Statistics
| Branch: | Revision:

root / target-arm / neon_helper.c @ 7b6ecf5b

History | View | Annotate | Download (52 kB)

1
/*
2
 * ARM NEON vector operations.
3
 *
4
 * Copyright (c) 2007, 2008 CodeSourcery.
5
 * Written by Paul Brook
6
 *
7
 * This code is licenced under the GNU GPL v2.
8
 */
9
#include <stdlib.h>
10
#include <stdio.h>
11

    
12
#include "cpu.h"
13
#include "exec-all.h"
14
#include "helpers.h"
15

    
16
#define SIGNBIT (uint32_t)0x80000000
17
#define SIGNBIT64 ((uint64_t)1 << 63)
18

    
19
#define SET_QC() env->vfp.xregs[ARM_VFP_FPSCR] = CPSR_Q
20

    
21
static float_status neon_float_status;
22
#define NFS &neon_float_status
23

    
24
/* Helper routines to perform bitwise copies between float and int.  */
25
static inline float32 vfp_itos(uint32_t i)
26
{
27
    union {
28
        uint32_t i;
29
        float32 s;
30
    } v;
31

    
32
    v.i = i;
33
    return v.s;
34
}
35

    
36
static inline uint32_t vfp_stoi(float32 s)
37
{
38
    union {
39
        uint32_t i;
40
        float32 s;
41
    } v;
42

    
43
    v.s = s;
44
    return v.i;
45
}
46

    
47
#define NEON_TYPE1(name, type) \
48
typedef struct \
49
{ \
50
    type v1; \
51
} neon_##name;
52
#ifdef HOST_WORDS_BIGENDIAN
53
#define NEON_TYPE2(name, type) \
54
typedef struct \
55
{ \
56
    type v2; \
57
    type v1; \
58
} neon_##name;
59
#define NEON_TYPE4(name, type) \
60
typedef struct \
61
{ \
62
    type v4; \
63
    type v3; \
64
    type v2; \
65
    type v1; \
66
} neon_##name;
67
#else
68
#define NEON_TYPE2(name, type) \
69
typedef struct \
70
{ \
71
    type v1; \
72
    type v2; \
73
} neon_##name;
74
#define NEON_TYPE4(name, type) \
75
typedef struct \
76
{ \
77
    type v1; \
78
    type v2; \
79
    type v3; \
80
    type v4; \
81
} neon_##name;
82
#endif
83

    
84
NEON_TYPE4(s8, int8_t)
85
NEON_TYPE4(u8, uint8_t)
86
NEON_TYPE2(s16, int16_t)
87
NEON_TYPE2(u16, uint16_t)
88
NEON_TYPE1(s32, int32_t)
89
NEON_TYPE1(u32, uint32_t)
90
#undef NEON_TYPE4
91
#undef NEON_TYPE2
92
#undef NEON_TYPE1
93

    
94
/* Copy from a uint32_t to a vector structure type.  */
95
#define NEON_UNPACK(vtype, dest, val) do { \
96
    union { \
97
        vtype v; \
98
        uint32_t i; \
99
    } conv_u; \
100
    conv_u.i = (val); \
101
    dest = conv_u.v; \
102
    } while(0)
103

    
104
/* Copy from a vector structure type to a uint32_t.  */
105
#define NEON_PACK(vtype, dest, val) do { \
106
    union { \
107
        vtype v; \
108
        uint32_t i; \
109
    } conv_u; \
110
    conv_u.v = (val); \
111
    dest = conv_u.i; \
112
    } while(0)
113

    
114
#define NEON_DO1 \
115
    NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1);
116
#define NEON_DO2 \
117
    NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
118
    NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2);
119
#define NEON_DO4 \
120
    NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
121
    NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2); \
122
    NEON_FN(vdest.v3, vsrc1.v3, vsrc2.v3); \
123
    NEON_FN(vdest.v4, vsrc1.v4, vsrc2.v4);
124

    
125
#define NEON_VOP_BODY(vtype, n) \
126
{ \
127
    uint32_t res; \
128
    vtype vsrc1; \
129
    vtype vsrc2; \
130
    vtype vdest; \
131
    NEON_UNPACK(vtype, vsrc1, arg1); \
132
    NEON_UNPACK(vtype, vsrc2, arg2); \
133
    NEON_DO##n; \
134
    NEON_PACK(vtype, res, vdest); \
135
    return res; \
136
}
137

    
138
#define NEON_VOP(name, vtype, n) \
139
uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \
140
NEON_VOP_BODY(vtype, n)
141

    
142
#define NEON_VOP_ENV(name, vtype, n) \
143
uint32_t HELPER(glue(neon_,name))(CPUState *env, uint32_t arg1, uint32_t arg2) \
144
NEON_VOP_BODY(vtype, n)
145

    
146
/* Pairwise operations.  */
147
/* For 32-bit elements each segment only contains a single element, so
148
   the elementwise and pairwise operations are the same.  */
149
#define NEON_PDO2 \
150
    NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
151
    NEON_FN(vdest.v2, vsrc2.v1, vsrc2.v2);
152
#define NEON_PDO4 \
153
    NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
154
    NEON_FN(vdest.v2, vsrc1.v3, vsrc1.v4); \
155
    NEON_FN(vdest.v3, vsrc2.v1, vsrc2.v2); \
156
    NEON_FN(vdest.v4, vsrc2.v3, vsrc2.v4); \
157

    
158
#define NEON_POP(name, vtype, n) \
159
uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \
160
{ \
161
    uint32_t res; \
162
    vtype vsrc1; \
163
    vtype vsrc2; \
164
    vtype vdest; \
165
    NEON_UNPACK(vtype, vsrc1, arg1); \
166
    NEON_UNPACK(vtype, vsrc2, arg2); \
167
    NEON_PDO##n; \
168
    NEON_PACK(vtype, res, vdest); \
169
    return res; \
170
}
171

    
172
/* Unary operators.  */
173
#define NEON_VOP1(name, vtype, n) \
174
uint32_t HELPER(glue(neon_,name))(uint32_t arg) \
175
{ \
176
    vtype vsrc1; \
177
    vtype vdest; \
178
    NEON_UNPACK(vtype, vsrc1, arg); \
179
    NEON_DO##n; \
180
    NEON_PACK(vtype, arg, vdest); \
181
    return arg; \
182
}
183

    
184

    
185
#define NEON_USAT(dest, src1, src2, type) do { \
186
    uint32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
187
    if (tmp != (type)tmp) { \
188
        SET_QC(); \
189
        dest = ~0; \
190
    } else { \
191
        dest = tmp; \
192
    }} while(0)
193
#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
194
NEON_VOP_ENV(qadd_u8, neon_u8, 4)
195
#undef NEON_FN
196
#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
197
NEON_VOP_ENV(qadd_u16, neon_u16, 2)
198
#undef NEON_FN
199
#undef NEON_USAT
200

    
201
uint32_t HELPER(neon_qadd_u32)(CPUState *env, uint32_t a, uint32_t b)
202
{
203
    uint32_t res = a + b;
204
    if (res < a) {
205
        SET_QC();
206
        res = ~0;
207
    }
208
    return res;
209
}
210

    
211
uint64_t HELPER(neon_qadd_u64)(CPUState *env, uint64_t src1, uint64_t src2)
212
{
213
    uint64_t res;
214

    
215
    res = src1 + src2;
216
    if (res < src1) {
217
        SET_QC();
218
        res = ~(uint64_t)0;
219
    }
220
    return res;
221
}
222

    
223
#define NEON_SSAT(dest, src1, src2, type) do { \
224
    int32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
225
    if (tmp != (type)tmp) { \
226
        SET_QC(); \
227
        if (src2 > 0) { \
228
            tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
229
        } else { \
230
            tmp = 1 << (sizeof(type) * 8 - 1); \
231
        } \
232
    } \
233
    dest = tmp; \
234
    } while(0)
235
#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
236
NEON_VOP_ENV(qadd_s8, neon_s8, 4)
237
#undef NEON_FN
238
#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
239
NEON_VOP_ENV(qadd_s16, neon_s16, 2)
240
#undef NEON_FN
241
#undef NEON_SSAT
242

    
243
uint32_t HELPER(neon_qadd_s32)(CPUState *env, uint32_t a, uint32_t b)
244
{
245
    uint32_t res = a + b;
246
    if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
247
        SET_QC();
248
        res = ~(((int32_t)a >> 31) ^ SIGNBIT);
249
    }
250
    return res;
251
}
252

    
253
uint64_t HELPER(neon_qadd_s64)(CPUState *env, uint64_t src1, uint64_t src2)
254
{
255
    uint64_t res;
256

    
257
    res = src1 + src2;
258
    if (((res ^ src1) & SIGNBIT64) && !((src1 ^ src2) & SIGNBIT64)) {
259
        SET_QC();
260
        res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64;
261
    }
262
    return res;
263
}
264

    
265
#define NEON_USAT(dest, src1, src2, type) do { \
266
    uint32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
267
    if (tmp != (type)tmp) { \
268
        SET_QC(); \
269
        dest = 0; \
270
    } else { \
271
        dest = tmp; \
272
    }} while(0)
273
#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
274
NEON_VOP_ENV(qsub_u8, neon_u8, 4)
275
#undef NEON_FN
276
#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
277
NEON_VOP_ENV(qsub_u16, neon_u16, 2)
278
#undef NEON_FN
279
#undef NEON_USAT
280

    
281
uint32_t HELPER(neon_qsub_u32)(CPUState *env, uint32_t a, uint32_t b)
282
{
283
    uint32_t res = a - b;
284
    if (res > a) {
285
        SET_QC();
286
        res = 0;
287
    }
288
    return res;
289
}
290

    
291
uint64_t HELPER(neon_qsub_u64)(CPUState *env, uint64_t src1, uint64_t src2)
292
{
293
    uint64_t res;
294

    
295
    if (src1 < src2) {
296
        SET_QC();
297
        res = 0;
298
    } else {
299
        res = src1 - src2;
300
    }
301
    return res;
302
}
303

