Statistics
| Branch: | Revision:

root / vl.c @ 7916e224

History | View | Annotate | Download (76.4 kB)

1
/*
2
 * QEMU PC System Emulator
3
 * 
4
 * Copyright (c) 2003 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include <stdlib.h>
25
#include <stdio.h>
26
#include <stdarg.h>
27
#include <string.h>
28
#include <getopt.h>
29
#include <inttypes.h>
30
#include <unistd.h>
31
#include <sys/mman.h>
32
#include <fcntl.h>
33
#include <signal.h>
34
#include <time.h>
35
#include <sys/time.h>
36
#include <malloc.h>
37
#include <termios.h>
38
#include <sys/poll.h>
39
#include <errno.h>
40
#include <sys/wait.h>
41

    
42
#include <sys/ioctl.h>
43
#include <sys/socket.h>
44
#include <linux/if.h>
45
#include <linux/if_tun.h>
46

    
47
#include "cpu-i386.h"
48
#include "disas.h"
49
#include "thunk.h"
50

    
51
#include "vl.h"
52

    
53
#define DEBUG_LOGFILE "/tmp/vl.log"
54
#define DEFAULT_NETWORK_SCRIPT "/etc/vl-ifup"
55

    
56
//#define DEBUG_UNUSED_IOPORT
57
//#define DEBUG_IRQ_LATENCY
58

    
59
#define PHYS_RAM_BASE     0xac000000
60
#define PHYS_RAM_MAX_SIZE (256 * 1024 * 1024)
61

    
62
#define KERNEL_LOAD_ADDR   0x00100000
63
#define INITRD_LOAD_ADDR   0x00400000
64
#define KERNEL_PARAMS_ADDR 0x00090000
65

    
66
/* from plex86 (BSD license) */
67
struct  __attribute__ ((packed)) linux_params {
68
  // For 0x00..0x3f, see 'struct screen_info' in linux/include/linux/tty.h.
69
  // I just padded out the VESA parts, rather than define them.
70

    
71
  /* 0x000 */ uint8_t   orig_x;
72
  /* 0x001 */ uint8_t   orig_y;
73
  /* 0x002 */ uint16_t  ext_mem_k;
74
  /* 0x004 */ uint16_t  orig_video_page;
75
  /* 0x006 */ uint8_t   orig_video_mode;
76
  /* 0x007 */ uint8_t   orig_video_cols;
77
  /* 0x008 */ uint16_t  unused1;
78
  /* 0x00a */ uint16_t  orig_video_ega_bx;
79
  /* 0x00c */ uint16_t  unused2;
80
  /* 0x00e */ uint8_t   orig_video_lines;
81
  /* 0x00f */ uint8_t   orig_video_isVGA;
82
  /* 0x010 */ uint16_t  orig_video_points;
83
  /* 0x012 */ uint8_t   pad0[0x20 - 0x12]; // VESA info.
84
  /* 0x020 */ uint16_t  cl_magic;  // Commandline magic number (0xA33F)
85
  /* 0x022 */ uint16_t  cl_offset; // Commandline offset.  Address of commandline
86
                                 // is calculated as 0x90000 + cl_offset, bu
87
                                 // only if cl_magic == 0xA33F.
88
  /* 0x024 */ uint8_t   pad1[0x40 - 0x24]; // VESA info.
89

    
90
  /* 0x040 */ uint8_t   apm_bios_info[20]; // struct apm_bios_info
91
  /* 0x054 */ uint8_t   pad2[0x80 - 0x54];
92

    
93
  // Following 2 from 'struct drive_info_struct' in drivers/block/cciss.h.
94
  // Might be truncated?
95
  /* 0x080 */ uint8_t   hd0_info[16]; // hd0-disk-parameter from intvector 0x41
96
  /* 0x090 */ uint8_t   hd1_info[16]; // hd1-disk-parameter from intvector 0x46
97

    
98
  // System description table truncated to 16 bytes
99
  // From 'struct sys_desc_table_struct' in linux/arch/i386/kernel/setup.c.
100
  /* 0x0a0 */ uint16_t  sys_description_len;
101
  /* 0x0a2 */ uint8_t   sys_description_table[14];
102
                        // [0] machine id
103
                        // [1] machine submodel id
104
                        // [2] BIOS revision
105
                        // [3] bit1: MCA bus
106

    
107
  /* 0x0b0 */ uint8_t   pad3[0x1e0 - 0xb0];
108
  /* 0x1e0 */ uint32_t  alt_mem_k;
109
  /* 0x1e4 */ uint8_t   pad4[4];
110
  /* 0x1e8 */ uint8_t   e820map_entries;
111
  /* 0x1e9 */ uint8_t   eddbuf_entries; // EDD_NR
112
  /* 0x1ea */ uint8_t   pad5[0x1f1 - 0x1ea];
113
  /* 0x1f1 */ uint8_t   setup_sects; // size of setup.S, number of sectors
114
  /* 0x1f2 */ uint16_t  mount_root_rdonly; // MOUNT_ROOT_RDONLY (if !=0)
115
  /* 0x1f4 */ uint16_t  sys_size; // size of compressed kernel-part in the
116
                                // (b)zImage-file (in 16 byte units, rounded up)
117
  /* 0x1f6 */ uint16_t  swap_dev; // (unused AFAIK)
118
  /* 0x1f8 */ uint16_t  ramdisk_flags;
119
  /* 0x1fa */ uint16_t  vga_mode; // (old one)
120
  /* 0x1fc */ uint16_t  orig_root_dev; // (high=Major, low=minor)
121
  /* 0x1fe */ uint8_t   pad6[1];
122
  /* 0x1ff */ uint8_t   aux_device_info;
123
  /* 0x200 */ uint16_t  jump_setup; // Jump to start of setup code,
124
                                  // aka "reserved" field.
125
  /* 0x202 */ uint8_t   setup_signature[4]; // Signature for SETUP-header, ="HdrS"
126
  /* 0x206 */ uint16_t  header_format_version; // Version number of header format;
127
  /* 0x208 */ uint8_t   setup_S_temp0[8]; // Used by setup.S for communication with
128
                                        // boot loaders, look there.
129
  /* 0x210 */ uint8_t   loader_type;
130
                        // 0 for old one.
131
                        // else 0xTV:
132
                        //   T=0: LILO
133
                        //   T=1: Loadlin
134
                        //   T=2: bootsect-loader
135
                        //   T=3: SYSLINUX
136
                        //   T=4: ETHERBOOT
137
                        //   V=version
138
  /* 0x211 */ uint8_t   loadflags;
139
                        // bit0 = 1: kernel is loaded high (bzImage)
140
                        // bit7 = 1: Heap and pointer (see below) set by boot
141
                        //   loader.
142
  /* 0x212 */ uint16_t  setup_S_temp1;
143
  /* 0x214 */ uint32_t  kernel_start;
144
  /* 0x218 */ uint32_t  initrd_start;
145
  /* 0x21c */ uint32_t  initrd_size;
146
  /* 0x220 */ uint8_t   setup_S_temp2[4];
147
  /* 0x224 */ uint16_t  setup_S_heap_end_pointer;
148
  /* 0x226 */ uint8_t   pad7[0x2d0 - 0x226];
149

    
150
  /* 0x2d0 : Int 15, ax=e820 memory map. */
151
  // (linux/include/asm-i386/e820.h, 'struct e820entry')
152
#define E820MAX  32
153
#define E820_RAM  1
154
#define E820_RESERVED 2
155
#define E820_ACPI 3 /* usable as RAM once ACPI tables have been read */
156
#define E820_NVS  4
157
  struct {
158
    uint64_t addr;
159
    uint64_t size;
160
    uint32_t type;
161
    } e820map[E820MAX];
162

    
163
  /* 0x550 */ uint8_t   pad8[0x600 - 0x550];
164

    
165
  // BIOS Enhanced Disk Drive Services.
166
  // (From linux/include/asm-i386/edd.h, 'struct edd_info')
167
  // Each 'struct edd_info is 78 bytes, times a max of 6 structs in array.
168
  /* 0x600 */ uint8_t   eddbuf[0x7d4 - 0x600];
169

    
170
  /* 0x7d4 */ uint8_t   pad9[0x800 - 0x7d4];
171
  /* 0x800 */ uint8_t   commandline[0x800];
172

    
173
  /* 0x1000 */
174
  uint64_t gdt_table[256];
175
  uint64_t idt_table[48];
176
};
177

    
178
#define KERNEL_CS     0x10
179
#define KERNEL_DS     0x18
180

    
181
typedef void (IOPortWriteFunc)(CPUX86State *env, uint32_t address, uint32_t data);
182
typedef uint32_t (IOPortReadFunc)(CPUX86State *env, uint32_t address);
183

    
184
#define MAX_IOPORTS 4096
185

    
186
char phys_ram_file[1024];
187
CPUX86State *global_env;
188
CPUX86State *cpu_single_env;
189
FILE *logfile = NULL;
190
int loglevel;
191
IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
192
IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
193

    
194
/***********************************************************/
195
/* x86 io ports */
196

    
197
uint32_t default_ioport_readb(CPUX86State *env, uint32_t address)
198
{
199
#ifdef DEBUG_UNUSED_IOPORT
200
    fprintf(stderr, "inb: port=0x%04x\n", address);
201
#endif
202
    return 0xff;
203
}
204

    
205
void default_ioport_writeb(CPUX86State *env, uint32_t address, uint32_t data)
206
{
207
#ifdef DEBUG_UNUSED_IOPORT
208
    fprintf(stderr, "outb: port=0x%04x data=0x%02x\n", address, data);
209
#endif
210
}
211

    
212
/* default is to make two byte accesses */
213
uint32_t default_ioport_readw(CPUX86State *env, uint32_t address)
214
{
215
    uint32_t data;
216
    data = ioport_read_table[0][address](env, address);
217
    data |= ioport_read_table[0][address + 1](env, address + 1) << 8;
218
    return data;
219
}
220

    
221
void default_ioport_writew(CPUX86State *env, uint32_t address, uint32_t data)
222
{
223
    ioport_write_table[0][address](env, address, data & 0xff);
224
    ioport_write_table[0][address + 1](env, address + 1, (data >> 8) & 0xff);
225
}
226

    
227
uint32_t default_ioport_readl(CPUX86State *env, uint32_t address)
228
{
229
#ifdef DEBUG_UNUSED_IOPORT
230
    fprintf(stderr, "inl: port=0x%04x\n", address);
231
#endif
232
    return 0xffffffff;
233
}
234

    
235
void default_ioport_writel(CPUX86State *env, uint32_t address, uint32_t data)
236
{
237
#ifdef DEBUG_UNUSED_IOPORT
238
    fprintf(stderr, "outl: port=0x%04x data=0x%02x\n", address, data);
239
#endif
240
}
241

    
242
void init_ioports(void)
243
{
244
    int i;
245

    
246
    for(i = 0; i < MAX_IOPORTS; i++) {
247
        ioport_read_table[0][i] = default_ioport_readb;
248
        ioport_write_table[0][i] = default_ioport_writeb;
249
        ioport_read_table[1][i] = default_ioport_readw;
250
        ioport_write_table[1][i] = default_ioport_writew;
251
        ioport_read_table[2][i] = default_ioport_readl;
252
        ioport_write_table[2][i] = default_ioport_writel;
253
    }
254
}
255

    
256
/* size is the word size in byte */
257
int register_ioport_read(int start, int length, IOPortReadFunc *func, int size)
258
{
259
    int i, bsize;
260

    
261
    if (size == 1)
262
        bsize = 0;
263
    else if (size == 2)
264
        bsize = 1;
265
    else if (size == 4)
266
        bsize = 2;
267
    else
268
        return -1;
269
    for(i = start; i < start + length; i += size)
270
        ioport_read_table[bsize][i] = func;
271
    return 0;
272
}
273

    
274
/* size is the word size in byte */
275
int register_ioport_write(int start, int length, IOPortWriteFunc *func, int size)
276
{
277
    int i, bsize;
278

    
279
    if (size == 1)
280
        bsize = 0;
281
    else if (size == 2)
282
        bsize = 1;
283
    else if (size == 4)
284
        bsize = 2;
285
    else
286
        return -1;
287
    for(i = start; i < start + length; i += size)
288
        ioport_write_table[bsize][i] = func;
289
    return 0;
290
}
291

    
292
void pstrcpy(char *buf, int buf_size, const char *str)
293
{
294
    int c;
295
    char *q = buf;
296

    
297
    if (buf_size <= 0)
298
        return;
299

    
300
    for(;;) {
301
        c = *str++;
302
        if (c == 0 || q >= buf + buf_size - 1)
303
            break;
304
        *q++ = c;
305
    }
306
    *q = '\0';
307
}
308

    
309
/* strcat and truncate. */
310
char *pstrcat(char *buf, int buf_size, const char *s)
311
{
312
    int len;
313
    len = strlen(buf);
314
    if (len < buf_size) 
315
        pstrcpy(buf + len, buf_size - len, s);
316
    return buf;
317
}
318

    
319
int load_kernel(const char *filename, uint8_t *addr)
320
{
321
    int fd, size, setup_sects;
322
    uint8_t bootsect[512];
323

    
324
    fd = open(filename, O_RDONLY);
325
    if (fd < 0)
326
        return -1;
327
    if (read(fd, bootsect, 512) != 512)
328
        goto fail;
329
    setup_sects = bootsect[0x1F1];
330
    if (!setup_sects)
331
        setup_sects = 4;
332
    /* skip 16 bit setup code */
333
    lseek(fd, (setup_sects + 1) * 512, SEEK_SET);
334
    size = read(fd, addr, 16 * 1024 * 1024);
335
    if (size < 0)
336
        goto fail;
337
    close(fd);
338
    return size;
339
 fail:
340
    close(fd);
341
    return -1;
342
}
343

