Statistics
| Branch: | Revision:

root / hw / etraxfs_timer.c @ 7a3161ba

History | View | Annotate | Download (7.3 kB)

1
/*
2
 * QEMU ETRAX Timers
3
 *
4
 * Copyright (c) 2007 Edgar E. Iglesias, Axis Communications AB.
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include <stdio.h>
25
#include <sys/time.h>
26
#include "hw.h"
27
#include "sysemu.h"
28
#include "qemu-timer.h"
29
#include "etraxfs.h"
30

    
31
#define D(x)
32

    
33
#define RW_TMR0_DIV   0x00
34
#define R_TMR0_DATA   0x04
35
#define RW_TMR0_CTRL  0x08
36
#define RW_TMR1_DIV   0x10
37
#define R_TMR1_DATA   0x14
38
#define RW_TMR1_CTRL  0x18
39
#define R_TIME        0x38
40
#define RW_WD_CTRL    0x40
41
#define R_WD_STAT     0x44
42
#define RW_INTR_MASK  0x48
43
#define RW_ACK_INTR   0x4c
44
#define R_INTR        0x50
45
#define R_MASKED_INTR 0x54
46

    
47
struct fs_timer_t {
48
        CPUState *env;
49
        qemu_irq *irq;
50
        qemu_irq *nmi;
51

    
52
        QEMUBH *bh_t0;
53
        QEMUBH *bh_t1;
54
        QEMUBH *bh_wd;
55
        ptimer_state *ptimer_t0;
56
        ptimer_state *ptimer_t1;
57
        ptimer_state *ptimer_wd;
58
        struct timeval last;
59

    
60
        int wd_hits;
61

    
62
        /* Control registers.  */
63
        uint32_t rw_tmr0_div;
64
        uint32_t r_tmr0_data;
65
        uint32_t rw_tmr0_ctrl;
66

    
67
        uint32_t rw_tmr1_div;
68
        uint32_t r_tmr1_data;
69
        uint32_t rw_tmr1_ctrl;
70

    
71
        uint32_t rw_wd_ctrl;
72

    
73
        uint32_t rw_intr_mask;
74
        uint32_t rw_ack_intr;
75
        uint32_t r_intr;
76
        uint32_t r_masked_intr;
77
};
78

    
79
static uint32_t timer_readl (void *opaque, target_phys_addr_t addr)
80
{
81
        struct fs_timer_t *t = opaque;
82
        uint32_t r = 0;
83

    
84
        switch (addr) {
85
        case R_TMR0_DATA:
86
                r = ptimer_get_count(t->ptimer_t0);
87
                break;
88
        case R_TMR1_DATA:
89
                r = ptimer_get_count(t->ptimer_t1);
90
                break;
91
        case R_TIME:
92
                r = qemu_get_clock(vm_clock) / 10;
93
                break;
94
        case RW_INTR_MASK:
95
                r = t->rw_intr_mask;
96
                break;
97
        case R_MASKED_INTR:
98
                r = t->r_intr & t->rw_intr_mask;
99
                break;
100
        default:
101
                D(printf ("%s %x\n", __func__, addr));
102
                break;
103
        }
104
        return r;
105
}
106

    
107
#define TIMER_SLOWDOWN 1
108
static void update_ctrl(struct fs_timer_t *t, int tnum)
109
{
110
        unsigned int op;
111
        unsigned int freq;
112
        unsigned int freq_hz;
113
        unsigned int div;
114
        uint32_t ctrl;
115

    
116
        ptimer_state *timer;
117

    
118
        if (tnum == 0) {
119
                ctrl = t->rw_tmr0_ctrl;
120
                div = t->rw_tmr0_div;
121
                timer = t->ptimer_t0;
122
        } else {
123
                ctrl = t->rw_tmr1_ctrl;
124
                div = t->rw_tmr1_div;
125
                timer = t->ptimer_t1;
126
        }
127

