machine = {
985
    .name = "malta",
986
    .desc = "MIPS Malta Core LV",
987
    .init = mips_malta_init,
988
    .is_default = 1,
989
};
990

    
991
static void mips_malta_machine_init(void)
992
{
993
    qemu_register_machine(&mips_malta_machine);
994
}
995

    
996
machine_init(mips_malta_machine_init);