    
344
/* return the size or -1 if error */
345
int load_image(const char *filename, uint8_t *addr)
346
{
347
    int fd, size;
348
    fd = open(filename, O_RDONLY);
349
    if (fd < 0)
350
        return -1;
351
    size = lseek(fd, 0, SEEK_END);
352
    lseek(fd, 0, SEEK_SET);
353
    if (read(fd, addr, size) != size) {
354
        close(fd);
355
        return -1;
356
    }
357
    close(fd);
358
    return size;
359
}
360

    
361
void cpu_x86_outb(CPUX86State *env, int addr, int val)
362
{
363
    ioport_write_table[0][addr & (MAX_IOPORTS - 1)](env, addr, val);
364
}
365

    
366
void cpu_x86_outw(CPUX86State *env, int addr, int val)
367
{
368
    ioport_write_table[1][addr & (MAX_IOPORTS - 1)](env, addr, val);
369
}
370

    
371
void cpu_x86_outl(CPUX86State *env, int addr, int val)
372
{
373
    ioport_write_table[2][addr & (MAX_IOPORTS - 1)](env, addr, val);
374
}
375

    
376
int cpu_x86_inb(CPUX86State *env, int addr)
377
{
378
    return ioport_read_table[0][addr & (MAX_IOPORTS - 1)](env, addr);
379
}
380

    
381
int cpu_x86_inw(CPUX86State *env, int addr)
382
{
383
    return ioport_read_table[1][addr & (MAX_IOPORTS - 1)](env, addr);
384
}
385

    
386
int cpu_x86_inl(CPUX86State *env, int addr)
387
{
388
    return ioport_read_table[2][addr & (MAX_IOPORTS - 1)](env, addr);
389
}
390

    
391
/***********************************************************/
392
void ioport80_write(CPUX86State *env, uint32_t addr, uint32_t data)
393
{
394
}
395

    
396
void hw_error(const char *fmt, ...)
397
{
398
    va_list ap;
399

    
400
    va_start(ap, fmt);
401
    fprintf(stderr, "qemu: hardware error: ");
402
    vfprintf(stderr, fmt, ap);
403
    fprintf(stderr, "\n");
404
#ifdef TARGET_I386
405
    cpu_x86_dump_state(global_env, stderr, X86_DUMP_FPU | X86_DUMP_CCOP);
406
#endif
407
    va_end(ap);
408
    abort();
409
}
410

    
411
/***********************************************************/
412
/* vga emulation */
413
static uint8_t vga_index;
414
static uint8_t vga_regs[256];
415
static int last_cursor_pos;
416

    
417
void update_console_messages(void)
418
{
419
    int c, i, cursor_pos, eol;
420

    
421
    cursor_pos = vga_regs[0x0f] | (vga_regs[0x0e] << 8);
422
    eol = 0;
423
    for(i = last_cursor_pos; i < cursor_pos; i++) {
424
        c = phys_ram_base[0xb8000 + (i) * 2];
425
        if (c >= ' ') {
426
            putchar(c);
427
            eol = 0;
428
        } else {
429
            if (!eol)
430
                putchar('\n');
431
            eol = 1;
432
        }
433
    }
434
    fflush(stdout);
435
    last_cursor_pos = cursor_pos;
436
}
437

    
438
/* just to see first Linux console messages, we intercept cursor position */
439
void vga_ioport_write(CPUX86State *env, uint32_t addr, uint32_t data)
440
{
441
    switch(addr) {
442
    case 0x3d4:
443
        vga_index = data;
444
        break;
445
    case 0x3d5:
446
        vga_regs[vga_index] = data;
447
        if (vga_index == 0x0f)
448
            update_console_messages();
449
        break;
450
    }
451
            
452
}
453

    
454
/***********************************************************/
455
/* cmos emulation */
456

    
457
#define RTC_SECONDS             0
458
#define RTC_SECONDS_ALARM       1
459
#define RTC_MINUTES             2
460
#define RTC_MINUTES_ALARM       3
461
#define RTC_HOURS               4
462
#define RTC_HOURS_ALARM         5
463
#define RTC_ALARM_DONT_CARE    0xC0
464

    
465
#define RTC_DAY_OF_WEEK         6
466
#define RTC_DAY_OF_MONTH        7
467
#define RTC_MONTH               8
468
#define RTC_YEAR                9
469

    
470
#define RTC_REG_A               10
471
#define RTC_REG_B               11
472
#define RTC_REG_C               12
473
#define RTC_REG_D               13
474

    
475
/* PC cmos mappings */
476
#define REG_EQUIPMENT_BYTE          0x14
477

    
478
uint8_t cmos_data[128];
479
uint8_t cmos_index;
480

    
481
void cmos_ioport_write(CPUX86State *env, uint32_t addr, uint32_t data)
482
{
483
    if (addr == 0x70) {
484
        cmos_index = data & 0x7f;
485
    }
486
}
487

    
488
uint32_t cmos_ioport_read(CPUX86State *env, uint32_t addr)
489
{
490
    int ret;
491

    
492
    if (addr == 0x70) {
493
        return 0xff;
494
    } else {
495
        /* toggle update-in-progress bit for Linux (same hack as
496
           plex86) */
497
        ret = cmos_data[cmos_index];
498
        if (cmos_index == RTC_REG_A)
499
            cmos_data[RTC_REG_A] ^= 0x80; 
500
        else if (cmos_index == RTC_REG_C)
501
            cmos_data[RTC_REG_C] = 0x00; 
502
        return ret;
503
    }
504
}
505

    
506

    
507
static inline int to_bcd(int a)
508
{
509
    return ((a / 10) << 4) | (a % 10);
510
}
511

    
512
void cmos_init(void)
513
{
514
    struct tm *tm;
515
    time_t ti;
516

    
517
    ti = time(NULL);
518
    tm = gmtime(&ti);
519
    cmos_data[RTC_SECONDS] = to_bcd(tm->tm_sec);
520
    cmos_data[RTC_MINUTES] = to_bcd(tm->tm_min);
521
    cmos_data[RTC_HOURS] = to_bcd(tm->tm_hour);
522
    cmos_data[RTC_DAY_OF_WEEK] = to_bcd(tm->tm_wday);
523
    cmos_data[RTC_DAY_OF_MONTH] = to_bcd(tm->tm_mday);
524
    cmos_data[RTC_MONTH] = to_bcd(tm->tm_mon + 1);
525
    cmos_data[RTC_YEAR] = to_bcd(tm->tm_year % 100);
526

    
527
    cmos_data[RTC_REG_A] = 0x26;
528
    cmos_data[RTC_REG_B] = 0x02;
529
    cmos_data[RTC_REG_C] = 0x00;
530
    cmos_data[RTC_REG_D] = 0x80;
531

    
532
    cmos_data[REG_EQUIPMENT_BYTE] = 0x02; /* FPU is there */
533

    
534
    register_ioport_write(0x70, 2, cmos_ioport_write, 1);
535
    register_ioport_read(0x70, 2, cmos_ioport_read, 1);
536
}
537

    
538
/***********************************************************/
539
/* 8259 pic emulation */
540

    
541
//#define DEBUG_PIC
542

    
543
typedef struct PicState {
544
    uint8_t last_irr; /* edge detection */
545
    uint8_t irr; /* interrupt request register */
546
    uint8_t imr; /* interrupt mask register */
547
    uint8_t isr; /* interrupt service register */
548
    uint8_t priority_add; /* used to compute irq priority */
549
    uint8_t irq_base;
550
    uint8_t read_reg_select;
551
    uint8_t special_mask;
552
    uint8_t init_state;
553
    uint8_t auto_eoi;
554
    uint8_t rotate_on_autoeoi;
555
    uint8_t init4; /* true if 4 byte init */
556
} PicState;
557

    
558
/* 0 is master pic, 1 is slave pic */
559
PicState pics[2];
560
int pic_irq_requested;
561

    
562
/* set irq level. If an edge is detected, then the IRR is set to 1 */
563
static inline void pic_set_irq1(PicState *s, int irq, int level)
564
{
565
    int mask;
566
    mask = 1 << irq;
567
    if (level) {
568
        if ((s->last_irr & mask) == 0)
569
            s->irr |= mask;
570
        s->last_irr |= mask;
571
    } else {
572
        s->last_irr &= ~mask;
573
    }
574
}
575

    
576
static inline int get_priority(PicState *s, int mask)
577
{
578
    int priority;
579
    if (mask == 0)
580
        return -1;
581
    priority = 7;
582
    while ((mask & (1 << ((priority + s->priority_add) & 7))) == 0)
583
        priority--;
584
    return priority;
585
}
586

    
587
/* return the pic wanted interrupt. return -1 if none */
588
static int pic_get_irq(PicState *s)
589
{
590
    int mask, cur_priority, priority;
591

    
592
    mask = s->irr & ~s->imr;
593
    priority = get_priority(s, mask);
594
    if (priority < 0)
595
        return -1;
596
    /* compute current priority */
597
    cur_priority = get_priority(s, s->isr);
598
    if (priority > cur_priority) {
599
        /* higher priority found: an irq should be generated */
600
        return priority;
601
    } else {
602
        return -1;
603
    }
604
}
605

    
606
/* raise irq to CPU if necessary. must be called every time the active
607
   irq may change */
608
static void pic_update_irq(void)
609
{
610
    int irq2, irq;
611

    
612
    /* first look at slave pic */
613
    irq2 = pic_get_irq(&pics[1]);
614
    if (irq2 >= 0) {
615
        /* if irq request by slave pic, signal master PIC */
616
        pic_set_irq1(&pics[0], 2, 1);
617
        pic_set_irq1(&pics[0], 2, 0);
618
    }
619
    /* look at requested irq */
620
    irq = pic_get_irq(&pics[0]);
621
    if (irq >= 0) {
622
        if (irq == 2) {
623
            /* from slave pic */
624
            pic_irq_requested = 8 + irq2;
625
        } else {
626
            /* from master pic */
627
            pic_irq_requested = irq;
628
        }
629
        cpu_x86_interrupt(global_env, CPU_INTERRUPT_HARD);
630
    }
631
}
632

    
633
#ifdef DEBUG_IRQ_LATENCY
634
int64_t irq_time[16];
635
int64_t cpu_get_ticks(void);
636
#endif
637
#ifdef DEBUG_PIC
638
int irq_level[16];
639
#endif
640

    
641
void pic_set_irq(int irq, int level)
642
{
643
#ifdef DEBUG_PIC
644
    if (level != irq_level[irq]) {
645
        printf("pic_set_irq: irq=%d level=%d\n", irq, level);
646
        irq_level[irq] = level;
647
    }
648
#endif
649
#ifdef DEBUG_IRQ_LATENCY
650
    if (level) {
651
        irq_time[irq] = cpu_get_ticks();
652
    }
653
#endif
654
    pic_set_irq1(&pics[irq >> 3], irq & 7, level);
655
    pic_update_irq();
656
}
657

    
658
int cpu_x86_get_pic_interrupt(CPUX86State *env)
659
{
660
    int irq, irq2, intno;
661

    
662
    /* signal the pic that the irq was acked by the CPU */
663
    irq = pic_irq_requested;
664
#ifdef DEBUG_IRQ_LATENCY
665
    printf("IRQ%d latency=%Ld\n", irq, cpu_get_ticks() - irq_time[irq]);
666
#endif
667
#ifdef DEBUG_PIC
668
    printf("pic_interrupt: irq=%d\n", irq);
669
#endif
670

    
671
    if (irq >= 8) {
672
        irq2 = irq & 7;
673
        pics[1].isr |= (1 << irq2);
674
        pics[1].irr &= ~(1 << irq2);
675
        irq = 2;
676
        intno = pics[1].irq_base + irq2;
677
    } else {
678
        intno = pics[0].irq_base + irq;
679
    }
680
    pics[0].isr |= (1 << irq);
681
    pics[0].irr &= ~(1 << irq);
682
    return intno;
683
}
684

    
685
void pic_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
686
{
687
    PicState *s;
688
    int priority;
689

    
690
#ifdef DEBUG_PIC
691
    printf("pic_write: addr=0x%02x val=0x%02x\n", addr, val);
692
#endif
693
    s = &pics[addr >> 7];
694
    addr &= 1;
695
    if (addr == 0) {
696
        if (val & 0x10) {
697
            /* init */
698
            memset(s, 0, sizeof(PicState));
699
            s->init_state = 1;
700
            s->init4 = val & 1;
701
            if (val & 0x02)
702
                hw_error("single mode not supported");
703
            if (val & 0x08)
704
                hw_error("level sensitive irq not supported");
705
        } else if (val & 0x08) {
706
            if (val & 0x02)
707
                s->read_reg_select = val & 1;
708
            if (val & 0x40)
709
                s->special_mask = (val >> 5) & 1;
710
        } else {
711
            switch(val) {
712
            case 0x00:
713
            case 0x80:
714
                s->rotate_on_autoeoi = val >> 7;
715
                break;
716
            case 0x20: /* end of interrupt */
717
            case 0xa0:
718
                priority = get_priority(s, s->isr);
719
                if (priority >= 0) {
720
                    s->isr &= ~(1 << ((priority + s->priority_add) & 7));
721
                }
722
                if (val == 0xa0)
723
                    s->priority_add = (s->priority_add + 1) & 7;
724
                break;
725
            case 0x60 ... 0x67:
726
                priority = val & 7;
727
                s->isr &= ~(1 << priority);
728
                break;
729
            case 0xc0 ... 0xc7:
730
                s->priority_add = (val + 1) & 7;
731
                break;
732
            case 0xe0 ... 0xe7:
733
                priority = val & 7;
734
                s->isr &= ~(1 << priority);
735
                s->priority_add = (priority + 1) & 7;
736
                break;
737
            }
738
        }
739
    } else {
740
        switch(s->init_state) {
741
        case 0:
742
            /* normal mode */
743
            s->imr = val;
744
            pic_update_irq();
745
            break;
746
        case 1:
747
            s->irq_base = val & 0xf8;
748
            s->init_state = 2;
749
            break;
750
        case 2:
751
            if (s->init4) {
752
                s->init_state = 3;
753
            } else {
754
                s->init_state = 0;
755
            }
756
            break;
757
        case 3:
758
            s->auto_eoi = (val >> 1) & 1;
759
            s->init_state = 0;
760
            break;
761
        }
762
    }
763
}
764