    
304
#define NEON_SSAT(dest, src1, src2, type) do { \
305
    int32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
306
    if (tmp != (type)tmp) { \
307
        SET_QC(); \
308
        if (src2 < 0) { \
309
            tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
310
        } else { \
311
            tmp = 1 << (sizeof(type) * 8 - 1); \
312
        } \
313
    } \
314
    dest = tmp; \
315
    } while(0)
316
#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
317
NEON_VOP_ENV(qsub_s8, neon_s8, 4)
318
#undef NEON_FN
319
#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
320
NEON_VOP_ENV(qsub_s16, neon_s16, 2)
321
#undef NEON_FN
322
#undef NEON_SSAT
323

    
324
uint32_t HELPER(neon_qsub_s32)(CPUState *env, uint32_t a, uint32_t b)
325
{
326
    uint32_t res = a - b;
327
    if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
328
        SET_QC();
329
        res = ~(((int32_t)a >> 31) ^ SIGNBIT);
330
    }
331
    return res;
332
}
333

    
334
uint64_t HELPER(neon_qsub_s64)(CPUState *env, uint64_t src1, uint64_t src2)
335
{
336
    uint64_t res;
337

    
338
    res = src1 - src2;
339
    if (((res ^ src1) & SIGNBIT64) && ((src1 ^ src2) & SIGNBIT64)) {
340
        SET_QC();
341
        res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64;
342
    }
343
    return res;
344
}
345

    
346
#define NEON_FN(dest, src1, src2) dest = (src1 + src2) >> 1
347
NEON_VOP(hadd_s8, neon_s8, 4)
348
NEON_VOP(hadd_u8, neon_u8, 4)
349
NEON_VOP(hadd_s16, neon_s16, 2)
350
NEON_VOP(hadd_u16, neon_u16, 2)
351
#undef NEON_FN
352

    
353
int32_t HELPER(neon_hadd_s32)(int32_t src1, int32_t src2)
354
{
355
    int32_t dest;
356

    
357
    dest = (src1 >> 1) + (src2 >> 1);
358
    if (src1 & src2 & 1)
359
        dest++;
360
    return dest;
361
}
362

    
363
uint32_t HELPER(neon_hadd_u32)(uint32_t src1, uint32_t src2)
364
{
365
    uint32_t dest;
366

    
367
    dest = (src1 >> 1) + (src2 >> 1);
368
    if (src1 & src2 & 1)
369
        dest++;
370
    return dest;
371
}
372

    
373
#define NEON_FN(dest, src1, src2) dest = (src1 + src2 + 1) >> 1
374
NEON_VOP(rhadd_s8, neon_s8, 4)
375
NEON_VOP(rhadd_u8, neon_u8, 4)
376
NEON_VOP(rhadd_s16, neon_s16, 2)
377
NEON_VOP(rhadd_u16, neon_u16, 2)
378
#undef NEON_FN
379

    
380
int32_t HELPER(neon_rhadd_s32)(int32_t src1, int32_t src2)
381
{
382
    int32_t dest;
383

    
384
    dest = (src1 >> 1) + (src2 >> 1);
385
    if ((src1 | src2) & 1)
386
        dest++;
387
    return dest;
388
}
389

    
390
uint32_t HELPER(neon_rhadd_u32)(uint32_t src1, uint32_t src2)
391
{
392
    uint32_t dest;
393

    
394
    dest = (src1 >> 1) + (src2 >> 1);
395
    if ((src1 | src2) & 1)
396
        dest++;
397
    return dest;
398
}
399

    
400
#define NEON_FN(dest, src1, src2) dest = (src1 - src2) >> 1
401
NEON_VOP(hsub_s8, neon_s8, 4)
402
NEON_VOP(hsub_u8, neon_u8, 4)
403
NEON_VOP(hsub_s16, neon_s16, 2)
404
NEON_VOP(hsub_u16, neon_u16, 2)
405
#undef NEON_FN
406

    
407
int32_t HELPER(neon_hsub_s32)(int32_t src1, int32_t src2)
408
{
409
    int32_t dest;
410

    
411
    dest = (src1 >> 1) - (src2 >> 1);
412
    if ((~src1) & src2 & 1)
413
        dest--;
414
    return dest;
415
}
416

    
417
uint32_t HELPER(neon_hsub_u32)(uint32_t src1, uint32_t src2)
418
{
419
    uint32_t dest;
420

    
421
    dest = (src1 >> 1) - (src2 >> 1);
422
    if ((~src1) & src2 & 1)
423
        dest--;
424
    return dest;
425
}
426

    
427
#define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? ~0 : 0
428
NEON_VOP(cgt_s8, neon_s8, 4)
429
NEON_VOP(cgt_u8, neon_u8, 4)
430
NEON_VOP(cgt_s16, neon_s16, 2)
431
NEON_VOP(cgt_u16, neon_u16, 2)
432
NEON_VOP(cgt_s32, neon_s32, 1)
433
NEON_VOP(cgt_u32, neon_u32, 1)
434
#undef NEON_FN
435

    
436
#define NEON_FN(dest, src1, src2) dest = (src1 >= src2) ? ~0 : 0
437
NEON_VOP(cge_s8, neon_s8, 4)
438
NEON_VOP(cge_u8, neon_u8, 4)
439
NEON_VOP(cge_s16, neon_s16, 2)
440
NEON_VOP(cge_u16, neon_u16, 2)
441
NEON_VOP(cge_s32, neon_s32, 1)
442
NEON_VOP(cge_u32, neon_u32, 1)
443
#undef NEON_FN
444

    
445
#define NEON_FN(dest, src1, src2) dest = (src1 < src2) ? src1 : src2
446
NEON_VOP(min_s8, neon_s8, 4)
447
NEON_VOP(min_u8, neon_u8, 4)
448
NEON_VOP(min_s16, neon_s16, 2)
449
NEON_VOP(min_u16, neon_u16, 2)
450
NEON_VOP(min_s32, neon_s32, 1)
451
NEON_VOP(min_u32, neon_u32, 1)
452
NEON_POP(pmin_s8, neon_s8, 4)
453
NEON_POP(pmin_u8, neon_u8, 4)
454
NEON_POP(pmin_s16, neon_s16, 2)
455
NEON_POP(pmin_u16, neon_u16, 2)
456
#undef NEON_FN
457

    
458
#define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? src1 : src2
459
NEON_VOP(max_s8, neon_s8, 4)
460
NEON_VOP(max_u8, neon_u8, 4)
461
NEON_VOP(max_s16, neon_s16, 2)
462
NEON_VOP(max_u16, neon_u16, 2)
463
NEON_VOP(max_s32, neon_s32, 1)
464
NEON_VOP(max_u32, neon_u32, 1)
465
NEON_POP(pmax_s8, neon_s8, 4)
466
NEON_POP(pmax_u8, neon_u8, 4)
467
NEON_POP(pmax_s16, neon_s16, 2)
468
NEON_POP(pmax_u16, neon_u16, 2)
469
#undef NEON_FN
470

    
471
#define NEON_FN(dest, src1, src2) \
472
    dest = (src1 > src2) ? (src1 - src2) : (src2 - src1)
473
NEON_VOP(abd_s8, neon_s8, 4)
474
NEON_VOP(abd_u8, neon_u8, 4)
475
NEON_VOP(abd_s16, neon_s16, 2)
476
NEON_VOP(abd_u16, neon_u16, 2)
477
NEON_VOP(abd_s32, neon_s32, 1)
478
NEON_VOP(abd_u32, neon_u32, 1)
479
#undef NEON_FN
480

    
481
#define NEON_FN(dest, src1, src2) do { \
482
    int8_t tmp; \
483
    tmp = (int8_t)src2; \
484
    if (tmp >= (ssize_t)sizeof(src1) * 8 || \
485
        tmp <= -(ssize_t)sizeof(src1) * 8) { \
486
        dest = 0; \
487
    } else if (tmp < 0) { \
488
        dest = src1 >> -tmp; \
489
    } else { \
490
        dest = src1 << tmp; \
491
    }} while (0)
492
NEON_VOP(shl_u8, neon_u8, 4)
493
NEON_VOP(shl_u16, neon_u16, 2)
494
NEON_VOP(shl_u32, neon_u32, 1)
495
#undef NEON_FN
496

    
497
uint64_t HELPER(neon_shl_u64)(uint64_t val, uint64_t shiftop)
498
{
499
    int8_t shift = (int8_t)shiftop;
500
    if (shift >= 64 || shift <= -64) {
501
        val = 0;
502
    } else if (shift < 0) {
503
        val >>= -shift;
504
    } else {
505
        val <<= shift;
506
    }
507
    return val;
508
}
509

    
510
#define NEON_FN(dest, src1, src2) do { \
511
    int8_t tmp; \
512
    tmp = (int8_t)src2; \
513
    if (tmp >= (ssize_t)sizeof(src1) * 8) { \
514
        dest = 0; \
515
    } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
516
        dest = src1 >> (sizeof(src1) * 8 - 1); \
517
    } else if (tmp < 0) { \
518
        dest = src1 >> -tmp; \
519
    } else { \
520
        dest = src1 << tmp; \
521
    }} while (0)
522
NEON_VOP(shl_s8, neon_s8, 4)
523
NEON_VOP(shl_s16, neon_s16, 2)
524
NEON_VOP(shl_s32, neon_s32, 1)
525
#undef NEON_FN
526

    
527
uint64_t HELPER(neon_shl_s64)(uint64_t valop, uint64_t shiftop)
528
{
529
    int8_t shift = (int8_t)shiftop;
530
    int64_t val = valop;
531
    if (shift >= 64) {
532
        val = 0;
533
    } else if (shift <= -64) {
534
        val >>= 63;
535
    } else if (shift < 0) {
536
        val >>= -shift;
537
    } else {
538
        val <<= shift;
539
    }
540
    return val;
541
}
542

    
543
#define NEON_FN(dest, src1, src2) do { \
544
    int8_t tmp; \
545
    tmp = (int8_t)src2; \
546
    if ((tmp >= (ssize_t)sizeof(src1) * 8) \
547
        || (tmp <= -(ssize_t)sizeof(src1) * 8)) { \
548
        dest = 0; \
549
    } else if (tmp < 0) { \
550
        dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
551
    } else { \
552
        dest = src1 << tmp; \
553
    }} while (0)
554
NEON_VOP(rshl_s8, neon_s8, 4)
555
NEON_VOP(rshl_s16, neon_s16, 2)
556
#undef NEON_FN
557

