Statistics
| Branch: | Revision:

root / hw / ne2000.c @ 7c9d8e07

History | View | Annotate | Download (23.2 kB)

1
/*
2
 * QEMU NE2000 emulation
3
 * 
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25

    
26
/* debug NE2000 card */
27
//#define DEBUG_NE2000
28

    
29
#define MAX_ETH_FRAME_SIZE 1514
30

    
31
#define E8390_CMD        0x00  /* The command register (for all pages) */
32
/* Page 0 register offsets. */
33
#define EN0_CLDALO        0x01        /* Low byte of current local dma addr  RD */
34
#define EN0_STARTPG        0x01        /* Starting page of ring bfr WR */
35
#define EN0_CLDAHI        0x02        /* High byte of current local dma addr  RD */
36
#define EN0_STOPPG        0x02        /* Ending page +1 of ring bfr WR */
37
#define EN0_BOUNDARY        0x03        /* Boundary page of ring bfr RD WR */
38
#define EN0_TSR                0x04        /* Transmit status reg RD */
39
#define EN0_TPSR        0x04        /* Transmit starting page WR */
40
#define EN0_NCR                0x05        /* Number of collision reg RD */
41
#define EN0_TCNTLO        0x05        /* Low  byte of tx byte count WR */
42
#define EN0_FIFO        0x06        /* FIFO RD */
43
#define EN0_TCNTHI        0x06        /* High byte of tx byte count WR */
44
#define EN0_ISR                0x07        /* Interrupt status reg RD WR */
45
#define EN0_CRDALO        0x08        /* low byte of current remote dma address RD */
46
#define EN0_RSARLO        0x08        /* Remote start address reg 0 */
47
#define EN0_CRDAHI        0x09        /* high byte, current remote dma address RD */
48
#define EN0_RSARHI        0x09        /* Remote start address reg 1 */
49
#define EN0_RCNTLO        0x0a        /* Remote byte count reg WR */
50
#define EN0_RCNTHI        0x0b        /* Remote byte count reg WR */
51
#define EN0_RSR                0x0c        /* rx status reg RD */
52
#define EN0_RXCR        0x0c        /* RX configuration reg WR */
53
#define EN0_TXCR        0x0d        /* TX configuration reg WR */
54
#define EN0_COUNTER0        0x0d        /* Rcv alignment error counter RD */
55
#define EN0_DCFG        0x0e        /* Data configuration reg WR */
56
#define EN0_COUNTER1        0x0e        /* Rcv CRC error counter RD */
57
#define EN0_IMR                0x0f        /* Interrupt mask reg WR */
58
#define EN0_COUNTER2        0x0f        /* Rcv missed frame error counter RD */
59

    
60
#define EN1_PHYS        0x11
61
#define EN1_CURPAG      0x17
62
#define EN1_MULT        0x18
63

    
64
#define EN2_STARTPG        0x21        /* Starting page of ring bfr RD */
65
#define EN2_STOPPG        0x22        /* Ending page +1 of ring bfr RD */
66

    
67
/*  Register accessed at EN_CMD, the 8390 base addr.  */
68
#define E8390_STOP        0x01        /* Stop and reset the chip */
69
#define E8390_START        0x02        /* Start the chip, clear reset */
70
#define E8390_TRANS        0x04        /* Transmit a frame */
71
#define E8390_RREAD        0x08        /* Remote read */
72
#define E8390_RWRITE        0x10        /* Remote write  */
73
#define E8390_NODMA        0x20        /* Remote DMA */
74
#define E8390_PAGE0        0x00        /* Select page chip registers */
75
#define E8390_PAGE1        0x40        /* using the two high-order bits */
76
#define E8390_PAGE2        0x80        /* Page 3 is invalid. */
77

    
78
/* Bits in EN0_ISR - Interrupt status register */
79
#define ENISR_RX        0x01        /* Receiver, no error */
80
#define ENISR_TX        0x02        /* Transmitter, no error */
81
#define ENISR_RX_ERR        0x04        /* Receiver, with error */
82
#define ENISR_TX_ERR        0x08        /* Transmitter, with error */
83
#define ENISR_OVER        0x10        /* Receiver overwrote the ring */
84
#define ENISR_COUNTERS        0x20        /* Counters need emptying */
85
#define ENISR_RDC        0x40        /* remote dma complete */
86
#define ENISR_RESET        0x80        /* Reset completed */
87
#define ENISR_ALL        0x3f        /* Interrupts we will enable */
88

