Statistics
| Branch: | Revision:

root / hw / omap1.c @ 7cc0dd20

History | View | Annotate | Download (133.2 kB)

1
/*
2
 * TI OMAP processors emulation.
3
 *
4
 * Copyright (C) 2006-2008 Andrzej Zaborowski  <balrog@zabor.org>
5
 *
6
 * This program is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU General Public License as
8
 * published by the Free Software Foundation; either version 2 or
9
 * (at your option) version 3 of the License.
10
 *
11
 * This program is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
 * GNU General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU General Public License
17
 * along with this program; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
19
 * MA 02111-1307 USA
20
 */
21
#include "hw.h"
22
#include "arm-misc.h"
23
#include "omap.h"
24
#include "sysemu.h"
25
#include "qemu-timer.h"
26
#include "qemu-char.h"
27
#include "soc_dma.h"
28
/* We use pc-style serial ports.  */
29
#include "pc.h"
30

    
31
/* Should signal the TCMI/GPMC */
32
uint32_t omap_badwidth_read8(void *opaque, target_phys_addr_t addr)
33
{
34
    uint8_t ret;
35

    
36
    OMAP_8B_REG(addr);
37
    cpu_physical_memory_read(addr, (void *) &ret, 1);
38
    return ret;
39
}
40

    
41
void omap_badwidth_write8(void *opaque, target_phys_addr_t addr,
42
                uint32_t value)
43
{
44
    uint8_t val8 = value;
45

    
46
    OMAP_8B_REG(addr);
47
    cpu_physical_memory_write(addr, (void *) &val8, 1);
48
}
49

    
50
uint32_t omap_badwidth_read16(void *opaque, target_phys_addr_t addr)
51
{
52
    uint16_t ret;
53

    
54
    OMAP_16B_REG(addr);
55
    cpu_physical_memory_read(addr, (void *) &ret, 2);
56
    return ret;
57
}
58

    
59
void omap_badwidth_write16(void *opaque, target_phys_addr_t addr,
60
                uint32_t value)
61
{
62
    uint16_t val16 = value;
63

    
64
    OMAP_16B_REG(addr);
65
    cpu_physical_memory_write(addr, (void *) &val16, 2);
66
}
67

    
68
uint32_t omap_badwidth_read32(void *opaque, target_phys_addr_t addr)
69
{
70
    uint32_t ret;
71

    
72
    OMAP_32B_REG(addr);
73
    cpu_physical_memory_read(addr, (void *) &ret, 4);
74
    return ret;
75
}
76

    
77
void omap_badwidth_write32(void *opaque, target_phys_addr_t addr,
78
                uint32_t value)
79
{
80
    OMAP_32B_REG(addr);
81
    cpu_physical_memory_write(addr, (void *) &value, 4);
82
}
83

    
84
/* Interrupt Handlers */
85
struct omap_intr_handler_bank_s {
86
    uint32_t irqs;
87
    uint32_t inputs;
88
    uint32_t mask;
89
    uint32_t fiq;
90
    uint32_t sens_edge;
91
    uint32_t swi;
92
    unsigned char priority[32];
93
};
94

    
95
struct omap_intr_handler_s {
96
    qemu_irq *pins;
97
    qemu_irq parent_intr[2];
98
    target_phys_addr_t base;
99
    unsigned char nbanks;
100
    int level_only;
101

    
102
    /* state */
103
    uint32_t new_agr[2];
104
    int sir_intr[2];
105
    int autoidle;
106
    uint32_t mask;
107
    struct omap_intr_handler_bank_s bank[];
108
};
109

    
110
static void omap_inth_sir_update(struct omap_intr_handler_s *s, int is_fiq)
111
{
112
    int i, j, sir_intr, p_intr, p, f;
113
    uint32_t level;
114
    sir_intr = 0;
115
    p_intr = 255;
116

    
117
    /* Find the interrupt line with the highest dynamic priority.
118
     * Note: 0 denotes the hightest priority.
119
     * If all interrupts have the same priority, the default order is IRQ_N,
120
     * IRQ_N-1,...,IRQ_0. */
121
    for (j = 0; j < s->nbanks; ++j) {
122
        level = s->bank[j].irqs & ~s->bank[j].mask &
123
                (is_fiq ? s->bank[j].fiq : ~s->bank[j].fiq);
124
        for (f = ffs(level), i = f - 1, level >>= f - 1; f; i += f,
125
                        level >>= f) {
126
            p = s->bank[j].priority[i];
127
            if (p <= p_intr) {
128
                p_intr = p;
129
                sir_intr = 32 * j + i;
130
            }
131
            f = ffs(level >> 1);
132
        }
133
    }
134
    s->sir_intr[is_fiq] = sir_intr;
135
}
136

    
137
static inline void omap_inth_update(struct omap_intr_handler_s *s, int is_fiq)
138
{
139
    int i;
140
    uint32_t has_intr = 0;
141

    
142
    for (i = 0; i < s->nbanks; ++i)
143
        has_intr |= s->bank[i].irqs & ~s->bank[i].mask &
144
                (is_fiq ? s->bank[i].fiq : ~s->bank[i].fiq);
145

    
146
    if (s->new_agr[is_fiq] & has_intr & s->mask) {
147
        s->new_agr[is_fiq] = 0;
148
        omap_inth_sir_update(s, is_fiq);
149
        qemu_set_irq(s->parent_intr[is_fiq], 1);
150
    }
151
}
152

    
153
#define INT_FALLING_EDGE        0
154
#define INT_LOW_LEVEL                1
155

    
156
static void omap_set_intr(void *opaque, int irq, int req)
157
{
158
    struct omap_intr_handler_s *ih = (struct omap_intr_handler_s *) opaque;
159
    uint32_t rise;
160

    
161
    struct omap_intr_handler_bank_s *bank = &ih->bank[irq >> 5];
162
    int n = irq & 31;
163

    
164
    if (req) {
165
        rise = ~bank->irqs & (1 << n);
166
        if (~bank->sens_edge & (1 << n))
167
            rise &= ~bank->inputs;
168

    
169
        bank->inputs |= (1 << n);
170
        if (rise) {
171
            bank->irqs |= rise;
172
            omap_inth_update(ih, 0);
173
            omap_inth_update(ih, 1);
174
        }
175
    } else {
176
        rise = bank->sens_edge & bank->irqs & (1 << n);
177
        bank->irqs &= ~rise;
178
        bank->inputs &= ~(1 << n);
179
    }
180
}
181

    
182
/* Simplified version with no edge detection */
183
static void omap_set_intr_noedge(void *opaque, int irq, int req)
184
{
185
    struct omap_intr_handler_s *ih = (struct omap_intr_handler_s *) opaque;
186
    uint32_t rise;
187

    
188
    struct omap_intr_handler_bank_s *bank = &ih->bank[irq >> 5];
189
    int n = irq & 31;
190

    
191
    if (req) {
192
        rise = ~bank->inputs & (1 << n);
193
        if (rise) {
194
            bank->irqs |= bank->inputs |= rise;
195
            omap_inth_update(ih, 0);
196
            omap_inth_update(ih, 1);
197
        }
198
    } else
199
        bank->irqs = (bank->inputs &= ~(1 << n)) | bank->swi;
200
}
201

    
202
static uint32_t omap_inth_read(void *opaque, target_phys_addr_t addr)
203
{
204
    struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
205
    int i, offset = addr - s->base;
206
    int bank_no = offset >> 8;
207
    int line_no;
208
    struct omap_intr_handler_bank_s *bank = &s->bank[bank_no];
209
    offset &= 0xff;
210

    
211
    switch (offset) {
212
    case 0x00:        /* ITR */
213
        return bank->irqs;
214

    
215
    case 0x04:        /* MIR */
216
        return bank->mask;
217

    
218
    case 0x10:        /* SIR_IRQ_CODE */
219
    case 0x14:  /* SIR_FIQ_CODE */
220
        if (bank_no != 0)
221
            break;
222
        line_no = s->sir_intr[(offset - 0x10) >> 2];
223
        bank = &s->bank[line_no >> 5];
224
        i = line_no & 31;
225
        if (((bank->sens_edge >> i) & 1) == INT_FALLING_EDGE)
226
            bank->irqs &= ~(1 << i);
227
        return line_no;
228

    
229
    case 0x18:        /* CONTROL_REG */
230
        if (bank_no != 0)
231
            break;
232
        return 0;
233

    
234
    case 0x1c:        /* ILR0 */
235
    case 0x20:        /* ILR1 */
236
    case 0x24:        /* ILR2 */
237
    case 0x28:        /* ILR3 */
238
    case 0x2c:        /* ILR4 */
239
    case 0x30:        /* ILR5 */
240
    case 0x34:        /* ILR6 */
241
    case 0x38:        /* ILR7 */
242
    case 0x3c:        /* ILR8 */
243
    case 0x40:        /* ILR9 */
244
    case 0x44:        /* ILR10 */
245
    case 0x48:        /* ILR11 */
246
    case 0x4c:        /* ILR12 */
247
    case 0x50:        /* ILR13 */
248
    case 0x54:        /* ILR14 */
249
    case 0x58:        /* ILR15 */
250
    case 0x5c:        /* ILR16 */
251
    case 0x60:        /* ILR17 */
252
    case 0x64:        /* ILR18 */
253
    case 0x68:        /* ILR19 */
254
    case 0x6c:        /* ILR20 */
255
    case 0x70:        /* ILR21 */
256
    case 0x74:        /* ILR22 */
257
    case 0x78:        /* ILR23 */
258
    case 0x7c:        /* ILR24 */
259
    case 0x80:        /* ILR25 */
260
    case 0x84:        /* ILR26 */
261
    case 0x88:        /* ILR27 */
262
    case 0x8c:        /* ILR28 */
263
    case 0x90:        /* ILR29 */
264
    case 0x94:        /* ILR30 */
265
    case 0x98:        /* ILR31 */
266
        i = (offset - 0x1c) >> 2;
267
        return (bank->priority[i] << 2) |
268
                (((bank->sens_edge >> i) & 1) << 1) |
269
                ((bank->fiq >> i) & 1);
270

    
271
    case 0x9c:        /* ISR */
272
        return 0x00000000;
273

    
274
    }
275
    OMAP_BAD_REG(addr);
276
    return 0;
277
}
278

    
279
static void omap_inth_write(void *opaque, target_phys_addr_t addr,
280
                uint32_t value)
281
{
282
    struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
283
    int i, offset = addr - s->base;
284
    int bank_no = offset >> 8;
285
    struct omap_intr_handler_bank_s *bank = &s->bank[bank_no];
286
    offset &= 0xff;
287

    
288
    switch (offset) {
289
    case 0x00:        /* ITR */
290
        /* Important: ignore the clearing if the IRQ is level-triggered and
291
           the input bit is 1 */
292
        bank->irqs &= value | (bank->inputs & bank->sens_edge);
293
        return;
294

    
295
    case 0x04:        /* MIR */
296
        bank->mask = value;
297
        omap_inth_update(s, 0);
298
        omap_inth_update(s, 1);
299
        return;
300

    
301
    case 0x10:        /* SIR_IRQ_CODE */
302
    case 0x14:        /* SIR_FIQ_CODE */
303
        OMAP_RO_REG(addr);
304
        break;
305

    
306
    case 0x18:        /* CONTROL_REG */
307
        if (bank_no != 0)
308
            break;
309
        if (value & 2) {
310
            qemu_set_irq(s->parent_intr[1], 0);
311
            s->new_agr[1] = ~0;
312
            omap_inth_update(s, 1);
313
        }
314
        if (value & 1) {
315
            qemu_set_irq(s->parent_intr[0], 0);
316
            s->new_agr[0] = ~0;
317
            omap_inth_update(s, 0);
318
        }
319
        return;
320

    
321
    case 0x1c:        /* ILR0 */
322
    case 0x20:        /* ILR1 */
323
    case 0x24:        /* ILR2 */
324
    case 0x28:        /* ILR3 */
325
    case 0x2c:        /* ILR4 */
326
    case 0x30:        /* ILR5 */
327
    case 0x34:        /* ILR6 */
328
    case 0x38:        /* ILR7 */
329
    case 0x3c:        /* ILR8 */
330
    case 0x40:        /* ILR9 */
331
    case 0x44:        /* ILR10 */
332
    case 0x48:        /* ILR11 */
333
    case 0x4c:        /* ILR12 */
334
    case 0x50:        /* ILR13 */
335
    case 0x54:        /* ILR14 */
336
    case 0x58:        /* ILR15 */
337
    case 0x5c:        /* ILR16 */
338
    case 0x60:        /* ILR17 */
339
    case 0x64:        /* ILR18 */
340
    case 0x68:        /* ILR19 */
341
    case 0x6c:        /* ILR20 */
342
    case 0x70:        /* ILR21 */
343
    case 0x74:        /* ILR22 */
344
    case 0x78:        /* ILR23 */
345
    case 0x7c:        /* ILR24 */
346
    case 0x80:        /* ILR25 */
347
    case 0x84:        /* ILR26 */
348
    case 0x88:        /* ILR27 */
349
    case 0x8c:        /* ILR28 */
350
    case 0x90:        /* ILR29 */
351
    case 0x94:        /* ILR30 */
352
    case 0x98:        /* ILR31 */
353
        i = (offset - 0x1c) >> 2;
354
        bank->priority[i] = (value >> 2) & 0x1f;
355
        bank->sens_edge &= ~(1 << i);
356
        bank->sens_edge |= ((value >> 1) & 1) << i;
357
        bank->fiq &= ~(1 << i);
358
        bank->fiq |= (value & 1) << i;
359
        return;
360

    
361
    case 0x9c:        /* ISR */
362
        for (i = 0; i < 32; i ++)
363
            if (value & (1 << i)) {
364
                omap_set_intr(s, 32 * bank_no + i, 1);
365
                return;
366
            }
367
        return;
368
    }
369
    OMAP_BAD_REG(addr);
370
}
371

    
372
static CPUReadMemoryFunc *omap_inth_readfn[] = {
373
    omap_badwidth_read32,
374
    omap_badwidth_read32,
375
    omap_inth_read,
376
};
377

    
378
static CPUWriteMemoryFunc *omap_inth_writefn[] = {
379
    omap_inth_write,
380
    omap_inth_write,
381
    omap_inth_write,
382
};
383

    
384
void omap_inth_reset(struct omap_intr_handler_s *s)
385
{
386
    int i;
387

    
388
    for (i = 0; i < s->nbanks; ++i){
389
        s->bank[i].irqs = 0x00000000;
390
        s->bank[i].mask = 0xffffffff;
391
        s->bank[i].sens_edge = 0x00000000;
392
        s->bank[i].fiq = 0x00000000;
393
        s->bank[i].inputs = 0x00000000;
394
        s->bank[i].swi = 0x00000000;
395
        memset(s->bank[i].priority, 0, sizeof(s->bank[i].priority));
396

    
397
        if (s->level_only)
398
            s->bank[i].sens_edge = 0xffffffff;
399
    }
400

    
401
    s->new_agr[0] = ~0;
402
    s->new_agr[1] = ~0;
403
    s->sir_intr[0] = 0;
404
    s->sir_intr[1] = 0;
405
    s->autoidle = 0;
406
    s->mask = ~0;
407

    
408
    qemu_set_irq(s->parent_intr[0], 0);
409
    qemu_set_irq(s->parent_intr[1], 0);
410
}
411

    
412
struct omap_intr_handler_s *omap_inth_init(target_phys_addr_t base,
413
                unsigned long size, unsigned char nbanks, qemu_irq **pins,
414
                qemu_irq parent_irq, qemu_irq parent_fiq, omap_clk clk)
415
{
416
    int iomemtype;
417
    struct omap_intr_handler_s *s = (struct omap_intr_handler_s *)
418
            qemu_mallocz(sizeof(struct omap_intr_handler_s) +
419
                            sizeof(struct omap_intr_handler_bank_s) * nbanks);
420

    
421
    s->parent_intr[0] = parent_irq;
422
    s->parent_intr[1] = parent_fiq;
423
    s->base = base;
424
    s->nbanks = nbanks;
425
    s->pins = qemu_allocate_irqs(omap_set_intr, s, nbanks * 32);
426
    if (pins)
427
        *pins = s->pins;
428

    
429
    omap_inth_reset(s);
430

    
431
    iomemtype = cpu_register_io_memory(0, omap_inth_readfn,
432
                    omap_inth_writefn, s);
433
    cpu_register_physical_memory(s->base, size, iomemtype);
434

    
435
    return s;
436
}
437

    
438
static uint32_t omap2_inth_read(void *opaque, target_phys_addr_t addr)
439
{
440
    struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
441
    int offset = addr - s->base;
442
    int bank_no, line_no;
443
    struct omap_intr_handler_bank_s *bank = 0;
444

    
445
    if ((offset & 0xf80) == 0x80) {
446
        bank_no = (offset & 0x60) >> 5;
447
        if (bank_no < s->nbanks) {
448
            offset &= ~0x60;
449
            bank = &s->bank[bank_no];
450
        }
451
    }
452

    
453
    switch (offset) {
454
    case 0x00:        /* INTC_REVISION */
455
        return 0x21;
456

    
457
    case 0x10:        /* INTC_SYSCONFIG */
458
        return (s->autoidle >> 2) & 1;
459

    
460
    case 0x14:        /* INTC_SYSSTATUS */
461
        return 1;                                                /* RESETDONE */
462

    
463
    case 0x40:        /* INTC_SIR_IRQ */
464
        return s->sir_intr[0];
465

    
466
    case 0x44:        /* INTC_SIR_FIQ */
467
        return s->sir_intr[1];
468

    
469
    case 0x48:        /* INTC_CONTROL */
470
        return (!s->mask) << 2;                                        /* GLOBALMASK */
471

    
472
    case 0x4c:        /* INTC_PROTECTION */
473
        return 0;
474

    
475
    case 0x50:        /* INTC_IDLE */
476
        return s->autoidle & 3;
477

    
478
    /* Per-bank registers */
479
    case 0x80:        /* INTC_ITR */
480
        return bank->inputs;
481

    
482
    case 0x84:        /* INTC_MIR */
483
        return bank->mask;
484

    
485
    case 0x88:        /* INTC_MIR_CLEAR */
486
    case 0x8c:        /* INTC_MIR_SET */
487
        return 0;
488

    
489
    case 0x90:        /* INTC_ISR_SET */
490
        return bank->swi;
491

    
492
    case 0x94:        /* INTC_ISR_CLEAR */
493
        return 0;
494

    
495
    case 0x98:        /* INTC_PENDING_IRQ */
496
        return bank->irqs & ~bank->mask & ~bank->fiq;
497

    
498
    case 0x9c:        /* INTC_PENDING_FIQ */
499
        return bank->irqs & ~bank->mask & bank->fiq;
500

    
501
    /* Per-line registers */
502
    case 0x100 ... 0x300:        /* INTC_ILR */
503
        bank_no = (offset - 0x100) >> 7;
504
        if (bank_no > s->nbanks)
505
            break;
506
        bank = &s->bank[bank_no];
507
        line_no = (offset & 0x7f) >> 2;
508
        return (bank->priority[line_no] << 2) |
509
                ((bank->fiq >> line_no) & 1);
510
    }
511
    OMAP_BAD_REG(addr);
512
    return 0;
513
}
514