    
558
/* The addition of the rounding constant may overflow, so we use an
559
 * intermediate 64 bits accumulator.  */
560
uint32_t HELPER(neon_rshl_s32)(uint32_t valop, uint32_t shiftop)
561
{
562
    int32_t dest;
563
    int32_t val = (int32_t)valop;
564
    int8_t shift = (int8_t)shiftop;
565
    if ((shift >= 32) || (shift <= -32)) {
566
        dest = 0;
567
    } else if (shift < 0) {
568
        int64_t big_dest = ((int64_t)val + (1 << (-1 - shift)));
569
        dest = big_dest >> -shift;
570
    } else {
571
        dest = val << shift;
572
    }
573
    return dest;
574
}
575

    
576
/* Handling addition overflow with 64 bits inputs values is more
577
 * tricky than with 32 bits values.  */
578
uint64_t HELPER(neon_rshl_s64)(uint64_t valop, uint64_t shiftop)
579
{
580
    int8_t shift = (int8_t)shiftop;
581
    int64_t val = valop;
582
    if ((shift >= 64) || (shift <= -64)) {
583
        val = 0;
584
    } else if (shift < 0) {
585
        val >>= (-shift - 1);
586
        if (val == INT64_MAX) {
587
            /* In this case, it means that the rounding constant is 1,
588
             * and the addition would overflow. Return the actual
589
             * result directly.  */
590
            val = 0x4000000000000000LL;
591
        } else {
592
            val++;
593
            val >>= 1;
594
        }
595
    } else {
596
        val <<= shift;
597
    }
598
    return val;
599
}
600

    
601
#define NEON_FN(dest, src1, src2) do { \
602
    int8_t tmp; \
603
    tmp = (int8_t)src2; \
604
    if (tmp >= (ssize_t)sizeof(src1) * 8 || \
605
        tmp < -(ssize_t)sizeof(src1) * 8) { \
606
        dest = 0; \
607
    } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \
608
        dest = src1 >> (-tmp - 1); \
609
    } else if (tmp < 0) { \
610
        dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
611
    } else { \
612
        dest = src1 << tmp; \
613
    }} while (0)
614
NEON_VOP(rshl_u8, neon_u8, 4)
615
NEON_VOP(rshl_u16, neon_u16, 2)
616
#undef NEON_FN
617

    
618
/* The addition of the rounding constant may overflow, so we use an
619
 * intermediate 64 bits accumulator.  */
620
uint32_t HELPER(neon_rshl_u32)(uint32_t val, uint32_t shiftop)
621
{
622
    uint32_t dest;
623
    int8_t shift = (int8_t)shiftop;
624
    if (shift >= 32 || shift < -32) {
625
        dest = 0;
626
    } else if (shift == -32) {
627
        dest = val >> 31;
628
    } else if (shift < 0) {
629
        uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift)));
630
        dest = big_dest >> -shift;
631
    } else {
632
        dest = val << shift;
633
    }
634
    return dest;
635
}
636

    
637
/* Handling addition overflow with 64 bits inputs values is more
638
 * tricky than with 32 bits values.  */
639
uint64_t HELPER(neon_rshl_u64)(uint64_t val, uint64_t shiftop)
640
{
641
    int8_t shift = (uint8_t)shiftop;
642
    if (shift >= 64 || shift < -64) {
643
        val = 0;
644
    } else if (shift == -64) {
645
        /* Rounding a 1-bit result just preserves that bit.  */
646
        val >>= 63;
647
    } else if (shift < 0) {
648
        val >>= (-shift - 1);
649
        if (val == UINT64_MAX) {
650
            /* In this case, it means that the rounding constant is 1,
651
             * and the addition would overflow. Return the actual
652
             * result directly.  */
653
            val = 0x8000000000000000ULL;
654
        } else {
655
            val++;
656
            val >>= 1;
657
        }
658
    } else {
659
        val <<= shift;
660
    }
661
    return val;
662
}
663

    
664
#define NEON_FN(dest, src1, src2) do { \
665
    int8_t tmp; \
666
    tmp = (int8_t)src2; \
667
    if (tmp >= (ssize_t)sizeof(src1) * 8) { \
668
        if (src1) { \
669
            SET_QC(); \
670
            dest = ~0; \
671
        } else { \
672
            dest = 0; \
673
        } \
674
    } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
675
        dest = 0; \
676
    } else if (tmp < 0) { \
677
        dest = src1 >> -tmp; \
678
    } else { \
679
        dest = src1 << tmp; \
680
        if ((dest >> tmp) != src1) { \
681
            SET_QC(); \
682
            dest = ~0; \
683
        } \
684
    }} while (0)
685
NEON_VOP_ENV(qshl_u8, neon_u8, 4)
686
NEON_VOP_ENV(qshl_u16, neon_u16, 2)
687
NEON_VOP_ENV(qshl_u32, neon_u32, 1)
688
#undef NEON_FN
689

    
690
uint64_t HELPER(neon_qshl_u64)(CPUState *env, uint64_t val, uint64_t shiftop)
691
{
692
    int8_t shift = (int8_t)shiftop;
693
    if (shift >= 64) {
694
        if (val) {
695
            val = ~(uint64_t)0;
696
            SET_QC();
697
        }
698
    } else if (shift <= -64) {
699
        val = 0;
700
    } else if (shift < 0) {
701
        val >>= -shift;
702
    } else {
703
        uint64_t tmp = val;
704
        val <<= shift;
705
        if ((val >> shift) != tmp) {
706
            SET_QC();
707
            val = ~(uint64_t)0;
708
        }
709
    }
710
    return val;
711
}
712

    
713
#define NEON_FN(dest, src1, src2) do { \
714
    int8_t tmp; \
715
    tmp = (int8_t)src2; \
716
    if (tmp >= (ssize_t)sizeof(src1) * 8) { \
717
        if (src1) { \
718
            SET_QC(); \
719
            dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
720
            if (src1 > 0) { \
721
                dest--; \
722
            } \
723
        } else { \
724
            dest = src1; \
725
        } \
726
    } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
727
        dest = src1 >> 31; \
728
    } else if (tmp < 0) { \
729
        dest = src1 >> -tmp; \
730
    } else { \
731
        dest = src1 << tmp; \
732
        if ((dest >> tmp) != src1) { \
733
            SET_QC(); \
734
            dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
735
            if (src1 > 0) { \
736
                dest--; \
737
            } \
738
        } \
739
    }} while (0)
740
NEON_VOP_ENV(qshl_s8, neon_s8, 4)
741
NEON_VOP_ENV(qshl_s16, neon_s16, 2)
742
NEON_VOP_ENV(qshl_s32, neon_s32, 1)
743
#undef NEON_FN
744

    
745
uint64_t HELPER(neon_qshl_s64)(CPUState *env, uint64_t valop, uint64_t shiftop)
746
{
747
    int8_t shift = (uint8_t)shiftop;
748
    int64_t val = valop;
749
    if (shift >= 64) {
750
        if (val) {
751
            SET_QC();
752
            val = (val >> 63) ^ ~SIGNBIT64;
753
        }
754
    } else if (shift <= -64) {
755
        val >>= 63;
756
    } else if (shift < 0) {
757
        val >>= -shift;
758
    } else {
759
        int64_t tmp = val;
760
        val <<= shift;
761
        if ((val >> shift) != tmp) {
762
            SET_QC();
763
            val = (tmp >> 63) ^ ~SIGNBIT64;
764
        }
765
    }
766
    return val;
767
}
768

    
769
#define NEON_FN(dest, src1, src2) do { \
770
    if (src1 & (1 << (sizeof(src1) * 8 - 1))) { \
771
        SET_QC(); \
772
        dest = 0; \
773
    } else { \
774
        int8_t tmp; \
775
        tmp = (int8_t)src2; \
776
        if (tmp >= (ssize_t)sizeof(src1) * 8) { \
777
            if (src1) { \
778
                SET_QC(); \
779
                dest = ~0; \
780
            } else { \
781
                dest = 0; \
782
            } \
783
        } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
784
            dest = 0; \
785
        } else if (tmp < 0) { \
786
            dest = src1 >> -tmp; \
787
        } else { \
788
            dest = src1 << tmp; \
789
            if ((dest >> tmp) != src1) { \
790
                SET_QC(); \
791
                dest = ~0; \
792
            } \
793
        } \
794
    }} while (0)
795
NEON_VOP_ENV(qshlu_s8, neon_u8, 4)
796
NEON_VOP_ENV(qshlu_s16, neon_u16, 2)
797
#undef NEON_FN
798

    
799
uint32_t HELPER(neon_qshlu_s32)(CPUState *env, uint32_t valop, uint32_t shiftop)
800
{
801
    if ((int32_t)valop < 0) {
802
        SET_QC();
803
        return 0;
804
    }
805
    return helper_neon_qshl_u32(env, valop, shiftop);
806
}
807

    
808
uint64_t HELPER(neon_qshlu_s64)(CPUState *env, uint64_t valop, uint64_t shiftop)
809
{
810
    if ((int64_t)valop < 0) {
811
        SET_QC();
812
        return 0;
813
    }
814
    return helper_neon_qshl_u64(env, valop, shiftop);
815
}
816

    
817
/* FIXME: This is wrong.  */
818
#define NEON_FN(dest, src1, src2) do { \
819
    int8_t tmp; \
820
    tmp = (int8_t)src2; \
821
    if (tmp < 0) { \
822
        dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
823
    } else { \
824
        dest = src1 << tmp; \
825
        if ((dest >> tmp) != src1) { \
826
            SET_QC(); \
827
            dest = ~0; \
828
        } \
829
    }} while (0)
830
NEON_VOP_ENV(qrshl_u8, neon_u8, 4)
831
NEON_VOP_ENV(qrshl_u16, neon_u16, 2)
832
#undef NEON_FN
833

    
834
/* The addition of the rounding constant may overflow, so we use an
835
 * intermediate 64 bits accumulator.  */
836
uint32_t HELPER(neon_qrshl_u32)(CPUState *env, uint32_t val, uint32_t shiftop)
837
{
838
    uint32_t dest;
839
    int8_t shift = (int8_t)shiftop;
840
    if (shift < 0) {
841
        uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift)));
842
        dest = big_dest >> -shift;
843
    } else {
844
        dest = val << shift;
845
        if ((dest >> shift) != val) {
846
            SET_QC();
847
            dest = ~0;
848
        }
849
    }
850
    return dest;
851
}
852