    
89
/* Bits in received packet status byte and EN0_RSR*/
90
#define ENRSR_RXOK        0x01        /* Received a good packet */
91
#define ENRSR_CRC        0x02        /* CRC error */
92
#define ENRSR_FAE        0x04        /* frame alignment error */
93
#define ENRSR_FO        0x08        /* FIFO overrun */
94
#define ENRSR_MPA        0x10        /* missed pkt */
95
#define ENRSR_PHY        0x20        /* physical/multicast address */
96
#define ENRSR_DIS        0x40        /* receiver disable. set in monitor mode */
97
#define ENRSR_DEF        0x80        /* deferring */
98

    
99
/* Transmitted packet status, EN0_TSR. */
100
#define ENTSR_PTX 0x01        /* Packet transmitted without error */
101
#define ENTSR_ND  0x02        /* The transmit wasn't deferred. */
102
#define ENTSR_COL 0x04        /* The transmit collided at least once. */
103
#define ENTSR_ABT 0x08  /* The transmit collided 16 times, and was deferred. */
104
#define ENTSR_CRS 0x10        /* The carrier sense was lost. */
105
#define ENTSR_FU  0x20  /* A "FIFO underrun" occurred during transmit. */
106
#define ENTSR_CDH 0x40        /* The collision detect "heartbeat" signal was lost. */
107
#define ENTSR_OWC 0x80  /* There was an out-of-window collision. */
108

    
109
#define NE2000_PMEM_SIZE    (32*1024)
110
#define NE2000_PMEM_START   (16*1024)
111
#define NE2000_PMEM_END     (NE2000_PMEM_SIZE+NE2000_PMEM_START)
112
#define NE2000_MEM_SIZE     NE2000_PMEM_END
113

    
114
typedef struct NE2000State {
115
    uint8_t cmd;
116
    uint32_t start;
117
    uint32_t stop;
118
    uint8_t boundary;
119
    uint8_t tsr;
120
    uint8_t tpsr;
121
    uint16_t tcnt;
122
    uint16_t rcnt;
123
    uint32_t rsar;
124
    uint8_t rsr;
125
    uint8_t rxcr;
126
    uint8_t isr;
127
    uint8_t dcfg;
128
    uint8_t imr;
129
    uint8_t phys[6]; /* mac address */
130
    uint8_t curpag;
131
    uint8_t mult[8]; /* multicast mask array */
132
    int irq;
133
    PCIDevice *pci_dev;
134
    VLANClientState *vc;
135
    uint8_t macaddr[6];
136
    uint8_t mem[NE2000_MEM_SIZE];
137
} NE2000State;
138

    
139
static void ne2000_reset(NE2000State *s)
140
{
141
    int i;
142

    
143
    s->isr = ENISR_RESET;
144
    memcpy(s->mem, s->macaddr, 6);
145
    s->mem[14] = 0x57;
146
    s->mem[15] = 0x57;
147

    
148
    /* duplicate prom data */
149
    for(i = 15;i >= 0; i--) {
150
        s->mem[2 * i] = s->mem[i];
151
        s->mem[2 * i + 1] = s->mem[i];
152
    }
153
}
154

    
155
static void ne2000_update_irq(NE2000State *s)
156
{
157
    int isr;
158
    isr = (s->isr & s->imr) & 0x7f;
159
#if defined(DEBUG_NE2000)
160
    printf("NE2000: Set IRQ line %d to %d (%02x %02x)\n",
161
           s->irq, isr ? 1 : 0, s->isr, s->imr);
162
#endif
163
    if (s->irq == 16) {
164
        /* PCI irq */
165
        pci_set_irq(s->pci_dev, 0, (isr != 0));
166
    } else {
167
        /* ISA irq */
168
        pic_set_irq(s->irq, (isr != 0));
169
    }
170
}
171

    
172
#define POLYNOMIAL 0x04c11db6
173

    
174
/* From FreeBSD */
175
/* XXX: optimize */
176
static int compute_mcast_idx(const uint8_t *ep)
177
{
178
    uint32_t crc;
179
    int carry, i, j;
180
    uint8_t b;
181