    
765
uint32_t pic_ioport_read(CPUX86State *env, uint32_t addr1)
766
{
767
    PicState *s;
768
    unsigned int addr;
769
    int ret;
770

    
771
    addr = addr1;
772
    s = &pics[addr >> 7];
773
    addr &= 1;
774
    if (addr == 0) {
775
        if (s->read_reg_select)
776
            ret = s->isr;
777
        else
778
            ret = s->irr;
779
    } else {
780
        ret = s->imr;
781
    }
782
#ifdef DEBUG_PIC
783
    printf("pic_read: addr=0x%02x val=0x%02x\n", addr1, ret);
784
#endif
785
    return ret;
786
}
787

    
788
void pic_init(void)
789
{
790
    register_ioport_write(0x20, 2, pic_ioport_write, 1);
791
    register_ioport_read(0x20, 2, pic_ioport_read, 1);
792
    register_ioport_write(0xa0, 2, pic_ioport_write, 1);
793
    register_ioport_read(0xa0, 2, pic_ioport_read, 1);
794
}
795

    
796
/***********************************************************/
797
/* 8253 PIT emulation */
798

    
799
#define PIT_FREQ 1193182
800

    
801
#define RW_STATE_LSB 0
802
#define RW_STATE_MSB 1
803
#define RW_STATE_WORD0 2
804
#define RW_STATE_WORD1 3
805
#define RW_STATE_LATCHED_WORD0 4
806
#define RW_STATE_LATCHED_WORD1 5
807

    
808
typedef struct PITChannelState {
809
    int count; /* can be 65536 */
810
    uint16_t latched_count;
811
    uint8_t rw_state;
812
    uint8_t mode;
813
    uint8_t bcd; /* not supported */
814
    uint8_t gate; /* timer start */
815
    int64_t count_load_time;
816
    int64_t count_last_edge_check_time;
817
} PITChannelState;
818

    
819
PITChannelState pit_channels[3];
820
int speaker_data_on;
821
int pit_min_timer_count = 0;
822

    
823
int64_t ticks_per_sec;
824

    
825
int64_t get_clock(void)
826
{
827
    struct timeval tv;
828
    gettimeofday(&tv, NULL);
829
    return tv.tv_sec * 1000000LL + tv.tv_usec;
830
}
831

    
832
int64_t cpu_get_ticks(void)
833
{
834
    int64_t val;
835
    asm("rdtsc" : "=A" (val));
836
    return val;
837
}
838

    
839
void cpu_calibrate_ticks(void)
840
{
841
    int64_t usec, ticks;
842

    
843
    usec = get_clock();
844
    ticks = cpu_get_ticks();
845
    usleep(50 * 1000);
846
    usec = get_clock() - usec;
847
    ticks = cpu_get_ticks() - ticks;
848
    ticks_per_sec = (ticks * 1000000LL + (usec >> 1)) / usec;
849
}
850

    
851
/* compute with 96 bit intermediate result: (a*b)/c */
852
static uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
853
{
854
    union {
855
        uint64_t ll;
856
        struct {
857
#ifdef WORDS_BIGENDIAN
858
            uint32_t high, low;
859
#else
860
            uint32_t low, high;
861
#endif            
862
        } l;
863
    } u, res;
864
    uint64_t rl, rh;
865

    
866
    u.ll = a;
867
    rl = (uint64_t)u.l.low * (uint64_t)b;
868
    rh = (uint64_t)u.l.high * (uint64_t)b;
869
    rh += (rl >> 32);
870
    res.l.high = rh / c;
871
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
872
    return res.ll;
873
}
874

    
875
static int pit_get_count(PITChannelState *s)
876
{
877
    uint64_t d;
878
    int counter;
879

    
880
    d = muldiv64(cpu_get_ticks() - s->count_load_time, PIT_FREQ, ticks_per_sec);
881
    switch(s->mode) {
882
    case 0:
883
    case 1:
884
    case 4:
885
    case 5:
886
        counter = (s->count - d) & 0xffff;
887
        break;
888
    default:
889
        counter = s->count - (d % s->count);
890
        break;
891
    }
892
    return counter;
893
}
894

    
895
/* get pit output bit */
896
static int pit_get_out(PITChannelState *s)
897
{
898
    uint64_t d;
899
    int out;
900

    
901
    d = muldiv64(cpu_get_ticks() - s->count_load_time, PIT_FREQ, ticks_per_sec);
902
    switch(s->mode) {
903
    default:
904
    case 0:
905
        out = (d >= s->count);
906
        break;
907
    case 1:
908
        out = (d < s->count);
909
        break;
910
    case 2:
911
        if ((d % s->count) == 0 && d != 0)
912
            out = 1;
913
        else
914
            out = 0;
915
        break;
916
    case 3:
917
        out = (d % s->count) < (s->count >> 1);
918
        break;
919
    case 4:
920
    case 5:
921
        out = (d == s->count);
922
        break;
923
    }
924
    return out;
925
}
926

    
927
/* get the number of 0 to 1 transitions we had since we call this
928
   function */
929
/* XXX: maybe better to use ticks precision to avoid getting edges
930
   twice if checks are done at very small intervals */
931
static int pit_get_out_edges(PITChannelState *s)
932
{
933
    uint64_t d1, d2;
934
    int64_t ticks;
935
    int ret, v;
936

    
937
    ticks = cpu_get_ticks();
938
    d1 = muldiv64(s->count_last_edge_check_time - s->count_load_time, 
939
                 PIT_FREQ, ticks_per_sec);
940
    d2 = muldiv64(ticks - s->count_load_time, 
941
                  PIT_FREQ, ticks_per_sec);
942
    s->count_last_edge_check_time = ticks;
943
    switch(s->mode) {
944
    default:
945
    case 0:
946
        if (d1 < s->count && d2 >= s->count)
947
            ret = 1;
948
        else
949
            ret = 0;
950
        break;
951
    case 1:
952
        ret = 0;
953
        break;
954
    case 2:
955
        d1 /= s->count;
956
        d2 /= s->count;
957
        ret = d2 - d1;
958
        break;
959
    case 3:
960
        v = s->count - (s->count >> 1);
961
        d1 = (d1 + v) / s->count;
962
        d2 = (d2 + v) / s->count;
963
        ret = d2 - d1;
964
        break;
965
    case 4:
966
    case 5:
967
        if (d1 < s->count && d2 >= s->count)
968
            ret = 1;
969
        else
970
            ret = 0;
971
        break;
972
    }
973
    return ret;
974
}
975

    
976
static inline void pit_load_count(PITChannelState *s, int val)
977
{
978
    if (val == 0)
979
        val = 0x10000;
980
    s->count_load_time = cpu_get_ticks();
981
    s->count_last_edge_check_time = s->count_load_time;
982
    s->count = val;
983
    if (s == &pit_channels[0] && val <= pit_min_timer_count) {
984
        fprintf(stderr, 
985
                "\nWARNING: vl: on your system, accurate timer emulation is impossible if its frequency is more than %d Hz. If using a 2.5.xx Linux kernel, you must patch asm/param.h to change HZ from 1000 to 100.\n\n", 
986
                PIT_FREQ / pit_min_timer_count);
987
    }
988
}
989

    
990
void pit_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
991
{
992
    int channel, access;
993
    PITChannelState *s;
994

    
995
    addr &= 3;
996
    if (addr == 3) {
997
        channel = val >> 6;
998
        if (channel == 3)
999
            return;
1000
        s = &pit_channels[channel];
1001
        access = (val >> 4) & 3;
1002
        switch(access) {
1003
        case 0:
1004
            s->latched_count = pit_get_count(s);
1005
            s->rw_state = RW_STATE_LATCHED_WORD0;
1006
            break;
1007
        default:
1008
            s->mode = (val >> 1) & 7;
1009
            s->bcd = val & 1;
1010
            s->rw_state = access - 1 +  RW_STATE_LSB;
1011
            break;
1012
        }
1013
    } else {
1014
        s = &pit_channels[addr];
1015
        switch(s->rw_state) {
1016
        case RW_STATE_LSB:
1017
            pit_load_count(s, val);
1018
            break;
1019
        case RW_STATE_MSB:
1020
            pit_load_count(s, val << 8);
1021
            break;
1022
        case RW_STATE_WORD0:
1023
        case RW_STATE_WORD1:
1024
            if (s->rw_state & 1) {
1025
                pit_load_count(s, (s->latched_count & 0xff) | (val << 8));
1026
            } else {
1027
                s->latched_count = val;
1028
            }
1029
            s->rw_state ^= 1;
1030
            break;
1031
        }
1032
    }
1033
}
1034

    
1035
uint32_t pit_ioport_read(CPUX86State *env, uint32_t addr)
1036
{
1037
    int ret, count;
1038
    PITChannelState *s;
1039
    
1040
    addr &= 3;
1041
    s = &pit_channels[addr];
1042
    switch(s->rw_state) {
1043
    case RW_STATE_LSB:
1044
    case RW_STATE_MSB:
1045
    case RW_STATE_WORD0:
1046
    case RW_STATE_WORD1:
1047
        count = pit_get_count(s);
1048
        if (s->rw_state & 1)
1049
            ret = (count >> 8) & 0xff;
1050
        else
1051
            ret = count & 0xff;
1052
        if (s->rw_state & 2)
1053
            s->rw_state ^= 1;
1054
        break;
1055
    default:
1056
    case RW_STATE_LATCHED_WORD0:
1057
    case RW_STATE_LATCHED_WORD1:
1058
        if (s->rw_state & 1)
1059
            ret = s->latched_count >> 8;
1060
        else
1061
            ret = s->latched_count & 0xff;
1062
        s->rw_state ^= 1;
1063
        break;
1064
    }
1065
    return ret;
1066
}
1067

    
1068
void speaker_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1069
{
1070
    speaker_data_on = (val >> 1) & 1;
1071
    pit_channels[2].gate = val & 1;
1072
}
1073

    
1074
uint32_t speaker_ioport_read(CPUX86State *env, uint32_t addr)
1075
{
1076
    int out;
1077
    out = pit_get_out(&pit_channels[2]);
1078
    return (speaker_data_on << 1) | pit_channels[2].gate | (out << 5);
1079
}
1080

    
1081
void pit_init(void)
1082
{
1083
    PITChannelState *s;
1084
    int i;
1085

    
1086
    cpu_calibrate_ticks();
1087

    
1088
    for(i = 0;i < 3; i++) {
1089
        s = &pit_channels[i];
1090
        s->mode = 3;
1091
        s->gate = (i != 2);
1092
        pit_load_count(s, 0);
1093
    }
1094

    
1095
    register_ioport_write(0x40, 4, pit_ioport_write, 1);
1096
    register_ioport_read(0x40, 3, pit_ioport_read, 1);
1097

    
1098
    register_ioport_read(0x61, 1, speaker_ioport_read, 1);
1099
    register_ioport_write(0x61, 1, speaker_ioport_write, 1);
1100
}
1101

    
1102
/***********************************************************/
1103
/* serial port emulation */
1104

    
1105
#define UART_IRQ        4
1106

    
1107
#define UART_LCR_DLAB        0x80        /* Divisor latch access bit */
1108

    
1109
#define UART_IER_MSI        0x08        /* Enable Modem status interrupt */
1110
#define UART_IER_RLSI        0x04        /* Enable receiver line status interrupt */
1111
#define UART_IER_THRI        0x02        /* Enable Transmitter holding register int. */
1112
#define UART_IER_RDI        0x01        /* Enable receiver data interrupt */
1113

    
1114
#define UART_IIR_NO_INT        0x01        /* No interrupts pending */
1115
#define UART_IIR_ID        0x06        /* Mask for the interrupt ID */
1116

    
1117
#define UART_IIR_MSI        0x00        /* Modem status interrupt */
1118
#define UART_IIR_THRI        0x02        /* Transmitter holding register empty */
1119
#define UART_IIR_RDI        0x04        /* Receiver data interrupt */
1120
#define UART_IIR_RLSI        0x06        /* Receiver line status interrupt */
1121

    
1122
#define UART_LSR_TEMT        0x40        /* Transmitter empty */
1123
#define UART_LSR_THRE        0x20        /* Transmit-hold-register empty */
1124
#define UART_LSR_BI        0x10        /* Break interrupt indicator */
1125
#define UART_LSR_FE        0x08        /* Frame error indicator */
1126
#define UART_LSR_PE        0x04        /* Parity error indicator */
1127
#define UART_LSR_OE        0x02        /* Overrun error indicator */
1128
#define UART_LSR_DR        0x01        /* Receiver data ready */
1129

    
1130
typedef struct SerialState {
1131
    uint8_t divider;
1132
    uint8_t rbr; /* receive register */
1133
    uint8_t ier;
1134
    uint8_t iir; /* read only */
1135
    uint8_t lcr;
1136
    uint8_t mcr;
1137
    uint8_t lsr; /* read only */
1138
    uint8_t msr;
1139
    uint8_t scr;
1140
} SerialState;
1141

    
1142
SerialState serial_ports[1];
1143

    
1144
void serial_update_irq(void)
1145
{
1146
    SerialState *s = &serial_ports[0];
1147