    
853
/* Handling addition overflow with 64 bits inputs values is more
854
 * tricky than with 32 bits values.  */
855
uint64_t HELPER(neon_qrshl_u64)(CPUState *env, uint64_t val, uint64_t shiftop)
856
{
857
    int8_t shift = (int8_t)shiftop;
858
    if (shift < 0) {
859
        val >>= (-shift - 1);
860
        if (val == UINT64_MAX) {
861
            /* In this case, it means that the rounding constant is 1,
862
             * and the addition would overflow. Return the actual
863
             * result directly.  */
864
            val = 0x8000000000000000ULL;
865
        } else {
866
            val++;
867
            val >>= 1;
868
        }
869
    } else { \
870
        uint64_t tmp = val;
871
        val <<= shift;
872
        if ((val >> shift) != tmp) {
873
            SET_QC();
874
            val = ~0;
875
        }
876
    }
877
    return val;
878
}
879

    
880
#define NEON_FN(dest, src1, src2) do { \
881
    int8_t tmp; \
882
    tmp = (int8_t)src2; \
883
    if (tmp >= (ssize_t)sizeof(src1) * 8) { \
884
        if (src1) { \
885
            SET_QC(); \
886
            dest = (1 << (sizeof(src1) * 8 - 1)); \
887
            if (src1 > 0) { \
888
                dest--; \
889
            } \
890
        } else { \
891
            dest = 0; \
892
        } \
893
    } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
894
        dest = 0; \
895
    } else if (tmp < 0) { \
896
        dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
897
    } else { \
898
        dest = src1 << tmp; \
899
        if ((dest >> tmp) != src1) { \
900
            SET_QC(); \
901
            dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
902
            if (src1 > 0) { \
903
                dest--; \
904
            } \
905
        } \
906
    }} while (0)
907
NEON_VOP_ENV(qrshl_s8, neon_s8, 4)
908
NEON_VOP_ENV(qrshl_s16, neon_s16, 2)
909
#undef NEON_FN
910

    
911
/* The addition of the rounding constant may overflow, so we use an
912
 * intermediate 64 bits accumulator.  */
913
uint32_t HELPER(neon_qrshl_s32)(CPUState *env, uint32_t valop, uint32_t shiftop)
914
{
915
    int32_t dest;
916
    int32_t val = (int32_t)valop;
917
    int8_t shift = (int8_t)shiftop;
918
    if (shift >= 32) {
919
        if (val) {
920
            SET_QC();
921
            dest = (val >> 31) ^ ~SIGNBIT;
922
        } else {
923
            dest = 0;
924
        }
925
    } else if (shift <= -32) {
926
        dest = 0;
927
    } else if (shift < 0) {
928
        int64_t big_dest = ((int64_t)val + (1 << (-1 - shift)));
929
        dest = big_dest >> -shift;
930
    } else {
931
        dest = val << shift;
932
        if ((dest >> shift) != val) {
933
            SET_QC();
934
            dest = (val >> 31) ^ ~SIGNBIT;
935
        }
936
    }
937
    return dest;
938
}
939

    
940
/* Handling addition overflow with 64 bits inputs values is more
941
 * tricky than with 32 bits values.  */
942
uint64_t HELPER(neon_qrshl_s64)(CPUState *env, uint64_t valop, uint64_t shiftop)
943
{
944
    int8_t shift = (uint8_t)shiftop;
945
    int64_t val = valop;
946

    
947
    if (shift >= 64) {
948
        if (val) {
949
            SET_QC();
950
            val = (val >> 63) ^ ~SIGNBIT64;
951
        }
952
    } else if (shift <= -64) {
953
        val = 0;
954
    } else if (shift < 0) {
955
        val >>= (-shift - 1);
956
        if (val == INT64_MAX) {
957
            /* In this case, it means that the rounding constant is 1,
958
             * and the addition would overflow. Return the actual
959
             * result directly.  */
960
            val = 0x4000000000000000ULL;
961
        } else {
962
            val++;
963
            val >>= 1;
964
        }
965
    } else {
966
        int64_t tmp = val;
967
        val <<= shift;
968
        if ((val >> shift) != tmp) {
969
            SET_QC();
970
            val = (tmp >> 63) ^ ~SIGNBIT64;
971
        }
972
    }
973
    return val;
974
}
975

    
976
uint32_t HELPER(neon_add_u8)(uint32_t a, uint32_t b)
977
{
978
    uint32_t mask;
979
    mask = (a ^ b) & 0x80808080u;
980
    a &= ~0x80808080u;
981
    b &= ~0x80808080u;
982
    return (a + b) ^ mask;
983
}
984

    
985
uint32_t HELPER(neon_add_u16)(uint32_t a, uint32_t b)
986
{
987
    uint32_t mask;
988
    mask = (a ^ b) & 0x80008000u;
989
    a &= ~0x80008000u;
990
    b &= ~0x80008000u;
991
    return (a + b) ^ mask;
992
}
993

    
994
#define NEON_FN(dest, src1, src2) dest = src1 + src2
995
NEON_POP(padd_u8, neon_u8, 4)
996
NEON_POP(padd_u16, neon_u16, 2)
997
#undef NEON_FN
998

    
999
#define NEON_FN(dest, src1, src2) dest = src1 - src2
1000
NEON_VOP(sub_u8, neon_u8, 4)
1001
NEON_VOP(sub_u16, neon_u16, 2)
1002
#undef NEON_FN
1003

    
1004
#define NEON_FN(dest, src1, src2) dest = src1 * src2
1005
NEON_VOP(mul_u8, neon_u8, 4)
1006
NEON_VOP(mul_u16, neon_u16, 2)
1007
#undef NEON_FN
1008

    
1009
/* Polynomial multiplication is like integer multiplication except the
1010
   partial products are XORed, not added.  */
1011
uint32_t HELPER(neon_mul_p8)(uint32_t op1, uint32_t op2)
1012
{
1013
    uint32_t mask;
1014
    uint32_t result;
1015
    result = 0;
1016
    while (op1) {
1017
        mask = 0;
1018
        if (op1 & 1)
1019
            mask |= 0xff;
1020
        if (op1 & (1 << 8))
1021
            mask |= (0xff << 8);
1022
        if (op1 & (1 << 16))
1023
            mask |= (0xff << 16);
1024
        if (op1 & (1 << 24))
1025
            mask |= (0xff << 24);
1026
        result ^= op2 & mask;
1027
        op1 = (op1 >> 1) & 0x7f7f7f7f;
1028
        op2 = (op2 << 1) & 0xfefefefe;
1029
    }
1030
    return result;
1031
}
1032

    
1033
uint64_t HELPER(neon_mull_p8)(uint32_t op1, uint32_t op2)
1034
{
1035
    uint64_t result = 0;
1036
    uint64_t mask;
1037
    uint64_t op2ex = op2;
1038
    op2ex = (op2ex & 0xff) |
1039
        ((op2ex & 0xff00) << 8) |
1040
        ((op2ex & 0xff0000) << 16) |
1041
        ((op2ex & 0xff000000) << 24);
1042
    while (op1) {
1043
        mask = 0;
1044
        if (op1 & 1) {
1045
            mask |= 0xffff;
1046
        }
1047
        if (op1 & (1 << 8)) {
1048
            mask |= (0xffffU << 16);
1049
        }
1050
        if (op1 & (1 << 16)) {
1051
            mask |= (0xffffULL << 32);
1052
        }
1053
        if (op1 & (1 << 24)) {
1054
            mask |= (0xffffULL << 48);
1055
        }
1056
        result ^= op2ex & mask;
1057
        op1 = (op1 >> 1) & 0x7f7f7f7f;
1058
        op2ex <<= 1;
1059
    }
1060
    return result;
1061
}
1062

    
1063
#define NEON_FN(dest, src1, src2) dest = (src1 & src2) ? -1 : 0
1064
NEON_VOP(tst_u8, neon_u8, 4)
1065
NEON_VOP(tst_u16, neon_u16, 2)
1066
NEON_VOP(tst_u32, neon_u32, 1)
1067
#undef NEON_FN
1068

    
1069
#define NEON_FN(dest, src1, src2) dest = (src1 == src2) ? -1 : 0
1070
NEON_VOP(ceq_u8, neon_u8, 4)
1071
NEON_VOP(ceq_u16, neon_u16, 2)
1072
NEON_VOP(ceq_u32, neon_u32, 1)
1073
#undef NEON_FN
1074

    
1075
#define NEON_FN(dest, src, dummy) dest = (src < 0) ? -src : src
1076
NEON_VOP1(abs_s8, neon_s8, 4)
1077
NEON_VOP1(abs_s16, neon_s16, 2)
1078
#undef NEON_FN
1079

    
1080
/* Count Leading Sign/Zero Bits.  */
1081
static inline int do_clz8(uint8_t x)
1082
{
1083
    int n;
1084
    for (n = 8; x; n--)
1085
        x >>= 1;
1086
    return n;
1087
}
1088

    
1089
static inline int do_clz16(uint16_t x)
1090
{
1091
    int n;
1092
    for (n = 16; x; n--)
1093
        x >>= 1;
1094
    return n;
1095
}
1096

    
1097
#define NEON_FN(dest, src, dummy) dest = do_clz8(src)
1098
NEON_VOP1(clz_u8, neon_u8, 4)
1099
#undef NEON_FN
1100

    
1101
#define NEON_FN(dest, src, dummy) dest = do_clz16(src)
1102
NEON_VOP1(clz_u16, neon_u16, 2)
1103
#undef NEON_FN
1104

    
1105
#define NEON_FN(dest, src, dummy) dest = do_clz8((src < 0) ? ~src : src) - 1
1106
NEON_VOP1(cls_s8, neon_s8, 4)
1107
#undef NEON_FN
1108

    
1109
#define NEON_FN(dest, src, dummy) dest = do_clz16((src < 0) ? ~src : src) - 1
1110
NEON_VOP1(cls_s16, neon_s16, 2)
1111
#undef NEON_FN
1112

    
1113
uint32_t HELPER(neon_cls_s32)(uint32_t x)
1114
{
1115
    int count;
1116
    if ((int32_t)x < 0)
1117
        x = ~x;
1118
    for (count = 32; x; count--)
1119
        x = x >> 1;
1120
    return count - 1;
1121
}
1122