    
182
    crc = 0xffffffff;
183
    for (i = 0; i < 6; i++) {
184
        b = *ep++;
185
        for (j = 0; j < 8; j++) {
186
            carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
187
            crc <<= 1;
188
            b >>= 1;
189
            if (carry)
190
                crc = ((crc ^ POLYNOMIAL) | carry);
191
        }
192
    }
193
    return (crc >> 26);
194
}
195

    
196
/* return the max buffer size if the NE2000 can receive more data */
197
static int ne2000_can_receive(void *opaque)
198
{
199
    NE2000State *s = opaque;
200
    int avail, index, boundary;
201
    
202
    if (s->cmd & E8390_STOP)
203
        return 0;
204
    index = s->curpag << 8;
205
    boundary = s->boundary << 8;
206
    if (index < boundary)
207
        avail = boundary - index;
208
    else
209
        avail = (s->stop - s->start) - (index - boundary);
210
    if (avail < (MAX_ETH_FRAME_SIZE + 4))
211
        return 0;
212
    return MAX_ETH_FRAME_SIZE;
213
}
214

    
215
#define MIN_BUF_SIZE 60
216

    
217
static void ne2000_receive(void *opaque, const uint8_t *buf, int size)
218
{
219
    NE2000State *s = opaque;
220
    uint8_t *p;
221
    int total_len, next, avail, len, index, mcast_idx;
222
    uint8_t buf1[60];
223
    static const uint8_t broadcast_macaddr[6] = 
224
        { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
225
    
226
#if defined(DEBUG_NE2000)
227
    printf("NE2000: received len=%d\n", size);
228
#endif
229

    
230
    if (!ne2000_can_receive(s))
231
        return;
232
    
233
    /* XXX: check this */
234
    if (s->rxcr & 0x10) {
235
        /* promiscuous: receive all */
236
    } else {
237
        if (!memcmp(buf,  broadcast_macaddr, 6)) {
238
            /* broadcast address */
239
            if (!(s->rxcr & 0x04))
240
                return;
241
        } else if (buf[0] & 0x01) {
242
            /* multicast */
243
            if (!(s->rxcr & 0x08))
244
                return;
245
            mcast_idx = compute_mcast_idx(buf);
246
            if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
247
                return;
248
        } else if (s->mem[0] == buf[0] &&
249
                   s->mem[2] == buf[1] &&                   
250
                   s->mem[4] == buf[2] &&            
251
                   s->mem[6] == buf[3] &&            
252
                   s->mem[8] == buf[4] &&            
253
                   s->mem[10] == buf[5]) {
254
            /* match */
255
        } else {
256
            return;
257
        }
258
    }
259

    
260

    
261
    /* if too small buffer, then expand it */
262
    if (size < MIN_BUF_SIZE) {
263
        memcpy(buf1, buf, size);
264
        memset(buf1 + size, 0, MIN_BUF_SIZE - size);
265
        buf = buf1;
266
        size = MIN_BUF_SIZE;
267
    }
268

    
269
    index = s->curpag << 8;
270
    /* 4 bytes for header */
271
    total_len = size + 4;
272
    /* address for next packet (4 bytes for CRC) */
273
    next = index + ((total_len + 4 + 255) & ~0xff);
274
    if (next >= s->stop)
275
        next -= (s->stop - s->start);
276
    /* prepare packet header */
277
    p = s->mem + index;
278
    s->rsr = ENRSR_RXOK; /* receive status */
279
    /* XXX: check this */
280
    if (buf[0] & 0x01)
281
        s->rsr |= ENRSR_PHY;
282
    p[0] = s->rsr;
283
    p[1] = next >> 8;
284
    p[2] = total_len;
285
    p[3] = total_len >> 8;
286
    index += 4;
287

    
288
    /* write packet data */
289
    while (size > 0) {
290
        avail = s->stop - index;
291
        len = size;
292
        if (len > avail)
293
            len = avail;
294
        memcpy(s->mem + index, buf, len);
295
        buf += len;
296
        index += len;
297
        if (index == s->stop)
298
            index = s->start;
299
        size -= len;
300
    }
301
    s->curpag = next >> 8;
302