    
1148
    if ((s->lsr & UART_LSR_DR) && (s->ier & UART_IER_RDI)) {
1149
        s->iir = UART_IIR_RDI;
1150
    } else if ((s->lsr & UART_LSR_THRE) && (s->ier & UART_IER_THRI)) {
1151
        s->iir = UART_IIR_THRI;
1152
    } else {
1153
        s->iir = UART_IIR_NO_INT;
1154
    }
1155
    if (s->iir != UART_IIR_NO_INT) {
1156
        pic_set_irq(UART_IRQ, 1);
1157
    } else {
1158
        pic_set_irq(UART_IRQ, 0);
1159
    }
1160
}
1161

    
1162
void serial_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1163
{
1164
    SerialState *s = &serial_ports[0];
1165
    unsigned char ch;
1166
    int ret;
1167
    
1168
    addr &= 7;
1169
    switch(addr) {
1170
    default:
1171
    case 0:
1172
        if (s->lcr & UART_LCR_DLAB) {
1173
            s->divider = (s->divider & 0xff00) | val;
1174
        } else {
1175
            s->lsr &= ~UART_LSR_THRE;
1176
            serial_update_irq();
1177

    
1178
            ch = val;
1179
            do {
1180
                ret = write(1, &ch, 1);
1181
            } while (ret != 1);
1182
            s->lsr |= UART_LSR_THRE;
1183
            s->lsr |= UART_LSR_TEMT;
1184
            serial_update_irq();
1185
        }
1186
        break;
1187
    case 1:
1188
        if (s->lcr & UART_LCR_DLAB) {
1189
            s->divider = (s->divider & 0x00ff) | (val << 8);
1190
        } else {
1191
            s->ier = val;
1192
            serial_update_irq();
1193
        }
1194
        break;
1195
    case 2:
1196
        break;
1197
    case 3:
1198
        s->lcr = val;
1199
        break;
1200
    case 4:
1201
        s->mcr = val;
1202
        break;
1203
    case 5:
1204
        break;
1205
    case 6:
1206
        s->msr = val;
1207
        break;
1208
    case 7:
1209
        s->scr = val;
1210
        break;
1211
    }
1212
}
1213

    
1214
uint32_t serial_ioport_read(CPUX86State *env, uint32_t addr)
1215
{
1216
    SerialState *s = &serial_ports[0];
1217
    uint32_t ret;
1218

    
1219
    addr &= 7;
1220
    switch(addr) {
1221
    default:
1222
    case 0:
1223
        if (s->lcr & UART_LCR_DLAB) {
1224
            ret = s->divider & 0xff; 
1225
        } else {
1226
            ret = s->rbr;
1227
            s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
1228
            serial_update_irq();
1229
        }
1230
        break;
1231
    case 1:
1232
        if (s->lcr & UART_LCR_DLAB) {
1233
            ret = (s->divider >> 8) & 0xff;
1234
        } else {
1235
            ret = s->ier;
1236
        }
1237
        break;
1238
    case 2:
1239
        ret = s->iir;
1240
        break;
1241
    case 3:
1242
        ret = s->lcr;
1243
        break;
1244
    case 4:
1245
        ret = s->mcr;
1246
        break;
1247
    case 5:
1248
        ret = s->lsr;
1249
        break;
1250
    case 6:
1251
        ret = s->msr;
1252
        break;
1253
    case 7:
1254
        ret = s->scr;
1255
        break;
1256
    }
1257
    return ret;
1258
}
1259

    
1260
#define TERM_ESCAPE 0x01 /* ctrl-a is used for escape */
1261
static int term_got_escape;
1262

    
1263
void term_print_help(void)
1264
{
1265
    printf("\n"
1266
           "C-a h    print this help\n"
1267
           "C-a x    exit emulatior\n"
1268
           "C-a b    send break (magic sysrq)\n"
1269
           "C-a C-a  send C-a\n"
1270
           );
1271
}
1272

    
1273
/* called when a char is received */
1274
void serial_received_byte(SerialState *s, int ch)
1275
{
1276
    if (term_got_escape) {
1277
        term_got_escape = 0;
1278
        switch(ch) {
1279
        case 'h':
1280
            term_print_help();
1281
            break;
1282
        case 'x':
1283
            exit(0);
1284
            break;
1285
        case 'b':
1286
            /* send break */
1287
            s->rbr = 0;
1288
            s->lsr |= UART_LSR_BI | UART_LSR_DR;
1289
            serial_update_irq();
1290
            break;
1291
        case TERM_ESCAPE:
1292
            goto send_char;
1293
        }
1294
    } else if (ch == TERM_ESCAPE) {
1295
        term_got_escape = 1;
1296
    } else {
1297
    send_char:
1298
        s->rbr = ch;
1299
        s->lsr |= UART_LSR_DR;
1300
        serial_update_irq();
1301
    }
1302
}
1303

    
1304
/* init terminal so that we can grab keys */
1305
static struct termios oldtty;
1306

    
1307
static void term_exit(void)
1308
{
1309
    tcsetattr (0, TCSANOW, &oldtty);
1310
}
1311

    
1312
static void term_init(void)
1313
{
1314
    struct termios tty;
1315

    
1316
    tcgetattr (0, &tty);
1317
    oldtty = tty;
1318

    
1319
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
1320
                          |INLCR|IGNCR|ICRNL|IXON);
1321
    tty.c_oflag |= OPOST;
1322
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
1323
    tty.c_cflag &= ~(CSIZE|PARENB);
1324
    tty.c_cflag |= CS8;
1325
    tty.c_cc[VMIN] = 1;
1326
    tty.c_cc[VTIME] = 0;
1327
    
1328
    tcsetattr (0, TCSANOW, &tty);
1329

    
1330
    atexit(term_exit);
1331

    
1332
    fcntl(0, F_SETFL, O_NONBLOCK);
1333
}
1334

    
1335
void serial_init(void)
1336
{
1337
    SerialState *s = &serial_ports[0];
1338

    
1339
    s->lsr = UART_LSR_TEMT | UART_LSR_THRE;
1340

    
1341
    register_ioport_write(0x3f8, 8, serial_ioport_write, 1);
1342
    register_ioport_read(0x3f8, 8, serial_ioport_read, 1);
1343

    
1344
    term_init();
1345
}
1346

    
1347
/***********************************************************/
1348
/* ne2000 emulation */
1349

    
1350
//#define DEBUG_NE2000
1351

    
1352
#define NE2000_IOPORT   0x300
1353
#define NE2000_IRQ      9
1354

    
1355
#define MAX_ETH_FRAME_SIZE 1514
1356

    
1357
#define E8390_CMD        0x00  /* The command register (for all pages) */
1358
/* Page 0 register offsets. */
1359
#define EN0_CLDALO        0x01        /* Low byte of current local dma addr  RD */
1360
#define EN0_STARTPG        0x01        /* Starting page of ring bfr WR */
1361
#define EN0_CLDAHI        0x02        /* High byte of current local dma addr  RD */
1362
#define EN0_STOPPG        0x02        /* Ending page +1 of ring bfr WR */
1363
#define EN0_BOUNDARY        0x03        /* Boundary page of ring bfr RD WR */
1364
#define EN0_TSR                0x04        /* Transmit status reg RD */
1365
#define EN0_TPSR        0x04        /* Transmit starting page WR */
1366
#define EN0_NCR                0x05        /* Number of collision reg RD */
1367
#define EN0_TCNTLO        0x05        /* Low  byte of tx byte count WR */
1368
#define EN0_FIFO        0x06        /* FIFO RD */
1369
#define EN0_TCNTHI        0x06        /* High byte of tx byte count WR */
1370
#define EN0_ISR                0x07        /* Interrupt status reg RD WR */
1371
#define EN0_CRDALO        0x08        /* low byte of current remote dma address RD */
1372
#define EN0_RSARLO        0x08        /* Remote start address reg 0 */
1373
#define EN0_CRDAHI        0x09        /* high byte, current remote dma address RD */
1374
#define EN0_RSARHI        0x09        /* Remote start address reg 1 */
1375
#define EN0_RCNTLO        0x0a        /* Remote byte count reg WR */
1376
#define EN0_RCNTHI        0x0b        /* Remote byte count reg WR */
1377
#define EN0_RSR                0x0c        /* rx status reg RD */
1378
#define EN0_RXCR        0x0c        /* RX configuration reg WR */
1379
#define EN0_TXCR        0x0d        /* TX configuration reg WR */
1380
#define EN0_COUNTER0        0x0d        /* Rcv alignment error counter RD */
1381
#define EN0_DCFG        0x0e        /* Data configuration reg WR */
1382
#define EN0_COUNTER1        0x0e        /* Rcv CRC error counter RD */
1383
#define EN0_IMR                0x0f        /* Interrupt mask reg WR */
1384
#define EN0_COUNTER2        0x0f        /* Rcv missed frame error counter RD */
1385

    
1386
#define EN1_PHYS        0x11
1387
#define EN1_CURPAG      0x17
1388
#define EN1_MULT        0x18
1389

    
1390
/*  Register accessed at EN_CMD, the 8390 base addr.  */
1391
#define E8390_STOP        0x01        /* Stop and reset the chip */
1392
#define E8390_START        0x02        /* Start the chip, clear reset */
1393
#define E8390_TRANS        0x04        /* Transmit a frame */
1394
#define E8390_RREAD        0x08        /* Remote read */
1395
#define E8390_RWRITE        0x10        /* Remote write  */
1396
#define E8390_NODMA        0x20        /* Remote DMA */
1397
#define E8390_PAGE0        0x00        /* Select page chip registers */
1398
#define E8390_PAGE1        0x40        /* using the two high-order bits */
1399
#define E8390_PAGE2        0x80        /* Page 3 is invalid. */
1400

    
1401
/* Bits in EN0_ISR - Interrupt status register */
1402
#define ENISR_RX        0x01        /* Receiver, no error */
1403
#define ENISR_TX        0x02        /* Transmitter, no error */
1404
#define ENISR_RX_ERR        0x04        /* Receiver, with error */
1405
#define ENISR_TX_ERR        0x08        /* Transmitter, with error */
1406
#define ENISR_OVER        0x10        /* Receiver overwrote the ring */
1407
#define ENISR_COUNTERS        0x20        /* Counters need emptying */
1408
#define ENISR_RDC        0x40        /* remote dma complete */
1409
#define ENISR_RESET        0x80        /* Reset completed */
1410
#define ENISR_ALL        0x3f        /* Interrupts we will enable */
1411

    
1412
/* Bits in received packet status byte and EN0_RSR*/
1413
#define ENRSR_RXOK        0x01        /* Received a good packet */
1414
#define ENRSR_CRC        0x02        /* CRC error */
1415
#define ENRSR_FAE        0x04        /* frame alignment error */
1416
#define ENRSR_FO        0x08        /* FIFO overrun */
1417
#define ENRSR_MPA        0x10        /* missed pkt */
1418
#define ENRSR_PHY        0x20        /* physical/multicast address */
1419
#define ENRSR_DIS        0x40        /* receiver disable. set in monitor mode */
1420
#define ENRSR_DEF        0x80        /* deferring */
1421

    
1422
/* Transmitted packet status, EN0_TSR. */
1423
#define ENTSR_PTX 0x01        /* Packet transmitted without error */
1424
#define ENTSR_ND  0x02        /* The transmit wasn't deferred. */
1425
#define ENTSR_COL 0x04        /* The transmit collided at least once. */
1426
#define ENTSR_ABT 0x08  /* The transmit collided 16 times, and was deferred. */
1427
#define ENTSR_CRS 0x10        /* The carrier sense was lost. */
1428
#define ENTSR_FU  0x20  /* A "FIFO underrun" occurred during transmit. */
1429
#define ENTSR_CDH 0x40        /* The collision detect "heartbeat" signal was lost. */
1430
#define ENTSR_OWC 0x80  /* There was an out-of-window collision. */
1431

    
1432
#define NE2000_MEM_SIZE 32768
1433

    
1434
typedef struct NE2000State {
1435
    uint8_t cmd;
1436
    uint32_t start;
1437
    uint32_t stop;
1438
    uint8_t boundary;
1439
    uint8_t tsr;
1440
    uint8_t tpsr;
1441
    uint16_t tcnt;
1442
    uint16_t rcnt;
1443
    uint32_t rsar;
1444
    uint8_t isr;
1445
    uint8_t dcfg;
1446
    uint8_t imr;
1447
    uint8_t phys[6]; /* mac address */
1448
    uint8_t curpag;
1449
    uint8_t mult[8]; /* multicast mask array */
1450
    uint8_t mem[NE2000_MEM_SIZE];
1451
} NE2000State;
1452

    
1453
NE2000State ne2000_state;
1454
int net_fd = -1;
1455
char network_script[1024];
1456

    
1457
void ne2000_reset(void)
1458
{
1459
    NE2000State *s = &ne2000_state;
1460
    int i;
1461

    
1462
    s->isr = ENISR_RESET;
1463
    s->mem[0] = 0x52;
1464
    s->mem[1] = 0x54;
1465
    s->mem[2] = 0x00;
1466
    s->mem[3] = 0x12;
1467
    s->mem[4] = 0x34;
1468
    s->mem[5] = 0x56;
1469
    s->mem[14] = 0x57;
1470
    s->mem[15] = 0x57;
1471

    
1472
    /* duplicate prom data */
1473
    for(i = 15;i >= 0; i--) {
1474
        s->mem[2 * i] = s->mem[i];
1475
        s->mem[2 * i + 1] = s->mem[i];
1476
    }
1477
}
1478

