Statistics
| Branch: | Revision:

root / target-i386 / exec.h @ 7a0e1f41

History | View | Annotate | Download (14.4 kB)

1
/*
2
 *  i386 execution defines 
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#include "dyngen-exec.h"
22

    
23
/* XXX: factorize this mess */
24
#ifdef TARGET_X86_64
25
#define TARGET_LONG_BITS 64
26
#else
27
#define TARGET_LONG_BITS 32
28
#endif
29

    
30
#include "cpu-defs.h"
31

    
32
/* at least 4 register variables are defined */
33
register struct CPUX86State *env asm(AREG0);
34

    
35
#if TARGET_LONG_BITS > HOST_LONG_BITS
36

    
37
/* no registers can be used */
38
#define T0 (env->t0)
39
#define T1 (env->t1)
40
#define T2 (env->t2)
41

    
42
#else
43

    
44
/* XXX: use unsigned long instead of target_ulong - better code will
45
   be generated for 64 bit CPUs */
46
register target_ulong T0 asm(AREG1);
47
register target_ulong T1 asm(AREG2);
48
register target_ulong T2 asm(AREG3);
49

    
50
/* if more registers are available, we define some registers too */
51
#ifdef AREG4
52
register target_ulong EAX asm(AREG4);
53
#define reg_EAX
54
#endif
55

    
56
#ifdef AREG5
57
register target_ulong ESP asm(AREG5);
58
#define reg_ESP
59
#endif
60

    
61
#ifdef AREG6
62
register target_ulong EBP asm(AREG6);
63
#define reg_EBP
64
#endif
65

    
66
#ifdef AREG7
67
register target_ulong ECX asm(AREG7);
68
#define reg_ECX
69
#endif
70

    
71
#ifdef AREG8
72
register target_ulong EDX asm(AREG8);
73
#define reg_EDX
74
#endif
75

    
76
#ifdef AREG9
77
register target_ulong EBX asm(AREG9);
78
#define reg_EBX
79
#endif
80

    
81
#ifdef AREG10
82
register target_ulong ESI asm(AREG10);
83
#define reg_ESI
84
#endif
85

    
86
#ifdef AREG11
87
register target_ulong EDI asm(AREG11);
88
#define reg_EDI
89
#endif
90

    
91
#endif /* ! (TARGET_LONG_BITS > HOST_LONG_BITS) */
92

    
93
#define A0 T2
94

    
95
extern FILE *logfile;
96
extern int loglevel;
97

    
98
#ifndef reg_EAX
99
#define EAX (env->regs[R_EAX])
100
#endif
101
#ifndef reg_ECX
102
#define ECX (env->regs[R_ECX])
103
#endif
104
#ifndef reg_EDX
105
#define EDX (env->regs[R_EDX])
106
#endif
107
#ifndef reg_EBX
108
#define EBX (env->regs[R_EBX])
109
#endif
110
#ifndef reg_ESP
111
#define ESP (env->regs[R_ESP])
112
#endif
113
#ifndef reg_EBP
114
#define EBP (env->regs[R_EBP])
115
#endif
116
#ifndef reg_ESI
117
#define ESI (env->regs[R_ESI])
118
#endif
119
#ifndef reg_EDI
120
#define EDI (env->regs[R_EDI])
121
#endif
122
#define EIP  (env->eip)
123
#define DF  (env->df)
124

    
125
#define CC_SRC (env->cc_src)
126
#define CC_DST (env->cc_dst)
127
#define CC_OP  (env->cc_op)
128

    
129
/* float macros */
130
#define FT0    (env->ft0)
131
#define ST0    (env->fpregs[env->fpstt].d)
132
#define ST(n)  (env->fpregs[(env->fpstt + (n)) & 7].d)
133
#define ST1    ST(1)
134

    
135
#ifdef USE_FP_CONVERT
136
#define FP_CONVERT  (env->fp_convert)
137
#endif
138

    
139
#include "cpu.h"
140
#include "exec-all.h"
141

    
142
typedef struct CCTable {
143
    int (*compute_all)(void); /* return all the flags */
144
    int (*compute_c)(void);  /* return the C flag */
145
} CCTable;
146