    
303
    /* now we can signal we have receive something */
304
    s->isr |= ENISR_RX;
305
    ne2000_update_irq(s);
306
}
307

    
308
static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
309
{
310
    NE2000State *s = opaque;
311
    int offset, page, index;
312

    
313
    addr &= 0xf;
314
#ifdef DEBUG_NE2000
315
    printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
316
#endif
317
    if (addr == E8390_CMD) {
318
        /* control register */
319
        s->cmd = val;
320
        if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
321
            s->isr &= ~ENISR_RESET;
322
            /* test specific case: zero length transfert */
323
            if ((val & (E8390_RREAD | E8390_RWRITE)) &&
324
                s->rcnt == 0) {
325
                s->isr |= ENISR_RDC;
326
                ne2000_update_irq(s);
327
            }
328
            if (val & E8390_TRANS) {
329
                index = (s->tpsr << 8);
330
                /* XXX: next 2 lines are a hack to make netware 3.11 work */ 
331
                if (index >= NE2000_PMEM_END)
332
                    index -= NE2000_PMEM_SIZE;
333
                /* fail safe: check range on the transmitted length  */
334
                if (index + s->tcnt <= NE2000_PMEM_END) {
335
                    qemu_send_packet(s->vc, s->mem + index, s->tcnt);
336
                }
337
                /* signal end of transfert */
338
                s->tsr = ENTSR_PTX;
339
                s->isr |= ENISR_TX;
340
                s->cmd &= ~E8390_TRANS; 
341
                ne2000_update_irq(s);
342
            }
343
        }
344
    } else {
345
        page = s->cmd >> 6;
346
        offset = addr | (page << 4);
347
        switch(offset) {
348
        case EN0_STARTPG:
349
            s->start = val << 8;
350
            break;
351
        case EN0_STOPPG:
352
            s->stop = val << 8;
353
            break;
354
        case EN0_BOUNDARY:
355
            s->boundary = val;
356
            break;
357
        case EN0_IMR:
358
            s->imr = val;
359
            ne2000_update_irq(s);
360
            break;
361
        case EN0_TPSR:
362
            s->tpsr = val;
363
            break;
364
        case EN0_TCNTLO:
365
            s->tcnt = (s->tcnt & 0xff00) | val;
366
            break;
367
        case EN0_TCNTHI:
368
            s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
369
            break;
370
        case EN0_RSARLO:
371
            s->rsar = (s->rsar & 0xff00) | val;
372
            break;
373
        case EN0_RSARHI:
374
            s->rsar = (s->rsar & 0x00ff) | (val << 8);
375
            break;
376
        case EN0_RCNTLO:
377
            s->rcnt = (s->rcnt & 0xff00) | val;
378
            break;
379
        case EN0_RCNTHI:
380
            s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
381
            break;
382
        case EN0_RXCR:
383
            s->rxcr = val;
384
            break;
385
        case EN0_DCFG:
386
            s->dcfg = val;
387
            break;
388
        case EN0_ISR:
389
            s->isr &= ~(val & 0x7f);
390
            ne2000_update_irq(s);
391
            break;
392
        case EN1_PHYS ... EN1_PHYS + 5:
393
            s->phys[offset - EN1_PHYS] = val;
394
            break;
395
        case EN1_CURPAG:
396
            s->curpag = val;
397
            break;
398
        case EN1_MULT ... EN1_MULT + 7:
399
            s->mult[offset - EN1_MULT] = val;
400
            break;
401
        }
402
    }
403
}
404

    
405
static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
406
{
407
    NE2000State *s = opaque;
408
    int offset, page, ret;
409