    
515
static void omap2_inth_write(void *opaque, target_phys_addr_t addr,
516
                uint32_t value)
517
{
518
    struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
519
    int offset = addr - s->base;
520
    int bank_no, line_no;
521
    struct omap_intr_handler_bank_s *bank = 0;
522

    
523
    if ((offset & 0xf80) == 0x80) {
524
        bank_no = (offset & 0x60) >> 5;
525
        if (bank_no < s->nbanks) {
526
            offset &= ~0x60;
527
            bank = &s->bank[bank_no];
528
        }
529
    }
530

    
531
    switch (offset) {
532
    case 0x10:        /* INTC_SYSCONFIG */
533
        s->autoidle &= 4;
534
        s->autoidle |= (value & 1) << 2;
535
        if (value & 2)                                                /* SOFTRESET */
536
            omap_inth_reset(s);
537
        return;
538

    
539
    case 0x48:        /* INTC_CONTROL */
540
        s->mask = (value & 4) ? 0 : ~0;                                /* GLOBALMASK */
541
        if (value & 2) {                                        /* NEWFIQAGR */
542
            qemu_set_irq(s->parent_intr[1], 0);
543
            s->new_agr[1] = ~0;
544
            omap_inth_update(s, 1);
545
        }
546
        if (value & 1) {                                        /* NEWIRQAGR */
547
            qemu_set_irq(s->parent_intr[0], 0);
548
            s->new_agr[0] = ~0;
549
            omap_inth_update(s, 0);
550
        }
551
        return;
552

    
553
    case 0x4c:        /* INTC_PROTECTION */
554
        /* TODO: Make a bitmap (or sizeof(char)map) of access privileges
555
         * for every register, see Chapter 3 and 4 for privileged mode.  */
556
        if (value & 1)
557
            fprintf(stderr, "%s: protection mode enable attempt\n",
558
                            __FUNCTION__);
559
        return;
560

    
561
    case 0x50:        /* INTC_IDLE */
562
        s->autoidle &= ~3;
563
        s->autoidle |= value & 3;
564
        return;
565

    
566
    /* Per-bank registers */
567
    case 0x84:        /* INTC_MIR */
568
        bank->mask = value;
569
        omap_inth_update(s, 0);
570
        omap_inth_update(s, 1);
571
        return;
572

    
573
    case 0x88:        /* INTC_MIR_CLEAR */
574
        bank->mask &= ~value;
575
        omap_inth_update(s, 0);
576
        omap_inth_update(s, 1);
577
        return;
578

    
579
    case 0x8c:        /* INTC_MIR_SET */
580
        bank->mask |= value;
581
        return;
582

    
583
    case 0x90:        /* INTC_ISR_SET */
584
        bank->irqs |= bank->swi |= value;
585
        omap_inth_update(s, 0);
586
        omap_inth_update(s, 1);
587
        return;
588

    
589
    case 0x94:        /* INTC_ISR_CLEAR */
590
        bank->swi &= ~value;
591
        bank->irqs = bank->swi & bank->inputs;
592
        return;
593

    
594
    /* Per-line registers */
595
    case 0x100 ... 0x300:        /* INTC_ILR */
596
        bank_no = (offset - 0x100) >> 7;
597
        if (bank_no > s->nbanks)
598
            break;
599
        bank = &s->bank[bank_no];
600
        line_no = (offset & 0x7f) >> 2;
601
        bank->priority[line_no] = (value >> 2) & 0x3f;
602
        bank->fiq &= ~(1 << line_no);
603
        bank->fiq |= (value & 1) << line_no;
604
        return;
605

    
606
    case 0x00:        /* INTC_REVISION */
607
    case 0x14:        /* INTC_SYSSTATUS */
608
    case 0x40:        /* INTC_SIR_IRQ */
609
    case 0x44:        /* INTC_SIR_FIQ */
610
    case 0x80:        /* INTC_ITR */
611
    case 0x98:        /* INTC_PENDING_IRQ */
612
    case 0x9c:        /* INTC_PENDING_FIQ */
613
        OMAP_RO_REG(addr);
614
        return;
615
    }
616
    OMAP_BAD_REG(addr);
617
}
618

    
619
static CPUReadMemoryFunc *omap2_inth_readfn[] = {
620
    omap_badwidth_read32,
621
    omap_badwidth_read32,
622
    omap2_inth_read,
623
};
624

    
625
static CPUWriteMemoryFunc *omap2_inth_writefn[] = {
626
    omap2_inth_write,
627
    omap2_inth_write,
628
    omap2_inth_write,
629
};
630

    
631
struct omap_intr_handler_s *omap2_inth_init(target_phys_addr_t base,
632
                int size, int nbanks, qemu_irq **pins,
633
                qemu_irq parent_irq, qemu_irq parent_fiq,
634
                omap_clk fclk, omap_clk iclk)
635
{
636
    int iomemtype;
637
    struct omap_intr_handler_s *s = (struct omap_intr_handler_s *)
638
            qemu_mallocz(sizeof(struct omap_intr_handler_s) +
639
                            sizeof(struct omap_intr_handler_bank_s) * nbanks);
640

    
641
    s->parent_intr[0] = parent_irq;
642
    s->parent_intr[1] = parent_fiq;
643
    s->base = base;
644
    s->nbanks = nbanks;
645
    s->level_only = 1;
646
    s->pins = qemu_allocate_irqs(omap_set_intr_noedge, s, nbanks * 32);
647
    if (pins)
648
        *pins = s->pins;
649

    
650
    omap_inth_reset(s);
651

    
652
    iomemtype = cpu_register_io_memory(0, omap2_inth_readfn,
653
                    omap2_inth_writefn, s);
654
    cpu_register_physical_memory(s->base, size, iomemtype);
655

    
656
    return s;
657
}
658

    
659
/* MPU OS timers */
660
struct omap_mpu_timer_s {
661
    qemu_irq irq;
662
    omap_clk clk;
663
    target_phys_addr_t base;
664
    uint32_t val;
665
    int64_t time;
666
    QEMUTimer *timer;
667
    QEMUBH *tick;
668
    int64_t rate;
669
    int it_ena;
670

    
671
    int enable;
672
    int ptv;
673
    int ar;
674
    int st;
675
    uint32_t reset_val;
676
};
677

    
678
static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
679
{
680
    uint64_t distance = qemu_get_clock(vm_clock) - timer->time;
681

    
682
    if (timer->st && timer->enable && timer->rate)
683
        return timer->val - muldiv64(distance >> (timer->ptv + 1),
684
                        timer->rate, ticks_per_sec);
685
    else
686
        return timer->val;
687
}
688

    
689
static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
690
{
691
    timer->val = omap_timer_read(timer);
692
    timer->time = qemu_get_clock(vm_clock);
693
}
694

    
695
static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
696
{
697
    int64_t expires;
698

    
699
    if (timer->enable && timer->st && timer->rate) {
700
        timer->val = timer->reset_val;        /* Should skip this on clk enable */
701
        expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
702
                        ticks_per_sec, timer->rate);
703

    
704
        /* If timer expiry would be sooner than in about 1 ms and
705
         * auto-reload isn't set, then fire immediately.  This is a hack
706
         * to make systems like PalmOS run in acceptable time.  PalmOS
707
         * sets the interval to a very low value and polls the status bit
708
         * in a busy loop when it wants to sleep just a couple of CPU
709
         * ticks.  */
710
        if (expires > (ticks_per_sec >> 10) || timer->ar)
711
            qemu_mod_timer(timer->timer, timer->time + expires);
712
        else
713
            qemu_bh_schedule(timer->tick);
714
    } else
715
        qemu_del_timer(timer->timer);
716
}
717

    
718
static void omap_timer_fire(void *opaque)
719
{
720
    struct omap_mpu_timer_s *timer = opaque;
721

    
722
    if (!timer->ar) {
723
        timer->val = 0;
724
        timer->st = 0;
725
    }
726

    
727
    if (timer->it_ena)
728
        /* Edge-triggered irq */
729
        qemu_irq_pulse(timer->irq);
730
}
731

    
732
static void omap_timer_tick(void *opaque)
733
{
734
    struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
735

    
736
    omap_timer_sync(timer);
737
    omap_timer_fire(timer);
738
    omap_timer_update(timer);
739
}
740

    
741
static void omap_timer_clk_update(void *opaque, int line, int on)
742
{
743
    struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
744

    
745
    omap_timer_sync(timer);
746
    timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
747
    omap_timer_update(timer);
748
}
749

    
750
static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
751
{
752
    omap_clk_adduser(timer->clk,
753
                    qemu_allocate_irqs(omap_timer_clk_update, timer, 1)[0]);
754
    timer->rate = omap_clk_getrate(timer->clk);
755
}
756

    
757
static uint32_t omap_mpu_timer_read(void *opaque, target_phys_addr_t addr)
758
{
759
    struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
760
    int offset = addr - s->base;
761

    
762
    switch (offset) {
763
    case 0x00:        /* CNTL_TIMER */
764
        return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
765

    
766
    case 0x04:        /* LOAD_TIM */
767
        break;
768

    
769
    case 0x08:        /* READ_TIM */
770
        return omap_timer_read(s);
771
    }
772

    
773
    OMAP_BAD_REG(addr);
774
    return 0;
775
}
776

    
777
static void omap_mpu_timer_write(void *opaque, target_phys_addr_t addr,
778
                uint32_t value)
779
{
780
    struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
781
    int offset = addr - s->base;
782

    
783
    switch (offset) {
784
    case 0x00:        /* CNTL_TIMER */
785
        omap_timer_sync(s);
786
        s->enable = (value >> 5) & 1;
787
        s->ptv = (value >> 2) & 7;
788
        s->ar = (value >> 1) & 1;
789
        s->st = value & 1;
790
        omap_timer_update(s);
791
        return;
792

    
793
    case 0x04:        /* LOAD_TIM */
794
        s->reset_val = value;
795
        return;
796

    
797
    case 0x08:        /* READ_TIM */
798
        OMAP_RO_REG(addr);
799
        break;
800

    
801
    default:
802
        OMAP_BAD_REG(addr);
803
    }
804
}
805

    
806
static CPUReadMemoryFunc *omap_mpu_timer_readfn[] = {
807
    omap_badwidth_read32,
808
    omap_badwidth_read32,
809
    omap_mpu_timer_read,
810
};
811

    
812
static CPUWriteMemoryFunc *omap_mpu_timer_writefn[] = {
813
    omap_badwidth_write32,
814
    omap_badwidth_write32,
815
    omap_mpu_timer_write,
816
};
817

    
818
static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
819
{
820
    qemu_del_timer(s->timer);
821
    s->enable = 0;
822
    s->reset_val = 31337;
823
    s->val = 0;
824
    s->ptv = 0;
825
    s->ar = 0;
826
    s->st = 0;
827
    s->it_ena = 1;
828
}
829

    
830
struct omap_mpu_timer_s *omap_mpu_timer_init(target_phys_addr_t base,
831
                qemu_irq irq, omap_clk clk)
832
{
833
    int iomemtype;
834
    struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *)
835
            qemu_mallocz(sizeof(struct omap_mpu_timer_s));
836

    
837
    s->irq = irq;
838
    s->clk = clk;
839
    s->base = base;
840
    s->timer = qemu_new_timer(vm_clock, omap_timer_tick, s);
841
    s->tick = qemu_bh_new(omap_timer_fire, s);
842
    omap_mpu_timer_reset(s);
843
    omap_timer_clk_setup(s);
844

    
845
    iomemtype = cpu_register_io_memory(0, omap_mpu_timer_readfn,
846
                    omap_mpu_timer_writefn, s);
847
    cpu_register_physical_memory(s->base, 0x100, iomemtype);
848

    
849
    return s;
850
}
851

    
852
/* Watchdog timer */
853
struct omap_watchdog_timer_s {
854
    struct omap_mpu_timer_s timer;
855
    uint8_t last_wr;
856
    int mode;
857
    int free;
858
    int reset;
859
};
860

    
861
static uint32_t omap_wd_timer_read(void *opaque, target_phys_addr_t addr)
862
{
863
    struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
864
    int offset = addr - s->timer.base;
865

    
866
    switch (offset) {
867
    case 0x00:        /* CNTL_TIMER */
868
        return (s->timer.ptv << 9) | (s->timer.ar << 8) |
869
                (s->timer.st << 7) | (s->free << 1);
870

    
871
    case 0x04:        /* READ_TIMER */
872
        return omap_timer_read(&s->timer);
873

    
874
    case 0x08:        /* TIMER_MODE */
875
        return s->mode << 15;
876
    }
877

    
878
    OMAP_BAD_REG(addr);
879
    return 0;
880
}
881

    
882
static void omap_wd_timer_write(void *opaque, target_phys_addr_t addr,
883
                uint32_t value)
884
{
885
    struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
886
    int offset = addr - s->timer.base;
887

    
888
    switch (offset) {
889
    case 0x00:        /* CNTL_TIMER */
890
        omap_timer_sync(&s->timer);
891
        s->timer.ptv = (value >> 9) & 7;
892
        s->timer.ar = (value >> 8) & 1;
893
        s->timer.st = (value >> 7) & 1;
894
        s->free = (value >> 1) & 1;
895
        omap_timer_update(&s->timer);
896
        break;
897

    
898
    case 0x04:        /* LOAD_TIMER */
899
        s->timer.reset_val = value & 0xffff;
900
        break;
901

    
902
    case 0x08:        /* TIMER_MODE */
903
        if (!s->mode && ((value >> 15) & 1))
904
            omap_clk_get(s->timer.clk);
905
        s->mode |= (value >> 15) & 1;
906
        if (s->last_wr == 0xf5) {
907
            if ((value & 0xff) == 0xa0) {
908
                if (s->mode) {
909
                    s->mode = 0;
910
                    omap_clk_put(s->timer.clk);
911
                }
912
            } else {
913
                /* XXX: on T|E hardware somehow this has no effect,
914
                 * on Zire 71 it works as specified.  */
915
                s->reset = 1;
916
                qemu_system_reset_request();
917
            }
918
        }
919
        s->last_wr = value & 0xff;
920
        break;
921

    
922
    default:
923
        OMAP_BAD_REG(addr);
924
    }
925
}
926

    
927
static CPUReadMemoryFunc *omap_wd_timer_readfn[] = {
928
    omap_badwidth_read16,
929
    omap_wd_timer_read,
930
    omap_badwidth_read16,
931
};
932

    
933
static CPUWriteMemoryFunc *omap_wd_timer_writefn[] = {
934
    omap_badwidth_write16,
935
    omap_wd_timer_write,
936
    omap_badwidth_write16,
937
};
938

    
939
static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
940
{
941
    qemu_del_timer(s->timer.timer);
942
    if (!s->mode)
943
        omap_clk_get(s->timer.clk);
944
    s->mode = 1;
945
    s->free = 1;
946
    s->reset = 0;
947
    s->timer.enable = 1;
948
    s->timer.it_ena = 1;
949
    s->timer.reset_val = 0xffff;
950
    s->timer.val = 0;
951
    s->timer.st = 0;
952
    s->timer.ptv = 0;
953
    s->timer.ar = 0;
954
    omap_timer_update(&s->timer);
955
}
956

    
957
struct omap_watchdog_timer_s *omap_wd_timer_init(target_phys_addr_t base,
958
                qemu_irq irq, omap_clk clk)
959
{
960
    int iomemtype;
961
    struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *)
962
            qemu_mallocz(sizeof(struct omap_watchdog_timer_s));
963

    
964
    s->timer.irq = irq;
965
    s->timer.clk = clk;
966
    s->timer.base = base;
967
    s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer);
968
    omap_wd_timer_reset(s);
969
    omap_timer_clk_setup(&s->timer);
970

    
971
    iomemtype = cpu_register_io_memory(0, omap_wd_timer_readfn,
972
                    omap_wd_timer_writefn, s);
973
    cpu_register_physical_memory(s->timer.base, 0x100, iomemtype);
974

    
975
    return s;
976
}
977

    
978
/* 32-kHz timer */
979
struct omap_32khz_timer_s {
980
    struct omap_mpu_timer_s timer;
981
};
982

    
983
static uint32_t omap_os_timer_read(void *opaque, target_phys_addr_t addr)
984
{
985
    struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
986
    int offset = addr & OMAP_MPUI_REG_MASK;
987

    
988
    switch (offset) {
989
    case 0x00:        /* TVR */
990
        return s->timer.reset_val;
991

    
992
    case 0x04:        /* TCR */
993
        return omap_timer_read(&s->timer);
994

    
995
    case 0x08:        /* CR */
996
        return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
997

    
998
    default:
999
        break;
1000
    }
1001
    OMAP_BAD_REG(addr);
1002
    return 0;
1003
}
1004

    
1005
static void omap_os_timer_write(void *opaque, target_phys_addr_t addr,
1006
                uint32_t value)
1007
{
1008
    struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
1009
    int offset = addr & OMAP_MPUI_REG_MASK;
1010

    
1011
    switch (offset) {
1012
    case 0x00:        /* TVR */
1013
        s->timer.reset_val = value & 0x00ffffff;
1014
        break;
1015

    
1016
    case 0x04:        /* TCR */
1017
        OMAP_RO_REG(addr);
1018
        break;
1019

    
1020
    case 0x08:        /* CR */
1021
        s->timer.ar = (value >> 3) & 1;
1022
        s->timer.it_ena = (value >> 2) & 1;
1023
        if (s->timer.st != (value & 1) || (value & 2)) {
1024
            omap_timer_sync(&s->timer);
1025
            s->timer.enable = value & 1;
1026
            s->timer.st = value & 1;
1027
            omap_timer_update(&s->timer);
1028
        }
1029
        break;
1030

    
1031
    default:
1032
        OMAP_BAD_REG(addr);
1033
    }
1034
}
1035

    
1036
static CPUReadMemoryFunc *omap_os_timer_readfn[] = {
1037
    omap_badwidth_read32,
1038
    omap_badwidth_read32,
1039
    omap_os_timer_read,
1040
};
1041

    
1042
static CPUWriteMemoryFunc *omap_os_timer_writefn[] = {
1043
    omap_badwidth_write32,
1044
    omap_badwidth_write32,
1045
    omap_os_timer_write,
1046
};
1047

    
1048
static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
1049
{
1050
    qemu_del_timer(s->timer.timer);
1051
    s->timer.enable = 0;
1052
    s->timer.it_ena = 0;
1053
    s->timer.reset_val = 0x00ffffff;
1054
    s->timer.val = 0;
1055
    s->timer.st = 0;
1056
    s->timer.ptv = 0;
1057
    s->timer.ar = 1;
1058
}
1059

    
1060
struct omap_32khz_timer_s *omap_os_timer_init(target_phys_addr_t base,
1061
                qemu_irq irq, omap_clk clk)
1062
{
1063
    int iomemtype;
1064
    struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *)
1065
            qemu_mallocz(sizeof(struct omap_32khz_timer_s));
1066

    
1067
    s->timer.irq = irq;
1068
    s->timer.clk = clk;
1069
    s->timer.base = base;
1070
    s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer);
1071
    omap_os_timer_reset(s);
1072
    omap_timer_clk_setup(&s->timer);
1073