    
1123
/* Bit count.  */
1124
uint32_t HELPER(neon_cnt_u8)(uint32_t x)
1125
{
1126
    x = (x & 0x55555555) + ((x >>  1) & 0x55555555);
1127
    x = (x & 0x33333333) + ((x >>  2) & 0x33333333);
1128
    x = (x & 0x0f0f0f0f) + ((x >>  4) & 0x0f0f0f0f);
1129
    return x;
1130
}
1131

    
1132
#define NEON_QDMULH16(dest, src1, src2, round) do { \
1133
    uint32_t tmp = (int32_t)(int16_t) src1 * (int16_t) src2; \
1134
    if ((tmp ^ (tmp << 1)) & SIGNBIT) { \
1135
        SET_QC(); \
1136
        tmp = (tmp >> 31) ^ ~SIGNBIT; \
1137
    } else { \
1138
        tmp <<= 1; \
1139
    } \
1140
    if (round) { \
1141
        int32_t old = tmp; \
1142
        tmp += 1 << 15; \
1143
        if ((int32_t)tmp < old) { \
1144
            SET_QC(); \
1145
            tmp = SIGNBIT - 1; \
1146
        } \
1147
    } \
1148
    dest = tmp >> 16; \
1149
    } while(0)
1150
#define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 0)
1151
NEON_VOP_ENV(qdmulh_s16, neon_s16, 2)
1152
#undef NEON_FN
1153
#define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 1)
1154
NEON_VOP_ENV(qrdmulh_s16, neon_s16, 2)
1155
#undef NEON_FN
1156
#undef NEON_QDMULH16
1157

    
1158
#define NEON_QDMULH32(dest, src1, src2, round) do { \
1159
    uint64_t tmp = (int64_t)(int32_t) src1 * (int32_t) src2; \
1160
    if ((tmp ^ (tmp << 1)) & SIGNBIT64) { \
1161
        SET_QC(); \
1162
        tmp = (tmp >> 63) ^ ~SIGNBIT64; \
1163
    } else { \
1164
        tmp <<= 1; \
1165
    } \
1166
    if (round) { \
1167
        int64_t old = tmp; \
1168
        tmp += (int64_t)1 << 31; \
1169
        if ((int64_t)tmp < old) { \
1170
            SET_QC(); \
1171
            tmp = SIGNBIT64 - 1; \
1172
        } \
1173
    } \
1174
    dest = tmp >> 32; \
1175
    } while(0)
1176
#define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 0)
1177
NEON_VOP_ENV(qdmulh_s32, neon_s32, 1)
1178
#undef NEON_FN
1179
#define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 1)
1180
NEON_VOP_ENV(qrdmulh_s32, neon_s32, 1)
1181
#undef NEON_FN
1182
#undef NEON_QDMULH32
1183

    
1184
uint32_t HELPER(neon_narrow_u8)(uint64_t x)
1185
{
1186
    return (x & 0xffu) | ((x >> 8) & 0xff00u) | ((x >> 16) & 0xff0000u)
1187
           | ((x >> 24) & 0xff000000u);
1188
}
1189

    
1190
uint32_t HELPER(neon_narrow_u16)(uint64_t x)
1191
{
1192
    return (x & 0xffffu) | ((x >> 16) & 0xffff0000u);
1193
}
1194

    
1195
uint32_t HELPER(neon_narrow_high_u8)(uint64_t x)
1196
{
1197
    return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00)
1198
            | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000);
1199
}
1200

    
1201
uint32_t HELPER(neon_narrow_high_u16)(uint64_t x)
1202
{
1203
    return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000);
1204
}
1205

    
1206
uint32_t HELPER(neon_narrow_round_high_u8)(uint64_t x)
1207
{
1208
    x &= 0xff80ff80ff80ff80ull;
1209
    x += 0x0080008000800080ull;
1210
    return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00)
1211
            | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000);
1212
}
1213

    
1214
uint32_t HELPER(neon_narrow_round_high_u16)(uint64_t x)
1215
{
1216
    x &= 0xffff8000ffff8000ull;
1217
    x += 0x0000800000008000ull;
1218
    return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000);
1219
}
1220

    
1221
uint32_t HELPER(neon_unarrow_sat8)(CPUState *env, uint64_t x)
1222
{
1223
    uint16_t s;
1224
    uint8_t d;
1225
    uint32_t res = 0;
1226
#define SAT8(n) \
1227
    s = x >> n; \
1228
    if (s & 0x8000) { \
1229
        SET_QC(); \
1230
    } else { \
1231
        if (s > 0xff) { \
1232
            d = 0xff; \
1233
            SET_QC(); \
1234
        } else  { \
1235
            d = s; \
1236
        } \
1237
        res |= (uint32_t)d << (n / 2); \
1238
    }
1239

    
1240
    SAT8(0);
1241
    SAT8(16);
1242
    SAT8(32);
1243
    SAT8(48);
1244
#undef SAT8
1245
    return res;
1246
}
1247

    
1248
uint32_t HELPER(neon_narrow_sat_u8)(CPUState *env, uint64_t x)
1249
{
1250
    uint16_t s;
1251
    uint8_t d;
1252
    uint32_t res = 0;
1253
#define SAT8(n) \
1254
    s = x >> n; \
1255
    if (s > 0xff) { \
1256
        d = 0xff; \
1257
        SET_QC(); \
1258
    } else  { \
1259
        d = s; \
1260
    } \
1261
    res |= (uint32_t)d << (n / 2);
1262

    
1263
    SAT8(0);
1264
    SAT8(16);
1265
    SAT8(32);
1266
    SAT8(48);
1267
#undef SAT8
1268
    return res;
1269
}
1270

    
1271
uint32_t HELPER(neon_narrow_sat_s8)(CPUState *env, uint64_t x)
1272
{
1273
    int16_t s;
1274
    uint8_t d;
1275
    uint32_t res = 0;
1276
#define SAT8(n) \
1277
    s = x >> n; \
1278
    if (s != (int8_t)s) { \
1279
        d = (s >> 15) ^ 0x7f; \
1280
        SET_QC(); \
1281
    } else  { \
1282
        d = s; \
1283
    } \
1284
    res |= (uint32_t)d << (n / 2);
1285

    
1286
    SAT8(0);
1287
    SAT8(16);
1288
    SAT8(32);
1289
    SAT8(48);
1290
#undef SAT8
1291
    return res;
1292
}
1293

    
1294
uint32_t HELPER(neon_unarrow_sat16)(CPUState *env, uint64_t x)
1295
{
1296
    uint32_t high;
1297
    uint32_t low;
1298
    low = x;
1299
    if (low & 0x80000000) {
1300
        low = 0;
1301
        SET_QC();
1302
    } else if (low > 0xffff) {
1303
        low = 0xffff;
1304
        SET_QC();
1305
    }
1306
    high = x >> 32;
1307
    if (high & 0x80000000) {
1308
        high = 0;
1309
        SET_QC();
1310
    } else if (high > 0xffff) {
1311
        high = 0xffff;
1312
        SET_QC();
1313
    }
1314
    return low | (high << 16);
1315
}
1316

    
1317
uint32_t HELPER(neon_narrow_sat_u16)(CPUState *env, uint64_t x)
1318
{
1319
    uint32_t high;
1320
    uint32_t low;
1321
    low = x;
1322
    if (low > 0xffff) {
1323
        low = 0xffff;
1324
        SET_QC();
1325
    }
1326
    high = x >> 32;
1327
    if (high > 0xffff) {
1328
        high = 0xffff;
1329
        SET_QC();
1330
    }
1331
    return low | (high << 16);
1332
}
1333

    
1334
uint32_t HELPER(neon_narrow_sat_s16)(CPUState *env, uint64_t x)
1335
{
1336
    int32_t low;
1337
    int32_t high;
1338
    low = x;
1339
    if (low != (int16_t)low) {
1340
        low = (low >> 31) ^ 0x7fff;
1341
        SET_QC();
1342
    }
1343
    high = x >> 32;
1344
    if (high != (int16_t)high) {
1345
        high = (high >> 31) ^ 0x7fff;
1346
        SET_QC();
1347
    }
1348
    return (uint16_t)low | (high << 16);
1349
}
1350

    
1351
uint32_t HELPER(neon_unarrow_sat32)(CPUState *env, uint64_t x)
1352
{
1353
    if (x & 0x8000000000000000ull) {
1354
        SET_QC();
1355
        return 0;
1356
    }
1357
    if (x > 0xffffffffu) {
1358
        SET_QC();
1359
        return 0xffffffffu;
1360
    }
1361
    return x;
1362
}
1363

    
1364
uint32_t HELPER(neon_narrow_sat_u32)(CPUState *env, uint64_t x)
1365
{
1366
    if (x > 0xffffffffu) {
1367
        SET_QC();
1368
        return 0xffffffffu;
1369
    }
1370
    return x;
1371
}
1372

    
1373
uint32_t HELPER(neon_narrow_sat_s32)(CPUState *env, uint64_t x)
1374
{
1375
    if ((int64_t)x != (int32_t)x) {
1376
        SET_QC();
1377
        return ((int64_t)x >> 63) ^ 0x7fffffff;
1378
    }
1379
    return x;
1380
}
1381

    
1382
uint64_t HELPER(neon_widen_u8)(uint32_t x)
1383
{
1384
    uint64_t tmp;
1385
    uint64_t ret;
1386
    ret = (uint8_t)x;
1387
    tmp = (uint8_t)(x >> 8);
1388
    ret |= tmp << 16;
1389
    tmp = (uint8_t)(x >> 16);
1390
    ret |= tmp << 32;
1391
    tmp = (uint8_t)(x >> 24);
1392
    ret |= tmp << 48;
1393
    return ret;
1394
}
1395

    
1396
uint64_t HELPER(neon_widen_s8)(uint32_t x)
1397
{
1398
    uint64_t tmp;
1399
    uint64_t ret;
1400
    ret = (uint16_t)(int8_t)x;
1401
    tmp = (uint16_t)(int8_t)(x >> 8);
1402
    ret |= tmp << 16;
1403
    tmp = (uint16_t)(int8_t)(x >> 16);
1404
    ret |= tmp << 32;
1405
    tmp = (uint16_t)(int8_t)(x >> 24);
1406
    ret |= tmp << 48;
1407
    return ret;
1408
}
1409