    
128

    
129
        op = ctrl & 3;
130
        freq = ctrl >> 2;
131
        freq_hz = 32000000;
132

    
133
        switch (freq)
134
        {
135
        case 0:
136
        case 1:
137
                D(printf ("extern or disabled timer clock?\n"));
138
                break;
139
        case 4: freq_hz =  29493000; break;
140
        case 5: freq_hz =  32000000; break;
141
        case 6: freq_hz =  32768000; break;
142
        case 7: freq_hz = 100000000; break;
143
        default:
144
                abort();
145
                break;
146
        }
147

    
148
        D(printf ("freq_hz=%d div=%d\n", freq_hz, div));
149
        div = div * TIMER_SLOWDOWN;
150
        div /= 1000;
151
        freq_hz /= 1000;
152
        ptimer_set_freq(timer, freq_hz);
153
        ptimer_set_limit(timer, div, 0);
154

    
155
        switch (op)
156
        {
157
                case 0:
158
                        /* Load.  */
159
                        ptimer_set_limit(timer, div, 1);
160
                        break;
161
                case 1:
162
                        /* Hold.  */
163
                        ptimer_stop(timer);
164
                        break;
165
                case 2:
166
                        /* Run.  */
167
                        ptimer_run(timer, 0);
168
                        break;
169
                default:
170
                        abort();
171
                        break;
172
        }
173
}
174

    
175
static void timer_update_irq(struct fs_timer_t *t)
176
{
177
        t->r_intr &= ~(t->rw_ack_intr);
178
        t->r_masked_intr = t->r_intr & t->rw_intr_mask;
179

    
180
        D(printf("%s: masked_intr=%x\n", __func__, t->r_masked_intr));
181
        qemu_set_irq(t->irq[0], !!t->r_masked_intr);
182
}
183

    
184
static void timer0_hit(void *opaque)
185
{
186
        struct fs_timer_t *t = opaque;
187
        t->r_intr |= 1;
188
        timer_update_irq(t);
189
}
190

    
191
static void timer1_hit(void *opaque)
192
{
193
        struct fs_timer_t *t = opaque;
194
        t->r_intr |= 2;
195
        timer_update_irq(t);
196
}
197

    
198
static void watchdog_hit(void *opaque)
199
{
200
        struct fs_timer_t *t = opaque;
201
        if (t->wd_hits == 0) {
202
                /* real hw gives a single tick before reseting but we are
203
                   a bit friendlier to compensate for our slower execution.  */
204
                ptimer_set_count(t->ptimer_wd, 10);
205
                ptimer_run(t->ptimer_wd, 1);
206
                qemu_irq_raise(t->nmi[0]);
207
        }
208
        else
209
                qemu_system_reset_request();
210

    
211
        t->wd_hits++;
212
}
213

    
214
static inline void timer_watchdog_update(struct fs_timer_t *t, uint32_t value)
215
{
216
        unsigned int wd_en = t->rw_wd_ctrl & (1 << 8);
217
        unsigned int wd_key = t->rw_wd_ctrl >> 9;
218
        unsigned int wd_cnt = t->rw_wd_ctrl & 511;
219
        unsigned int new_key = value >> 9 & ((1 << 7) - 1);
220
        unsigned int new_cmd = (value >> 8) & 1;
221

    
222
        /* If the watchdog is enabled, they written key must match the
223
           complement of the previous.  */
224
        wd_key = ~wd_key & ((1 << 7) - 1);
225

    
226
        if (wd_en && wd_key != new_key)
227
                return;
228

    
229
        D(printf("en=%d new_key=%x oldkey=%x cmd=%d cnt=%d\n", 
230
                 wd_en, new_key, wd_key, new_cmd, wd_cnt));
231