    
1074
    iomemtype = cpu_register_io_memory(0, omap_os_timer_readfn,
1075
                    omap_os_timer_writefn, s);
1076
    cpu_register_physical_memory(s->timer.base, 0x800, iomemtype);
1077

    
1078
    return s;
1079
}
1080

    
1081
/* Ultra Low-Power Device Module */
1082
static uint32_t omap_ulpd_pm_read(void *opaque, target_phys_addr_t addr)
1083
{
1084
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1085
    int offset = addr - s->ulpd_pm_base;
1086
    uint16_t ret;
1087

    
1088
    switch (offset) {
1089
    case 0x14:        /* IT_STATUS */
1090
        ret = s->ulpd_pm_regs[offset >> 2];
1091
        s->ulpd_pm_regs[offset >> 2] = 0;
1092
        qemu_irq_lower(s->irq[1][OMAP_INT_GAUGE_32K]);
1093
        return ret;
1094

    
1095
    case 0x18:        /* Reserved */
1096
    case 0x1c:        /* Reserved */
1097
    case 0x20:        /* Reserved */
1098
    case 0x28:        /* Reserved */
1099
    case 0x2c:        /* Reserved */
1100
        OMAP_BAD_REG(addr);
1101
    case 0x00:        /* COUNTER_32_LSB */
1102
    case 0x04:        /* COUNTER_32_MSB */
1103
    case 0x08:        /* COUNTER_HIGH_FREQ_LSB */
1104
    case 0x0c:        /* COUNTER_HIGH_FREQ_MSB */
1105
    case 0x10:        /* GAUGING_CTRL */
1106
    case 0x24:        /* SETUP_ANALOG_CELL3_ULPD1 */
1107
    case 0x30:        /* CLOCK_CTRL */
1108
    case 0x34:        /* SOFT_REQ */
1109
    case 0x38:        /* COUNTER_32_FIQ */
1110
    case 0x3c:        /* DPLL_CTRL */
1111
    case 0x40:        /* STATUS_REQ */
1112
        /* XXX: check clk::usecount state for every clock */
1113
    case 0x48:        /* LOCL_TIME */
1114
    case 0x4c:        /* APLL_CTRL */
1115
    case 0x50:        /* POWER_CTRL */
1116
        return s->ulpd_pm_regs[offset >> 2];
1117
    }
1118

    
1119
    OMAP_BAD_REG(addr);
1120
    return 0;
1121
}
1122

    
1123
static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
1124
                uint16_t diff, uint16_t value)
1125
{
1126
    if (diff & (1 << 4))                                /* USB_MCLK_EN */
1127
        omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
1128
    if (diff & (1 << 5))                                /* DIS_USB_PVCI_CLK */
1129
        omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
1130
}
1131

    
1132
static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
1133
                uint16_t diff, uint16_t value)
1134
{
1135
    if (diff & (1 << 0))                                /* SOFT_DPLL_REQ */
1136
        omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
1137
    if (diff & (1 << 1))                                /* SOFT_COM_REQ */
1138
        omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
1139
    if (diff & (1 << 2))                                /* SOFT_SDW_REQ */
1140
        omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
1141
    if (diff & (1 << 3))                                /* SOFT_USB_REQ */
1142
        omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
1143
}
1144

    
1145
static void omap_ulpd_pm_write(void *opaque, target_phys_addr_t addr,
1146
                uint32_t value)
1147
{
1148
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1149
    int offset = addr - s->ulpd_pm_base;
1150
    int64_t now, ticks;
1151
    int div, mult;
1152
    static const int bypass_div[4] = { 1, 2, 4, 4 };
1153
    uint16_t diff;
1154

    
1155
    switch (offset) {
1156
    case 0x00:        /* COUNTER_32_LSB */
1157
    case 0x04:        /* COUNTER_32_MSB */
1158
    case 0x08:        /* COUNTER_HIGH_FREQ_LSB */
1159
    case 0x0c:        /* COUNTER_HIGH_FREQ_MSB */
1160
    case 0x14:        /* IT_STATUS */
1161
    case 0x40:        /* STATUS_REQ */
1162
        OMAP_RO_REG(addr);
1163
        break;
1164

    
1165
    case 0x10:        /* GAUGING_CTRL */
1166
        /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
1167
        if ((s->ulpd_pm_regs[offset >> 2] ^ value) & 1) {
1168
            now = qemu_get_clock(vm_clock);
1169

    
1170
            if (value & 1)
1171
                s->ulpd_gauge_start = now;
1172
            else {
1173
                now -= s->ulpd_gauge_start;
1174

    
1175
                /* 32-kHz ticks */
1176
                ticks = muldiv64(now, 32768, ticks_per_sec);
1177
                s->ulpd_pm_regs[0x00 >> 2] = (ticks >>  0) & 0xffff;
1178
                s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
1179
                if (ticks >> 32)        /* OVERFLOW_32K */
1180
                    s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
1181

    
1182
                /* High frequency ticks */
1183
                ticks = muldiv64(now, 12000000, ticks_per_sec);
1184
                s->ulpd_pm_regs[0x08 >> 2] = (ticks >>  0) & 0xffff;
1185
                s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
1186
                if (ticks >> 32)        /* OVERFLOW_HI_FREQ */
1187
                    s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
1188

    
1189
                s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0;        /* IT_GAUGING */
1190
                qemu_irq_raise(s->irq[1][OMAP_INT_GAUGE_32K]);
1191
            }
1192
        }
1193
        s->ulpd_pm_regs[offset >> 2] = value;
1194
        break;
1195

    
1196
    case 0x18:        /* Reserved */
1197
    case 0x1c:        /* Reserved */
1198
    case 0x20:        /* Reserved */
1199
    case 0x28:        /* Reserved */
1200
    case 0x2c:        /* Reserved */
1201
        OMAP_BAD_REG(addr);
1202
    case 0x24:        /* SETUP_ANALOG_CELL3_ULPD1 */
1203
    case 0x38:        /* COUNTER_32_FIQ */
1204
    case 0x48:        /* LOCL_TIME */
1205
    case 0x50:        /* POWER_CTRL */
1206
        s->ulpd_pm_regs[offset >> 2] = value;
1207
        break;
1208

    
1209
    case 0x30:        /* CLOCK_CTRL */
1210
        diff = s->ulpd_pm_regs[offset >> 2] ^ value;
1211
        s->ulpd_pm_regs[offset >> 2] = value & 0x3f;
1212
        omap_ulpd_clk_update(s, diff, value);
1213
        break;
1214

    
1215
    case 0x34:        /* SOFT_REQ */
1216
        diff = s->ulpd_pm_regs[offset >> 2] ^ value;
1217
        s->ulpd_pm_regs[offset >> 2] = value & 0x1f;
1218
        omap_ulpd_req_update(s, diff, value);
1219
        break;
1220

    
1221
    case 0x3c:        /* DPLL_CTRL */
1222
        /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
1223
         * omitted altogether, probably a typo.  */
1224
        /* This register has identical semantics with DPLL(1:3) control
1225
         * registers, see omap_dpll_write() */
1226
        diff = s->ulpd_pm_regs[offset >> 2] & value;
1227
        s->ulpd_pm_regs[offset >> 2] = value & 0x2fff;
1228
        if (diff & (0x3ff << 2)) {
1229
            if (value & (1 << 4)) {                        /* PLL_ENABLE */
1230
                div = ((value >> 5) & 3) + 1;                /* PLL_DIV */
1231
                mult = MIN((value >> 7) & 0x1f, 1);        /* PLL_MULT */
1232
            } else {
1233
                div = bypass_div[((value >> 2) & 3)];        /* BYPASS_DIV */
1234
                mult = 1;
1235
            }
1236
            omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
1237
        }
1238

    
1239
        /* Enter the desired mode.  */
1240
        s->ulpd_pm_regs[offset >> 2] =
1241
                (s->ulpd_pm_regs[offset >> 2] & 0xfffe) |
1242
                ((s->ulpd_pm_regs[offset >> 2] >> 4) & 1);
1243

    
1244
        /* Act as if the lock is restored.  */
1245
        s->ulpd_pm_regs[offset >> 2] |= 2;
1246
        break;
1247

    
1248
    case 0x4c:        /* APLL_CTRL */
1249
        diff = s->ulpd_pm_regs[offset >> 2] & value;
1250
        s->ulpd_pm_regs[offset >> 2] = value & 0xf;
1251
        if (diff & (1 << 0))                                /* APLL_NDPLL_SWITCH */
1252
            omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
1253
                                    (value & (1 << 0)) ? "apll" : "dpll4"));
1254
        break;
1255

    
1256
    default:
1257
        OMAP_BAD_REG(addr);
1258
    }
1259
}
1260

    
1261
static CPUReadMemoryFunc *omap_ulpd_pm_readfn[] = {
1262
    omap_badwidth_read16,
1263
    omap_ulpd_pm_read,
1264
    omap_badwidth_read16,
1265
};
1266

    
1267
static CPUWriteMemoryFunc *omap_ulpd_pm_writefn[] = {
1268
    omap_badwidth_write16,
1269
    omap_ulpd_pm_write,
1270
    omap_badwidth_write16,
1271
};
1272

    
1273
static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
1274
{
1275
    mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
1276
    mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
1277
    mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
1278
    mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
1279
    mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
1280
    mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
1281
    mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
1282
    mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
1283
    mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
1284
    mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
1285
    mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
1286
    omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
1287
    mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
1288
    omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
1289
    mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
1290
    mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
1291
    mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
1292
    mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
1293
    mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
1294
    mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
1295
    mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
1296
    omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
1297
    omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
1298
}
1299

    
1300
static void omap_ulpd_pm_init(target_phys_addr_t base,
1301
                struct omap_mpu_state_s *mpu)
1302
{
1303
    int iomemtype = cpu_register_io_memory(0, omap_ulpd_pm_readfn,
1304
                    omap_ulpd_pm_writefn, mpu);
1305

    
1306
    mpu->ulpd_pm_base = base;
1307
    cpu_register_physical_memory(mpu->ulpd_pm_base, 0x800, iomemtype);
1308
    omap_ulpd_pm_reset(mpu);
1309
}
1310

    
1311
/* OMAP Pin Configuration */
1312
static uint32_t omap_pin_cfg_read(void *opaque, target_phys_addr_t addr)
1313
{
1314
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1315
    int offset = addr - s->pin_cfg_base;
1316

    
1317
    switch (offset) {
1318
    case 0x00:        /* FUNC_MUX_CTRL_0 */
1319
    case 0x04:        /* FUNC_MUX_CTRL_1 */
1320
    case 0x08:        /* FUNC_MUX_CTRL_2 */
1321
        return s->func_mux_ctrl[offset >> 2];
1322

    
1323
    case 0x0c:        /* COMP_MODE_CTRL_0 */
1324
        return s->comp_mode_ctrl[0];
1325

    
1326
    case 0x10:        /* FUNC_MUX_CTRL_3 */
1327
    case 0x14:        /* FUNC_MUX_CTRL_4 */
1328
    case 0x18:        /* FUNC_MUX_CTRL_5 */
1329
    case 0x1c:        /* FUNC_MUX_CTRL_6 */
1330
    case 0x20:        /* FUNC_MUX_CTRL_7 */
1331
    case 0x24:        /* FUNC_MUX_CTRL_8 */
1332
    case 0x28:        /* FUNC_MUX_CTRL_9 */
1333
    case 0x2c:        /* FUNC_MUX_CTRL_A */
1334
    case 0x30:        /* FUNC_MUX_CTRL_B */
1335
    case 0x34:        /* FUNC_MUX_CTRL_C */
1336
    case 0x38:        /* FUNC_MUX_CTRL_D */
1337
        return s->func_mux_ctrl[(offset >> 2) - 1];
1338

    
1339
    case 0x40:        /* PULL_DWN_CTRL_0 */
1340
    case 0x44:        /* PULL_DWN_CTRL_1 */
1341
    case 0x48:        /* PULL_DWN_CTRL_2 */
1342
    case 0x4c:        /* PULL_DWN_CTRL_3 */
1343
        return s->pull_dwn_ctrl[(offset & 0xf) >> 2];
1344

    
1345
    case 0x50:        /* GATE_INH_CTRL_0 */
1346
        return s->gate_inh_ctrl[0];
1347

    
1348
    case 0x60:        /* VOLTAGE_CTRL_0 */
1349
        return s->voltage_ctrl[0];
1350

    
1351
    case 0x70:        /* TEST_DBG_CTRL_0 */
1352
        return s->test_dbg_ctrl[0];
1353

    
1354
    case 0x80:        /* MOD_CONF_CTRL_0 */
1355
        return s->mod_conf_ctrl[0];
1356
    }
1357

    
1358
    OMAP_BAD_REG(addr);
1359
    return 0;
1360
}
1361

    
1362
static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
1363
                uint32_t diff, uint32_t value)
1364
{
1365
    if (s->compat1509) {
1366
        if (diff & (1 << 9))                        /* BLUETOOTH */
1367
            omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
1368
                            (~value >> 9) & 1);
1369
        if (diff & (1 << 7))                        /* USB.CLKO */
1370
            omap_clk_onoff(omap_findclk(s, "usb.clko"),
1371
                            (value >> 7) & 1);
1372
    }
1373
}
1374

    
1375
static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
1376
                uint32_t diff, uint32_t value)
1377
{
1378
    if (s->compat1509) {
1379
        if (diff & (1 << 31))                        /* MCBSP3_CLK_HIZ_DI */
1380
            omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"),
1381
                            (value >> 31) & 1);
1382
        if (diff & (1 << 1))                        /* CLK32K */
1383
            omap_clk_onoff(omap_findclk(s, "clk32k_out"),
1384
                            (~value >> 1) & 1);
1385
    }
1386
}
1387

    
1388
static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
1389
                uint32_t diff, uint32_t value)
1390
{
1391
    if (diff & (1 << 31))                        /* CONF_MOD_UART3_CLK_MODE_R */
1392
         omap_clk_reparent(omap_findclk(s, "uart3_ck"),
1393
                         omap_findclk(s, ((value >> 31) & 1) ?
1394
                                 "ck_48m" : "armper_ck"));
1395
    if (diff & (1 << 30))                        /* CONF_MOD_UART2_CLK_MODE_R */
1396
         omap_clk_reparent(omap_findclk(s, "uart2_ck"),
1397
                         omap_findclk(s, ((value >> 30) & 1) ?
1398
                                 "ck_48m" : "armper_ck"));
1399
    if (diff & (1 << 29))                        /* CONF_MOD_UART1_CLK_MODE_R */
1400
         omap_clk_reparent(omap_findclk(s, "uart1_ck"),
1401
                         omap_findclk(s, ((value >> 29) & 1) ?
1402
                                 "ck_48m" : "armper_ck"));
1403
    if (diff & (1 << 23))                        /* CONF_MOD_MMC_SD_CLK_REQ_R */
1404
         omap_clk_reparent(omap_findclk(s, "mmc_ck"),
1405
                         omap_findclk(s, ((value >> 23) & 1) ?
1406
                                 "ck_48m" : "armper_ck"));
1407
    if (diff & (1 << 12))                        /* CONF_MOD_COM_MCLK_12_48_S */
1408
         omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
1409
                         omap_findclk(s, ((value >> 12) & 1) ?
1410
                                 "ck_48m" : "armper_ck"));
1411
    if (diff & (1 << 9))                        /* CONF_MOD_USB_HOST_HHC_UHO */
1412
         omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
1413
}
1414

    
1415
static void omap_pin_cfg_write(void *opaque, target_phys_addr_t addr,
1416
                uint32_t value)
1417
{
1418
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1419
    int offset = addr - s->pin_cfg_base;
1420
    uint32_t diff;
1421

    
1422
    switch (offset) {
1423
    case 0x00:        /* FUNC_MUX_CTRL_0 */
1424
        diff = s->func_mux_ctrl[offset >> 2] ^ value;
1425
        s->func_mux_ctrl[offset >> 2] = value;
1426
        omap_pin_funcmux0_update(s, diff, value);
1427
        return;
1428

    
1429
    case 0x04:        /* FUNC_MUX_CTRL_1 */
1430
        diff = s->func_mux_ctrl[offset >> 2] ^ value;
1431
        s->func_mux_ctrl[offset >> 2] = value;
1432
        omap_pin_funcmux1_update(s, diff, value);
1433
        return;
1434

    
1435
    case 0x08:        /* FUNC_MUX_CTRL_2 */
1436
        s->func_mux_ctrl[offset >> 2] = value;
1437
        return;
1438

    
1439
    case 0x0c:        /* COMP_MODE_CTRL_0 */
1440
        s->comp_mode_ctrl[0] = value;
1441
        s->compat1509 = (value != 0x0000eaef);
1442
        omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
1443
        omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
1444
        return;
1445

    
1446
    case 0x10:        /* FUNC_MUX_CTRL_3 */
1447
    case 0x14:        /* FUNC_MUX_CTRL_4 */
1448
    case 0x18:        /* FUNC_MUX_CTRL_5 */
1449
    case 0x1c:        /* FUNC_MUX_CTRL_6 */
1450
    case 0x20:        /* FUNC_MUX_CTRL_7 */
1451
    case 0x24:        /* FUNC_MUX_CTRL_8 */
1452
    case 0x28:        /* FUNC_MUX_CTRL_9 */
1453
    case 0x2c:        /* FUNC_MUX_CTRL_A */
1454
    case 0x30:        /* FUNC_MUX_CTRL_B */
1455
    case 0x34:        /* FUNC_MUX_CTRL_C */
1456
    case 0x38:        /* FUNC_MUX_CTRL_D */
1457
        s->func_mux_ctrl[(offset >> 2) - 1] = value;
1458
        return;
1459

    
1460
    case 0x40:        /* PULL_DWN_CTRL_0 */
1461
    case 0x44:        /* PULL_DWN_CTRL_1 */
1462
    case 0x48:        /* PULL_DWN_CTRL_2 */
1463
    case 0x4c:        /* PULL_DWN_CTRL_3 */
1464
        s->pull_dwn_ctrl[(offset & 0xf) >> 2] = value;
1465
        return;
1466

    
1467
    case 0x50:        /* GATE_INH_CTRL_0 */
1468
        s->gate_inh_ctrl[0] = value;
1469
        return;
1470

    
1471
    case 0x60:        /* VOLTAGE_CTRL_0 */
1472
        s->voltage_ctrl[0] = value;
1473
        return;
1474

    
1475
    case 0x70:        /* TEST_DBG_CTRL_0 */
1476
        s->test_dbg_ctrl[0] = value;
1477
        return;
1478

    
1479
    case 0x80:        /* MOD_CONF_CTRL_0 */
1480
        diff = s->mod_conf_ctrl[0] ^ value;
1481
        s->mod_conf_ctrl[0] = value;
1482
        omap_pin_modconf1_update(s, diff, value);
1483
        return;
1484

    
1485
    default:
1486
        OMAP_BAD_REG(addr);
1487
    }
1488
}
1489

    
1490
static CPUReadMemoryFunc *omap_pin_cfg_readfn[] = {
1491
    omap_badwidth_read32,
1492
    omap_badwidth_read32,
1493
    omap_pin_cfg_read,
1494
};
1495

    
1496
static CPUWriteMemoryFunc *omap_pin_cfg_writefn[] = {
1497
    omap_badwidth_write32,
1498
    omap_badwidth_write32,
1499
    omap_pin_cfg_write,
1500
};
1501