    
410
    addr &= 0xf;
411
    if (addr == E8390_CMD) {
412
        ret = s->cmd;
413
    } else {
414
        page = s->cmd >> 6;
415
        offset = addr | (page << 4);
416
        switch(offset) {
417
        case EN0_TSR:
418
            ret = s->tsr;
419
            break;
420
        case EN0_BOUNDARY:
421
            ret = s->boundary;
422
            break;
423
        case EN0_ISR:
424
            ret = s->isr;
425
            break;
426
        case EN0_RSARLO:
427
            ret = s->rsar & 0x00ff;
428
            break;
429
        case EN0_RSARHI:
430
            ret = s->rsar >> 8;
431
            break;
432
        case EN1_PHYS ... EN1_PHYS + 5:
433
            ret = s->phys[offset - EN1_PHYS];
434
            break;
435
        case EN1_CURPAG:
436
            ret = s->curpag;
437
            break;
438
        case EN1_MULT ... EN1_MULT + 7:
439
            ret = s->mult[offset - EN1_MULT];
440
            break;
441
        case EN0_RSR:
442
            ret = s->rsr;
443
            break;
444
        case EN2_STARTPG:
445
            ret = s->start >> 8;
446
            break;
447
        case EN2_STOPPG:
448
            ret = s->stop >> 8;
449
            break;
450
        default:
451
            ret = 0x00;
452
            break;
453
        }
454
    }
455
#ifdef DEBUG_NE2000
456
    printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
457
#endif
458
    return ret;
459
}
460

    
461
static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr, 
462
                                     uint32_t val)
463
{
464
    if (addr < 32 || 
465
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
466
        s->mem[addr] = val;
467
    }
468
}
469

    
470
static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr, 
471
                                     uint32_t val)
472
{
473
    addr &= ~1; /* XXX: check exact behaviour if not even */
474
    if (addr < 32 || 
475
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
476
        *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
477
    }
478
}
479

    
480
static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr, 
481
                                     uint32_t val)
482
{
483
    addr &= ~1; /* XXX: check exact behaviour if not even */
484
    if (addr < 32 || 
485
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
486
        cpu_to_le32wu((uint32_t *)(s->mem + addr), val);
487
    }
488
}
489

    
490
static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
491
{
492
    if (addr < 32 || 
493
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
494
        return s->mem[addr];
495
    } else {
496
        return 0xff;
497
    }
498
}
499

    
500
static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
501
{
502
    addr &= ~1; /* XXX: check exact behaviour if not even */
503
    if (addr < 32 || 
504
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
505
        return le16_to_cpu(*(uint16_t *)(s->mem + addr));
506
    } else {
507
        return 0xffff;
508
    }
509
}
510

    
511
static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
512
{
513
    addr &= ~1; /* XXX: check exact behaviour if not even */
514
    if (addr < 32 || 
515
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
516
        return le32_to_cpupu((uint32_t *)(s->mem + addr));
517
    } else {
518
        return 0xffffffff;
519
    }
520
}
521

    
522
static inline void ne2000_dma_update(NE2000State *s, int len)
523
{
524
    s->rsar += len;
525
    /* wrap */
526
    /* XXX: check what to do if rsar > stop */
527
    if (s->rsar == s->stop)
528
        s->rsar = s->start;
529

    
530
    if (s->rcnt <= len) {
531
        s->rcnt = 0;
532
        /* signal end of transfert */
533
        s->isr |= ENISR_RDC;
534
        ne2000_update_irq(s);
535
    } else {
536
        s->rcnt -= len;
537
    }
538
}
539

    
540
static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
541
{
542
    NE2000State *s = opaque;
543

    
544
#ifdef DEBUG_NE2000
545
    printf("NE2000: asic write val=0x%04x\n", val);
546
#endif
547
    if (s->rcnt == 0)
548
        return;
549
    if (s->dcfg & 0x01) {
550
        /* 16 bit access */
551
        ne2000_mem_writew(s, s->rsar, val);
552
        ne2000_dma_update(s, 2);
553
    } else {
554
        /* 8 bit access */
555
        ne2000_mem_writeb(s, s->rsar, val);
556
        ne2000_dma_update(s, 1);
557
    }
558
}
559

    
560
static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
561
{
562
    NE2000State *s = opaque;
563
    int ret;
564

    
565
    if (s->dcfg & 0x01) {
566
        /* 16 bit access */
567
        ret = ne2000_mem_readw(s, s->rsar);
568
        ne2000_dma_update(s, 2);
569
    } else {
570
        /* 8 bit access */
571
        ret = ne2000_mem_readb(s, s->rsar);
572
        ne2000_dma_update(s, 1);
573
    }
574
#ifdef DEBUG_NE2000
575
    printf("NE2000: asic read val=0x%04x\n", ret);
576
#endif
577
    return ret;
578
}
579

    
580
static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
581
{
582
    NE2000State *s = opaque;
583