    
147
extern CCTable cc_table[];
148

    
149
void load_seg(int seg_reg, int selector);
150
void helper_ljmp_protected_T0_T1(int next_eip);
151
void helper_lcall_real_T0_T1(int shift, int next_eip);
152
void helper_lcall_protected_T0_T1(int shift, int next_eip);
153
void helper_iret_real(int shift);
154
void helper_iret_protected(int shift, int next_eip);
155
void helper_lret_protected(int shift, int addend);
156
void helper_lldt_T0(void);
157
void helper_ltr_T0(void);
158
void helper_movl_crN_T0(int reg);
159
void helper_movl_drN_T0(int reg);
160
void helper_invlpg(unsigned int addr);
161
void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
162
void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
163
void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
164
void cpu_x86_flush_tlb(CPUX86State *env, uint32_t addr);
165
int cpu_x86_handle_mmu_fault(CPUX86State *env, target_ulong addr, 
166
                             int is_write, int is_user, int is_softmmu);
167
void tlb_fill(target_ulong addr, int is_write, int is_user, 
168
              void *retaddr);
169
void __hidden cpu_lock(void);
170
void __hidden cpu_unlock(void);
171
void do_interrupt(int intno, int is_int, int error_code, 
172
                  target_ulong next_eip, int is_hw);
173
void do_interrupt_user(int intno, int is_int, int error_code, 
174
                       target_ulong next_eip);
175
void raise_interrupt(int intno, int is_int, int error_code, 
176
                     int next_eip_addend);
177
void raise_exception_err(int exception_index, int error_code);
178
void raise_exception(int exception_index);
179
void __hidden cpu_loop_exit(void);
180

    
181
void OPPROTO op_movl_eflags_T0(void);
182
void OPPROTO op_movl_T0_eflags(void);
183
void helper_divl_EAX_T0(void);
184
void helper_idivl_EAX_T0(void);
185
void helper_mulq_EAX_T0(void);
186
void helper_imulq_EAX_T0(void);
187
void helper_imulq_T0_T1(void);
188
void helper_divq_EAX_T0(void);
189
void helper_idivq_EAX_T0(void);
190
void helper_cmpxchg8b(void);
191
void helper_cpuid(void);
192
void helper_enter_level(int level, int data32);
193
void helper_sysenter(void);
194
void helper_sysexit(void);
195
void helper_syscall(int next_eip_addend);
196
void helper_sysret(int dflag);
197
void helper_rdtsc(void);
198
void helper_rdmsr(void);
199
void helper_wrmsr(void);
200
void helper_lsl(void);
201
void helper_lar(void);
202
void helper_verr(void);
203
void helper_verw(void);
204

    
205
void check_iob_T0(void);
206
void check_iow_T0(void);
207
void check_iol_T0(void);
208
void check_iob_DX(void);
209
void check_iow_DX(void);
210
void check_iol_DX(void);
211

    
212
/* XXX: move that to a generic header */
213
#if !defined(CONFIG_USER_ONLY)
214

    
215
#define ldul_user ldl_user
216
#define ldul_kernel ldl_kernel
217

    
218
#define ACCESS_TYPE 0
219
#define MEMSUFFIX _kernel
220
#define DATA_SIZE 1
221
#include "softmmu_header.h"
222

    
223
#define DATA_SIZE 2
224
#include "softmmu_header.h"
225

    
226
#define DATA_SIZE 4
227
#include "softmmu_header.h"
228

    
229
#define DATA_SIZE 8
230
#include "softmmu_header.h"
231
#undef ACCESS_TYPE
232
#undef MEMSUFFIX
233

    
234
#define ACCESS_TYPE 1
235
#define MEMSUFFIX _user
236
#define DATA_SIZE 1
237
#include "softmmu_header.h"
238

    
239
#define DATA_SIZE 2
240
#include "softmmu_header.h"
241

    
242
#define DATA_SIZE 4
243
#include "softmmu_header.h"
244

    
245
#define DATA_SIZE 8
246
#include "softmmu_header.h"
247
#undef ACCESS_TYPE
248
#undef MEMSUFFIX
249