    
1502
static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
1503
{
1504
    /* Start in Compatibility Mode.  */
1505
    mpu->compat1509 = 1;
1506
    omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
1507
    omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
1508
    omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
1509
    memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
1510
    memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
1511
    memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
1512
    memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
1513
    memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
1514
    memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
1515
    memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
1516
}
1517

    
1518
static void omap_pin_cfg_init(target_phys_addr_t base,
1519
                struct omap_mpu_state_s *mpu)
1520
{
1521
    int iomemtype = cpu_register_io_memory(0, omap_pin_cfg_readfn,
1522
                    omap_pin_cfg_writefn, mpu);
1523

    
1524
    mpu->pin_cfg_base = base;
1525
    cpu_register_physical_memory(mpu->pin_cfg_base, 0x800, iomemtype);
1526
    omap_pin_cfg_reset(mpu);
1527
}
1528

    
1529
/* Device Identification, Die Identification */
1530
static uint32_t omap_id_read(void *opaque, target_phys_addr_t addr)
1531
{
1532
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1533

    
1534
    switch (addr) {
1535
    case 0xfffe1800:        /* DIE_ID_LSB */
1536
        return 0xc9581f0e;
1537
    case 0xfffe1804:        /* DIE_ID_MSB */
1538
        return 0xa8858bfa;
1539

    
1540
    case 0xfffe2000:        /* PRODUCT_ID_LSB */
1541
        return 0x00aaaafc;
1542
    case 0xfffe2004:        /* PRODUCT_ID_MSB */
1543
        return 0xcafeb574;
1544

    
1545
    case 0xfffed400:        /* JTAG_ID_LSB */
1546
        switch (s->mpu_model) {
1547
        case omap310:
1548
            return 0x03310315;
1549
        case omap1510:
1550
            return 0x03310115;
1551
        default:
1552
            cpu_abort(cpu_single_env, "%s: bad mpu model\n", __FUNCTION__);
1553
        }
1554
        break;
1555

    
1556
    case 0xfffed404:        /* JTAG_ID_MSB */
1557
        switch (s->mpu_model) {
1558
        case omap310:
1559
            return 0xfb57402f;
1560
        case omap1510:
1561
            return 0xfb47002f;
1562
        default:
1563
            cpu_abort(cpu_single_env, "%s: bad mpu model\n", __FUNCTION__);
1564
        }
1565
        break;
1566
    }
1567

    
1568
    OMAP_BAD_REG(addr);
1569
    return 0;
1570
}
1571

    
1572
static void omap_id_write(void *opaque, target_phys_addr_t addr,
1573
                uint32_t value)
1574
{
1575
    OMAP_BAD_REG(addr);
1576
}
1577

    
1578
static CPUReadMemoryFunc *omap_id_readfn[] = {
1579
    omap_badwidth_read32,
1580
    omap_badwidth_read32,
1581
    omap_id_read,
1582
};
1583

    
1584
static CPUWriteMemoryFunc *omap_id_writefn[] = {
1585
    omap_badwidth_write32,
1586
    omap_badwidth_write32,
1587
    omap_id_write,
1588
};
1589

    
1590
static void omap_id_init(struct omap_mpu_state_s *mpu)
1591
{
1592
    int iomemtype = cpu_register_io_memory(0, omap_id_readfn,
1593
                    omap_id_writefn, mpu);
1594
    cpu_register_physical_memory(0xfffe1800, 0x800, iomemtype);
1595
    cpu_register_physical_memory(0xfffed400, 0x100, iomemtype);
1596
    if (!cpu_is_omap15xx(mpu))
1597
        cpu_register_physical_memory(0xfffe2000, 0x800, iomemtype);
1598
}
1599

    
1600
/* MPUI Control (Dummy) */
1601
static uint32_t omap_mpui_read(void *opaque, target_phys_addr_t addr)
1602
{
1603
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1604
    int offset = addr - s->mpui_base;
1605

    
1606
    switch (offset) {
1607
    case 0x00:        /* CTRL */
1608
        return s->mpui_ctrl;
1609
    case 0x04:        /* DEBUG_ADDR */
1610
        return 0x01ffffff;
1611
    case 0x08:        /* DEBUG_DATA */
1612
        return 0xffffffff;
1613
    case 0x0c:        /* DEBUG_FLAG */
1614
        return 0x00000800;
1615
    case 0x10:        /* STATUS */
1616
        return 0x00000000;
1617

    
1618
    /* Not in OMAP310 */
1619
    case 0x14:        /* DSP_STATUS */
1620
    case 0x18:        /* DSP_BOOT_CONFIG */
1621
        return 0x00000000;
1622
    case 0x1c:        /* DSP_MPUI_CONFIG */
1623
        return 0x0000ffff;
1624
    }
1625

    
1626
    OMAP_BAD_REG(addr);
1627
    return 0;
1628
}
1629

    
1630
static void omap_mpui_write(void *opaque, target_phys_addr_t addr,
1631
                uint32_t value)
1632
{
1633
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1634
    int offset = addr - s->mpui_base;
1635

    
1636
    switch (offset) {
1637
    case 0x00:        /* CTRL */
1638
        s->mpui_ctrl = value & 0x007fffff;
1639
        break;
1640

    
1641
    case 0x04:        /* DEBUG_ADDR */
1642
    case 0x08:        /* DEBUG_DATA */
1643
    case 0x0c:        /* DEBUG_FLAG */
1644
    case 0x10:        /* STATUS */
1645
    /* Not in OMAP310 */
1646
    case 0x14:        /* DSP_STATUS */
1647
        OMAP_RO_REG(addr);
1648
    case 0x18:        /* DSP_BOOT_CONFIG */
1649
    case 0x1c:        /* DSP_MPUI_CONFIG */
1650
        break;
1651

    
1652
    default:
1653
        OMAP_BAD_REG(addr);
1654
    }
1655
}
1656

    
1657
static CPUReadMemoryFunc *omap_mpui_readfn[] = {
1658
    omap_badwidth_read32,
1659
    omap_badwidth_read32,
1660
    omap_mpui_read,
1661
};
1662

    
1663
static CPUWriteMemoryFunc *omap_mpui_writefn[] = {
1664
    omap_badwidth_write32,
1665
    omap_badwidth_write32,
1666
    omap_mpui_write,
1667
};
1668

    
1669
static void omap_mpui_reset(struct omap_mpu_state_s *s)
1670
{
1671
    s->mpui_ctrl = 0x0003ff1b;
1672
}
1673

    
1674
static void omap_mpui_init(target_phys_addr_t base,
1675
                struct omap_mpu_state_s *mpu)
1676
{
1677
    int iomemtype = cpu_register_io_memory(0, omap_mpui_readfn,
1678
                    omap_mpui_writefn, mpu);
1679

    
1680
    mpu->mpui_base = base;
1681
    cpu_register_physical_memory(mpu->mpui_base, 0x100, iomemtype);
1682

    
1683
    omap_mpui_reset(mpu);
1684
}
1685

    
1686
/* TIPB Bridges */
1687
struct omap_tipb_bridge_s {
1688
    target_phys_addr_t base;
1689
    qemu_irq abort;
1690

    
1691
    int width_intr;
1692
    uint16_t control;
1693
    uint16_t alloc;
1694
    uint16_t buffer;
1695
    uint16_t enh_control;
1696
};
1697

    
1698
static uint32_t omap_tipb_bridge_read(void *opaque, target_phys_addr_t addr)
1699
{
1700
    struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1701
    int offset = addr - s->base;
1702

    
1703
    switch (offset) {
1704
    case 0x00:        /* TIPB_CNTL */
1705
        return s->control;
1706
    case 0x04:        /* TIPB_BUS_ALLOC */
1707
        return s->alloc;
1708
    case 0x08:        /* MPU_TIPB_CNTL */
1709
        return s->buffer;
1710
    case 0x0c:        /* ENHANCED_TIPB_CNTL */
1711
        return s->enh_control;
1712
    case 0x10:        /* ADDRESS_DBG */
1713
    case 0x14:        /* DATA_DEBUG_LOW */
1714
    case 0x18:        /* DATA_DEBUG_HIGH */
1715
        return 0xffff;
1716
    case 0x1c:        /* DEBUG_CNTR_SIG */
1717
        return 0x00f8;
1718
    }
1719

    
1720
    OMAP_BAD_REG(addr);
1721
    return 0;
1722
}
1723

    
1724
static void omap_tipb_bridge_write(void *opaque, target_phys_addr_t addr,
1725
                uint32_t value)
1726
{
1727
    struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1728
    int offset = addr - s->base;
1729

    
1730
    switch (offset) {
1731
    case 0x00:        /* TIPB_CNTL */
1732
        s->control = value & 0xffff;
1733
        break;
1734

    
1735
    case 0x04:        /* TIPB_BUS_ALLOC */
1736
        s->alloc = value & 0x003f;
1737
        break;
1738

    
1739
    case 0x08:        /* MPU_TIPB_CNTL */
1740
        s->buffer = value & 0x0003;
1741
        break;
1742

    
1743
    case 0x0c:        /* ENHANCED_TIPB_CNTL */
1744
        s->width_intr = !(value & 2);
1745
        s->enh_control = value & 0x000f;
1746
        break;
1747

    
1748
    case 0x10:        /* ADDRESS_DBG */
1749
    case 0x14:        /* DATA_DEBUG_LOW */
1750
    case 0x18:        /* DATA_DEBUG_HIGH */
1751
    case 0x1c:        /* DEBUG_CNTR_SIG */
1752
        OMAP_RO_REG(addr);
1753
        break;
1754

    
1755
    default:
1756
        OMAP_BAD_REG(addr);
1757
    }
1758
}
1759

    
1760
static CPUReadMemoryFunc *omap_tipb_bridge_readfn[] = {
1761
    omap_badwidth_read16,
1762
    omap_tipb_bridge_read,
1763
    omap_tipb_bridge_read,
1764
};
1765

    
1766
static CPUWriteMemoryFunc *omap_tipb_bridge_writefn[] = {
1767
    omap_badwidth_write16,
1768
    omap_tipb_bridge_write,
1769
    omap_tipb_bridge_write,
1770
};
1771

    
1772
static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1773
{
1774
    s->control = 0xffff;
1775
    s->alloc = 0x0009;
1776
    s->buffer = 0x0000;
1777
    s->enh_control = 0x000f;
1778
}
1779

    
1780
struct omap_tipb_bridge_s *omap_tipb_bridge_init(target_phys_addr_t base,
1781
                qemu_irq abort_irq, omap_clk clk)
1782
{
1783
    int iomemtype;
1784
    struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *)
1785
            qemu_mallocz(sizeof(struct omap_tipb_bridge_s));
1786

    
1787
    s->abort = abort_irq;
1788
    s->base = base;
1789
    omap_tipb_bridge_reset(s);
1790

    
1791
    iomemtype = cpu_register_io_memory(0, omap_tipb_bridge_readfn,
1792
                    omap_tipb_bridge_writefn, s);
1793
    cpu_register_physical_memory(s->base, 0x100, iomemtype);
1794

    
1795
    return s;
1796
}
1797

    
1798
/* Dummy Traffic Controller's Memory Interface */
1799
static uint32_t omap_tcmi_read(void *opaque, target_phys_addr_t addr)
1800
{
1801
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1802
    int offset = addr - s->tcmi_base;
1803
    uint32_t ret;
1804

    
1805
    switch (offset) {
1806
    case 0x00:        /* IMIF_PRIO */
1807
    case 0x04:        /* EMIFS_PRIO */
1808
    case 0x08:        /* EMIFF_PRIO */
1809
    case 0x0c:        /* EMIFS_CONFIG */
1810
    case 0x10:        /* EMIFS_CS0_CONFIG */
1811
    case 0x14:        /* EMIFS_CS1_CONFIG */
1812
    case 0x18:        /* EMIFS_CS2_CONFIG */
1813
    case 0x1c:        /* EMIFS_CS3_CONFIG */
1814
    case 0x24:        /* EMIFF_MRS */
1815
    case 0x28:        /* TIMEOUT1 */
1816
    case 0x2c:        /* TIMEOUT2 */
1817
    case 0x30:        /* TIMEOUT3 */
1818
    case 0x3c:        /* EMIFF_SDRAM_CONFIG_2 */
1819
    case 0x40:        /* EMIFS_CFG_DYN_WAIT */
1820
        return s->tcmi_regs[offset >> 2];
1821

    
1822
    case 0x20:        /* EMIFF_SDRAM_CONFIG */
1823
        ret = s->tcmi_regs[offset >> 2];
1824
        s->tcmi_regs[offset >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1825
        /* XXX: We can try using the VGA_DIRTY flag for this */
1826
        return ret;
1827
    }
1828

    
1829
    OMAP_BAD_REG(addr);
1830
    return 0;
1831
}
1832

    
1833
static void omap_tcmi_write(void *opaque, target_phys_addr_t addr,
1834
                uint32_t value)
1835
{
1836
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1837
    int offset = addr - s->tcmi_base;
1838

    
1839
    switch (offset) {
1840
    case 0x00:        /* IMIF_PRIO */
1841
    case 0x04:        /* EMIFS_PRIO */
1842
    case 0x08:        /* EMIFF_PRIO */
1843
    case 0x10:        /* EMIFS_CS0_CONFIG */
1844
    case 0x14:        /* EMIFS_CS1_CONFIG */
1845
    case 0x18:        /* EMIFS_CS2_CONFIG */
1846
    case 0x1c:        /* EMIFS_CS3_CONFIG */
1847
    case 0x20:        /* EMIFF_SDRAM_CONFIG */
1848
    case 0x24:        /* EMIFF_MRS */
1849
    case 0x28:        /* TIMEOUT1 */
1850
    case 0x2c:        /* TIMEOUT2 */
1851
    case 0x30:        /* TIMEOUT3 */
1852
    case 0x3c:        /* EMIFF_SDRAM_CONFIG_2 */
1853
    case 0x40:        /* EMIFS_CFG_DYN_WAIT */
1854
        s->tcmi_regs[offset >> 2] = value;
1855
        break;
1856
    case 0x0c:        /* EMIFS_CONFIG */
1857
        s->tcmi_regs[offset >> 2] = (value & 0xf) | (1 << 4);
1858
        break;
1859

    
1860
    default:
1861
        OMAP_BAD_REG(addr);
1862
    }
1863
}
1864

    
1865
static CPUReadMemoryFunc *omap_tcmi_readfn[] = {
1866
    omap_badwidth_read32,
1867
    omap_badwidth_read32,
1868
    omap_tcmi_read,
1869
};
1870

    
1871
static CPUWriteMemoryFunc *omap_tcmi_writefn[] = {
1872
    omap_badwidth_write32,
1873
    omap_badwidth_write32,
1874
    omap_tcmi_write,
1875
};
1876

    
1877
static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1878
{
1879
    mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1880
    mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1881
    mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1882
    mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1883
    mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1884
    mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1885
    mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1886
    mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1887
    mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1888
    mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1889
    mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1890
    mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1891
    mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1892
    mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1893
    mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1894
}
1895

    
1896
static void omap_tcmi_init(target_phys_addr_t base,
1897
                struct omap_mpu_state_s *mpu)
1898
{
1899
    int iomemtype = cpu_register_io_memory(0, omap_tcmi_readfn,
1900
                    omap_tcmi_writefn, mpu);
1901

    
1902
    mpu->tcmi_base = base;
1903
    cpu_register_physical_memory(mpu->tcmi_base, 0x100, iomemtype);
1904
    omap_tcmi_reset(mpu);
1905
}
1906

    
1907
/* Digital phase-locked loops control */
1908
static uint32_t omap_dpll_read(void *opaque, target_phys_addr_t addr)
1909
{
1910
    struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1911
    int offset = addr - s->base;
1912

    
1913
    if (offset == 0x00)        /* CTL_REG */
1914
        return s->mode;
1915

    
1916
    OMAP_BAD_REG(addr);
1917
    return 0;
1918
}
1919

    
1920
static void omap_dpll_write(void *opaque, target_phys_addr_t addr,
1921
                uint32_t value)
1922
{
1923
    struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1924
    uint16_t diff;
1925
    int offset = addr - s->base;
1926
    static const int bypass_div[4] = { 1, 2, 4, 4 };
1927
    int div, mult;
1928

    
1929
    if (offset == 0x00) {        /* CTL_REG */
1930
        /* See omap_ulpd_pm_write() too */
1931
        diff = s->mode & value;
1932
        s->mode = value & 0x2fff;
1933
        if (diff & (0x3ff << 2)) {
1934
            if (value & (1 << 4)) {                        /* PLL_ENABLE */
1935
                div = ((value >> 5) & 3) + 1;                /* PLL_DIV */
1936
                mult = MIN((value >> 7) & 0x1f, 1);        /* PLL_MULT */
1937
            } else {
1938
                div = bypass_div[((value >> 2) & 3)];        /* BYPASS_DIV */
1939
                mult = 1;
1940
            }
1941
            omap_clk_setrate(s->dpll, div, mult);
1942
        }
1943

    
1944
        /* Enter the desired mode.  */
1945
        s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1946

    
1947
        /* Act as if the lock is restored.  */
1948
        s->mode |= 2;
1949
    } else {
1950
        OMAP_BAD_REG(addr);
1951
    }
1952
}
1953

    
1954
static CPUReadMemoryFunc *omap_dpll_readfn[] = {
1955
    omap_badwidth_read16,
1956
    omap_dpll_read,
1957
    omap_badwidth_read16,
1958
};
1959

    
1960
static CPUWriteMemoryFunc *omap_dpll_writefn[] = {
1961
    omap_badwidth_write16,
1962
    omap_dpll_write,
1963
    omap_badwidth_write16,
1964
};
1965

    
1966
static void omap_dpll_reset(struct dpll_ctl_s *s)
1967
{
1968
    s->mode = 0x2002;
1969
    omap_clk_setrate(s->dpll, 1, 1);
1970
}
1971

    
1972
static void omap_dpll_init(struct dpll_ctl_s *s, target_phys_addr_t base,
1973
                omap_clk clk)
1974
{
1975
    int iomemtype = cpu_register_io_memory(0, omap_dpll_readfn,
1976
                    omap_dpll_writefn, s);
1977

    
1978
    s->base = base;
1979
    s->dpll = clk;
1980
    omap_dpll_reset(s);
1981

    
1982
    cpu_register_physical_memory(s->base, 0x100, iomemtype);
1983
}
1984

    
1985
/* UARTs */
1986
struct omap_uart_s {
1987
    SerialState *serial; /* TODO */
1988
    struct omap_target_agent_s *ta;
1989
    target_phys_addr_t base;
1990
    omap_clk fclk;
1991
    qemu_irq irq;
1992

    
1993
    uint8_t eblr;
1994
    uint8_t syscontrol;
1995
    uint8_t wkup;
1996
    uint8_t cfps;
1997
    uint8_t mdr[2];
1998
    uint8_t scr;
1999
};
2000

    
2001
void omap_uart_reset(struct omap_uart_s *s)
2002
{
2003
    s->eblr = 0x00;
2004
    s->syscontrol = 0;
2005
    s->wkup = 0x3f;
2006
    s->cfps = 0x69;
2007
}
2008