    
584
#ifdef DEBUG_NE2000
585
    printf("NE2000: asic writel val=0x%04x\n", val);
586
#endif
587
    if (s->rcnt == 0)
588
        return;
589
    /* 32 bit access */
590
    ne2000_mem_writel(s, s->rsar, val);
591
    ne2000_dma_update(s, 4);
592
}
593

    
594
static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
595
{
596
    NE2000State *s = opaque;
597
    int ret;
598

    
599
    /* 32 bit access */
600
    ret = ne2000_mem_readl(s, s->rsar);
601
    ne2000_dma_update(s, 4);
602
#ifdef DEBUG_NE2000
603
    printf("NE2000: asic readl val=0x%04x\n", ret);
604
#endif
605
    return ret;
606
}
607

    
608
static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
609
{
610
    /* nothing to do (end of reset pulse) */
611
}
612

    
613
static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
614
{
615
    NE2000State *s = opaque;
616
    ne2000_reset(s);
617
    return 0;
618
}
619

    
620
static void ne2000_save(QEMUFile* f,void* opaque)
621
{
622
        NE2000State* s=(NE2000State*)opaque;
623

    
624
        qemu_put_8s(f, &s->cmd);
625
        qemu_put_be32s(f, &s->start);
626
        qemu_put_be32s(f, &s->stop);
627
        qemu_put_8s(f, &s->boundary);
628
        qemu_put_8s(f, &s->tsr);
629
        qemu_put_8s(f, &s->tpsr);
630
        qemu_put_be16s(f, &s->tcnt);
631
        qemu_put_be16s(f, &s->rcnt);
632
        qemu_put_be32s(f, &s->rsar);
633
        qemu_put_8s(f, &s->rsr);
634
        qemu_put_8s(f, &s->isr);
635
        qemu_put_8s(f, &s->dcfg);
636
        qemu_put_8s(f, &s->imr);
637
        qemu_put_buffer(f, s->phys, 6);
638
        qemu_put_8s(f, &s->curpag);
639
        qemu_put_buffer(f, s->mult, 8);
640
        qemu_put_be32s(f, &s->irq);
641
        qemu_put_buffer(f, s->mem, NE2000_MEM_SIZE);
642
}
643

    
644
static int ne2000_load(QEMUFile* f,void* opaque,int version_id)
645
{
646
        NE2000State* s=(NE2000State*)opaque;
647

    
648
        if (version_id != 1)
649
            return -EINVAL;
650

    
651
        qemu_get_8s(f, &s->cmd);
652
        qemu_get_be32s(f, &s->start);
653
        qemu_get_be32s(f, &s->stop);
654
        qemu_get_8s(f, &s->boundary);
655
        qemu_get_8s(f, &s->tsr);
656
        qemu_get_8s(f, &s->tpsr);
657
        qemu_get_be16s(f, &s->tcnt);
658
        qemu_get_be16s(f, &s->rcnt);
659
        qemu_get_be32s(f, &s->rsar);
660
        qemu_get_8s(f, &s->rsr);
661
        qemu_get_8s(f, &s->isr);
662
        qemu_get_8s(f, &s->dcfg);
663
        qemu_get_8s(f, &s->imr);
664
        qemu_get_buffer(f, s->phys, 6);
665
        qemu_get_8s(f, &s->curpag);
666
        qemu_get_buffer(f, s->mult, 8);
667
        qemu_get_be32s(f, &s->irq);
668
        qemu_get_buffer(f, s->mem, NE2000_MEM_SIZE);
669

    
670
        return 0;
671
}
672

    
673
void isa_ne2000_init(int base, int irq, NICInfo *nd)
674
{
675
    NE2000State *s;
676
    
677
    s = qemu_mallocz(sizeof(NE2000State));
678
    if (!s)
679
        return;
680
    
681
    register_ioport_write(base, 16, 1, ne2000_ioport_write, s);
682
    register_ioport_read(base, 16, 1, ne2000_ioport_read, s);
683

    
684
    register_ioport_write(base + 0x10, 1, 1, ne2000_asic_ioport_write, s);
685
    register_ioport_read(base + 0x10, 1, 1, ne2000_asic_ioport_read, s);
686
    register_ioport_write(base + 0x10, 2, 2, ne2000_asic_ioport_write, s);
687
    register_ioport_read(base + 0x10, 2, 2, ne2000_asic_ioport_read, s);
688