    
1410
uint64_t HELPER(neon_widen_u16)(uint32_t x)
1411
{
1412
    uint64_t high = (uint16_t)(x >> 16);
1413
    return ((uint16_t)x) | (high << 32);
1414
}
1415

    
1416
uint64_t HELPER(neon_widen_s16)(uint32_t x)
1417
{
1418
    uint64_t high = (int16_t)(x >> 16);
1419
    return ((uint32_t)(int16_t)x) | (high << 32);
1420
}
1421

    
1422
uint64_t HELPER(neon_addl_u16)(uint64_t a, uint64_t b)
1423
{
1424
    uint64_t mask;
1425
    mask = (a ^ b) & 0x8000800080008000ull;
1426
    a &= ~0x8000800080008000ull;
1427
    b &= ~0x8000800080008000ull;
1428
    return (a + b) ^ mask;
1429
}
1430

    
1431
uint64_t HELPER(neon_addl_u32)(uint64_t a, uint64_t b)
1432
{
1433
    uint64_t mask;
1434
    mask = (a ^ b) & 0x8000000080000000ull;
1435
    a &= ~0x8000000080000000ull;
1436
    b &= ~0x8000000080000000ull;
1437
    return (a + b) ^ mask;
1438
}
1439

    
1440
uint64_t HELPER(neon_paddl_u16)(uint64_t a, uint64_t b)
1441
{
1442
    uint64_t tmp;
1443
    uint64_t tmp2;
1444

    
1445
    tmp = a & 0x0000ffff0000ffffull;
1446
    tmp += (a >> 16) & 0x0000ffff0000ffffull;
1447
    tmp2 = b & 0xffff0000ffff0000ull;
1448
    tmp2 += (b << 16) & 0xffff0000ffff0000ull;
1449
    return    ( tmp         & 0xffff)
1450
            | ((tmp  >> 16) & 0xffff0000ull)
1451
            | ((tmp2 << 16) & 0xffff00000000ull)
1452
            | ( tmp2        & 0xffff000000000000ull);
1453
}
1454

    
1455
uint64_t HELPER(neon_paddl_u32)(uint64_t a, uint64_t b)
1456
{
1457
    uint32_t low = a + (a >> 32);
1458
    uint32_t high = b + (b >> 32);
1459
    return low + ((uint64_t)high << 32);
1460
}
1461

    
1462
uint64_t HELPER(neon_subl_u16)(uint64_t a, uint64_t b)
1463
{
1464
    uint64_t mask;
1465
    mask = (a ^ ~b) & 0x8000800080008000ull;
1466
    a |= 0x8000800080008000ull;
1467
    b &= ~0x8000800080008000ull;
1468
    return (a - b) ^ mask;
1469
}
1470

    
1471
uint64_t HELPER(neon_subl_u32)(uint64_t a, uint64_t b)
1472
{
1473
    uint64_t mask;
1474
    mask = (a ^ ~b) & 0x8000000080000000ull;
1475
    a |= 0x8000000080000000ull;
1476
    b &= ~0x8000000080000000ull;
1477
    return (a - b) ^ mask;
1478
}
1479

    
1480
uint64_t HELPER(neon_addl_saturate_s32)(CPUState *env, uint64_t a, uint64_t b)
1481
{
1482
    uint32_t x, y;
1483
    uint32_t low, high;
1484

    
1485
    x = a;
1486
    y = b;
1487
    low = x + y;
1488
    if (((low ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) {
1489
        SET_QC();
1490
        low = ((int32_t)x >> 31) ^ ~SIGNBIT;
1491
    }
1492
    x = a >> 32;
1493
    y = b >> 32;
1494
    high = x + y;
1495
    if (((high ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) {
1496
        SET_QC();
1497
        high = ((int32_t)x >> 31) ^ ~SIGNBIT;
1498
    }
1499
    return low | ((uint64_t)high << 32);
1500
}
1501

    
1502
uint64_t HELPER(neon_addl_saturate_s64)(CPUState *env, uint64_t a, uint64_t b)
1503
{
1504
    uint64_t result;
1505

    
1506
    result = a + b;
1507
    if (((result ^ a) & SIGNBIT64) && !((a ^ b) & SIGNBIT64)) {
1508
        SET_QC();
1509
        result = ((int64_t)a >> 63) ^ ~SIGNBIT64;
1510
    }
1511
    return result;
1512
}
1513

    
1514
#define DO_ABD(dest, x, y, type) do { \
1515
    type tmp_x = x; \
1516
    type tmp_y = y; \
1517
    dest = ((tmp_x > tmp_y) ? tmp_x - tmp_y : tmp_y - tmp_x); \
1518
    } while(0)
1519

    
1520
uint64_t HELPER(neon_abdl_u16)(uint32_t a, uint32_t b)
1521
{
1522
    uint64_t tmp;
1523
    uint64_t result;
1524
    DO_ABD(result, a, b, uint8_t);
1525
    DO_ABD(tmp, a >> 8, b >> 8, uint8_t);
1526
    result |= tmp << 16;
1527
    DO_ABD(tmp, a >> 16, b >> 16, uint8_t);
1528
    result |= tmp << 32;
1529
    DO_ABD(tmp, a >> 24, b >> 24, uint8_t);
1530
    result |= tmp << 48;
1531
    return result;
1532
}
1533

    
1534
uint64_t HELPER(neon_abdl_s16)(uint32_t a, uint32_t b)
1535
{
1536
    uint64_t tmp;
1537
    uint64_t result;
1538
    DO_ABD(result, a, b, int8_t);
1539
    DO_ABD(tmp, a >> 8, b >> 8, int8_t);
1540
    result |= tmp << 16;
1541
    DO_ABD(tmp, a >> 16, b >> 16, int8_t);
1542
    result |= tmp << 32;
1543
    DO_ABD(tmp, a >> 24, b >> 24, int8_t);
1544
    result |= tmp << 48;
1545
    return result;
1546
}
1547

    
1548
uint64_t HELPER(neon_abdl_u32)(uint32_t a, uint32_t b)
1549
{
1550
    uint64_t tmp;
1551
    uint64_t result;
1552
    DO_ABD(result, a, b, uint16_t);
1553
    DO_ABD(tmp, a >> 16, b >> 16, uint16_t);
1554
    return result | (tmp << 32);
1555
}
1556

    
1557
uint64_t HELPER(neon_abdl_s32)(uint32_t a, uint32_t b)
1558
{
1559
    uint64_t tmp;
1560
    uint64_t result;
1561
    DO_ABD(result, a, b, int16_t);
1562
    DO_ABD(tmp, a >> 16, b >> 16, int16_t);
1563
    return result | (tmp << 32);
1564
}
1565

    
1566
uint64_t HELPER(neon_abdl_u64)(uint32_t a, uint32_t b)
1567
{
1568
    uint64_t result;
1569
    DO_ABD(result, a, b, uint32_t);
1570
    return result;
1571
}
1572

    
1573
uint64_t HELPER(neon_abdl_s64)(uint32_t a, uint32_t b)
1574
{
1575
    uint64_t result;
1576
    DO_ABD(result, a, b, int32_t);
1577
    return result;
1578
}
1579
#undef DO_ABD
1580

    
1581
/* Widening multiply. Named type is the source type.  */
1582
#define DO_MULL(dest, x, y, type1, type2) do { \
1583
    type1 tmp_x = x; \
1584
    type1 tmp_y = y; \
1585
    dest = (type2)((type2)tmp_x * (type2)tmp_y); \
1586
    } while(0)
1587

    
1588
uint64_t HELPER(neon_mull_u8)(uint32_t a, uint32_t b)
1589
{
1590
    uint64_t tmp;
1591
    uint64_t result;
1592

    
1593
    DO_MULL(result, a, b, uint8_t, uint16_t);
1594
    DO_MULL(tmp, a >> 8, b >> 8, uint8_t, uint16_t);
1595
    result |= tmp << 16;
1596
    DO_MULL(tmp, a >> 16, b >> 16, uint8_t, uint16_t);
1597
    result |= tmp << 32;
1598
    DO_MULL(tmp, a >> 24, b >> 24, uint8_t, uint16_t);
1599
    result |= tmp << 48;
1600
    return result;
1601
}
1602

    
1603
uint64_t HELPER(neon_mull_s8)(uint32_t a, uint32_t b)
1604
{
1605
    uint64_t tmp;
1606
    uint64_t result;
1607

    
1608
    DO_MULL(result, a, b, int8_t, uint16_t);
1609
    DO_MULL(tmp, a >> 8, b >> 8, int8_t, uint16_t);
1610
    result |= tmp << 16;
1611
    DO_MULL(tmp, a >> 16, b >> 16, int8_t, uint16_t);
1612
    result |= tmp << 32;
1613
    DO_MULL(tmp, a >> 24, b >> 24, int8_t, uint16_t);
1614
    result |= tmp << 48;
1615
    return result;
1616
}
1617

    
1618
uint64_t HELPER(neon_mull_u16)(uint32_t a, uint32_t b)
1619
{
1620
    uint64_t tmp;
1621
    uint64_t result;
1622

    
1623
    DO_MULL(result, a, b, uint16_t, uint32_t);
1624
    DO_MULL(tmp, a >> 16, b >> 16, uint16_t, uint32_t);
1625
    return result | (tmp << 32);
1626
}
1627

    
1628
uint64_t HELPER(neon_mull_s16)(uint32_t a, uint32_t b)
1629
{
1630
    uint64_t tmp;
1631
    uint64_t result;
1632

    
1633
    DO_MULL(result, a, b, int16_t, uint32_t);
1634
    DO_MULL(tmp, a >> 16, b >> 16, int16_t, uint32_t);
1635
    return result | (tmp << 32);
1636
}
1637

    
1638
uint64_t HELPER(neon_negl_u16)(uint64_t x)
1639
{
1640
    uint16_t tmp;
1641
    uint64_t result;
1642
    result = (uint16_t)-x;
1643
    tmp = -(x >> 16);
1644
    result |= (uint64_t)tmp << 16;
1645
    tmp = -(x >> 32);
1646
    result |= (uint64_t)tmp << 32;
1647
    tmp = -(x >> 48);
1648
    result |= (uint64_t)tmp << 48;
1649
    return result;
1650
}
1651

    
1652
uint64_t HELPER(neon_negl_u32)(uint64_t x)
1653
{
1654
    uint32_t low = -x;
1655
    uint32_t high = -(x >> 32);
1656
    return low | ((uint64_t)high << 32);
1657
}
1658