    
232
        if (t->wd_hits)
233
                qemu_irq_lower(t->nmi[0]);
234

    
235
        t->wd_hits = 0;
236

    
237
        ptimer_set_freq(t->ptimer_wd, 760);
238
        if (wd_cnt == 0)
239
                wd_cnt = 256;
240
        ptimer_set_count(t->ptimer_wd, wd_cnt);
241
        if (new_cmd)
242
                ptimer_run(t->ptimer_wd, 1);
243
        else
244
                ptimer_stop(t->ptimer_wd);
245

    
246
        t->rw_wd_ctrl = value;
247
}
248

    
249
static void
250
timer_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
251
{
252
        struct fs_timer_t *t = opaque;
253

    
254
        switch (addr)
255
        {
256
                case RW_TMR0_DIV:
257
                        t->rw_tmr0_div = value;
258
                        break;
259
                case RW_TMR0_CTRL:
260
                        D(printf ("RW_TMR0_CTRL=%x\n", value));
261
                        t->rw_tmr0_ctrl = value;
262
                        update_ctrl(t, 0);
263
                        break;
264
                case RW_TMR1_DIV:
265
                        t->rw_tmr1_div = value;
266
                        break;
267
                case RW_TMR1_CTRL:
268
                        D(printf ("RW_TMR1_CTRL=%x\n", value));
269
                        t->rw_tmr1_ctrl = value;
270
                        update_ctrl(t, 1);
271
                        break;
272
                case RW_INTR_MASK:
273
                        D(printf ("RW_INTR_MASK=%x\n", value));
274
                        t->rw_intr_mask = value;
275
                        timer_update_irq(t);
276
                        break;
277
                case RW_WD_CTRL:
278
                        timer_watchdog_update(t, value);
279
                        break;
280
                case RW_ACK_INTR:
281
                        t->rw_ack_intr = value;
282
                        timer_update_irq(t);
283
                        t->rw_ack_intr = 0;
284
                        break;
285
                default:
286
                        printf ("%s " TARGET_FMT_plx " %x\n",
287
                                __func__, addr, value);
288
                        break;
289
        }
290
}
291

    
292
static CPUReadMemoryFunc *timer_read[] = {
293
        NULL, NULL,
294
        &timer_readl,
295
};
296

    
297
static CPUWriteMemoryFunc *timer_write[] = {
298
        NULL, NULL,
299
        &timer_writel,
300
};
301

    
302
static void etraxfs_timer_reset(void *opaque)
303
{
304
        struct fs_timer_t *t = opaque;
305

    
306
        ptimer_stop(t->ptimer_t0);
307
        ptimer_stop(t->ptimer_t1);
308
        ptimer_stop(t->ptimer_wd);
309
        t->rw_wd_ctrl = 0;
310
        t->r_intr = 0;
311
        t->rw_intr_mask = 0;
312
        qemu_irq_lower(t->irq[0]);
313
}
314

    
315
void etraxfs_timer_init(CPUState *env, qemu_irq *irqs, qemu_irq *nmi,
316
                        target_phys_addr_t base)
317
{
318
        static struct fs_timer_t *t;
319
        int timer_regs;
320

    
321
        t = qemu_mallocz(sizeof *t);
322

    
323
        t->bh_t0 = qemu_bh_new(timer0_hit, t);
324
        t->bh_t1 = qemu_bh_new(timer1_hit, t);
325
        t->bh_wd = qemu_bh_new(watchdog_hit, t);
326
        t->ptimer_t0 = ptimer_init(t->bh_t0);
327
        t->ptimer_t1 = ptimer_init(t->bh_t1);
328
        t->ptimer_wd = ptimer_init(t->bh_wd);
329
        t->irq = irqs;
330
        t->nmi = nmi;
331
        t->env = env;
332

    
333
        timer_regs = cpu_register_io_memory(0, timer_read, timer_write, t);
334
        cpu_register_physical_memory (base, 0x5c, timer_regs);
335

    
336
        qemu_register_reset(etraxfs_timer_reset, t);
337
}