    
2009
struct omap_uart_s *omap_uart_init(target_phys_addr_t base,
2010
                qemu_irq irq, omap_clk fclk, omap_clk iclk,
2011
                qemu_irq txdma, qemu_irq rxdma, CharDriverState *chr)
2012
{
2013
    struct omap_uart_s *s = (struct omap_uart_s *)
2014
            qemu_mallocz(sizeof(struct omap_uart_s));
2015

    
2016
    s->base = base;
2017
    s->fclk = fclk;
2018
    s->irq = irq;
2019
    s->serial = serial_mm_init(base, 2, irq, omap_clk_getrate(fclk)/16,
2020
                               chr ?: qemu_chr_open("null", "null"), 1);
2021

    
2022
    return s;
2023
}
2024

    
2025
static uint32_t omap_uart_read(void *opaque, target_phys_addr_t addr)
2026
{
2027
    struct omap_uart_s *s = (struct omap_uart_s *) opaque;
2028
    int offset = addr - s->base;
2029

    
2030
    switch (offset) {
2031
    case 0x20:        /* MDR1 */
2032
        return s->mdr[0];
2033
    case 0x24:        /* MDR2 */
2034
        return s->mdr[1];
2035
    case 0x40:        /* SCR */
2036
        return s->scr;
2037
    case 0x44:        /* SSR */
2038
        return 0x0;
2039
    case 0x48:        /* EBLR */
2040
        return s->eblr;
2041
    case 0x50:        /* MVR */
2042
        return 0x30;
2043
    case 0x54:        /* SYSC */
2044
        return s->syscontrol;
2045
    case 0x58:        /* SYSS */
2046
        return 1;
2047
    case 0x5c:        /* WER */
2048
        return s->wkup;
2049
    case 0x60:        /* CFPS */
2050
        return s->cfps;
2051
    }
2052

    
2053
    OMAP_BAD_REG(addr);
2054
    return 0;
2055
}
2056

    
2057
static void omap_uart_write(void *opaque, target_phys_addr_t addr,
2058
                uint32_t value)
2059
{
2060
    struct omap_uart_s *s = (struct omap_uart_s *) opaque;
2061
    int offset = addr - s->base;
2062

    
2063
    switch (offset) {
2064
    case 0x20:        /* MDR1 */
2065
        s->mdr[0] = value & 0x7f;
2066
        break;
2067
    case 0x24:        /* MDR2 */
2068
        s->mdr[1] = value & 0xff;
2069
        break;
2070
    case 0x40:        /* SCR */
2071
        s->scr = value & 0xff;
2072
        break;
2073
    case 0x48:        /* EBLR */
2074
        s->eblr = value & 0xff;
2075
        break;
2076
    case 0x44:        /* SSR */
2077
    case 0x50:        /* MVR */
2078
    case 0x58:        /* SYSS */
2079
        OMAP_RO_REG(addr);
2080
        break;
2081
    case 0x54:        /* SYSC */
2082
        s->syscontrol = value & 0x1d;
2083
        if (value & 2)
2084
            omap_uart_reset(s);
2085
        break;
2086
    case 0x5c:        /* WER */
2087
        s->wkup = value & 0x7f;
2088
        break;
2089
    case 0x60:        /* CFPS */
2090
        s->cfps = value & 0xff;
2091
        break;
2092
    default:
2093
        OMAP_BAD_REG(addr);
2094
    }
2095
}
2096

    
2097
static CPUReadMemoryFunc *omap_uart_readfn[] = {
2098
    omap_uart_read,
2099
    omap_uart_read,
2100
    omap_badwidth_read8,
2101
};
2102

    
2103
static CPUWriteMemoryFunc *omap_uart_writefn[] = {
2104
    omap_uart_write,
2105
    omap_uart_write,
2106
    omap_badwidth_write8,
2107
};
2108

    
2109
struct omap_uart_s *omap2_uart_init(struct omap_target_agent_s *ta,
2110
                qemu_irq irq, omap_clk fclk, omap_clk iclk,
2111
                qemu_irq txdma, qemu_irq rxdma, CharDriverState *chr)
2112
{
2113
    target_phys_addr_t base = omap_l4_attach(ta, 0, 0);
2114
    struct omap_uart_s *s = omap_uart_init(base, irq,
2115
                    fclk, iclk, txdma, rxdma, chr);
2116
    int iomemtype = cpu_register_io_memory(0, omap_uart_readfn,
2117
                    omap_uart_writefn, s);
2118

    
2119
    s->ta = ta;
2120

    
2121
    cpu_register_physical_memory(s->base + 0x20, 0x100, iomemtype);
2122

    
2123
    return s;
2124
}
2125

    
2126
void omap_uart_attach(struct omap_uart_s *s, CharDriverState *chr)
2127
{
2128
    /* TODO: Should reuse or destroy current s->serial */
2129
    s->serial = serial_mm_init(s->base, 2, s->irq,
2130
                    omap_clk_getrate(s->fclk) / 16,
2131
                    chr ?: qemu_chr_open("null", "null"), 1);
2132
}
2133

    
2134
/* MPU Clock/Reset/Power Mode Control */
2135
static uint32_t omap_clkm_read(void *opaque, target_phys_addr_t addr)
2136
{
2137
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2138
    int offset = addr - s->clkm.mpu_base;
2139

    
2140
    switch (offset) {
2141
    case 0x00:        /* ARM_CKCTL */
2142
        return s->clkm.arm_ckctl;
2143

    
2144
    case 0x04:        /* ARM_IDLECT1 */
2145
        return s->clkm.arm_idlect1;
2146

    
2147
    case 0x08:        /* ARM_IDLECT2 */
2148
        return s->clkm.arm_idlect2;
2149

    
2150
    case 0x0c:        /* ARM_EWUPCT */
2151
        return s->clkm.arm_ewupct;
2152

    
2153
    case 0x10:        /* ARM_RSTCT1 */
2154
        return s->clkm.arm_rstct1;
2155

    
2156
    case 0x14:        /* ARM_RSTCT2 */
2157
        return s->clkm.arm_rstct2;
2158

    
2159
    case 0x18:        /* ARM_SYSST */
2160
        return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
2161

    
2162
    case 0x1c:        /* ARM_CKOUT1 */
2163
        return s->clkm.arm_ckout1;
2164

    
2165
    case 0x20:        /* ARM_CKOUT2 */
2166
        break;
2167
    }
2168

    
2169
    OMAP_BAD_REG(addr);
2170
    return 0;
2171
}
2172

    
2173
static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
2174
                uint16_t diff, uint16_t value)
2175
{
2176
    omap_clk clk;
2177

    
2178
    if (diff & (1 << 14)) {                                /* ARM_INTHCK_SEL */
2179
        if (value & (1 << 14))
2180
            /* Reserved */;
2181
        else {
2182
            clk = omap_findclk(s, "arminth_ck");
2183
            omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
2184
        }
2185
    }
2186
    if (diff & (1 << 12)) {                                /* ARM_TIMXO */
2187
        clk = omap_findclk(s, "armtim_ck");
2188
        if (value & (1 << 12))
2189
            omap_clk_reparent(clk, omap_findclk(s, "clkin"));
2190
        else
2191
            omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
2192
    }
2193
    /* XXX: en_dspck */
2194
    if (diff & (3 << 10)) {                                /* DSPMMUDIV */
2195
        clk = omap_findclk(s, "dspmmu_ck");
2196
        omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
2197
    }
2198
    if (diff & (3 << 8)) {                                /* TCDIV */
2199
        clk = omap_findclk(s, "tc_ck");
2200
        omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
2201
    }
2202
    if (diff & (3 << 6)) {                                /* DSPDIV */
2203
        clk = omap_findclk(s, "dsp_ck");
2204
        omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
2205
    }
2206
    if (diff & (3 << 4)) {                                /* ARMDIV */
2207
        clk = omap_findclk(s, "arm_ck");
2208
        omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
2209
    }
2210
    if (diff & (3 << 2)) {                                /* LCDDIV */
2211
        clk = omap_findclk(s, "lcd_ck");
2212
        omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
2213
    }
2214
    if (diff & (3 << 0)) {                                /* PERDIV */
2215
        clk = omap_findclk(s, "armper_ck");
2216
        omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
2217
    }
2218
}
2219

    
2220
static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
2221
                uint16_t diff, uint16_t value)
2222
{
2223
    omap_clk clk;
2224

    
2225
    if (value & (1 << 11))                                /* SETARM_IDLE */
2226
        cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
2227
    if (!(value & (1 << 10)))                                /* WKUP_MODE */
2228
        qemu_system_shutdown_request();        /* XXX: disable wakeup from IRQ */
2229

    
2230
#define SET_CANIDLE(clock, bit)                                \
2231
    if (diff & (1 << bit)) {                                \
2232
        clk = omap_findclk(s, clock);                        \
2233
        omap_clk_canidle(clk, (value >> bit) & 1);        \
2234
    }
2235
    SET_CANIDLE("mpuwd_ck", 0)                                /* IDLWDT_ARM */
2236
    SET_CANIDLE("armxor_ck", 1)                                /* IDLXORP_ARM */
2237
    SET_CANIDLE("mpuper_ck", 2)                                /* IDLPER_ARM */
2238
    SET_CANIDLE("lcd_ck", 3)                                /* IDLLCD_ARM */
2239
    SET_CANIDLE("lb_ck", 4)                                /* IDLLB_ARM */
2240
    SET_CANIDLE("hsab_ck", 5)                                /* IDLHSAB_ARM */
2241
    SET_CANIDLE("tipb_ck", 6)                                /* IDLIF_ARM */
2242
    SET_CANIDLE("dma_ck", 6)                                /* IDLIF_ARM */
2243
    SET_CANIDLE("tc_ck", 6)                                /* IDLIF_ARM */
2244
    SET_CANIDLE("dpll1", 7)                                /* IDLDPLL_ARM */
2245
    SET_CANIDLE("dpll2", 7)                                /* IDLDPLL_ARM */
2246
    SET_CANIDLE("dpll3", 7)                                /* IDLDPLL_ARM */
2247
    SET_CANIDLE("mpui_ck", 8)                                /* IDLAPI_ARM */
2248
    SET_CANIDLE("armtim_ck", 9)                                /* IDLTIM_ARM */
2249
}
2250

    
2251
static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
2252
                uint16_t diff, uint16_t value)
2253
{
2254
    omap_clk clk;
2255

    
2256
#define SET_ONOFF(clock, bit)                                \
2257
    if (diff & (1 << bit)) {                                \
2258
        clk = omap_findclk(s, clock);                        \
2259
        omap_clk_onoff(clk, (value >> bit) & 1);        \
2260
    }
2261
    SET_ONOFF("mpuwd_ck", 0)                                /* EN_WDTCK */
2262
    SET_ONOFF("armxor_ck", 1)                                /* EN_XORPCK */
2263
    SET_ONOFF("mpuper_ck", 2)                                /* EN_PERCK */
2264
    SET_ONOFF("lcd_ck", 3)                                /* EN_LCDCK */
2265
    SET_ONOFF("lb_ck", 4)                                /* EN_LBCK */
2266
    SET_ONOFF("hsab_ck", 5)                                /* EN_HSABCK */
2267
    SET_ONOFF("mpui_ck", 6)                                /* EN_APICK */
2268
    SET_ONOFF("armtim_ck", 7)                                /* EN_TIMCK */
2269
    SET_CANIDLE("dma_ck", 8)                                /* DMACK_REQ */
2270
    SET_ONOFF("arm_gpio_ck", 9)                                /* EN_GPIOCK */
2271
    SET_ONOFF("lbfree_ck", 10)                                /* EN_LBFREECK */
2272
}
2273

    
2274
static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
2275
                uint16_t diff, uint16_t value)
2276
{
2277
    omap_clk clk;
2278

    
2279
    if (diff & (3 << 4)) {                                /* TCLKOUT */
2280
        clk = omap_findclk(s, "tclk_out");
2281
        switch ((value >> 4) & 3) {
2282
        case 1:
2283
            omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
2284
            omap_clk_onoff(clk, 1);
2285
            break;
2286
        case 2:
2287
            omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
2288
            omap_clk_onoff(clk, 1);
2289
            break;
2290
        default:
2291
            omap_clk_onoff(clk, 0);
2292
        }
2293
    }
2294
    if (diff & (3 << 2)) {                                /* DCLKOUT */
2295
        clk = omap_findclk(s, "dclk_out");
2296
        switch ((value >> 2) & 3) {
2297
        case 0:
2298
            omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
2299
            break;
2300
        case 1:
2301
            omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
2302
            break;
2303
        case 2:
2304
            omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
2305
            break;
2306
        case 3:
2307
            omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
2308
            break;
2309
        }
2310
    }
2311
    if (diff & (3 << 0)) {                                /* ACLKOUT */
2312
        clk = omap_findclk(s, "aclk_out");
2313
        switch ((value >> 0) & 3) {
2314
        case 1:
2315
            omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
2316
            omap_clk_onoff(clk, 1);
2317
            break;
2318
        case 2:
2319
            omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
2320
            omap_clk_onoff(clk, 1);
2321
            break;
2322
        case 3:
2323
            omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
2324
            omap_clk_onoff(clk, 1);
2325
            break;
2326
        default:
2327
            omap_clk_onoff(clk, 0);
2328
        }
2329
    }
2330
}
2331

    
2332
static void omap_clkm_write(void *opaque, target_phys_addr_t addr,
2333
                uint32_t value)
2334
{
2335
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2336
    int offset = addr - s->clkm.mpu_base;
2337
    uint16_t diff;
2338
    omap_clk clk;
2339
    static const char *clkschemename[8] = {
2340
        "fully synchronous", "fully asynchronous", "synchronous scalable",
2341
        "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
2342
    };
2343

    
2344
    switch (offset) {
2345
    case 0x00:        /* ARM_CKCTL */
2346
        diff = s->clkm.arm_ckctl ^ value;
2347
        s->clkm.arm_ckctl = value & 0x7fff;
2348
        omap_clkm_ckctl_update(s, diff, value);
2349
        return;
2350

    
2351
    case 0x04:        /* ARM_IDLECT1 */
2352
        diff = s->clkm.arm_idlect1 ^ value;
2353
        s->clkm.arm_idlect1 = value & 0x0fff;
2354
        omap_clkm_idlect1_update(s, diff, value);
2355
        return;
2356

    
2357
    case 0x08:        /* ARM_IDLECT2 */
2358
        diff = s->clkm.arm_idlect2 ^ value;
2359
        s->clkm.arm_idlect2 = value & 0x07ff;
2360
        omap_clkm_idlect2_update(s, diff, value);
2361
        return;
2362

    
2363
    case 0x0c:        /* ARM_EWUPCT */
2364
        diff = s->clkm.arm_ewupct ^ value;
2365
        s->clkm.arm_ewupct = value & 0x003f;
2366
        return;
2367

    
2368
    case 0x10:        /* ARM_RSTCT1 */
2369
        diff = s->clkm.arm_rstct1 ^ value;
2370
        s->clkm.arm_rstct1 = value & 0x0007;
2371
        if (value & 9) {
2372
            qemu_system_reset_request();
2373
            s->clkm.cold_start = 0xa;
2374
        }
2375
        if (diff & ~value & 4) {                                /* DSP_RST */
2376
            omap_mpui_reset(s);
2377
            omap_tipb_bridge_reset(s->private_tipb);
2378
            omap_tipb_bridge_reset(s->public_tipb);
2379
        }
2380
        if (diff & 2) {                                                /* DSP_EN */
2381
            clk = omap_findclk(s, "dsp_ck");
2382
            omap_clk_canidle(clk, (~value >> 1) & 1);
2383
        }
2384
        return;
2385

    
2386
    case 0x14:        /* ARM_RSTCT2 */
2387
        s->clkm.arm_rstct2 = value & 0x0001;
2388
        return;
2389

    
2390
    case 0x18:        /* ARM_SYSST */
2391
        if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
2392
            s->clkm.clocking_scheme = (value >> 11) & 7;
2393
            printf("%s: clocking scheme set to %s\n", __FUNCTION__,
2394
                            clkschemename[s->clkm.clocking_scheme]);
2395
        }
2396
        s->clkm.cold_start &= value & 0x3f;
2397
        return;
2398

    
2399
    case 0x1c:        /* ARM_CKOUT1 */
2400
        diff = s->clkm.arm_ckout1 ^ value;
2401
        s->clkm.arm_ckout1 = value & 0x003f;
2402
        omap_clkm_ckout1_update(s, diff, value);
2403
        return;
2404

    
2405
    case 0x20:        /* ARM_CKOUT2 */
2406
    default:
2407
        OMAP_BAD_REG(addr);
2408
    }
2409
}
2410

    
2411
static CPUReadMemoryFunc *omap_clkm_readfn[] = {
2412
    omap_badwidth_read16,
2413
    omap_clkm_read,
2414
    omap_badwidth_read16,
2415
};
2416

    
2417
static CPUWriteMemoryFunc *omap_clkm_writefn[] = {
2418
    omap_badwidth_write16,
2419
    omap_clkm_write,
2420
    omap_badwidth_write16,
2421
};
2422

    
2423
static uint32_t omap_clkdsp_read(void *opaque, target_phys_addr_t addr)
2424
{
2425
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2426
    int offset = addr - s->clkm.dsp_base;
2427

    
2428
    switch (offset) {
2429
    case 0x04:        /* DSP_IDLECT1 */
2430
        return s->clkm.dsp_idlect1;
2431

    
2432
    case 0x08:        /* DSP_IDLECT2 */
2433
        return s->clkm.dsp_idlect2;
2434

    
2435
    case 0x14:        /* DSP_RSTCT2 */
2436
        return s->clkm.dsp_rstct2;
2437

    
2438
    case 0x18:        /* DSP_SYSST */
2439
        return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
2440
                (s->env->halted << 6);        /* Quite useless... */
2441
    }
2442

    
2443
    OMAP_BAD_REG(addr);
2444
    return 0;
2445
}
2446

    
2447
static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
2448
                uint16_t diff, uint16_t value)
2449
{
2450
    omap_clk clk;
2451

    
2452
    SET_CANIDLE("dspxor_ck", 1);                        /* IDLXORP_DSP */
2453
}
2454

    
2455
static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
2456
                uint16_t diff, uint16_t value)
2457
{
2458
    omap_clk clk;
2459

    
2460
    SET_ONOFF("dspxor_ck", 1);                                /* EN_XORPCK */
2461
}
2462

    
2463
static void omap_clkdsp_write(void *opaque, target_phys_addr_t addr,
2464
                uint32_t value)
2465
{
2466
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2467
    int offset = addr - s->clkm.dsp_base;
2468
    uint16_t diff;
2469

    
2470
    switch (offset) {
2471
    case 0x04:        /* DSP_IDLECT1 */
2472
        diff = s->clkm.dsp_idlect1 ^ value;
2473
        s->clkm.dsp_idlect1 = value & 0x01f7;
2474
        omap_clkdsp_idlect1_update(s, diff, value);
2475
        break;
2476

    
2477
    case 0x08:        /* DSP_IDLECT2 */
2478
        s->clkm.dsp_idlect2 = value & 0x0037;
2479
        diff = s->clkm.dsp_idlect1 ^ value;
2480
        omap_clkdsp_idlect2_update(s, diff, value);
2481
        break;
2482