    
1479
void ne2000_update_irq(NE2000State *s)
1480
{
1481
    int isr;
1482
    isr = s->isr & s->imr;
1483
    if (isr)
1484
        pic_set_irq(NE2000_IRQ, 1);
1485
    else
1486
        pic_set_irq(NE2000_IRQ, 0);
1487
}
1488

    
1489
int net_init(void)
1490
{
1491
    struct ifreq ifr;
1492
    int fd, ret, pid, status;
1493
    
1494
    fd = open("/dev/net/tun", O_RDWR);
1495
    if (fd < 0) {
1496
        fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
1497
        return -1;
1498
    }
1499
    memset(&ifr, 0, sizeof(ifr));
1500
    ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
1501
    pstrcpy(ifr.ifr_name, IFNAMSIZ, "tun%d");
1502
    ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
1503
    if (ret != 0) {
1504
        fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
1505
        close(fd);
1506
        return -1;
1507
    }
1508
    printf("Connected to host network interface: %s\n", ifr.ifr_name);
1509
    fcntl(fd, F_SETFL, O_NONBLOCK);
1510
    net_fd = fd;
1511

    
1512
    /* try to launch network init script */
1513
    pid = fork();
1514
    if (pid >= 0) {
1515
        if (pid == 0) {
1516
            execl(network_script, network_script, ifr.ifr_name, NULL);
1517
            exit(1);
1518
        }
1519
        while (waitpid(pid, &status, 0) != pid);
1520
        if (!WIFEXITED(status) ||
1521
            WEXITSTATUS(status) != 0) {
1522
            fprintf(stderr, "%s: could not launch network script for '%s'\n",
1523
                    network_script, ifr.ifr_name);
1524
        }
1525
    }
1526
    return 0;
1527
}
1528

    
1529
void net_send_packet(NE2000State *s, const uint8_t *buf, int size)
1530
{
1531
#ifdef DEBUG_NE2000
1532
    printf("NE2000: sending packet size=%d\n", size);
1533
#endif
1534
    write(net_fd, buf, size);
1535
}
1536

    
1537
/* return true if the NE2000 can receive more data */
1538
int ne2000_can_receive(NE2000State *s)
1539
{
1540
    int avail, index, boundary;
1541
    
1542
    if (s->cmd & E8390_STOP)
1543
        return 0;
1544
    index = s->curpag << 8;
1545
    boundary = s->boundary << 8;
1546
    if (index < boundary)
1547
        avail = boundary - index;
1548
    else
1549
        avail = (s->stop - s->start) - (index - boundary);
1550
    if (avail < (MAX_ETH_FRAME_SIZE + 4))
1551
        return 0;
1552
    return 1;
1553
}
1554

    
1555
void ne2000_receive(NE2000State *s, uint8_t *buf, int size)
1556
{
1557
    uint8_t *p;
1558
    int total_len, next, avail, len, index;
1559

    
1560
#if defined(DEBUG_NE2000)
1561
    printf("NE2000: received len=%d\n", size);
1562
#endif
1563

    
1564
    index = s->curpag << 8;
1565
    /* 4 bytes for header */
1566
    total_len = size + 4;
1567
    /* address for next packet (4 bytes for CRC) */
1568
    next = index + ((total_len + 4 + 255) & ~0xff);
1569
    if (next >= s->stop)
1570
        next -= (s->stop - s->start);
1571
    /* prepare packet header */
1572
    p = s->mem + index;
1573
    p[0] = ENRSR_RXOK; /* receive status */
1574
    p[1] = next >> 8;
1575
    p[2] = total_len;
1576
    p[3] = total_len >> 8;
1577
    index += 4;
1578

    
1579
    /* write packet data */
1580
    while (size > 0) {
1581
        avail = s->stop - index;
1582
        len = size;
1583
        if (len > avail)
1584
            len = avail;
1585
        memcpy(s->mem + index, buf, len);
1586
        buf += len;
1587
        index += len;
1588
        if (index == s->stop)
1589
            index = s->start;
1590
        size -= len;
1591
    }
1592
    s->curpag = next >> 8;
1593
    
1594
    /* now we can signal we have receive something */
1595
    s->isr |= ENISR_RX;
1596
    ne2000_update_irq(s);
1597
}
1598

    
1599
void ne2000_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1600
{
1601
    NE2000State *s = &ne2000_state;
1602
    int offset, page;
1603

    
1604
    addr &= 0xf;
1605
#ifdef DEBUG_NE2000
1606
    printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
1607
#endif
1608
    if (addr == E8390_CMD) {
1609
        /* control register */
1610
        s->cmd = val;
1611
        if (val & E8390_START) {
1612
            /* test specific case: zero length transfert */
1613
            if ((val & (E8390_RREAD | E8390_RWRITE)) &&
1614
                s->rcnt == 0) {
1615
                s->isr |= ENISR_RDC;
1616
                ne2000_update_irq(s);
1617
            }
1618
            if (val & E8390_TRANS) {
1619
                net_send_packet(s, s->mem + (s->tpsr << 8), s->tcnt);
1620
                /* signal end of transfert */
1621
                s->tsr = ENTSR_PTX;
1622
                s->isr |= ENISR_TX;
1623
                ne2000_update_irq(s);
1624
            }
1625
        }
1626
    } else {
1627
        page = s->cmd >> 6;
1628
        offset = addr | (page << 4);
1629
        switch(offset) {
1630
        case EN0_STARTPG:
1631
            s->start = val << 8;
1632
            break;
1633
        case EN0_STOPPG:
1634
            s->stop = val << 8;
1635
            break;
1636
        case EN0_BOUNDARY:
1637
            s->boundary = val;
1638
            break;
1639
        case EN0_IMR:
1640
            s->imr = val;
1641
            ne2000_update_irq(s);
1642
            break;
1643
        case EN0_TPSR:
1644
            s->tpsr = val;
1645
            break;
1646
        case EN0_TCNTLO:
1647
            s->tcnt = (s->tcnt & 0xff00) | val;
1648
            break;
1649
        case EN0_TCNTHI:
1650
            s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
1651
            break;
1652
        case EN0_RSARLO:
1653
            s->rsar = (s->rsar & 0xff00) | val;
1654
            break;
1655
        case EN0_RSARHI:
1656
            s->rsar = (s->rsar & 0x00ff) | (val << 8);
1657
            break;
1658
        case EN0_RCNTLO:
1659
            s->rcnt = (s->rcnt & 0xff00) | val;
1660
            break;
1661
        case EN0_RCNTHI:
1662
            s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
1663
            break;
1664
        case EN0_DCFG:
1665
            s->dcfg = val;
1666
            break;
1667
        case EN0_ISR:
1668
            s->isr &= ~val;
1669
            ne2000_update_irq(s);
1670
            break;
1671
        case EN1_PHYS ... EN1_PHYS + 5:
1672
            s->phys[offset - EN1_PHYS] = val;
1673
            break;
1674
        case EN1_CURPAG:
1675
            s->curpag = val;
1676
            break;
1677
        case EN1_MULT ... EN1_MULT + 7:
1678
            s->mult[offset - EN1_MULT] = val;
1679
            break;
1680
        }
1681
    }
1682
}
1683

    
1684
uint32_t ne2000_ioport_read(CPUX86State *env, uint32_t addr)
1685
{
1686
    NE2000State *s = &ne2000_state;
1687
    int offset, page, ret;
1688

    
1689
    addr &= 0xf;
1690
    if (addr == E8390_CMD) {
1691
        ret = s->cmd;
1692
    } else {
1693
        page = s->cmd >> 6;
1694
        offset = addr | (page << 4);
1695
        switch(offset) {
1696
        case EN0_TSR:
1697
            ret = s->tsr;
1698
            break;
1699
        case EN0_BOUNDARY:
1700
            ret = s->boundary;
1701
            break;
1702
        case EN0_ISR:
1703
            ret = s->isr;
1704
            break;
1705
        case EN1_PHYS ... EN1_PHYS + 5:
1706
            ret = s->phys[offset - EN1_PHYS];
1707
            break;
1708
        case EN1_CURPAG:
1709
            ret = s->curpag;
1710
            break;
1711
        case EN1_MULT ... EN1_MULT + 7:
1712
            ret = s->mult[offset - EN1_MULT];
1713
            break;
1714
        default:
1715
            ret = 0x00;
1716
            break;
1717
        }
1718
    }
1719
#ifdef DEBUG_NE2000
1720
    printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
1721
#endif
1722
    return ret;
1723
}
1724

    
1725
void ne2000_asic_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1726
{
1727
    NE2000State *s = &ne2000_state;
1728
    uint8_t *p;
1729

    
1730
#ifdef DEBUG_NE2000
1731
    printf("NE2000: asic write val=0x%04x\n", val);
1732
#endif
1733
    p = s->mem + s->rsar;
1734
    if (s->dcfg & 0x01) {
1735
        /* 16 bit access */
1736
        p[0] = val;
1737
        p[1] = val >> 8;
1738
        s->rsar += 2;
1739
        s->rcnt -= 2;
1740
    } else {
1741
        /* 8 bit access */
1742
        p[0] = val;
1743
        s->rsar++;
1744
        s->rcnt--;
1745
    }
1746
    /* wrap */
1747
    if (s->rsar == s->stop)
1748
        s->rsar = s->start;
1749
    if (s->rcnt == 0) {
1750
        /* signal end of transfert */
1751
        s->isr |= ENISR_RDC;
1752
        ne2000_update_irq(s);
1753
    }
1754
}
1755

    
1756
uint32_t ne2000_asic_ioport_read(CPUX86State *env, uint32_t addr)
1757
{
1758
    NE2000State *s = &ne2000_state;
1759
    uint8_t *p;
1760
    int ret;
1761

    
1762
    p = s->mem + s->rsar;
1763
    if (s->dcfg & 0x01) {
1764
        /* 16 bit access */
1765
        ret = p[0] | (p[1] << 8);
1766
        s->rsar += 2;
1767
        s->rcnt -= 2;
1768
    } else {
1769
        /* 8 bit access */
1770
        ret = p[0];
1771
        s->rsar++;
1772
        s->rcnt--;
1773
    }
1774
    /* wrap */
1775
    if (s->rsar == s->stop)
1776
        s->rsar = s->start;
1777
    if (s->rcnt == 0) {
1778
        /* signal end of transfert */
1779
        s->isr |= ENISR_RDC;
1780
        ne2000_update_irq(s);
1781
    }
1782
#ifdef DEBUG_NE2000
1783
    printf("NE2000: asic read val=0x%04x\n", ret);
1784
#endif
1785
    return ret;
1786
}
1787

    
1788
void ne2000_reset_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1789
{
1790
    /* nothing to do (end of reset pulse) */
1791
}
1792

    
1793
uint32_t ne2000_reset_ioport_read(CPUX86State *env, uint32_t addr)
1794
{
1795
    ne2000_reset();
1796
    return 0;
1797
}
1798

    
1799
void ne2000_init(void)
1800
{
1801
    register_ioport_write(NE2000_IOPORT, 16, ne2000_ioport_write, 1);
1802
    register_ioport_read(NE2000_IOPORT, 16, ne2000_ioport_read, 1);
1803

    
1804
    register_ioport_write(NE2000_IOPORT + 0x10, 1, ne2000_asic_ioport_write, 1);
1805
    register_ioport_read(NE2000_IOPORT + 0x10, 1, ne2000_asic_ioport_read, 1);
1806
    register_ioport_write(NE2000_IOPORT + 0x10, 2, ne2000_asic_ioport_write, 2);
1807
    register_ioport_read(NE2000_IOPORT + 0x10, 2, ne2000_asic_ioport_read, 2);
1808

    
1809
    register_ioport_write(NE2000_IOPORT + 0x1f, 1, ne2000_reset_ioport_write, 1);
1810
    register_ioport_read(NE2000_IOPORT + 0x1f, 1, ne2000_reset_ioport_read, 1);
1811
    ne2000_reset();
1812
}
1813

    
1814
/***********************************************************/
1815
/* ide emulation */
1816

    
1817
//#define DEBUG_IDE
1818

    
1819
/* Bits of HD_STATUS */
1820
#define ERR_STAT                0x01
1821
#define INDEX_STAT                0x02
1822
#define ECC_STAT                0x04        /* Corrected error */
1823
#define DRQ_STAT                0x08
1824
#define SEEK_STAT                0x10
1825
#define SRV_STAT                0x10
1826
#define WRERR_STAT                0x20
1827
#define READY_STAT                0x40
1828
#define BUSY_STAT                0x80
1829

    
1830
/* Bits for HD_ERROR */
1831
#define MARK_ERR                0x01        /* Bad address mark */
1832
#define TRK0_ERR                0x02        /* couldn't find track 0 */
1833
#define ABRT_ERR                0x04        /* Command aborted */
1834
#define MCR_ERR                        0x08        /* media change request */
1835
#define ID_ERR                        0x10        /* ID field not found */
1836
#define MC_ERR                        0x20        /* media changed */
1837
#define ECC_ERR                        0x40        /* Uncorrectable ECC error */
1838
#define BBD_ERR                        0x80        /* pre-EIDE meaning:  block marked bad */
1839
#define ICRC_ERR                0x80        /* new meaning:  CRC error during transfer */
1840

    
1841
/* Bits of HD_NSECTOR */
1842
#define CD                        0x01
1843
#define IO                        0x02
1844
#define REL                        0x04
1845
#define TAG_MASK                0xf8
1846

    
1847
#define IDE_CMD_RESET           0x04
1848
#define IDE_CMD_DISABLE_IRQ     0x02
1849