    
250
/* these access are slower, they must be as rare as possible */
251
#define ACCESS_TYPE 2
252
#define MEMSUFFIX _data
253
#define DATA_SIZE 1
254
#include "softmmu_header.h"
255

    
256
#define DATA_SIZE 2
257
#include "softmmu_header.h"
258

    
259
#define DATA_SIZE 4
260
#include "softmmu_header.h"
261

    
262
#define DATA_SIZE 8
263
#include "softmmu_header.h"
264
#undef ACCESS_TYPE
265
#undef MEMSUFFIX
266

    
267
#define ldub(p) ldub_data(p)
268
#define ldsb(p) ldsb_data(p)
269
#define lduw(p) lduw_data(p)
270
#define ldsw(p) ldsw_data(p)
271
#define ldl(p) ldl_data(p)
272
#define ldq(p) ldq_data(p)
273

    
274
#define stb(p, v) stb_data(p, v)
275
#define stw(p, v) stw_data(p, v)
276
#define stl(p, v) stl_data(p, v)
277
#define stq(p, v) stq_data(p, v)
278

    
279
static inline double ldfq(target_ulong ptr)
280
{
281
    union {
282
        double d;
283
        uint64_t i;
284
    } u;
285
    u.i = ldq(ptr);
286
    return u.d;
287
}
288

    
289
static inline void stfq(target_ulong ptr, double v)
290
{
291
    union {
292
        double d;
293
        uint64_t i;
294
    } u;
295
    u.d = v;
296
    stq(ptr, u.i);
297
}
298

    
299
static inline float ldfl(target_ulong ptr)
300
{
301
    union {
302
        float f;
303
        uint32_t i;
304
    } u;
305
    u.i = ldl(ptr);
306
    return u.f;
307
}
308

    
309
static inline void stfl(target_ulong ptr, float v)
310
{
311
    union {
312
        float f;
313
        uint32_t i;
314
    } u;
315
    u.f = v;
316
    stl(ptr, u.i);
317
}
318

    
319
#endif /* !defined(CONFIG_USER_ONLY) */
320

    
321
#ifdef USE_X86LDOUBLE
322
/* use long double functions */
323
#define floatx_to_int32 floatx80_to_int32
324
#define floatx_to_int64 floatx80_to_int64
325
#define floatx_abs floatx80_abs
326
#define floatx_chs floatx80_chs
327
#define floatx_round_to_int floatx80_round_to_int
328
#define sin sinl
329
#define cos cosl
330
#define sqrt sqrtl
331
#define pow powl
332
#define log logl
333
#define tan tanl
334
#define atan2 atan2l
335
#define floor floorl
336
#define ceil ceill
337
#else
338
#define floatx_to_int32 float64_to_int32
339
#define floatx_to_int64 float64_to_int64
340
#define floatx_abs float64_abs
341
#define floatx_chs float64_chs
342
#define floatx_round_to_int float64_round_to_int
343
#endif
344

    
345
extern CPU86_LDouble sin(CPU86_LDouble x);
346
extern CPU86_LDouble cos(CPU86_LDouble x);
347
extern CPU86_LDouble sqrt(CPU86_LDouble x);
348
extern CPU86_LDouble pow(CPU86_LDouble, CPU86_LDouble);
349
extern CPU86_LDouble log(CPU86_LDouble x);
350
extern CPU86_LDouble tan(CPU86_LDouble x);
351
extern CPU86_LDouble atan2(CPU86_LDouble, CPU86_LDouble);
352
extern CPU86_LDouble floor(CPU86_LDouble x);
353
extern CPU86_LDouble ceil(CPU86_LDouble x);
354

    
355
#define RC_MASK         0xc00
356
#define RC_NEAR                0x000
357
#define RC_DOWN                0x400
358
#define RC_UP                0x800
359
#define RC_CHOP                0xc00
360

    
361
#define MAXTAN 9223372036854775808.0
362

    
363
#ifdef USE_X86LDOUBLE
364

    
365
/* only for x86 */
366
typedef union {
367
    long double d;
368
    struct {
369
        unsigned long long lower;
370
        unsigned short upper;
371
    } l;
372
} CPU86_LDoubleU;
373