    
689
    register_ioport_write(base + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
690
    register_ioport_read(base + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
691
    s->irq = irq;
692
    memcpy(s->macaddr, nd->macaddr, 6);
693

    
694
    ne2000_reset(s);
695

    
696
    s->vc = qemu_new_vlan_client(nd->vlan, ne2000_receive, s);
697

    
698
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
699
             "ne2000 macaddr=%02x:%02x:%02x:%02x:%02x:%02x",
700
             s->macaddr[0],
701
             s->macaddr[1],
702
             s->macaddr[2],
703
             s->macaddr[3],
704
             s->macaddr[4],
705
             s->macaddr[5]);
706
             
707
    register_savevm("ne2000", 0, 1, ne2000_save, ne2000_load, s);
708
}
709

    
710
/***********************************************************/
711
/* PCI NE2000 definitions */
712

    
713
typedef struct PCINE2000State {
714
    PCIDevice dev;
715
    NE2000State ne2000;
716
} PCINE2000State;
717

    
718
static void ne2000_map(PCIDevice *pci_dev, int region_num, 
719
                       uint32_t addr, uint32_t size, int type)
720
{
721
    PCINE2000State *d = (PCINE2000State *)pci_dev;
722
    NE2000State *s = &d->ne2000;
723

    
724
    register_ioport_write(addr, 16, 1, ne2000_ioport_write, s);
725
    register_ioport_read(addr, 16, 1, ne2000_ioport_read, s);
726

    
727
    register_ioport_write(addr + 0x10, 1, 1, ne2000_asic_ioport_write, s);
728
    register_ioport_read(addr + 0x10, 1, 1, ne2000_asic_ioport_read, s);
729
    register_ioport_write(addr + 0x10, 2, 2, ne2000_asic_ioport_write, s);
730
    register_ioport_read(addr + 0x10, 2, 2, ne2000_asic_ioport_read, s);
731
    register_ioport_write(addr + 0x10, 4, 4, ne2000_asic_ioport_writel, s);
732
    register_ioport_read(addr + 0x10, 4, 4, ne2000_asic_ioport_readl, s);
733

    
734
    register_ioport_write(addr + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
735
    register_ioport_read(addr + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
736
}
737

    
738
void pci_ne2000_init(PCIBus *bus, NICInfo *nd)
739
{
740
    PCINE2000State *d;
741
    NE2000State *s;
742
    uint8_t *pci_conf;
743
    
744
    d = (PCINE2000State *)pci_register_device(bus,
745
                                              "NE2000", sizeof(PCINE2000State),
746
                                              -1, 
747
                                              NULL, NULL);
748
    pci_conf = d->dev.config;
749
    pci_conf[0x00] = 0xec; // Realtek 8029
750
    pci_conf[0x01] = 0x10;
751
    pci_conf[0x02] = 0x29;
752
    pci_conf[0x03] = 0x80;
753
    pci_conf[0x0a] = 0x00; // ethernet network controller 
754
    pci_conf[0x0b] = 0x02;
755
    pci_conf[0x0e] = 0x00; // header_type
756
    pci_conf[0x3d] = 1; // interrupt pin 0
757
    
758
    pci_register_io_region(&d->dev, 0, 0x100, 
759
                           PCI_ADDRESS_SPACE_IO, ne2000_map);
760
    s = &d->ne2000;
761
    s->irq = 16; // PCI interrupt
762
    s->pci_dev = (PCIDevice *)d;
763
    memcpy(s->macaddr, nd->macaddr, 6);
764
    ne2000_reset(s);
765
    s->vc = qemu_new_vlan_client(nd->vlan, ne2000_receive, s);
766

    
767
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
768
             "ne2000 pci macaddr=%02x:%02x:%02x:%02x:%02x:%02x",
769
             s->macaddr[0],
770
             s->macaddr[1],
771
             s->macaddr[2],
772
             s->macaddr[3],
773
             s->macaddr[4],
774
             s->macaddr[5]);
775
             
776
    /* XXX: instance number ? */
777
    register_savevm("ne2000", 0, 1, ne2000_save, ne2000_load, s);
778
    register_savevm("ne2000_pci", 0, 1, generic_pci_save, generic_pci_load, 
779
                    &d->dev);
780
}