    
1659
/* FIXME:  There should be a native op for this.  */
1660
uint64_t HELPER(neon_negl_u64)(uint64_t x)
1661
{
1662
    return -x;
1663
}
1664

    
1665
/* Saturnating sign manuipulation.  */
1666
/* ??? Make these use NEON_VOP1 */
1667
#define DO_QABS8(x) do { \
1668
    if (x == (int8_t)0x80) { \
1669
        x = 0x7f; \
1670
        SET_QC(); \
1671
    } else if (x < 0) { \
1672
        x = -x; \
1673
    }} while (0)
1674
uint32_t HELPER(neon_qabs_s8)(CPUState *env, uint32_t x)
1675
{
1676
    neon_s8 vec;
1677
    NEON_UNPACK(neon_s8, vec, x);
1678
    DO_QABS8(vec.v1);
1679
    DO_QABS8(vec.v2);
1680
    DO_QABS8(vec.v3);
1681
    DO_QABS8(vec.v4);
1682
    NEON_PACK(neon_s8, x, vec);
1683
    return x;
1684
}
1685
#undef DO_QABS8
1686

    
1687
#define DO_QNEG8(x) do { \
1688
    if (x == (int8_t)0x80) { \
1689
        x = 0x7f; \
1690
        SET_QC(); \
1691
    } else { \
1692
        x = -x; \
1693
    }} while (0)
1694
uint32_t HELPER(neon_qneg_s8)(CPUState *env, uint32_t x)
1695
{
1696
    neon_s8 vec;
1697
    NEON_UNPACK(neon_s8, vec, x);
1698
    DO_QNEG8(vec.v1);
1699
    DO_QNEG8(vec.v2);
1700
    DO_QNEG8(vec.v3);
1701
    DO_QNEG8(vec.v4);
1702
    NEON_PACK(neon_s8, x, vec);
1703
    return x;
1704
}
1705
#undef DO_QNEG8
1706

    
1707
#define DO_QABS16(x) do { \
1708
    if (x == (int16_t)0x8000) { \
1709
        x = 0x7fff; \
1710
        SET_QC(); \
1711
    } else if (x < 0) { \
1712
        x = -x; \
1713
    }} while (0)
1714
uint32_t HELPER(neon_qabs_s16)(CPUState *env, uint32_t x)
1715
{
1716
    neon_s16 vec;
1717
    NEON_UNPACK(neon_s16, vec, x);
1718
    DO_QABS16(vec.v1);
1719
    DO_QABS16(vec.v2);
1720
    NEON_PACK(neon_s16, x, vec);
1721
    return x;
1722
}
1723
#undef DO_QABS16
1724

    
1725
#define DO_QNEG16(x) do { \
1726
    if (x == (int16_t)0x8000) { \
1727
        x = 0x7fff; \
1728
        SET_QC(); \
1729
    } else { \
1730
        x = -x; \
1731
    }} while (0)
1732
uint32_t HELPER(neon_qneg_s16)(CPUState *env, uint32_t x)
1733
{
1734
    neon_s16 vec;
1735
    NEON_UNPACK(neon_s16, vec, x);
1736
    DO_QNEG16(vec.v1);
1737
    DO_QNEG16(vec.v2);
1738
    NEON_PACK(neon_s16, x, vec);
1739
    return x;
1740
}
1741
#undef DO_QNEG16
1742

    
1743
uint32_t HELPER(neon_qabs_s32)(CPUState *env, uint32_t x)
1744
{
1745
    if (x == SIGNBIT) {
1746
        SET_QC();
1747
        x = ~SIGNBIT;
1748
    } else if ((int32_t)x < 0) {
1749
        x = -x;
1750
    }
1751
    return x;
1752
}
1753

    
1754
uint32_t HELPER(neon_qneg_s32)(CPUState *env, uint32_t x)
1755
{
1756
    if (x == SIGNBIT) {
1757
        SET_QC();
1758
        x = ~SIGNBIT;
1759
    } else {
1760
        x = -x;
1761
    }
1762
    return x;
1763
}
1764

    
1765
/* NEON Float helpers.  */
1766
uint32_t HELPER(neon_min_f32)(uint32_t a, uint32_t b)
1767
{
1768
    float32 f0 = vfp_itos(a);
1769
    float32 f1 = vfp_itos(b);
1770
    return (float32_compare_quiet(f0, f1, NFS) == -1) ? a : b;
1771
}
1772

    
1773
uint32_t HELPER(neon_max_f32)(uint32_t a, uint32_t b)
1774
{
1775
    float32 f0 = vfp_itos(a);
1776
    float32 f1 = vfp_itos(b);
1777
    return (float32_compare_quiet(f0, f1, NFS) == 1) ? a : b;
1778
}
1779

    
1780
uint32_t HELPER(neon_abd_f32)(uint32_t a, uint32_t b)
1781
{
1782
    float32 f0 = vfp_itos(a);
1783
    float32 f1 = vfp_itos(b);
1784
    return vfp_stoi((float32_compare_quiet(f0, f1, NFS) == 1)
1785
                    ? float32_sub(f0, f1, NFS)
1786
                    : float32_sub(f1, f0, NFS));
1787
}
1788

    
1789
uint32_t HELPER(neon_add_f32)(uint32_t a, uint32_t b)
1790
{
1791
    return vfp_stoi(float32_add(vfp_itos(a), vfp_itos(b), NFS));
1792
}
1793

    
1794
uint32_t HELPER(neon_sub_f32)(uint32_t a, uint32_t b)
1795
{
1796
    return vfp_stoi(float32_sub(vfp_itos(a), vfp_itos(b), NFS));
1797
}
1798

    
1799
uint32_t HELPER(neon_mul_f32)(uint32_t a, uint32_t b)
1800
{
1801
    return vfp_stoi(float32_mul(vfp_itos(a), vfp_itos(b), NFS));
1802
}
1803

    
1804
/* Floating point comparisons produce an integer result.  */
1805
#define NEON_VOP_FCMP(name, cmp) \
1806
uint32_t HELPER(neon_##name)(uint32_t a, uint32_t b) \
1807
{ \
1808
    if (float32_compare_quiet(vfp_itos(a), vfp_itos(b), NFS) cmp 0) \
1809
        return ~0; \
1810
    else \
1811
        return 0; \
1812
}
1813

    
1814
NEON_VOP_FCMP(ceq_f32, ==)
1815
NEON_VOP_FCMP(cge_f32, >=)
1816
NEON_VOP_FCMP(cgt_f32, >)
1817

    
1818
uint32_t HELPER(neon_acge_f32)(uint32_t a, uint32_t b)
1819
{
1820
    float32 f0 = float32_abs(vfp_itos(a));
1821
    float32 f1 = float32_abs(vfp_itos(b));
1822
    return (float32_compare_quiet(f0, f1,NFS) >= 0) ? ~0 : 0;
1823
}
1824

    
1825
uint32_t HELPER(neon_acgt_f32)(uint32_t a, uint32_t b)
1826
{
1827
    float32 f0 = float32_abs(vfp_itos(a));
1828
    float32 f1 = float32_abs(vfp_itos(b));
1829
    return (float32_compare_quiet(f0, f1, NFS) > 0) ? ~0 : 0;
1830
}
1831

    
1832
#define ELEM(V, N, SIZE) (((V) >> ((N) * (SIZE))) & ((1ull << (SIZE)) - 1))
1833

    
1834
void HELPER(neon_qunzip8)(CPUState *env, uint32_t rd, uint32_t rm)
1835
{
1836
    uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1837
    uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1838
    uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1839
    uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1840
    uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zd0, 2, 8) << 8)
1841
        | (ELEM(zd0, 4, 8) << 16) | (ELEM(zd0, 6, 8) << 24)
1842
        | (ELEM(zd1, 0, 8) << 32) | (ELEM(zd1, 2, 8) << 40)
1843
        | (ELEM(zd1, 4, 8) << 48) | (ELEM(zd1, 6, 8) << 56);
1844
    uint64_t d1 = ELEM(zm0, 0, 8) | (ELEM(zm0, 2, 8) << 8)
1845
        | (ELEM(zm0, 4, 8) << 16) | (ELEM(zm0, 6, 8) << 24)
1846
        | (ELEM(zm1, 0, 8) << 32) | (ELEM(zm1, 2, 8) << 40)
1847
        | (ELEM(zm1, 4, 8) << 48) | (ELEM(zm1, 6, 8) << 56);
1848
    uint64_t m0 = ELEM(zd0, 1, 8) | (ELEM(zd0, 3, 8) << 8)
1849
        | (ELEM(zd0, 5, 8) << 16) | (ELEM(zd0, 7, 8) << 24)
1850
        | (ELEM(zd1, 1, 8) << 32) | (ELEM(zd1, 3, 8) << 40)
1851
        | (ELEM(zd1, 5, 8) << 48) | (ELEM(zd1, 7, 8) << 56);
1852
    uint64_t m1 = ELEM(zm0, 1, 8) | (ELEM(zm0, 3, 8) << 8)
1853
        | (ELEM(zm0, 5, 8) << 16) | (ELEM(zm0, 7, 8) << 24)
1854
        | (ELEM(zm1, 1, 8) << 32) | (ELEM(zm1, 3, 8) << 40)
1855
        | (ELEM(zm1, 5, 8) << 48) | (ELEM(zm1, 7, 8) << 56);
1856
    env->vfp.regs[rm] = make_float64(m0);
1857
    env->vfp.regs[rm + 1] = make_float64(m1);
1858
    env->vfp.regs[rd] = make_float64(d0);
1859
    env->vfp.regs[rd + 1] = make_float64(d1);
1860
}
1861