    
374
/* the following deal with x86 long double-precision numbers */
375
#define MAXEXPD 0x7fff
376
#define EXPBIAS 16383
377
#define EXPD(fp)        (fp.l.upper & 0x7fff)
378
#define SIGND(fp)        ((fp.l.upper) & 0x8000)
379
#define MANTD(fp)       (fp.l.lower)
380
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
381

    
382
#else
383

    
384
/* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
385
typedef union {
386
    double d;
387
#if !defined(WORDS_BIGENDIAN) && !defined(__arm__)
388
    struct {
389
        uint32_t lower;
390
        int32_t upper;
391
    } l;
392
#else
393
    struct {
394
        int32_t upper;
395
        uint32_t lower;
396
    } l;
397
#endif
398
#ifndef __arm__
399
    int64_t ll;
400
#endif
401
} CPU86_LDoubleU;
402

    
403
/* the following deal with IEEE double-precision numbers */
404
#define MAXEXPD 0x7ff
405
#define EXPBIAS 1023
406
#define EXPD(fp)        (((fp.l.upper) >> 20) & 0x7FF)
407
#define SIGND(fp)        ((fp.l.upper) & 0x80000000)
408
#ifdef __arm__
409
#define MANTD(fp)        (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
410
#else
411
#define MANTD(fp)        (fp.ll & ((1LL << 52) - 1))
412
#endif
413
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
414
#endif
415

    
416
static inline void fpush(void)
417
{
418
    env->fpstt = (env->fpstt - 1) & 7;
419
    env->fptags[env->fpstt] = 0; /* validate stack entry */
420
}
421

    
422
static inline void fpop(void)
423
{
424
    env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
425
    env->fpstt = (env->fpstt + 1) & 7;
426
}
427

    
428
#ifndef USE_X86LDOUBLE
429
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
430
{
431
    CPU86_LDoubleU temp;
432
    int upper, e;
433
    uint64_t ll;
434

    
435
    /* mantissa */
436
    upper = lduw(ptr + 8);
437
    /* XXX: handle overflow ? */
438
    e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
439
    e |= (upper >> 4) & 0x800; /* sign */
440
    ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1);
441
#ifdef __arm__
442
    temp.l.upper = (e << 20) | (ll >> 32);
443
    temp.l.lower = ll;
444
#else
445
    temp.ll = ll | ((uint64_t)e << 52);
446
#endif
447
    return temp.d;
448
}
449

    
450
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
451
{
452
    CPU86_LDoubleU temp;
453
    int e;
454

    
455
    temp.d = f;
456
    /* mantissa */
457
    stq(ptr, (MANTD(temp) << 11) | (1LL << 63));
458
    /* exponent + sign */
459
    e = EXPD(temp) - EXPBIAS + 16383;
460
    e |= SIGND(temp) >> 16;
461
    stw(ptr + 8, e);
462
}
463
#else
464

    
465
/* XXX: same endianness assumed */
466

    
467
#ifdef CONFIG_USER_ONLY
468

    
469
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
470
{
471
    return *(CPU86_LDouble *)ptr;
472
}
473

    
474
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
475
{
476
    *(CPU86_LDouble *)ptr = f;
477
}
478

    
479
#else
480

    
481
/* we use memory access macros */
482

    
483
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
484
{
485
    CPU86_LDoubleU temp;
486

    
487
    temp.l.lower = ldq(ptr);
488
    temp.l.upper = lduw(ptr + 8);
489
    return temp.d;
490
}
491

    
492
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
493
{
494
    CPU86_LDoubleU temp;
495
    
496
    temp.d = f;
497
    stq(ptr, temp.l.lower);
498
    stw(ptr + 8, temp.l.upper);
499
}
500

    
501
#endif /* !CONFIG_USER_ONLY */
502

    
503
#endif /* USE_X86LDOUBLE */
504

    
505
#define FPUS_IE (1 << 0)
506
#define FPUS_DE (1 << 1)
507
#define FPUS_ZE (1 << 2)
508
#define FPUS_OE (1 << 3)
509
#define FPUS_UE (1 << 4)
510
#define FPUS_PE (1 << 5)
511
#define FPUS_SF (1 << 6)
512
#define FPUS_SE (1 << 7)
513
#define FPUS_B  (1 << 15)
514