    
1850
/* ATA/ATAPI Commands pre T13 Spec */
1851
#define WIN_NOP                                0x00
1852
/*
1853
 *        0x01->0x02 Reserved
1854
 */
1855
#define CFA_REQ_EXT_ERROR_CODE                0x03 /* CFA Request Extended Error Code */
1856
/*
1857
 *        0x04->0x07 Reserved
1858
 */
1859
#define WIN_SRST                        0x08 /* ATAPI soft reset command */
1860
#define WIN_DEVICE_RESET                0x08
1861
/*
1862
 *        0x09->0x0F Reserved
1863
 */
1864
#define WIN_RECAL                        0x10
1865
#define WIN_RESTORE                        WIN_RECAL
1866
/*
1867
 *        0x10->0x1F Reserved
1868
 */
1869
#define WIN_READ                        0x20 /* 28-Bit */
1870
#define WIN_READ_ONCE                        0x21 /* 28-Bit without retries */
1871
#define WIN_READ_LONG                        0x22 /* 28-Bit */
1872
#define WIN_READ_LONG_ONCE                0x23 /* 28-Bit without retries */
1873
#define WIN_READ_EXT                        0x24 /* 48-Bit */
1874
#define WIN_READDMA_EXT                        0x25 /* 48-Bit */
1875
#define WIN_READDMA_QUEUED_EXT                0x26 /* 48-Bit */
1876
#define WIN_READ_NATIVE_MAX_EXT                0x27 /* 48-Bit */
1877
/*
1878
 *        0x28
1879
 */
1880
#define WIN_MULTREAD_EXT                0x29 /* 48-Bit */
1881
/*
1882
 *        0x2A->0x2F Reserved
1883
 */
1884
#define WIN_WRITE                        0x30 /* 28-Bit */
1885
#define WIN_WRITE_ONCE                        0x31 /* 28-Bit without retries */
1886
#define WIN_WRITE_LONG                        0x32 /* 28-Bit */
1887
#define WIN_WRITE_LONG_ONCE                0x33 /* 28-Bit without retries */
1888
#define WIN_WRITE_EXT                        0x34 /* 48-Bit */
1889
#define WIN_WRITEDMA_EXT                0x35 /* 48-Bit */
1890
#define WIN_WRITEDMA_QUEUED_EXT                0x36 /* 48-Bit */
1891
#define WIN_SET_MAX_EXT                        0x37 /* 48-Bit */
1892
#define CFA_WRITE_SECT_WO_ERASE                0x38 /* CFA Write Sectors without erase */
1893
#define WIN_MULTWRITE_EXT                0x39 /* 48-Bit */
1894
/*
1895
 *        0x3A->0x3B Reserved
1896
 */
1897
#define WIN_WRITE_VERIFY                0x3C /* 28-Bit */
1898
/*
1899
 *        0x3D->0x3F Reserved
1900
 */
1901
#define WIN_VERIFY                        0x40 /* 28-Bit - Read Verify Sectors */
1902
#define WIN_VERIFY_ONCE                        0x41 /* 28-Bit - without retries */
1903
#define WIN_VERIFY_EXT                        0x42 /* 48-Bit */
1904
/*
1905
 *        0x43->0x4F Reserved
1906
 */
1907
#define WIN_FORMAT                        0x50
1908
/*
1909
 *        0x51->0x5F Reserved
1910
 */
1911
#define WIN_INIT                        0x60
1912
/*
1913
 *        0x61->0x5F Reserved
1914
 */
1915
#define WIN_SEEK                        0x70 /* 0x70-0x7F Reserved */
1916
#define CFA_TRANSLATE_SECTOR                0x87 /* CFA Translate Sector */
1917
#define WIN_DIAGNOSE                        0x90
1918
#define WIN_SPECIFY                        0x91 /* set drive geometry translation */
1919
#define WIN_DOWNLOAD_MICROCODE                0x92
1920
#define WIN_STANDBYNOW2                        0x94
1921
#define WIN_STANDBY2                        0x96
1922
#define WIN_SETIDLE2                        0x97
1923
#define WIN_CHECKPOWERMODE2                0x98
1924
#define WIN_SLEEPNOW2                        0x99
1925
/*
1926
 *        0x9A VENDOR
1927
 */
1928
#define WIN_PACKETCMD                        0xA0 /* Send a packet command. */
1929
#define WIN_PIDENTIFY                        0xA1 /* identify ATAPI device        */
1930
#define WIN_QUEUED_SERVICE                0xA2
1931
#define WIN_SMART                        0xB0 /* self-monitoring and reporting */
1932
#define CFA_ERASE_SECTORS               0xC0
1933
#define WIN_MULTREAD                        0xC4 /* read sectors using multiple mode*/
1934
#define WIN_MULTWRITE                        0xC5 /* write sectors using multiple mode */
1935
#define WIN_SETMULT                        0xC6 /* enable/disable multiple mode */
1936
#define WIN_READDMA_QUEUED                0xC7 /* read sectors using Queued DMA transfers */
1937
#define WIN_READDMA                        0xC8 /* read sectors using DMA transfers */
1938
#define WIN_READDMA_ONCE                0xC9 /* 28-Bit - without retries */
1939
#define WIN_WRITEDMA                        0xCA /* write sectors using DMA transfers */
1940
#define WIN_WRITEDMA_ONCE                0xCB /* 28-Bit - without retries */
1941
#define WIN_WRITEDMA_QUEUED                0xCC /* write sectors using Queued DMA transfers */
1942
#define CFA_WRITE_MULTI_WO_ERASE        0xCD /* CFA Write multiple without erase */
1943
#define WIN_GETMEDIASTATUS                0xDA        
1944
#define WIN_ACKMEDIACHANGE                0xDB /* ATA-1, ATA-2 vendor */
1945
#define WIN_POSTBOOT                        0xDC
1946
#define WIN_PREBOOT                        0xDD
1947
#define WIN_DOORLOCK                        0xDE /* lock door on removable drives */
1948
#define WIN_DOORUNLOCK                        0xDF /* unlock door on removable drives */
1949
#define WIN_STANDBYNOW1                        0xE0
1950
#define WIN_IDLEIMMEDIATE                0xE1 /* force drive to become "ready" */
1951
#define WIN_STANDBY                     0xE2 /* Set device in Standby Mode */
1952
#define WIN_SETIDLE1                        0xE3
1953
#define WIN_READ_BUFFER                        0xE4 /* force read only 1 sector */
1954
#define WIN_CHECKPOWERMODE1                0xE5
1955
#define WIN_SLEEPNOW1                        0xE6
1956
#define WIN_FLUSH_CACHE                        0xE7
1957
#define WIN_WRITE_BUFFER                0xE8 /* force write only 1 sector */
1958
#define WIN_WRITE_SAME                        0xE9 /* read ata-2 to use */
1959
        /* SET_FEATURES 0x22 or 0xDD */
1960
#define WIN_FLUSH_CACHE_EXT                0xEA /* 48-Bit */
1961
#define WIN_IDENTIFY                        0xEC /* ask drive to identify itself        */
1962
#define WIN_MEDIAEJECT                        0xED
1963
#define WIN_IDENTIFY_DMA                0xEE /* same as WIN_IDENTIFY, but DMA */
1964
#define WIN_SETFEATURES                        0xEF /* set special drive features */
1965
#define EXABYTE_ENABLE_NEST                0xF0
1966
#define WIN_SECURITY_SET_PASS                0xF1
1967
#define WIN_SECURITY_UNLOCK                0xF2
1968
#define WIN_SECURITY_ERASE_PREPARE        0xF3
1969
#define WIN_SECURITY_ERASE_UNIT                0xF4
1970
#define WIN_SECURITY_FREEZE_LOCK        0xF5
1971
#define WIN_SECURITY_DISABLE                0xF6
1972
#define WIN_READ_NATIVE_MAX                0xF8 /* return the native maximum address */
1973
#define WIN_SET_MAX                        0xF9
1974
#define DISABLE_SEAGATE                        0xFB
1975

    
1976
/* set to 1 set disable mult support */
1977
#define MAX_MULT_SECTORS 8
1978

    
1979
#define MAX_DISKS 2
1980

    
1981
struct IDEState;
1982

    
1983
typedef void EndTransferFunc(struct IDEState *);
1984

    
1985
typedef struct IDEState {
1986
    /* ide config */
1987
    int cylinders, heads, sectors;
1988
    int64_t nb_sectors;
1989
    int mult_sectors;
1990
    int irq;
1991
    /* ide regs */
1992
    uint8_t feature;
1993
    uint8_t error;
1994
    uint16_t nsector; /* 0 is 256 to ease computations */
1995
    uint8_t sector;
1996
    uint8_t lcyl;
1997
    uint8_t hcyl;
1998
    uint8_t select;
1999
    uint8_t status;
2000
    /* 0x3f6 command, only meaningful for drive 0 */
2001
    uint8_t cmd;
2002
    /* depends on bit 4 in select, only meaningful for drive 0 */
2003
    struct IDEState *cur_drive; 
2004
    BlockDriverState *bs;
2005
    int req_nb_sectors; /* number of sectors per interrupt */
2006
    EndTransferFunc *end_transfer_func;
2007
    uint8_t *data_ptr;
2008
    uint8_t *data_end;
2009
    uint8_t io_buffer[MAX_MULT_SECTORS*512 + 4];
2010
} IDEState;
2011

    
2012
BlockDriverState *bs_table[MAX_DISKS];
2013
IDEState ide_state[MAX_DISKS];
2014

    
2015
static void padstr(char *str, const char *src, int len)
2016
{
2017
    int i, v;
2018
    for(i = 0; i < len; i++) {
2019
        if (*src)
2020
            v = *src++;
2021
        else
2022
            v = ' ';
2023
        *(char *)((long)str ^ 1) = v;
2024
        str++;
2025
    }
2026
}
2027

    
2028
static void ide_identify(IDEState *s)
2029
{
2030
    uint16_t *p;
2031
    unsigned int oldsize;
2032

    
2033
    memset(s->io_buffer, 0, 512);
2034
    p = (uint16_t *)s->io_buffer;
2035
    stw(p + 0, 0x0040);
2036
    stw(p + 1, s->cylinders); 
2037
    stw(p + 3, s->heads);
2038
    stw(p + 4, 512 * s->sectors); /* sectors */
2039
    stw(p + 5, 512); /* sector size */
2040
    stw(p + 6, s->sectors); 
2041
    stw(p + 20, 3); /* buffer type */
2042
    stw(p + 21, 512); /* cache size in sectors */
2043
    stw(p + 22, 4); /* ecc bytes */
2044
    padstr((uint8_t *)(p + 27), "QEMU HARDDISK", 40);
2045
#if MAX_MULT_SECTORS > 1    
2046
    stw(p + 47, MAX_MULT_SECTORS);
2047
#endif
2048
    stw(p + 48, 1); /* dword I/O */
2049
    stw(p + 49, 1 << 9); /* LBA supported, no DMA */
2050
    stw(p + 51, 0x200); /* PIO transfer cycle */
2051
    stw(p + 52, 0x200); /* DMA transfer cycle */
2052
    stw(p + 54, s->cylinders);
2053
    stw(p + 55, s->heads);
2054
    stw(p + 56, s->sectors);
2055
    oldsize = s->cylinders * s->heads * s->sectors;
2056
    stw(p + 57, oldsize);
2057
    stw(p + 58, oldsize >> 16);
2058
    if (s->mult_sectors)
2059
        stw(p + 59, 0x100 | s->mult_sectors);
2060
    stw(p + 60, s->nb_sectors);
2061
    stw(p + 61, s->nb_sectors >> 16);
2062
    stw(p + 80, (1 << 1) | (1 << 2));
2063
    stw(p + 82, (1 << 14));
2064
    stw(p + 83, (1 << 14));
2065
    stw(p + 84, (1 << 14));
2066
    stw(p + 85, (1 << 14));
2067
    stw(p + 86, 0);
2068
    stw(p + 87, (1 << 14));
2069
}
2070

    
2071
static inline void ide_abort_command(IDEState *s)
2072
{
2073
    s->status = READY_STAT | ERR_STAT;
2074
    s->error = ABRT_ERR;
2075
}
2076

    
2077
static inline void ide_set_irq(IDEState *s)
2078
{
2079
    if (!(ide_state[0].cmd & IDE_CMD_DISABLE_IRQ)) {
2080
        pic_set_irq(s->irq, 1);
2081
    }
2082
}
2083

    
2084
/* prepare data transfer and tell what to do after */
2085
static void ide_transfer_start(IDEState *s, int size, 
2086
                               EndTransferFunc *end_transfer_func)
2087
{
2088
    s->end_transfer_func = end_transfer_func;
2089
    s->data_ptr = s->io_buffer;
2090
    s->data_end = s->io_buffer + size;
2091
    s->status |= DRQ_STAT;
2092
}
2093

    
2094
static void ide_transfer_stop(IDEState *s)
2095
{
2096
    s->end_transfer_func = ide_transfer_stop;
2097
    s->data_ptr = s->io_buffer;
2098
    s->data_end = s->io_buffer;
2099
    s->status &= ~DRQ_STAT;
2100
}
2101

    
2102
static int64_t ide_get_sector(IDEState *s)
2103
{
2104
    int64_t sector_num;
2105
    if (s->select & 0x40) {
2106
        /* lba */
2107
        sector_num = ((s->select & 0x0f) << 24) | (s->hcyl << 16) | 
2108
            (s->lcyl << 8) | s->sector;
2109
    } else {
2110
        sector_num = ((s->hcyl << 8) | s->lcyl) * s->heads * s->sectors +
2111
            (s->select & 0x0f) * s->sectors + 
2112
            (s->sector - 1);
2113
    }
2114
    return sector_num;
2115
}
2116