    
2483
    case 0x14:        /* DSP_RSTCT2 */
2484
        s->clkm.dsp_rstct2 = value & 0x0001;
2485
        break;
2486

    
2487
    case 0x18:        /* DSP_SYSST */
2488
        s->clkm.cold_start &= value & 0x3f;
2489
        break;
2490

    
2491
    default:
2492
        OMAP_BAD_REG(addr);
2493
    }
2494
}
2495

    
2496
static CPUReadMemoryFunc *omap_clkdsp_readfn[] = {
2497
    omap_badwidth_read16,
2498
    omap_clkdsp_read,
2499
    omap_badwidth_read16,
2500
};
2501

    
2502
static CPUWriteMemoryFunc *omap_clkdsp_writefn[] = {
2503
    omap_badwidth_write16,
2504
    omap_clkdsp_write,
2505
    omap_badwidth_write16,
2506
};
2507

    
2508
static void omap_clkm_reset(struct omap_mpu_state_s *s)
2509
{
2510
    if (s->wdt && s->wdt->reset)
2511
        s->clkm.cold_start = 0x6;
2512
    s->clkm.clocking_scheme = 0;
2513
    omap_clkm_ckctl_update(s, ~0, 0x3000);
2514
    s->clkm.arm_ckctl = 0x3000;
2515
    omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
2516
    s->clkm.arm_idlect1 = 0x0400;
2517
    omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
2518
    s->clkm.arm_idlect2 = 0x0100;
2519
    s->clkm.arm_ewupct = 0x003f;
2520
    s->clkm.arm_rstct1 = 0x0000;
2521
    s->clkm.arm_rstct2 = 0x0000;
2522
    s->clkm.arm_ckout1 = 0x0015;
2523
    s->clkm.dpll1_mode = 0x2002;
2524
    omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
2525
    s->clkm.dsp_idlect1 = 0x0040;
2526
    omap_clkdsp_idlect2_update(s, ~0, 0x0000);
2527
    s->clkm.dsp_idlect2 = 0x0000;
2528
    s->clkm.dsp_rstct2 = 0x0000;
2529
}
2530

    
2531
static void omap_clkm_init(target_phys_addr_t mpu_base,
2532
                target_phys_addr_t dsp_base, struct omap_mpu_state_s *s)
2533
{
2534
    int iomemtype[2] = {
2535
        cpu_register_io_memory(0, omap_clkm_readfn, omap_clkm_writefn, s),
2536
        cpu_register_io_memory(0, omap_clkdsp_readfn, omap_clkdsp_writefn, s),
2537
    };
2538

    
2539
    s->clkm.mpu_base = mpu_base;
2540
    s->clkm.dsp_base = dsp_base;
2541
    s->clkm.arm_idlect1 = 0x03ff;
2542
    s->clkm.arm_idlect2 = 0x0100;
2543
    s->clkm.dsp_idlect1 = 0x0002;
2544
    omap_clkm_reset(s);
2545
    s->clkm.cold_start = 0x3a;
2546

    
2547
    cpu_register_physical_memory(s->clkm.mpu_base, 0x100, iomemtype[0]);
2548
    cpu_register_physical_memory(s->clkm.dsp_base, 0x1000, iomemtype[1]);
2549
}
2550

    
2551
/* MPU I/O */
2552
struct omap_mpuio_s {
2553
    target_phys_addr_t base;
2554
    qemu_irq irq;
2555
    qemu_irq kbd_irq;
2556
    qemu_irq *in;
2557
    qemu_irq handler[16];
2558
    qemu_irq wakeup;
2559

    
2560
    uint16_t inputs;
2561
    uint16_t outputs;
2562
    uint16_t dir;
2563
    uint16_t edge;
2564
    uint16_t mask;
2565
    uint16_t ints;
2566

    
2567
    uint16_t debounce;
2568
    uint16_t latch;
2569
    uint8_t event;
2570

    
2571
    uint8_t buttons[5];
2572
    uint8_t row_latch;
2573
    uint8_t cols;
2574
    int kbd_mask;
2575
    int clk;
2576
};
2577

    
2578
static void omap_mpuio_set(void *opaque, int line, int level)
2579
{
2580
    struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2581
    uint16_t prev = s->inputs;
2582

    
2583
    if (level)
2584
        s->inputs |= 1 << line;
2585
    else
2586
        s->inputs &= ~(1 << line);
2587

    
2588
    if (((1 << line) & s->dir & ~s->mask) && s->clk) {
2589
        if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
2590
            s->ints |= 1 << line;
2591
            qemu_irq_raise(s->irq);
2592
            /* TODO: wakeup */
2593
        }
2594
        if ((s->event & (1 << 0)) &&                /* SET_GPIO_EVENT_MODE */
2595
                (s->event >> 1) == line)        /* PIN_SELECT */
2596
            s->latch = s->inputs;
2597
    }
2598
}
2599

    
2600
static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
2601
{
2602
    int i;
2603
    uint8_t *row, rows = 0, cols = ~s->cols;
2604

    
2605
    for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
2606
        if (*row & cols)
2607
            rows |= i;
2608

    
2609
    qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
2610
    s->row_latch = ~rows;
2611
}
2612

    
2613
static uint32_t omap_mpuio_read(void *opaque, target_phys_addr_t addr)
2614
{
2615
    struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2616
    int offset = addr & OMAP_MPUI_REG_MASK;
2617
    uint16_t ret;
2618

    
2619
    switch (offset) {
2620
    case 0x00:        /* INPUT_LATCH */
2621
        return s->inputs;
2622

    
2623
    case 0x04:        /* OUTPUT_REG */
2624
        return s->outputs;
2625

    
2626
    case 0x08:        /* IO_CNTL */
2627
        return s->dir;
2628

    
2629
    case 0x10:        /* KBR_LATCH */
2630
        return s->row_latch;
2631

    
2632
    case 0x14:        /* KBC_REG */
2633
        return s->cols;
2634

    
2635
    case 0x18:        /* GPIO_EVENT_MODE_REG */
2636
        return s->event;
2637

    
2638
    case 0x1c:        /* GPIO_INT_EDGE_REG */
2639
        return s->edge;
2640

    
2641
    case 0x20:        /* KBD_INT */
2642
        return (~s->row_latch & 0x1f) && !s->kbd_mask;
2643

    
2644
    case 0x24:        /* GPIO_INT */
2645
        ret = s->ints;
2646
        s->ints &= s->mask;
2647
        if (ret)
2648
            qemu_irq_lower(s->irq);
2649
        return ret;
2650

    
2651
    case 0x28:        /* KBD_MASKIT */
2652
        return s->kbd_mask;
2653

    
2654
    case 0x2c:        /* GPIO_MASKIT */
2655
        return s->mask;
2656

    
2657
    case 0x30:        /* GPIO_DEBOUNCING_REG */
2658
        return s->debounce;
2659

    
2660
    case 0x34:        /* GPIO_LATCH_REG */
2661
        return s->latch;
2662
    }
2663

    
2664
    OMAP_BAD_REG(addr);
2665
    return 0;
2666
}
2667

    
2668
static void omap_mpuio_write(void *opaque, target_phys_addr_t addr,
2669
                uint32_t value)
2670
{
2671
    struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2672
    int offset = addr & OMAP_MPUI_REG_MASK;
2673
    uint16_t diff;
2674
    int ln;
2675

    
2676
    switch (offset) {
2677
    case 0x04:        /* OUTPUT_REG */
2678
        diff = (s->outputs ^ value) & ~s->dir;
2679
        s->outputs = value;
2680
        while ((ln = ffs(diff))) {
2681
            ln --;
2682
            if (s->handler[ln])
2683
                qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2684
            diff &= ~(1 << ln);
2685
        }
2686
        break;
2687

    
2688
    case 0x08:        /* IO_CNTL */
2689
        diff = s->outputs & (s->dir ^ value);
2690
        s->dir = value;
2691

    
2692
        value = s->outputs & ~s->dir;
2693
        while ((ln = ffs(diff))) {
2694
            ln --;
2695
            if (s->handler[ln])
2696
                qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2697
            diff &= ~(1 << ln);
2698
        }
2699
        break;
2700

    
2701
    case 0x14:        /* KBC_REG */
2702
        s->cols = value;
2703
        omap_mpuio_kbd_update(s);
2704
        break;
2705

    
2706
    case 0x18:        /* GPIO_EVENT_MODE_REG */
2707
        s->event = value & 0x1f;
2708
        break;
2709

    
2710
    case 0x1c:        /* GPIO_INT_EDGE_REG */
2711
        s->edge = value;
2712
        break;
2713

    
2714
    case 0x28:        /* KBD_MASKIT */
2715
        s->kbd_mask = value & 1;
2716
        omap_mpuio_kbd_update(s);
2717
        break;
2718

    
2719
    case 0x2c:        /* GPIO_MASKIT */
2720
        s->mask = value;
2721
        break;
2722

    
2723
    case 0x30:        /* GPIO_DEBOUNCING_REG */
2724
        s->debounce = value & 0x1ff;
2725
        break;
2726

    
2727
    case 0x00:        /* INPUT_LATCH */
2728
    case 0x10:        /* KBR_LATCH */
2729
    case 0x20:        /* KBD_INT */
2730
    case 0x24:        /* GPIO_INT */
2731
    case 0x34:        /* GPIO_LATCH_REG */
2732
        OMAP_RO_REG(addr);
2733
        return;
2734

    
2735
    default:
2736
        OMAP_BAD_REG(addr);
2737
        return;
2738
    }
2739
}
2740

    
2741
static CPUReadMemoryFunc *omap_mpuio_readfn[] = {
2742
    omap_badwidth_read16,
2743
    omap_mpuio_read,
2744
    omap_badwidth_read16,
2745
};
2746

    
2747
static CPUWriteMemoryFunc *omap_mpuio_writefn[] = {
2748
    omap_badwidth_write16,
2749
    omap_mpuio_write,
2750
    omap_badwidth_write16,
2751
};
2752

    
2753
static void omap_mpuio_reset(struct omap_mpuio_s *s)
2754
{
2755
    s->inputs = 0;
2756
    s->outputs = 0;
2757
    s->dir = ~0;
2758
    s->event = 0;
2759
    s->edge = 0;
2760
    s->kbd_mask = 0;
2761
    s->mask = 0;
2762
    s->debounce = 0;
2763
    s->latch = 0;
2764
    s->ints = 0;
2765
    s->row_latch = 0x1f;
2766
    s->clk = 1;
2767
}
2768

    
2769
static void omap_mpuio_onoff(void *opaque, int line, int on)
2770
{
2771
    struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2772

    
2773
    s->clk = on;
2774
    if (on)
2775
        omap_mpuio_kbd_update(s);
2776
}
2777

    
2778
struct omap_mpuio_s *omap_mpuio_init(target_phys_addr_t base,
2779
                qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2780
                omap_clk clk)
2781
{
2782
    int iomemtype;
2783
    struct omap_mpuio_s *s = (struct omap_mpuio_s *)
2784
            qemu_mallocz(sizeof(struct omap_mpuio_s));
2785

    
2786
    s->base = base;
2787
    s->irq = gpio_int;
2788
    s->kbd_irq = kbd_int;
2789
    s->wakeup = wakeup;
2790
    s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2791
    omap_mpuio_reset(s);
2792

    
2793
    iomemtype = cpu_register_io_memory(0, omap_mpuio_readfn,
2794
                    omap_mpuio_writefn, s);
2795
    cpu_register_physical_memory(s->base, 0x800, iomemtype);
2796

    
2797
    omap_clk_adduser(clk, qemu_allocate_irqs(omap_mpuio_onoff, s, 1)[0]);
2798

    
2799
    return s;
2800
}
2801

    
2802
qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2803
{
2804
    return s->in;
2805
}
2806

    
2807
void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2808
{
2809
    if (line >= 16 || line < 0)
2810
        cpu_abort(cpu_single_env, "%s: No GPIO line %i\n", __FUNCTION__, line);
2811
    s->handler[line] = handler;
2812
}
2813

    
2814
void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2815
{
2816
    if (row >= 5 || row < 0)
2817
        cpu_abort(cpu_single_env, "%s: No key %i-%i\n",
2818
                        __FUNCTION__, col, row);
2819

    
2820
    if (down)
2821
        s->buttons[row] |= 1 << col;
2822
    else
2823
        s->buttons[row] &= ~(1 << col);
2824

    
2825
    omap_mpuio_kbd_update(s);
2826
}
2827

    
2828
/* General-Purpose I/O */
2829
struct omap_gpio_s {
2830
    target_phys_addr_t base;
2831
    qemu_irq irq;
2832
    qemu_irq *in;
2833
    qemu_irq handler[16];
2834

    
2835
    uint16_t inputs;
2836
    uint16_t outputs;
2837
    uint16_t dir;
2838
    uint16_t edge;
2839
    uint16_t mask;
2840
    uint16_t ints;
2841
    uint16_t pins;
2842
};
2843

    
2844
static void omap_gpio_set(void *opaque, int line, int level)
2845
{
2846
    struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
2847
    uint16_t prev = s->inputs;
2848

    
2849
    if (level)
2850
        s->inputs |= 1 << line;
2851
    else
2852
        s->inputs &= ~(1 << line);
2853

    
2854
    if (((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) &
2855
                    (1 << line) & s->dir & ~s->mask) {
2856
        s->ints |= 1 << line;
2857
        qemu_irq_raise(s->irq);
2858
    }
2859
}
2860

    
2861
static uint32_t omap_gpio_read(void *opaque, target_phys_addr_t addr)
2862
{
2863
    struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
2864
    int offset = addr & OMAP_MPUI_REG_MASK;
2865

    
2866
    switch (offset) {
2867
    case 0x00:        /* DATA_INPUT */
2868
        return s->inputs & s->pins;
2869

    
2870
    case 0x04:        /* DATA_OUTPUT */
2871
        return s->outputs;
2872

    
2873
    case 0x08:        /* DIRECTION_CONTROL */
2874
        return s->dir;
2875

    
2876
    case 0x0c:        /* INTERRUPT_CONTROL */
2877
        return s->edge;
2878

    
2879
    case 0x10:        /* INTERRUPT_MASK */
2880
        return s->mask;
2881

    
2882
    case 0x14:        /* INTERRUPT_STATUS */
2883
        return s->ints;
2884

    
2885
    case 0x18:        /* PIN_CONTROL (not in OMAP310) */
2886
        OMAP_BAD_REG(addr);
2887
        return s->pins;
2888
    }
2889

    
2890
    OMAP_BAD_REG(addr);
2891
    return 0;
2892
}
2893

    
2894
static void omap_gpio_write(void *opaque, target_phys_addr_t addr,
2895
                uint32_t value)
2896
{
2897
    struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
2898
    int offset = addr & OMAP_MPUI_REG_MASK;
2899
    uint16_t diff;
2900
    int ln;
2901

    
2902
    switch (offset) {
2903
    case 0x00:        /* DATA_INPUT */
2904
        OMAP_RO_REG(addr);
2905
        return;
2906

    
2907
    case 0x04:        /* DATA_OUTPUT */
2908
        diff = (s->outputs ^ value) & ~s->dir;
2909
        s->outputs = value;
2910
        while ((ln = ffs(diff))) {
2911
            ln --;
2912
            if (s->handler[ln])
2913
                qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2914
            diff &= ~(1 << ln);
2915
        }
2916
        break;
2917

    
2918
    case 0x08:        /* DIRECTION_CONTROL */
2919
        diff = s->outputs & (s->dir ^ value);
2920
        s->dir = value;
2921

    
2922
        value = s->outputs & ~s->dir;
2923
        while ((ln = ffs(diff))) {
2924
            ln --;
2925
            if (s->handler[ln])
2926
                qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2927
            diff &= ~(1 << ln);
2928
        }
2929
        break;
2930

    
2931
    case 0x0c:        /* INTERRUPT_CONTROL */
2932
        s->edge = value;
2933
        break;
2934

    
2935
    case 0x10:        /* INTERRUPT_MASK */
2936
        s->mask = value;
2937
        break;
2938

    
2939
    case 0x14:        /* INTERRUPT_STATUS */
2940
        s->ints &= ~value;
2941
        if (!s->ints)
2942
            qemu_irq_lower(s->irq);
2943
        break;
2944

    
2945
    case 0x18:        /* PIN_CONTROL (not in OMAP310 TRM) */
2946
        OMAP_BAD_REG(addr);
2947
        s->pins = value;
2948
        break;
2949

    
2950
    default:
2951
        OMAP_BAD_REG(addr);
2952
        return;
2953
    }
2954
}
2955

    
2956
/* *Some* sources say the memory region is 32-bit.  */
2957
static CPUReadMemoryFunc *omap_gpio_readfn[] = {
2958
    omap_badwidth_read16,
2959
    omap_gpio_read,
2960
    omap_badwidth_read16,
2961
};
2962

    
2963
static CPUWriteMemoryFunc *omap_gpio_writefn[] = {
2964
    omap_badwidth_write16,
2965
    omap_gpio_write,
2966
    omap_badwidth_write16,
2967
};
2968

    
2969
static void omap_gpio_reset(struct omap_gpio_s *s)
2970
{
2971
    s->inputs = 0;
2972
    s->outputs = ~0;
2973
    s->dir = ~0;
2974
    s->edge = ~0;
2975
    s->mask = ~0;
2976
    s->ints = 0;
2977
    s->pins = ~0;
2978
}
2979

    
2980
struct omap_gpio_s *omap_gpio_init(target_phys_addr_t base,
2981
                qemu_irq irq, omap_clk clk)
2982
{
2983
    int iomemtype;
2984
    struct omap_gpio_s *s = (struct omap_gpio_s *)
2985
            qemu_mallocz(sizeof(struct omap_gpio_s));
2986

    
2987
    s->base = base;
2988
    s->irq = irq;
2989
    s->in = qemu_allocate_irqs(omap_gpio_set, s, 16);
2990
    omap_gpio_reset(s);
2991

    
2992
    iomemtype = cpu_register_io_memory(0, omap_gpio_readfn,
2993
                    omap_gpio_writefn, s);
2994
    cpu_register_physical_memory(s->base, 0x1000, iomemtype);
2995

    
2996
    return s;
2997
}
2998

    
2999
qemu_irq *omap_gpio_in_get(struct omap_gpio_s *s)
3000
{
3001
    return s->in;
3002
}
3003

    
3004
void omap_gpio_out_set(struct omap_gpio_s *s, int line, qemu_irq handler)
3005
{
3006
    if (line >= 16 || line < 0)
3007
        cpu_abort(cpu_single_env, "%s: No GPIO line %i\n", __FUNCTION__, line);
3008
    s->handler[line] = handler;
3009
}
3010

    
3011
/* MicroWire Interface */
3012
struct omap_uwire_s {
3013
    target_phys_addr_t base;
3014
    qemu_irq txirq;
3015
    qemu_irq rxirq;
3016
    qemu_irq txdrq;
3017

    
3018
    uint16_t txbuf;
3019
    uint16_t rxbuf;
3020
    uint16_t control;
3021
    uint16_t setup[5];
3022

    
3023
    struct uwire_slave_s *chip[4];
3024
};
3025

    
3026
static void omap_uwire_transfer_start(struct omap_uwire_s *s)
3027
{
3028
    int chipselect = (s->control >> 10) & 3;                /* INDEX */
3029
    struct uwire_slave_s *slave = s->chip[chipselect];
3030