    
515
#define FPUC_EM 0x3f
516

    
517
extern const CPU86_LDouble f15rk[7];
518

    
519
void helper_fldt_ST0_A0(void);
520
void helper_fstt_ST0_A0(void);
521
void fpu_raise_exception(void);
522
CPU86_LDouble helper_fdiv(CPU86_LDouble a, CPU86_LDouble b);
523
void helper_fbld_ST0_A0(void);
524
void helper_fbst_ST0_A0(void);
525
void helper_f2xm1(void);
526
void helper_fyl2x(void);
527
void helper_fptan(void);
528
void helper_fpatan(void);
529
void helper_fxtract(void);
530
void helper_fprem1(void);
531
void helper_fprem(void);
532
void helper_fyl2xp1(void);
533
void helper_fsqrt(void);
534
void helper_fsincos(void);
535
void helper_frndint(void);
536
void helper_fscale(void);
537
void helper_fsin(void);
538
void helper_fcos(void);
539
void helper_fxam_ST0(void);
540
void helper_fstenv(target_ulong ptr, int data32);
541
void helper_fldenv(target_ulong ptr, int data32);
542
void helper_fsave(target_ulong ptr, int data32);
543
void helper_frstor(target_ulong ptr, int data32);
544
void helper_fxsave(target_ulong ptr, int data64);
545
void helper_fxrstor(target_ulong ptr, int data64);
546
void restore_native_fp_state(CPUState *env);
547
void save_native_fp_state(CPUState *env);
548
float approx_rsqrt(float a);
549
float approx_rcp(float a);
550
double helper_sqrt(double a);
551
int fpu_isnan(double a);
552
void update_fp_status(void);
553

    
554
extern const uint8_t parity_table[256];
555
extern const uint8_t rclw_table[32];
556
extern const uint8_t rclb_table[32];
557

    
558
static inline uint32_t compute_eflags(void)
559
{
560
    return env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
561
}
562

    
563
/* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
564
static inline void load_eflags(int eflags, int update_mask)
565
{
566
    CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
567
    DF = 1 - (2 * ((eflags >> 10) & 1));
568
    env->eflags = (env->eflags & ~update_mask) | 
569
        (eflags & update_mask);
570
}
571

    
572
static inline void env_to_regs(void)
573
{
574
#ifdef reg_EAX
575
    EAX = env->regs[R_EAX];
576
#endif
577
#ifdef reg_ECX
578
    ECX = env->regs[R_ECX];
579
#endif
580
#ifdef reg_EDX
581
    EDX = env->regs[R_EDX];
582
#endif
583
#ifdef reg_EBX
584
    EBX = env->regs[R_EBX];
585
#endif
586
#ifdef reg_ESP
587
    ESP = env->regs[R_ESP];
588
#endif
589
#ifdef reg_EBP
590
    EBP = env->regs[R_EBP];
591
#endif
592
#ifdef reg_ESI
593
    ESI = env->regs[R_ESI];
594
#endif
595
#ifdef reg_EDI
596
    EDI = env->regs[R_EDI];
597
#endif
598
}
599

    
600
static inline void regs_to_env(void)
601
{
602
#ifdef reg_EAX
603
    env->regs[R_EAX] = EAX;
604
#endif
605
#ifdef reg_ECX
606
    env->regs[R_ECX] = ECX;
607
#endif
608
#ifdef reg_EDX
609
    env->regs[R_EDX] = EDX;
610
#endif
611
#ifdef reg_EBX
612
    env->regs[R_EBX] = EBX;
613
#endif
614
#ifdef reg_ESP
615
    env->regs[R_ESP] = ESP;
616
#endif
617
#ifdef reg_EBP
618
    env->regs[R_EBP] = EBP;
619
#endif
620
#ifdef reg_ESI
621
    env->regs[R_ESI] = ESI;
622
#endif
623
#ifdef reg_EDI
624
    env->regs[R_EDI] = EDI;
625
#endif
626
}