    
2117
static void ide_set_sector(IDEState *s, int64_t sector_num)
2118
{
2119
    unsigned int cyl, r;
2120
    if (s->select & 0x40) {
2121
        s->select = (s->select & 0xf0) | (sector_num >> 24);
2122
        s->hcyl = (sector_num >> 16);
2123
        s->lcyl = (sector_num >> 8);
2124
        s->sector = (sector_num);
2125
    } else {
2126
        cyl = sector_num / (s->heads * s->sectors);
2127
        r = sector_num % (s->heads * s->sectors);
2128
        s->hcyl = cyl >> 8;
2129
        s->lcyl = cyl;
2130
        s->select = (s->select & 0xf0) | (r / s->sectors);
2131
        s->sector = (r % s->sectors) + 1;
2132
    }
2133
}
2134

    
2135
static void ide_sector_read(IDEState *s)
2136
{
2137
    int64_t sector_num;
2138
    int ret, n;
2139

    
2140
    s->status = READY_STAT | SEEK_STAT;
2141
    sector_num = ide_get_sector(s);
2142
    n = s->nsector;
2143
    if (n == 0) {
2144
        /* no more sector to read from disk */
2145
        ide_transfer_stop(s);
2146
    } else {
2147
#if defined(DEBUG_IDE)
2148
        printf("read sector=%Ld\n", sector_num);
2149
#endif
2150
        if (n > s->req_nb_sectors)
2151
            n = s->req_nb_sectors;
2152
        ret = bdrv_read(s->bs, sector_num, s->io_buffer, n);
2153
        ide_transfer_start(s, 512 * n, ide_sector_read);
2154
        ide_set_irq(s);
2155
        ide_set_sector(s, sector_num + n);
2156
        s->nsector -= n;
2157
    }
2158
}
2159

    
2160
static void ide_sector_write(IDEState *s)
2161
{
2162
    int64_t sector_num;
2163
    int ret, n, n1;
2164

    
2165
    s->status = READY_STAT | SEEK_STAT;
2166
    sector_num = ide_get_sector(s);
2167
#if defined(DEBUG_IDE)
2168
    printf("write sector=%Ld\n", sector_num);
2169
#endif
2170
    n = s->nsector;
2171
    if (n > s->req_nb_sectors)
2172
        n = s->req_nb_sectors;
2173
    ret = bdrv_write(s->bs, sector_num, s->io_buffer, n);
2174
    s->nsector -= n;
2175
    if (s->nsector == 0) {
2176
        /* no more sector to write */
2177
        ide_transfer_stop(s);
2178
    } else {
2179
        n1 = s->nsector;
2180
        if (n1 > s->req_nb_sectors)
2181
            n1 = s->req_nb_sectors;
2182
        ide_transfer_start(s, 512 * n1, ide_sector_write);
2183
    }
2184
    ide_set_sector(s, sector_num + n);
2185
    ide_set_irq(s);
2186
}
2187

    
2188
void ide_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
2189
{
2190
    IDEState *s = ide_state[0].cur_drive;
2191
    int unit, n;
2192

    
2193
    addr &= 7;
2194
#ifdef DEBUG_IDE
2195
    printf("IDE: write addr=0x%x val=0x%02x\n", addr, val);
2196
#endif
2197
    switch(addr) {
2198
    case 0:
2199
        break;
2200
    case 1:
2201
        s->feature = val;
2202
        break;
2203
    case 2:
2204
        if (val == 0)
2205
            val = 256;
2206
        s->nsector = val;
2207
        break;
2208
    case 3:
2209
        s->sector = val;
2210
        break;
2211
    case 4:
2212
        s->lcyl = val;
2213
        break;
2214
    case 5:
2215
        s->hcyl = val;
2216
        break;
2217
    case 6:
2218
        /* select drive */
2219
        unit = (val >> 4) & 1;
2220
        s = &ide_state[unit];
2221
        ide_state[0].cur_drive = s;
2222
        s->select = val;
2223
        break;
2224
    default:
2225
    case 7:
2226
        /* command */
2227
#if defined(DEBUG_IDE)
2228
        printf("ide: CMD=%02x\n", val);
2229
#endif
2230
        switch(val) {
2231
        case WIN_PIDENTIFY:
2232
        case WIN_IDENTIFY:
2233
            if (s->bs) {
2234
                ide_identify(s);
2235
                s->status = READY_STAT;
2236
                ide_transfer_start(s, 512, ide_transfer_stop);
2237
            } else {
2238
                ide_abort_command(s);
2239
            }
2240
            ide_set_irq(s);
2241
            break;
2242
        case WIN_SPECIFY:
2243
        case WIN_RECAL:
2244
            s->status = READY_STAT;
2245
            ide_set_irq(s);
2246
            break;
2247
        case WIN_SETMULT:
2248
            if (s->nsector > MAX_MULT_SECTORS || 
2249
                s->nsector == 0 ||
2250
                (s->nsector & (s->nsector - 1)) != 0) {
2251
                ide_abort_command(s);
2252
            } else {
2253
                s->mult_sectors = s->nsector;
2254
                s->status = READY_STAT;
2255
            }
2256
            ide_set_irq(s);
2257
            break;
2258
        case WIN_READ:
2259
        case WIN_READ_ONCE:
2260
            s->req_nb_sectors = 1;
2261
            ide_sector_read(s);
2262
            break;
2263
        case WIN_WRITE:
2264
        case WIN_WRITE_ONCE:
2265
            s->status = SEEK_STAT;
2266
            s->req_nb_sectors = 1;
2267
            ide_transfer_start(s, 512, ide_sector_write);
2268
            break;
2269
        case WIN_MULTREAD:
2270
            if (!s->mult_sectors)
2271
                goto abort_cmd;
2272
            s->req_nb_sectors = s->mult_sectors;
2273
            ide_sector_read(s);
2274
            break;
2275
        case WIN_MULTWRITE:
2276
            if (!s->mult_sectors)
2277
                goto abort_cmd;
2278
            s->status = SEEK_STAT;
2279
            s->req_nb_sectors = s->mult_sectors;
2280
            n = s->nsector;
2281
            if (n > s->req_nb_sectors)
2282
                n = s->req_nb_sectors;
2283
            ide_transfer_start(s, 512 * n, ide_sector_write);
2284
            break;
2285
        default:
2286
        abort_cmd:
2287
            ide_abort_command(s);
2288
            ide_set_irq(s);
2289
            break;
2290
        }
2291
    }
2292
}
2293

    
2294
uint32_t ide_ioport_read(CPUX86State *env, uint32_t addr)
2295
{
2296
    IDEState *s = ide_state[0].cur_drive;
2297
    int ret;
2298

    
2299
    addr &= 7;
2300
    switch(addr) {
2301
    case 0:
2302
        ret = 0xff;
2303
        break;
2304
    case 1:
2305
        ret = s->error;
2306
        break;
2307
    case 2:
2308
        ret = s->nsector & 0xff;
2309
        break;
2310
    case 3:
2311
        ret = s->sector;
2312
        break;
2313
    case 4:
2314
        ret = s->lcyl;
2315
        break;
2316
    case 5:
2317
        ret = s->hcyl;
2318
        break;
2319
    case 6:
2320
        ret = s->select;
2321
        break;
2322
    default:
2323
    case 7:
2324
        ret = s->status;
2325
        pic_set_irq(s->irq, 0);
2326
        break;
2327
    }
2328
#ifdef DEBUG_IDE
2329
    printf("ide: read addr=0x%x val=%02x\n", addr, ret);
2330
#endif
2331
    return ret;
2332
}
2333

    
2334
uint32_t ide_status_read(CPUX86State *env, uint32_t addr)
2335
{
2336
    IDEState *s = ide_state[0].cur_drive;
2337
    int ret;
2338
    ret = s->status;
2339
#ifdef DEBUG_IDE
2340
    printf("ide: read addr=0x%x val=%02x\n", addr, ret);
2341
#endif
2342
    return ret;
2343
}
2344

    
2345
void ide_cmd_write(CPUX86State *env, uint32_t addr, uint32_t val)
2346
{
2347
    IDEState *s = &ide_state[0];
2348
    /* common for both drives */
2349
    s->cmd = val;
2350
}
2351

    
2352
void ide_data_writew(CPUX86State *env, uint32_t addr, uint32_t val)
2353
{
2354
    IDEState *s = ide_state[0].cur_drive;
2355
    uint8_t *p;
2356

    
2357
    p = s->data_ptr;
2358
    *(uint16_t *)p = tswap16(val);
2359
    p += 2;
2360
    s->data_ptr = p;
2361
    if (p >= s->data_end)
2362
        s->end_transfer_func(s);
2363
}
2364

    
2365
uint32_t ide_data_readw(CPUX86State *env, uint32_t addr)
2366
{
2367
    IDEState *s = ide_state[0].cur_drive;
2368
    uint8_t *p;
2369
    int ret;
2370
    
2371
    p = s->data_ptr;
2372
    ret = tswap16(*(uint16_t *)p);
2373
    p += 2;
2374
    s->data_ptr = p;
2375
    if (p >= s->data_end)
2376
        s->end_transfer_func(s);
2377
    return ret;
2378
}
2379

    
2380
void ide_data_writel(CPUX86State *env, uint32_t addr, uint32_t val)
2381
{
2382
    IDEState *s = ide_state[0].cur_drive;
2383
    uint8_t *p;
2384

    
2385
    p = s->data_ptr;
2386
    *(uint32_t *)p = tswap32(val);
2387
    p += 4;
2388
    s->data_ptr = p;
2389
    if (p >= s->data_end)
2390
        s->end_transfer_func(s);
2391
}
2392

    
2393
uint32_t ide_data_readl(CPUX86State *env, uint32_t addr)
2394
{
2395
    IDEState *s = ide_state[0].cur_drive;
2396
    uint8_t *p;
2397
    int ret;
2398
    
2399
    p = s->data_ptr;
2400
    ret = tswap32(*(uint32_t *)p);
2401
    p += 4;
2402
    s->data_ptr = p;
2403
    if (p >= s->data_end)
2404
        s->end_transfer_func(s);
2405
    return ret;
2406
}
2407

    
2408
void ide_reset(IDEState *s)
2409
{
2410
    s->mult_sectors = MAX_MULT_SECTORS;
2411
    s->status = READY_STAT;
2412
    s->cur_drive = s;
2413
    s->select = 0xa0;
2414
}
2415

    
2416
void ide_init(void)
2417
{
2418
    IDEState *s;
2419
    int i, cylinders;
2420
    int64_t nb_sectors;
2421

    
2422
    for(i = 0; i < MAX_DISKS; i++) {
2423
        s = &ide_state[i];
2424
        s->bs = bs_table[i];
2425
        if (s->bs) {
2426
            bdrv_get_geometry(s->bs, &nb_sectors);
2427
            cylinders = nb_sectors / (16 * 63);
2428
            if (cylinders > 16383)
2429
                cylinders = 16383;
2430
            else if (cylinders < 2)
2431
                cylinders = 2;
2432
            s->cylinders = cylinders;
2433
            s->heads = 16;
2434
            s->sectors = 63;
2435
            s->nb_sectors = nb_sectors;
2436
        }
2437
        s->irq = 14;
2438
        ide_reset(s);
2439
    }
2440
    register_ioport_write(0x1f0, 8, ide_ioport_write, 1);
2441
    register_ioport_read(0x1f0, 8, ide_ioport_read, 1);
2442
    register_ioport_read(0x3f6, 1, ide_status_read, 1);
2443
    register_ioport_write(0x3f6, 1, ide_cmd_write, 1);
2444

    
2445
    /* data ports */
2446
    register_ioport_write(0x1f0, 2, ide_data_writew, 2);
2447
    register_ioport_read(0x1f0, 2, ide_data_readw, 2);
2448
    register_ioport_write(0x1f0, 4, ide_data_writel, 4);
2449
    register_ioport_read(0x1f0, 4, ide_data_readl, 4);
2450
}
2451

    
2452
/***********************************************************/
2453
/* cpu signal handler */
2454
static void host_segv_handler(int host_signum, siginfo_t *info, 
2455
                              void *puc)
2456
{
2457
    if (cpu_signal_handler(host_signum, info, puc))
2458
        return;
2459
    term_exit();
2460
    abort();
2461
}
2462

    
2463
static int timer_irq_pending;
2464
static int timer_irq_count;
2465

    
2466
static void host_alarm_handler(int host_signum, siginfo_t *info, 
2467
                               void *puc)
2468
{
2469
    /* NOTE: since usually the OS asks a 100 Hz clock, there can be
2470
       some drift between cpu_get_ticks() and the interrupt time. So
2471
       we queue some interrupts to avoid missing some */
2472
    timer_irq_count += pit_get_out_edges(&pit_channels[0]);
2473
    if (timer_irq_count) {
2474
        if (timer_irq_count > 2)
2475
            timer_irq_count = 2;
2476
        timer_irq_count--;
2477
        /* just exit from the cpu to have a chance to handle timers */
2478
        cpu_x86_interrupt(global_env, CPU_INTERRUPT_EXIT);
2479
        timer_irq_pending = 1;
2480
    }
2481
}
2482

    
2483
/* main execution loop */
2484

    
2485
CPUState *cpu_gdbstub_get_env(void *opaque)
2486
{
2487
    return global_env;
2488
}
2489

    
2490
void main_loop(void *opaque)
2491
{
2492
    struct pollfd ufds[2], *pf, *serial_ufd, *net_ufd, *gdb_ufd;
2493
    int ret, n, timeout;
2494
    uint8_t ch;
2495
    CPUState *env = global_env;
2496