    
3031
    if ((s->control >> 5) & 0x1f) {                        /* NB_BITS_WR */
3032
        if (s->control & (1 << 12))                        /* CS_CMD */
3033
            if (slave && slave->send)
3034
                slave->send(slave->opaque,
3035
                                s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
3036
        s->control &= ~(1 << 14);                        /* CSRB */
3037
        /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
3038
         * a DRQ.  When is the level IRQ supposed to be reset?  */
3039
    }
3040

    
3041
    if ((s->control >> 0) & 0x1f) {                        /* NB_BITS_RD */
3042
        if (s->control & (1 << 12))                        /* CS_CMD */
3043
            if (slave && slave->receive)
3044
                s->rxbuf = slave->receive(slave->opaque);
3045
        s->control |= 1 << 15;                                /* RDRB */
3046
        /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
3047
         * a DRQ.  When is the level IRQ supposed to be reset?  */
3048
    }
3049
}
3050

    
3051
static uint32_t omap_uwire_read(void *opaque, target_phys_addr_t addr)
3052
{
3053
    struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
3054
    int offset = addr & OMAP_MPUI_REG_MASK;
3055

    
3056
    switch (offset) {
3057
    case 0x00:        /* RDR */
3058
        s->control &= ~(1 << 15);                        /* RDRB */
3059
        return s->rxbuf;
3060

    
3061
    case 0x04:        /* CSR */
3062
        return s->control;
3063

    
3064
    case 0x08:        /* SR1 */
3065
        return s->setup[0];
3066
    case 0x0c:        /* SR2 */
3067
        return s->setup[1];
3068
    case 0x10:        /* SR3 */
3069
        return s->setup[2];
3070
    case 0x14:        /* SR4 */
3071
        return s->setup[3];
3072
    case 0x18:        /* SR5 */
3073
        return s->setup[4];
3074
    }
3075

    
3076
    OMAP_BAD_REG(addr);
3077
    return 0;
3078
}
3079

    
3080
static void omap_uwire_write(void *opaque, target_phys_addr_t addr,
3081
                uint32_t value)
3082
{
3083
    struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
3084
    int offset = addr & OMAP_MPUI_REG_MASK;
3085

    
3086
    switch (offset) {
3087
    case 0x00:        /* TDR */
3088
        s->txbuf = value;                                /* TD */
3089
        if ((s->setup[4] & (1 << 2)) &&                        /* AUTO_TX_EN */
3090
                        ((s->setup[4] & (1 << 3)) ||        /* CS_TOGGLE_TX_EN */
3091
                         (s->control & (1 << 12)))) {        /* CS_CMD */
3092
            s->control |= 1 << 14;                        /* CSRB */
3093
            omap_uwire_transfer_start(s);
3094
        }
3095
        break;
3096

    
3097
    case 0x04:        /* CSR */
3098
        s->control = value & 0x1fff;
3099
        if (value & (1 << 13))                                /* START */
3100
            omap_uwire_transfer_start(s);
3101
        break;
3102

    
3103
    case 0x08:        /* SR1 */
3104
        s->setup[0] = value & 0x003f;
3105
        break;
3106

    
3107
    case 0x0c:        /* SR2 */
3108
        s->setup[1] = value & 0x0fc0;
3109
        break;
3110

    
3111
    case 0x10:        /* SR3 */
3112
        s->setup[2] = value & 0x0003;
3113
        break;
3114

    
3115
    case 0x14:        /* SR4 */
3116
        s->setup[3] = value & 0x0001;
3117
        break;
3118

    
3119
    case 0x18:        /* SR5 */
3120
        s->setup[4] = value & 0x000f;
3121
        break;
3122

    
3123
    default:
3124
        OMAP_BAD_REG(addr);
3125
        return;
3126
    }
3127
}
3128

    
3129
static CPUReadMemoryFunc *omap_uwire_readfn[] = {
3130
    omap_badwidth_read16,
3131
    omap_uwire_read,
3132
    omap_badwidth_read16,
3133
};
3134

    
3135
static CPUWriteMemoryFunc *omap_uwire_writefn[] = {
3136
    omap_badwidth_write16,
3137
    omap_uwire_write,
3138
    omap_badwidth_write16,
3139
};
3140

    
3141
static void omap_uwire_reset(struct omap_uwire_s *s)
3142
{
3143
    s->control = 0;
3144
    s->setup[0] = 0;
3145
    s->setup[1] = 0;
3146
    s->setup[2] = 0;
3147
    s->setup[3] = 0;
3148
    s->setup[4] = 0;
3149
}
3150

    
3151
struct omap_uwire_s *omap_uwire_init(target_phys_addr_t base,
3152
                qemu_irq *irq, qemu_irq dma, omap_clk clk)
3153
{
3154
    int iomemtype;
3155
    struct omap_uwire_s *s = (struct omap_uwire_s *)
3156
            qemu_mallocz(sizeof(struct omap_uwire_s));
3157

    
3158
    s->base = base;
3159
    s->txirq = irq[0];
3160
    s->rxirq = irq[1];
3161
    s->txdrq = dma;
3162
    omap_uwire_reset(s);
3163

    
3164
    iomemtype = cpu_register_io_memory(0, omap_uwire_readfn,
3165
                    omap_uwire_writefn, s);
3166
    cpu_register_physical_memory(s->base, 0x800, iomemtype);
3167

    
3168
    return s;
3169
}
3170

    
3171
void omap_uwire_attach(struct omap_uwire_s *s,
3172
                struct uwire_slave_s *slave, int chipselect)
3173
{
3174
    if (chipselect < 0 || chipselect > 3) {
3175
        fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
3176
        exit(-1);
3177
    }
3178

    
3179
    s->chip[chipselect] = slave;
3180
}
3181

    
3182
/* Pseudonoise Pulse-Width Light Modulator */
3183
static void omap_pwl_update(struct omap_mpu_state_s *s)
3184
{
3185
    int output = (s->pwl.clk && s->pwl.enable) ? s->pwl.level : 0;
3186

    
3187
    if (output != s->pwl.output) {
3188
        s->pwl.output = output;
3189
        printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
3190
    }
3191
}
3192

    
3193
static uint32_t omap_pwl_read(void *opaque, target_phys_addr_t addr)
3194
{
3195
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3196
    int offset = addr & OMAP_MPUI_REG_MASK;
3197

    
3198
    switch (offset) {
3199
    case 0x00:        /* PWL_LEVEL */
3200
        return s->pwl.level;
3201
    case 0x04:        /* PWL_CTRL */
3202
        return s->pwl.enable;
3203
    }
3204
    OMAP_BAD_REG(addr);
3205
    return 0;
3206
}
3207

    
3208
static void omap_pwl_write(void *opaque, target_phys_addr_t addr,
3209
                uint32_t value)
3210
{
3211
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3212
    int offset = addr & OMAP_MPUI_REG_MASK;
3213

    
3214
    switch (offset) {
3215
    case 0x00:        /* PWL_LEVEL */
3216
        s->pwl.level = value;
3217
        omap_pwl_update(s);
3218
        break;
3219
    case 0x04:        /* PWL_CTRL */
3220
        s->pwl.enable = value & 1;
3221
        omap_pwl_update(s);
3222
        break;
3223
    default:
3224
        OMAP_BAD_REG(addr);
3225
        return;
3226
    }
3227
}
3228

    
3229
static CPUReadMemoryFunc *omap_pwl_readfn[] = {
3230
    omap_pwl_read,
3231
    omap_badwidth_read8,
3232
    omap_badwidth_read8,
3233
};
3234

    
3235
static CPUWriteMemoryFunc *omap_pwl_writefn[] = {
3236
    omap_pwl_write,
3237
    omap_badwidth_write8,
3238
    omap_badwidth_write8,
3239
};
3240

    
3241
static void omap_pwl_reset(struct omap_mpu_state_s *s)
3242
{
3243
    s->pwl.output = 0;
3244
    s->pwl.level = 0;
3245
    s->pwl.enable = 0;
3246
    s->pwl.clk = 1;
3247
    omap_pwl_update(s);
3248
}
3249

    
3250
static void omap_pwl_clk_update(void *opaque, int line, int on)
3251
{
3252
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3253

    
3254
    s->pwl.clk = on;
3255
    omap_pwl_update(s);
3256
}
3257

    
3258
static void omap_pwl_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
3259
                omap_clk clk)
3260
{
3261
    int iomemtype;
3262

    
3263
    omap_pwl_reset(s);
3264

    
3265
    iomemtype = cpu_register_io_memory(0, omap_pwl_readfn,
3266
                    omap_pwl_writefn, s);
3267
    cpu_register_physical_memory(base, 0x800, iomemtype);
3268

    
3269
    omap_clk_adduser(clk, qemu_allocate_irqs(omap_pwl_clk_update, s, 1)[0]);
3270
}
3271

    
3272
/* Pulse-Width Tone module */
3273
static uint32_t omap_pwt_read(void *opaque, target_phys_addr_t addr)
3274
{
3275
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3276
    int offset = addr & OMAP_MPUI_REG_MASK;
3277

    
3278
    switch (offset) {
3279
    case 0x00:        /* FRC */
3280
        return s->pwt.frc;
3281
    case 0x04:        /* VCR */
3282
        return s->pwt.vrc;
3283
    case 0x08:        /* GCR */
3284
        return s->pwt.gcr;
3285
    }
3286
    OMAP_BAD_REG(addr);
3287
    return 0;
3288
}
3289

    
3290
static void omap_pwt_write(void *opaque, target_phys_addr_t addr,
3291
                uint32_t value)
3292
{
3293
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3294
    int offset = addr & OMAP_MPUI_REG_MASK;
3295

    
3296
    switch (offset) {
3297
    case 0x00:        /* FRC */
3298
        s->pwt.frc = value & 0x3f;
3299
        break;
3300
    case 0x04:        /* VRC */
3301
        if ((value ^ s->pwt.vrc) & 1) {
3302
            if (value & 1)
3303
                printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
3304
                                /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
3305
                                ((omap_clk_getrate(s->pwt.clk) >> 3) /
3306
                                 /* Pre-multiplexer divider */
3307
                                 ((s->pwt.gcr & 2) ? 1 : 154) /
3308
                                 /* Octave multiplexer */
3309
                                 (2 << (value & 3)) *
3310
                                 /* 101/107 divider */
3311
                                 ((value & (1 << 2)) ? 101 : 107) *
3312
                                 /*  49/55 divider */
3313
                                 ((value & (1 << 3)) ?  49 : 55) *
3314
                                 /*  50/63 divider */
3315
                                 ((value & (1 << 4)) ?  50 : 63) *
3316
                                 /*  80/127 divider */
3317
                                 ((value & (1 << 5)) ?  80 : 127) /
3318
                                 (107 * 55 * 63 * 127)));
3319
            else
3320
                printf("%s: silence!\n", __FUNCTION__);
3321
        }
3322
        s->pwt.vrc = value & 0x7f;
3323
        break;
3324
    case 0x08:        /* GCR */
3325
        s->pwt.gcr = value & 3;
3326
        break;
3327
    default:
3328
        OMAP_BAD_REG(addr);
3329
        return;
3330
    }
3331
}
3332

    
3333
static CPUReadMemoryFunc *omap_pwt_readfn[] = {
3334
    omap_pwt_read,
3335
    omap_badwidth_read8,
3336
    omap_badwidth_read8,
3337
};
3338

    
3339
static CPUWriteMemoryFunc *omap_pwt_writefn[] = {
3340
    omap_pwt_write,
3341
    omap_badwidth_write8,
3342
    omap_badwidth_write8,
3343
};
3344

    
3345
static void omap_pwt_reset(struct omap_mpu_state_s *s)
3346
{
3347
    s->pwt.frc = 0;
3348
    s->pwt.vrc = 0;
3349
    s->pwt.gcr = 0;
3350
}
3351

    
3352
static void omap_pwt_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
3353
                omap_clk clk)
3354
{
3355
    int iomemtype;
3356

    
3357
    s->pwt.clk = clk;
3358
    omap_pwt_reset(s);
3359

    
3360
    iomemtype = cpu_register_io_memory(0, omap_pwt_readfn,
3361
                    omap_pwt_writefn, s);
3362
    cpu_register_physical_memory(base, 0x800, iomemtype);
3363
}
3364

    
3365
/* Real-time Clock module */
3366
struct omap_rtc_s {
3367
    target_phys_addr_t base;
3368
    qemu_irq irq;
3369
    qemu_irq alarm;
3370
    QEMUTimer *clk;
3371

    
3372
    uint8_t interrupts;
3373
    uint8_t status;
3374
    int16_t comp_reg;
3375
    int running;
3376
    int pm_am;
3377
    int auto_comp;
3378
    int round;
3379
    struct tm alarm_tm;
3380
    time_t alarm_ti;
3381

    
3382
    struct tm current_tm;
3383
    time_t ti;
3384
    uint64_t tick;
3385
};
3386

    
3387
static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
3388
{
3389
    /* s->alarm is level-triggered */
3390
    qemu_set_irq(s->alarm, (s->status >> 6) & 1);
3391
}
3392

    
3393
static void omap_rtc_alarm_update(struct omap_rtc_s *s)
3394
{
3395
    s->alarm_ti = mktime(&s->alarm_tm);
3396
    if (s->alarm_ti == -1)
3397
        printf("%s: conversion failed\n", __FUNCTION__);
3398
}
3399

    
3400
static inline uint8_t omap_rtc_bcd(int num)
3401
{
3402
    return ((num / 10) << 4) | (num % 10);
3403
}
3404

    
3405
static inline int omap_rtc_bin(uint8_t num)
3406
{
3407
    return (num & 15) + 10 * (num >> 4);
3408
}
3409

    
3410
static uint32_t omap_rtc_read(void *opaque, target_phys_addr_t addr)
3411
{
3412
    struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
3413
    int offset = addr & OMAP_MPUI_REG_MASK;
3414
    uint8_t i;
3415

    
3416
    switch (offset) {
3417
    case 0x00:        /* SECONDS_REG */
3418
        return omap_rtc_bcd(s->current_tm.tm_sec);
3419

    
3420
    case 0x04:        /* MINUTES_REG */
3421
        return omap_rtc_bcd(s->current_tm.tm_min);
3422

    
3423
    case 0x08:        /* HOURS_REG */
3424
        if (s->pm_am)
3425
            return ((s->current_tm.tm_hour > 11) << 7) |
3426
                    omap_rtc_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
3427
        else
3428
            return omap_rtc_bcd(s->current_tm.tm_hour);
3429

    
3430
    case 0x0c:        /* DAYS_REG */
3431
        return omap_rtc_bcd(s->current_tm.tm_mday);
3432

    
3433
    case 0x10:        /* MONTHS_REG */
3434
        return omap_rtc_bcd(s->current_tm.tm_mon + 1);
3435

    
3436
    case 0x14:        /* YEARS_REG */
3437
        return omap_rtc_bcd(s->current_tm.tm_year % 100);
3438

    
3439
    case 0x18:        /* WEEK_REG */
3440
        return s->current_tm.tm_wday;
3441

    
3442
    case 0x20:        /* ALARM_SECONDS_REG */
3443
        return omap_rtc_bcd(s->alarm_tm.tm_sec);
3444

    
3445
    case 0x24:        /* ALARM_MINUTES_REG */
3446
        return omap_rtc_bcd(s->alarm_tm.tm_min);
3447

    
3448
    case 0x28:        /* ALARM_HOURS_REG */
3449
        if (s->pm_am)
3450
            return ((s->alarm_tm.tm_hour > 11) << 7) |
3451
                    omap_rtc_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
3452
        else
3453
            return omap_rtc_bcd(s->alarm_tm.tm_hour);
3454

    
3455
    case 0x2c:        /* ALARM_DAYS_REG */
3456
        return omap_rtc_bcd(s->alarm_tm.tm_mday);
3457

    
3458
    case 0x30:        /* ALARM_MONTHS_REG */
3459
        return omap_rtc_bcd(s->alarm_tm.tm_mon + 1);
3460

    
3461
    case 0x34:        /* ALARM_YEARS_REG */
3462
        return omap_rtc_bcd(s->alarm_tm.tm_year % 100);
3463

    
3464
    case 0x40:        /* RTC_CTRL_REG */
3465
        return (s->pm_am << 3) | (s->auto_comp << 2) |
3466
                (s->round << 1) | s->running;
3467

    
3468
    case 0x44:        /* RTC_STATUS_REG */
3469
        i = s->status;
3470
        s->status &= ~0x3d;
3471
        return i;
3472

    
3473
    case 0x48:        /* RTC_INTERRUPTS_REG */
3474
        return s->interrupts;
3475

    
3476
    case 0x4c:        /* RTC_COMP_LSB_REG */
3477
        return ((uint16_t) s->comp_reg) & 0xff;
3478

    
3479
    case 0x50:        /* RTC_COMP_MSB_REG */
3480
        return ((uint16_t) s->comp_reg) >> 8;
3481
    }
3482

    
3483
    OMAP_BAD_REG(addr);
3484
    return 0;
3485
}
3486

    
3487
static void omap_rtc_write(void *opaque, target_phys_addr_t addr,
3488
                uint32_t value)
3489
{
3490
    struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
3491
    int offset = addr & OMAP_MPUI_REG_MASK;
3492
    struct tm new_tm;
3493
    time_t ti[2];
3494

    
3495
    switch (offset) {
3496
    case 0x00:        /* SECONDS_REG */
3497
#ifdef ALMDEBUG
3498
        printf("RTC SEC_REG <-- %02x\n", value);
3499
#endif
3500
        s->ti -= s->current_tm.tm_sec;
3501
        s->ti += omap_rtc_bin(value);
3502
        return;
3503

    
3504
    case 0x04:        /* MINUTES_REG */
3505
#ifdef ALMDEBUG
3506
        printf("RTC MIN_REG <-- %02x\n", value);
3507
#endif
3508
        s->ti -= s->current_tm.tm_min * 60;
3509
        s->ti += omap_rtc_bin(value) * 60;
3510
        return;
3511

    
3512
    case 0x08:        /* HOURS_REG */
3513
#ifdef ALMDEBUG
3514
        printf("RTC HRS_REG <-- %02x\n", value);
3515
#endif
3516
        s->ti -= s->current_tm.tm_hour * 3600;
3517
        if (s->pm_am) {
3518
            s->ti += (omap_rtc_bin(value & 0x3f) & 12) * 3600;
3519
            s->ti += ((value >> 7) & 1) * 43200;
3520
        } else
3521
            s->ti += omap_rtc_bin(value & 0x3f) * 3600;
3522
        return;
3523

    
3524
    case 0x0c:        /* DAYS_REG */
3525
#ifdef ALMDEBUG
3526
        printf("RTC DAY_REG <-- %02x\n", value);
3527
#endif
3528
        s->ti -= s->current_tm.tm_mday * 86400;
3529
        s->ti += omap_rtc_bin(value) * 86400;
3530
        return;
3531

    
3532
    case 0x10:        /* MONTHS_REG */
3533
#ifdef ALMDEBUG
3534
        printf("RTC MTH_REG <-- %02x\n", value);
3535
#endif
3536
        memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
3537
        new_tm.tm_mon = omap_rtc_bin(value);
3538
        ti[0] = mktime(&s->current_tm);
3539
        ti[1] = mktime(&new_tm);
3540