    
1862
void HELPER(neon_qunzip16)(CPUState *env, uint32_t rd, uint32_t rm)
1863
{
1864
    uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1865
    uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1866
    uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1867
    uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1868
    uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zd0, 2, 16) << 16)
1869
        | (ELEM(zd1, 0, 16) << 32) | (ELEM(zd1, 2, 16) << 48);
1870
    uint64_t d1 = ELEM(zm0, 0, 16) | (ELEM(zm0, 2, 16) << 16)
1871
        | (ELEM(zm1, 0, 16) << 32) | (ELEM(zm1, 2, 16) << 48);
1872
    uint64_t m0 = ELEM(zd0, 1, 16) | (ELEM(zd0, 3, 16) << 16)
1873
        | (ELEM(zd1, 1, 16) << 32) | (ELEM(zd1, 3, 16) << 48);
1874
    uint64_t m1 = ELEM(zm0, 1, 16) | (ELEM(zm0, 3, 16) << 16)
1875
        | (ELEM(zm1, 1, 16) << 32) | (ELEM(zm1, 3, 16) << 48);
1876
    env->vfp.regs[rm] = make_float64(m0);
1877
    env->vfp.regs[rm + 1] = make_float64(m1);
1878
    env->vfp.regs[rd] = make_float64(d0);
1879
    env->vfp.regs[rd + 1] = make_float64(d1);
1880
}
1881

    
1882
void HELPER(neon_qunzip32)(CPUState *env, uint32_t rd, uint32_t rm)
1883
{
1884
    uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1885
    uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1886
    uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1887
    uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1888
    uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zd1, 0, 32) << 32);
1889
    uint64_t d1 = ELEM(zm0, 0, 32) | (ELEM(zm1, 0, 32) << 32);
1890
    uint64_t m0 = ELEM(zd0, 1, 32) | (ELEM(zd1, 1, 32) << 32);
1891
    uint64_t m1 = ELEM(zm0, 1, 32) | (ELEM(zm1, 1, 32) << 32);
1892
    env->vfp.regs[rm] = make_float64(m0);
1893
    env->vfp.regs[rm + 1] = make_float64(m1);
1894
    env->vfp.regs[rd] = make_float64(d0);
1895
    env->vfp.regs[rd + 1] = make_float64(d1);
1896
}
1897

    
1898
void HELPER(neon_unzip8)(CPUState *env, uint32_t rd, uint32_t rm)
1899
{
1900
    uint64_t zm = float64_val(env->vfp.regs[rm]);
1901
    uint64_t zd = float64_val(env->vfp.regs[rd]);
1902
    uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zd, 2, 8) << 8)
1903
        | (ELEM(zd, 4, 8) << 16) | (ELEM(zd, 6, 8) << 24)
1904
        | (ELEM(zm, 0, 8) << 32) | (ELEM(zm, 2, 8) << 40)
1905
        | (ELEM(zm, 4, 8) << 48) | (ELEM(zm, 6, 8) << 56);
1906
    uint64_t m0 = ELEM(zd, 1, 8) | (ELEM(zd, 3, 8) << 8)
1907
        | (ELEM(zd, 5, 8) << 16) | (ELEM(zd, 7, 8) << 24)
1908
        | (ELEM(zm, 1, 8) << 32) | (ELEM(zm, 3, 8) << 40)
1909
        | (ELEM(zm, 5, 8) << 48) | (ELEM(zm, 7, 8) << 56);
1910
    env->vfp.regs[rm] = make_float64(m0);
1911
    env->vfp.regs[rd] = make_float64(d0);
1912
}
1913

    
1914
void HELPER(neon_unzip16)(CPUState *env, uint32_t rd, uint32_t rm)
1915
{
1916
    uint64_t zm = float64_val(env->vfp.regs[rm]);
1917
    uint64_t zd = float64_val(env->vfp.regs[rd]);
1918
    uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zd, 2, 16) << 16)
1919
        | (ELEM(zm, 0, 16) << 32) | (ELEM(zm, 2, 16) << 48);
1920
    uint64_t m0 = ELEM(zd, 1, 16) | (ELEM(zd, 3, 16) << 16)
1921
        | (ELEM(zm, 1, 16) << 32) | (ELEM(zm, 3, 16) << 48);
1922
    env->vfp.regs[rm] = make_float64(m0);
1923
    env->vfp.regs[rd] = make_float64(d0);
1924
}
1925

    
1926
void HELPER(neon_qzip8)(CPUState *env, uint32_t rd, uint32_t rm)
1927
{
1928
    uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1929
    uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1930
    uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1931
    uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1932
    uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zm0, 0, 8) << 8)
1933
        | (ELEM(zd0, 1, 8) << 16) | (ELEM(zm0, 1, 8) << 24)
1934
        | (ELEM(zd0, 2, 8) << 32) | (ELEM(zm0, 2, 8) << 40)
1935
        | (ELEM(zd0, 3, 8) << 48) | (ELEM(zm0, 3, 8) << 56);
1936
    uint64_t d1 = ELEM(zd0, 4, 8) | (ELEM(zm0, 4, 8) << 8)
1937
        | (ELEM(zd0, 5, 8) << 16) | (ELEM(zm0, 5, 8) << 24)
1938
        | (ELEM(zd0, 6, 8) << 32) | (ELEM(zm0, 6, 8) << 40)
1939
        | (ELEM(zd0, 7, 8) << 48) | (ELEM(zm0, 7, 8) << 56);
1940
    uint64_t m0 = ELEM(zd1, 0, 8) | (ELEM(zm1, 0, 8) << 8)
1941
        | (ELEM(zd1, 1, 8) << 16) | (ELEM(zm1, 1, 8) << 24)
1942
        | (ELEM(zd1, 2, 8) << 32) | (ELEM(zm1, 2, 8) << 40)
1943
        | (ELEM(zd1, 3, 8) << 48) | (ELEM(zm1, 3, 8) << 56);
1944
    uint64_t m1 = ELEM(zd1, 4, 8) | (ELEM(zm1, 4, 8) << 8)
1945
        | (ELEM(zd1, 5, 8) << 16) | (ELEM(zm1, 5, 8) << 24)
1946
        | (ELEM(zd1, 6, 8) << 32) | (ELEM(zm1, 6, 8) << 40)
1947
        | (ELEM(zd1, 7, 8) << 48) | (ELEM(zm1, 7, 8) << 56);
1948
    env->vfp.regs[rm] = make_float64(m0);
1949
    env->vfp.regs[rm + 1] = make_float64(m1);
1950
    env->vfp.regs[rd] = make_float64(d0);
1951
    env->vfp.regs[rd + 1] = make_float64(d1);
1952
}
1953

    
1954
void HELPER(neon_qzip16)(CPUState *env, uint32_t rd, uint32_t rm)
1955
{
1956
    uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1957
    uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1958
    uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1959
    uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1960
    uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zm0, 0, 16) << 16)
1961
        | (ELEM(zd0, 1, 16) << 32) | (ELEM(zm0, 1, 16) << 48);
1962
    uint64_t d1 = ELEM(zd0, 2, 16) | (ELEM(zm0, 2, 16) << 16)
1963
        | (ELEM(zd0, 3, 16) << 32) | (ELEM(zm0, 3, 16) << 48);
1964
    uint64_t m0 = ELEM(zd1, 0, 16) | (ELEM(zm1, 0, 16) << 16)
1965
        | (ELEM(zd1, 1, 16) << 32) | (ELEM(zm1, 1, 16) << 48);
1966
    uint64_t m1 = ELEM(zd1, 2, 16) | (ELEM(zm1, 2, 16) << 16)
1967
        | (ELEM(zd1, 3, 16) << 32) | (ELEM(zm1, 3, 16) << 48);
1968
    env->vfp.regs[rm] = make_float64(m0);
1969
    env->vfp.regs[rm + 1] = make_float64(m1);
1970
    env->vfp.regs[rd] = make_float64(d0);
1971
    env->vfp.regs[rd + 1] = make_float64(d1);
1972
}
1973

    
1974
void HELPER(neon_qzip32)(CPUState *env, uint32_t rd, uint32_t rm)
1975
{
1976
    uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1977
    uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1978
    uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1979
    uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1980
    uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zm0, 0, 32) << 32);
1981
    uint64_t d1 = ELEM(zd0, 1, 32) | (ELEM(zm0, 1, 32) << 32);
1982
    uint64_t m0 = ELEM(zd1, 0, 32) | (ELEM(zm1, 0, 32) << 32);
1983
    uint64_t m1 = ELEM(zd1, 1, 32) | (ELEM(zm1, 1, 32) << 32);
1984
    env->vfp.regs[rm] = make_float64(m0);
1985
    env->vfp.regs[rm + 1] = make_float64(m1);
1986
    env->vfp.regs[rd] = make_float64(d0);
1987
    env->vfp.regs[rd + 1] = make_float64(d1);
1988
}
1989

    
1990
void HELPER(neon_zip8)(CPUState *env, uint32_t rd, uint32_t rm)
1991
{
1992
    uint64_t zm = float64_val(env->vfp.regs[rm]);
1993
    uint64_t zd = float64_val(env->vfp.regs[rd]);
1994
    uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zm, 0, 8) << 8)
1995
        | (ELEM(zd, 1, 8) << 16) | (ELEM(zm, 1, 8) << 24)
1996
        | (ELEM(zd, 2, 8) << 32) | (ELEM(zm, 2, 8) << 40)
1997
        | (ELEM(zd, 3, 8) << 48) | (ELEM(zm, 3, 8) << 56);
1998
    uint64_t m0 = ELEM(zd, 4, 8) | (ELEM(zm, 4, 8) << 8)
1999
        | (ELEM(zd, 5, 8) << 16) | (ELEM(zm, 5, 8) << 24)
2000
        | (ELEM(zd, 6, 8) << 32) | (ELEM(zm, 6, 8) << 40)
2001
        | (ELEM(zd, 7, 8) << 48) | (ELEM(zm, 7, 8) << 56);
2002
    env->vfp.regs[rm] = make_float64(m0);
2003
    env->vfp.regs[rd] = make_float64(d0);
2004
}
2005

    
2006
void HELPER(neon_zip16)(CPUState *env, uint32_t rd, uint32_t rm)
2007
{
2008
    uint64_t zm = float64_val(env->vfp.regs[rm]);
2009
    uint64_t zd = float64_val(env->vfp.regs[rd]);
2010
    uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zm, 0, 16) << 16)
2011
        | (ELEM(zd, 1, 16) << 32) | (ELEM(zm, 1, 16) << 48);
2012
    uint64_t m0 = ELEM(zd, 2, 16) | (ELEM(zm, 2, 16) << 16)
2013
        | (ELEM(zd, 3, 16) << 32) | (ELEM(zm, 3, 16) << 48);
2014
    env->vfp.regs[rm] = make_float64(m0);
2015
    env->vfp.regs[rd] = make_float64(d0);
2016
}