    
2497
    for(;;) {
2498

    
2499
        ret = cpu_x86_exec(env);
2500

    
2501
        /* if hlt instruction, we wait until the next IRQ */
2502
        if (ret == EXCP_HLT) 
2503
            timeout = 10;
2504
        else
2505
            timeout = 0;
2506
        /* poll any events */
2507
        serial_ufd = NULL;
2508
        pf = ufds;
2509
        if (!(serial_ports[0].lsr & UART_LSR_DR)) {
2510
            serial_ufd = pf;
2511
            pf->fd = 0;
2512
            pf->events = POLLIN;
2513
            pf++;
2514
        }
2515
        net_ufd = NULL;
2516
        if (net_fd > 0 && ne2000_can_receive(&ne2000_state)) {
2517
            net_ufd = pf;
2518
            pf->fd = net_fd;
2519
            pf->events = POLLIN;
2520
            pf++;
2521
        }
2522
        gdb_ufd = NULL;
2523
        if (gdbstub_fd > 0) {
2524
            gdb_ufd = pf;
2525
            pf->fd = gdbstub_fd;
2526
            pf->events = POLLIN;
2527
            pf++;
2528
        }
2529

    
2530
        ret = poll(ufds, pf - ufds, timeout);
2531
        if (ret > 0) {
2532
            if (serial_ufd && (serial_ufd->revents & POLLIN)) {
2533
                n = read(0, &ch, 1);
2534
                if (n == 1) {
2535
                    serial_received_byte(&serial_ports[0], ch);
2536
                }
2537
            }
2538
            if (net_ufd && (net_ufd->revents & POLLIN)) {
2539
                uint8_t buf[MAX_ETH_FRAME_SIZE];
2540

    
2541
                n = read(net_fd, buf, MAX_ETH_FRAME_SIZE);
2542
                if (n > 0) {
2543
                    if (n < 60) {
2544
                        memset(buf + n, 0, 60 - n);
2545
                        n = 60;
2546
                    }
2547
                    ne2000_receive(&ne2000_state, buf, n);
2548
                }
2549
            }
2550
            if (gdb_ufd && (gdb_ufd->revents & POLLIN)) {
2551
                uint8_t buf[1];
2552
                /* stop emulation if requested by gdb */
2553
                n = read(gdbstub_fd, buf, 1);
2554
                if (n == 1)
2555
                    break;
2556
            }
2557
        }
2558

    
2559
        /* timer IRQ */
2560
        if (timer_irq_pending) {
2561
            pic_set_irq(0, 1);
2562
            pic_set_irq(0, 0);
2563
            timer_irq_pending = 0;
2564
        }
2565
    }
2566
}
2567

    
2568
void help(void)
2569
{
2570
    printf("Virtual Linux version " QEMU_VERSION ", Copyright (c) 2003 Fabrice Bellard\n"
2571
           "usage: vl [options] bzImage [kernel parameters...]\n"
2572
           "\n"
2573
           "'bzImage' is a Linux kernel image (PAGE_OFFSET must be defined\n"
2574
           "to 0x90000000 in asm/page.h and arch/i386/vmlinux.lds)\n"
2575
           "\n"
2576
           "General options:\n"
2577
           "-initrd file   use 'file' as initial ram disk\n"
2578
           "-hda file      use 'file' as hard disk 0 image\n"
2579
           "-hdb file      use 'file' as hard disk 1 image\n"
2580
           "-m megs        set virtual RAM size to megs MB\n"
2581
           "-n script      set network init script [default=%s]\n"
2582
           "\n"
2583
           "Debug options:\n"
2584
           "-s             wait gdb connection to port %d\n"
2585
           "-p port        change gdb connection port\n"
2586
           "-d             output log in /tmp/vl.log\n"
2587
           "\n"
2588
           "During emulation, use C-a h to get terminal commands:\n",
2589
           DEFAULT_NETWORK_SCRIPT, DEFAULT_GDBSTUB_PORT);
2590
    term_print_help();
2591
    exit(1);
2592
}
2593

    
2594
struct option long_options[] = {
2595
    { "initrd", 1, NULL, 0, },
2596
    { "hda", 1, NULL, 0, },
2597
    { "hdb", 1, NULL, 0, },
2598
    { NULL, 0, NULL, 0 },
2599
};
2600

    
2601
int main(int argc, char **argv)
2602
{
2603
    int c, ret, initrd_size, i, use_gdbstub, gdbstub_port, long_index;
2604
    struct linux_params *params;
2605
    struct sigaction act;
2606
    struct itimerval itv;
2607
    CPUX86State *env;
2608
    const char *tmpdir, *initrd_filename;
2609
    const char *hd_filename[MAX_DISKS];
2610
    
2611
    /* we never want that malloc() uses mmap() */
2612
    mallopt(M_MMAP_THRESHOLD, 4096 * 1024);
2613
    initrd_filename = NULL;
2614
    for(i = 0; i < MAX_DISKS; i++)
2615
        hd_filename[i] = NULL;
2616
    phys_ram_size = 32 * 1024 * 1024;
2617
    pstrcpy(network_script, sizeof(network_script), DEFAULT_NETWORK_SCRIPT);
2618
    use_gdbstub = 0;
2619
    gdbstub_port = DEFAULT_GDBSTUB_PORT;
2620
    for(;;) {
2621
        c = getopt_long_only(argc, argv, "hm:dn:sp:", long_options, &long_index);
2622
        if (c == -1)
2623
            break;
2624
        switch(c) {
2625
        case 0:
2626
            switch(long_index) {
2627
            case 0:
2628
                initrd_filename = optarg;
2629
                break;
2630
            case 1:
2631
                hd_filename[0] = optarg;
2632
                break;
2633
            case 2:
2634
                hd_filename[1] = optarg;
2635
                break;
2636
            }
2637
            break;
2638
        case 'h':
2639
            help();
2640
            break;
2641
        case 'm':
2642
            phys_ram_size = atoi(optarg) * 1024 * 1024;
2643
            if (phys_ram_size <= 0)
2644
                help();
2645
            if (phys_ram_size > PHYS_RAM_MAX_SIZE) {
2646
                fprintf(stderr, "vl: at most %d MB RAM can be simulated\n",
2647
                        PHYS_RAM_MAX_SIZE / (1024 * 1024));
2648
                exit(1);
2649
            }
2650
            break;
2651
        case 'd':
2652
            loglevel = 1;
2653
            break;
2654
        case 'n':
2655
            pstrcpy(network_script, sizeof(network_script), optarg);
2656
            break;
2657
        case 's':
2658
            use_gdbstub = 1;
2659
            break;
2660
        case 'p':
2661
            gdbstub_port = atoi(optarg);
2662
            break;
2663
        }
2664
    }
2665
    if (optind >= argc)
2666
        help();
2667

    
2668
    /* init debug */
2669
    setvbuf(stdout, NULL, _IOLBF, 0);
2670
    if (loglevel) {
2671
        logfile = fopen(DEBUG_LOGFILE, "w");
2672
        if (!logfile) {
2673
            perror(DEBUG_LOGFILE);
2674
            _exit(1);
2675
        }
2676
        setvbuf(logfile, NULL, _IOLBF, 0);
2677
    }
2678

    
2679
    /* open the virtual block devices */
2680
    for(i = 0; i < MAX_DISKS; i++) {
2681
        if (hd_filename[i]) {
2682
            bs_table[i] = bdrv_open(hd_filename[i]);
2683
            if (!bs_table[i]) {
2684
                fprintf(stderr, "vl: could not open hard disk image '%s\n",
2685
                        hd_filename[i]);
2686
                exit(1);
2687
            }
2688
        }
2689
    }
2690

    
2691
    /* init network tun interface */
2692
    net_init();
2693

    
2694
    /* init the memory */
2695
    tmpdir = getenv("VLTMPDIR");
2696
    if (!tmpdir)
2697
        tmpdir = "/tmp";
2698
    snprintf(phys_ram_file, sizeof(phys_ram_file), "%s/vlXXXXXX", tmpdir);
2699
    if (mkstemp(phys_ram_file) < 0) {
2700
        fprintf(stderr, "Could not create temporary memory file '%s'\n", 
2701
                phys_ram_file);
2702
        exit(1);
2703
    }
2704
    phys_ram_fd = open(phys_ram_file, O_CREAT | O_TRUNC | O_RDWR, 0600);
2705
    if (phys_ram_fd < 0) {
2706
        fprintf(stderr, "Could not open temporary memory file '%s'\n", 
2707
                phys_ram_file);
2708
        exit(1);
2709
    }
2710
    ftruncate(phys_ram_fd, phys_ram_size);
2711
    unlink(phys_ram_file);
2712
    phys_ram_base = mmap((void *)PHYS_RAM_BASE, phys_ram_size, 
2713
                         PROT_WRITE | PROT_READ, MAP_SHARED | MAP_FIXED, 
2714
                         phys_ram_fd, 0);
2715
    if (phys_ram_base == MAP_FAILED) {
2716
        fprintf(stderr, "Could not map physical memory\n");
2717
        exit(1);
2718
    }
2719

    
2720
    /* now we can load the kernel */
2721
    ret = load_kernel(argv[optind], phys_ram_base + KERNEL_LOAD_ADDR);
2722
    if (ret < 0) {
2723
        fprintf(stderr, "vl: could not load kernel '%s'\n", argv[optind]);
2724
        exit(1);
2725
    }
2726

    
2727
    /* load initrd */
2728
    initrd_size = 0;
2729
    if (initrd_filename) {
2730
        initrd_size = load_image(initrd_filename, phys_ram_base + INITRD_LOAD_ADDR);
2731
        if (initrd_size < 0) {
2732
            fprintf(stderr, "vl: could not load initial ram disk '%s'\n", 
2733
                    initrd_filename);
2734
            exit(1);
2735
        }
2736
    }
2737

    
2738
    /* init kernel params */
2739
    params = (void *)(phys_ram_base + KERNEL_PARAMS_ADDR);
2740
    memset(params, 0, sizeof(struct linux_params));
2741
    params->mount_root_rdonly = 0;
2742
    params->cl_magic = 0xA33F;
2743
    params->cl_offset = params->commandline - (uint8_t *)params;
2744
    params->alt_mem_k = (phys_ram_size / 1024) - 1024;
2745
    for(i = optind + 1; i < argc; i++) {
2746
        if (i != optind + 1)
2747
            pstrcat(params->commandline, sizeof(params->commandline), " ");
2748
        pstrcat(params->commandline, sizeof(params->commandline), argv[i]);
2749
    }
2750
    params->loader_type = 0x01;
2751
    if (initrd_size > 0) {
2752
        params->initrd_start = INITRD_LOAD_ADDR;
2753
        params->initrd_size = initrd_size;
2754
    }
2755
    params->orig_video_lines = 25;
2756
    params->orig_video_cols = 80;
2757

    
2758
    /* init basic PC hardware */
2759
    init_ioports();
2760
    register_ioport_write(0x80, 1, ioport80_write, 1);
2761

    
2762
    register_ioport_write(0x3d4, 2, vga_ioport_write, 1);
2763

    
2764
    cmos_init();
2765
    pic_init();
2766
    pit_init();
2767
    serial_init();
2768
    ne2000_init();
2769
    ide_init();
2770

    
2771
    /* setup cpu signal handlers for MMU / self modifying code handling */
2772
    sigfillset(&act.sa_mask);
2773
    act.sa_flags = SA_SIGINFO;
2774
    act.sa_sigaction = host_segv_handler;
2775
    sigaction(SIGSEGV, &act, NULL);
2776
    sigaction(SIGBUS, &act, NULL);
2777

    
2778
    act.sa_sigaction = host_alarm_handler;
2779
    sigaction(SIGALRM, &act, NULL);
2780

    
2781
    /* init CPU state */
2782
    env = cpu_init();
2783
    global_env = env;
2784
    cpu_single_env = env;
2785

    
2786
    /* setup basic memory access */
2787
    env->cr[0] = 0x00000033;
2788
    cpu_x86_init_mmu(env);
2789
    
2790
    memset(params->idt_table, 0, sizeof(params->idt_table));
2791

    
2792
    params->gdt_table[2] = 0x00cf9a000000ffffLL; /* KERNEL_CS */
2793
    params->gdt_table[3] = 0x00cf92000000ffffLL; /* KERNEL_DS */
2794
    
2795
    env->idt.base = (void *)params->idt_table;
2796
    env->idt.limit = sizeof(params->idt_table) - 1;
2797
    env->gdt.base = (void *)params->gdt_table;
2798
    env->gdt.limit = sizeof(params->gdt_table) - 1;
2799

    
2800
    cpu_x86_load_seg(env, R_CS, KERNEL_CS);
2801
    cpu_x86_load_seg(env, R_DS, KERNEL_DS);
2802
    cpu_x86_load_seg(env, R_ES, KERNEL_DS);
2803
    cpu_x86_load_seg(env, R_SS, KERNEL_DS);
2804
    cpu_x86_load_seg(env, R_FS, KERNEL_DS);
2805
    cpu_x86_load_seg(env, R_GS, KERNEL_DS);
2806
    
2807
    env->eip = KERNEL_LOAD_ADDR;
2808
    env->regs[R_ESI] = KERNEL_PARAMS_ADDR;
2809
    env->eflags = 0x2;
2810

    
2811
    itv.it_interval.tv_sec = 0;
2812
    itv.it_interval.tv_usec = 1000;
2813
    itv.it_value.tv_sec = 0;
2814
    itv.it_value.tv_usec = 10 * 1000;
2815
    setitimer(ITIMER_REAL, &itv, NULL);
2816
    /* we probe the tick duration of the kernel to inform the user if
2817
       the emulated kernel requested a too high timer frequency */
2818
    getitimer(ITIMER_REAL, &itv);
2819
    pit_min_timer_count = ((uint64_t)itv.it_interval.tv_usec * PIT_FREQ) / 
2820
        1000000;
2821
    
2822
    if (use_gdbstub) {
2823
        cpu_gdbstub(NULL, main_loop, gdbstub_port);
2824
    } else {
2825
        main_loop(NULL);
2826
    }
2827
    return 0;
2828
}