    
3541
        if (ti[0] != -1 && ti[1] != -1) {
3542
            s->ti -= ti[0];
3543
            s->ti += ti[1];
3544
        } else {
3545
            /* A less accurate version */
3546
            s->ti -= s->current_tm.tm_mon * 2592000;
3547
            s->ti += omap_rtc_bin(value) * 2592000;
3548
        }
3549
        return;
3550

    
3551
    case 0x14:        /* YEARS_REG */
3552
#ifdef ALMDEBUG
3553
        printf("RTC YRS_REG <-- %02x\n", value);
3554
#endif
3555
        memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
3556
        new_tm.tm_year += omap_rtc_bin(value) - (new_tm.tm_year % 100);
3557
        ti[0] = mktime(&s->current_tm);
3558
        ti[1] = mktime(&new_tm);
3559

    
3560
        if (ti[0] != -1 && ti[1] != -1) {
3561
            s->ti -= ti[0];
3562
            s->ti += ti[1];
3563
        } else {
3564
            /* A less accurate version */
3565
            s->ti -= (s->current_tm.tm_year % 100) * 31536000;
3566
            s->ti += omap_rtc_bin(value) * 31536000;
3567
        }
3568
        return;
3569

    
3570
    case 0x18:        /* WEEK_REG */
3571
        return;        /* Ignored */
3572

    
3573
    case 0x20:        /* ALARM_SECONDS_REG */
3574
#ifdef ALMDEBUG
3575
        printf("ALM SEC_REG <-- %02x\n", value);
3576
#endif
3577
        s->alarm_tm.tm_sec = omap_rtc_bin(value);
3578
        omap_rtc_alarm_update(s);
3579
        return;
3580

    
3581
    case 0x24:        /* ALARM_MINUTES_REG */
3582
#ifdef ALMDEBUG
3583
        printf("ALM MIN_REG <-- %02x\n", value);
3584
#endif
3585
        s->alarm_tm.tm_min = omap_rtc_bin(value);
3586
        omap_rtc_alarm_update(s);
3587
        return;
3588

    
3589
    case 0x28:        /* ALARM_HOURS_REG */
3590
#ifdef ALMDEBUG
3591
        printf("ALM HRS_REG <-- %02x\n", value);
3592
#endif
3593
        if (s->pm_am)
3594
            s->alarm_tm.tm_hour =
3595
                    ((omap_rtc_bin(value & 0x3f)) % 12) +
3596
                    ((value >> 7) & 1) * 12;
3597
        else
3598
            s->alarm_tm.tm_hour = omap_rtc_bin(value);
3599
        omap_rtc_alarm_update(s);
3600
        return;
3601

    
3602
    case 0x2c:        /* ALARM_DAYS_REG */
3603
#ifdef ALMDEBUG
3604
        printf("ALM DAY_REG <-- %02x\n", value);
3605
#endif
3606
        s->alarm_tm.tm_mday = omap_rtc_bin(value);
3607
        omap_rtc_alarm_update(s);
3608
        return;
3609

    
3610
    case 0x30:        /* ALARM_MONTHS_REG */
3611
#ifdef ALMDEBUG
3612
        printf("ALM MON_REG <-- %02x\n", value);
3613
#endif
3614
        s->alarm_tm.tm_mon = omap_rtc_bin(value);
3615
        omap_rtc_alarm_update(s);
3616
        return;
3617

    
3618
    case 0x34:        /* ALARM_YEARS_REG */
3619
#ifdef ALMDEBUG
3620
        printf("ALM YRS_REG <-- %02x\n", value);
3621
#endif
3622
        s->alarm_tm.tm_year = omap_rtc_bin(value);
3623
        omap_rtc_alarm_update(s);
3624
        return;
3625

    
3626
    case 0x40:        /* RTC_CTRL_REG */
3627
#ifdef ALMDEBUG
3628
        printf("RTC CONTROL <-- %02x\n", value);
3629
#endif
3630
        s->pm_am = (value >> 3) & 1;
3631
        s->auto_comp = (value >> 2) & 1;
3632
        s->round = (value >> 1) & 1;
3633
        s->running = value & 1;
3634
        s->status &= 0xfd;
3635
        s->status |= s->running << 1;
3636
        return;
3637

    
3638
    case 0x44:        /* RTC_STATUS_REG */
3639
#ifdef ALMDEBUG
3640
        printf("RTC STATUSL <-- %02x\n", value);
3641
#endif
3642
        s->status &= ~((value & 0xc0) ^ 0x80);
3643
        omap_rtc_interrupts_update(s);
3644
        return;
3645

    
3646
    case 0x48:        /* RTC_INTERRUPTS_REG */
3647
#ifdef ALMDEBUG
3648
        printf("RTC INTRS <-- %02x\n", value);
3649
#endif
3650
        s->interrupts = value;
3651
        return;
3652

    
3653
    case 0x4c:        /* RTC_COMP_LSB_REG */
3654
#ifdef ALMDEBUG
3655
        printf("RTC COMPLSB <-- %02x\n", value);
3656
#endif
3657
        s->comp_reg &= 0xff00;
3658
        s->comp_reg |= 0x00ff & value;
3659
        return;
3660

    
3661
    case 0x50:        /* RTC_COMP_MSB_REG */
3662
#ifdef ALMDEBUG
3663
        printf("RTC COMPMSB <-- %02x\n", value);
3664
#endif
3665
        s->comp_reg &= 0x00ff;
3666
        s->comp_reg |= 0xff00 & (value << 8);
3667
        return;
3668

    
3669
    default:
3670
        OMAP_BAD_REG(addr);
3671
        return;
3672
    }
3673
}
3674

    
3675
static CPUReadMemoryFunc *omap_rtc_readfn[] = {
3676
    omap_rtc_read,
3677
    omap_badwidth_read8,
3678
    omap_badwidth_read8,
3679
};
3680

    
3681
static CPUWriteMemoryFunc *omap_rtc_writefn[] = {
3682
    omap_rtc_write,
3683
    omap_badwidth_write8,
3684
    omap_badwidth_write8,
3685
};
3686

    
3687
static void omap_rtc_tick(void *opaque)
3688
{
3689
    struct omap_rtc_s *s = opaque;
3690

    
3691
    if (s->round) {
3692
        /* Round to nearest full minute.  */
3693
        if (s->current_tm.tm_sec < 30)
3694
            s->ti -= s->current_tm.tm_sec;
3695
        else
3696
            s->ti += 60 - s->current_tm.tm_sec;
3697

    
3698
        s->round = 0;
3699
    }
3700

    
3701
    memcpy(&s->current_tm, localtime(&s->ti), sizeof(s->current_tm));
3702

    
3703
    if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
3704
        s->status |= 0x40;
3705
        omap_rtc_interrupts_update(s);
3706
    }
3707

    
3708
    if (s->interrupts & 0x04)
3709
        switch (s->interrupts & 3) {
3710
        case 0:
3711
            s->status |= 0x04;
3712
            qemu_irq_pulse(s->irq);
3713
            break;
3714
        case 1:
3715
            if (s->current_tm.tm_sec)
3716
                break;
3717
            s->status |= 0x08;
3718
            qemu_irq_pulse(s->irq);
3719
            break;
3720
        case 2:
3721
            if (s->current_tm.tm_sec || s->current_tm.tm_min)
3722
                break;
3723
            s->status |= 0x10;
3724
            qemu_irq_pulse(s->irq);
3725
            break;
3726
        case 3:
3727
            if (s->current_tm.tm_sec ||
3728
                            s->current_tm.tm_min || s->current_tm.tm_hour)
3729
                break;
3730
            s->status |= 0x20;
3731
            qemu_irq_pulse(s->irq);
3732
            break;
3733
        }
3734

    
3735
    /* Move on */
3736
    if (s->running)
3737
        s->ti ++;
3738
    s->tick += 1000;
3739

    
3740
    /*
3741
     * Every full hour add a rough approximation of the compensation
3742
     * register to the 32kHz Timer (which drives the RTC) value. 
3743
     */
3744
    if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
3745
        s->tick += s->comp_reg * 1000 / 32768;
3746

    
3747
    qemu_mod_timer(s->clk, s->tick);
3748
}
3749

    
3750
static void omap_rtc_reset(struct omap_rtc_s *s)
3751
{
3752
    struct tm tm;
3753

    
3754
    s->interrupts = 0;
3755
    s->comp_reg = 0;
3756
    s->running = 0;
3757
    s->pm_am = 0;
3758
    s->auto_comp = 0;
3759
    s->round = 0;
3760
    s->tick = qemu_get_clock(rt_clock);
3761
    memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
3762
    s->alarm_tm.tm_mday = 0x01;
3763
    s->status = 1 << 7;
3764
    qemu_get_timedate(&tm, 0);
3765
    s->ti = mktime(&tm);
3766

    
3767
    omap_rtc_alarm_update(s);
3768
    omap_rtc_tick(s);
3769
}
3770

    
3771
struct omap_rtc_s *omap_rtc_init(target_phys_addr_t base,
3772
                qemu_irq *irq, omap_clk clk)
3773
{
3774
    int iomemtype;
3775
    struct omap_rtc_s *s = (struct omap_rtc_s *)
3776
            qemu_mallocz(sizeof(struct omap_rtc_s));
3777

    
3778
    s->base = base;
3779
    s->irq = irq[0];
3780
    s->alarm = irq[1];
3781
    s->clk = qemu_new_timer(rt_clock, omap_rtc_tick, s);
3782

    
3783
    omap_rtc_reset(s);
3784

    
3785
    iomemtype = cpu_register_io_memory(0, omap_rtc_readfn,
3786
                    omap_rtc_writefn, s);
3787
    cpu_register_physical_memory(s->base, 0x800, iomemtype);
3788

    
3789
    return s;
3790
}
3791

    
3792
/* Multi-channel Buffered Serial Port interfaces */
3793
struct omap_mcbsp_s {
3794
    target_phys_addr_t base;
3795
    qemu_irq txirq;
3796
    qemu_irq rxirq;
3797
    qemu_irq txdrq;
3798
    qemu_irq rxdrq;
3799

    
3800
    uint16_t spcr[2];
3801
    uint16_t rcr[2];
3802
    uint16_t xcr[2];
3803
    uint16_t srgr[2];
3804
    uint16_t mcr[2];
3805
    uint16_t pcr;
3806
    uint16_t rcer[8];
3807
    uint16_t xcer[8];
3808
    int tx_rate;
3809
    int rx_rate;
3810
    int tx_req;
3811
    int rx_req;
3812

    
3813
    struct i2s_codec_s *codec;
3814
    QEMUTimer *source_timer;
3815
    QEMUTimer *sink_timer;
3816
};
3817

    
3818
static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
3819
{
3820
    int irq;
3821

    
3822
    switch ((s->spcr[0] >> 4) & 3) {                        /* RINTM */
3823
    case 0:
3824
        irq = (s->spcr[0] >> 1) & 1;                        /* RRDY */
3825
        break;
3826
    case 3:
3827
        irq = (s->spcr[0] >> 3) & 1;                        /* RSYNCERR */
3828
        break;
3829
    default:
3830
        irq = 0;
3831
        break;
3832
    }
3833

    
3834
    if (irq)
3835
        qemu_irq_pulse(s->rxirq);
3836

    
3837
    switch ((s->spcr[1] >> 4) & 3) {                        /* XINTM */
3838
    case 0:
3839
        irq = (s->spcr[1] >> 1) & 1;                        /* XRDY */
3840
        break;
3841
    case 3:
3842
        irq = (s->spcr[1] >> 3) & 1;                        /* XSYNCERR */
3843
        break;
3844
    default:
3845
        irq = 0;
3846
        break;
3847
    }
3848

    
3849
    if (irq)
3850
        qemu_irq_pulse(s->txirq);
3851
}
3852

    
3853
static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3854
{
3855
    if ((s->spcr[0] >> 1) & 1)                                /* RRDY */
3856
        s->spcr[0] |= 1 << 2;                                /* RFULL */
3857
    s->spcr[0] |= 1 << 1;                                /* RRDY */
3858
    qemu_irq_raise(s->rxdrq);
3859
    omap_mcbsp_intr_update(s);
3860
}
3861

    
3862
static void omap_mcbsp_source_tick(void *opaque)
3863
{
3864
    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3865
    static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3866

    
3867
    if (!s->rx_rate)
3868
        return;
3869
    if (s->rx_req)
3870
        printf("%s: Rx FIFO overrun\n", __FUNCTION__);
3871

    
3872
    s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3873

    
3874
    omap_mcbsp_rx_newdata(s);
3875
    qemu_mod_timer(s->source_timer, qemu_get_clock(vm_clock) + ticks_per_sec);
3876
}
3877

    
3878
static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3879
{
3880
    if (!s->codec || !s->codec->rts)
3881
        omap_mcbsp_source_tick(s);
3882
    else if (s->codec->in.len) {
3883
        s->rx_req = s->codec->in.len;
3884
        omap_mcbsp_rx_newdata(s);
3885
    }
3886
}
3887

    
3888
static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3889
{
3890
    qemu_del_timer(s->source_timer);
3891
}
3892

    
3893
static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3894
{
3895
    s->spcr[0] &= ~(1 << 1);                                /* RRDY */
3896
    qemu_irq_lower(s->rxdrq);
3897
    omap_mcbsp_intr_update(s);
3898
}
3899

    
3900
static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3901
{
3902
    s->spcr[1] |= 1 << 1;                                /* XRDY */
3903
    qemu_irq_raise(s->txdrq);
3904
    omap_mcbsp_intr_update(s);
3905
}
3906

    
3907
static void omap_mcbsp_sink_tick(void *opaque)
3908
{
3909
    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3910
    static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3911

    
3912
    if (!s->tx_rate)
3913
        return;
3914
    if (s->tx_req)
3915
        printf("%s: Tx FIFO underrun\n", __FUNCTION__);
3916

    
3917
    s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3918

    
3919
    omap_mcbsp_tx_newdata(s);
3920
    qemu_mod_timer(s->sink_timer, qemu_get_clock(vm_clock) + ticks_per_sec);
3921
}
3922

    
3923
static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3924
{
3925
    if (!s->codec || !s->codec->cts)
3926
        omap_mcbsp_sink_tick(s);
3927
    else if (s->codec->out.size) {
3928
        s->tx_req = s->codec->out.size;
3929
        omap_mcbsp_tx_newdata(s);
3930
    }
3931
}
3932

    
3933
static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3934
{
3935
    s->spcr[1] &= ~(1 << 1);                                /* XRDY */
3936
    qemu_irq_lower(s->txdrq);
3937
    omap_mcbsp_intr_update(s);
3938
    if (s->codec && s->codec->cts)
3939
        s->codec->tx_swallow(s->codec->opaque);
3940
}
3941

    
3942
static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3943
{
3944
    s->tx_req = 0;
3945
    omap_mcbsp_tx_done(s);
3946
    qemu_del_timer(s->sink_timer);
3947
}
3948

    
3949
static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3950
{
3951
    int prev_rx_rate, prev_tx_rate;
3952
    int rx_rate = 0, tx_rate = 0;
3953
    int cpu_rate = 1500000;        /* XXX */
3954

    
3955
    /* TODO: check CLKSTP bit */
3956
    if (s->spcr[1] & (1 << 6)) {                        /* GRST */
3957
        if (s->spcr[0] & (1 << 0)) {                        /* RRST */
3958
            if ((s->srgr[1] & (1 << 13)) &&                /* CLKSM */
3959
                            (s->pcr & (1 << 8))) {        /* CLKRM */
3960
                if (~s->pcr & (1 << 7))                        /* SCLKME */
3961
                    rx_rate = cpu_rate /
3962
                            ((s->srgr[0] & 0xff) + 1);        /* CLKGDV */
3963
            } else
3964
                if (s->codec)
3965
                    rx_rate = s->codec->rx_rate;
3966
        }
3967

    
3968
        if (s->spcr[1] & (1 << 0)) {                        /* XRST */
3969
            if ((s->srgr[1] & (1 << 13)) &&                /* CLKSM */
3970
                            (s->pcr & (1 << 9))) {        /* CLKXM */
3971
                if (~s->pcr & (1 << 7))                        /* SCLKME */
3972
                    tx_rate = cpu_rate /
3973
                            ((s->srgr[0] & 0xff) + 1);        /* CLKGDV */
3974
            } else
3975
                if (s->codec)
3976
                    tx_rate = s->codec->tx_rate;
3977
        }
3978
    }
3979
    prev_tx_rate = s->tx_rate;
3980
    prev_rx_rate = s->rx_rate;
3981
    s->tx_rate = tx_rate;
3982
    s->rx_rate = rx_rate;
3983

    
3984
    if (s->codec)
3985
        s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3986

    
3987
    if (!prev_tx_rate && tx_rate)
3988
        omap_mcbsp_tx_start(s);
3989
    else if (s->tx_rate && !tx_rate)
3990
        omap_mcbsp_tx_stop(s);
3991

    
3992
    if (!prev_rx_rate && rx_rate)
3993
        omap_mcbsp_rx_start(s);
3994
    else if (prev_tx_rate && !tx_rate)
3995
        omap_mcbsp_rx_stop(s);
3996
}
3997

    
3998
static uint32_t omap_mcbsp_read(void *opaque, target_phys_addr_t addr)
3999
{
4000
    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
4001
    int offset = addr & OMAP_MPUI_REG_MASK;
4002
    uint16_t ret;
4003

    
4004
    switch (offset) {
4005
    case 0x00:        /* DRR2 */
4006
        if (((s->rcr[0] >> 5) & 7) < 3)                        /* RWDLEN1 */
4007
            return 0x0000;
4008
        /* Fall through.  */
4009
    case 0x02:        /* DRR1 */
4010
        if (s->rx_req < 2) {
4011
            printf("%s: Rx FIFO underrun\n", __FUNCTION__);
4012
            omap_mcbsp_rx_done(s);
4013
        } else {
4014
            s->tx_req -= 2;
4015
            if (s->codec && s->codec->in.len >= 2) {
4016
                ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
4017
                ret |= s->codec->in.fifo[s->codec->in.start ++];
4018
                s->codec->in.len -= 2;
4019
            } else
4020
                ret = 0x0000;
4021
            if (!s->tx_req)
4022
                omap_mcbsp_rx_done(s);
4023
            return ret;
4024
        }
4025
        return 0x0000;
4026

    
4027
    case 0x04:        /* DXR2 */
4028
    case 0x06:        /* DXR1 */
4029
        return 0x0000;
4030

    
4031
    case 0x08:        /* SPCR2 */
4032
        return s->spcr[1];
4033
    case 0x0a:        /* SPCR1 */
4034
        return s->spcr[0];
4035
    case 0x0c:        /* RCR2 */
4036
        return s->rcr[1];
4037
    case 0x0e:        /* RCR1 */
4038
        return s->rcr[0];
4039
    case 0x10:        /* XCR2 */
4040
        return s->xcr[1];
4041
    case 0x12:        /* XCR1 */
4042
        return s->xcr[0];
4043
    case 0x14:        /* SRGR2 */
4044
        return s->srgr[1];
4045
    case 0x16:        /* SRGR1 */
4046
        return s->srgr[0];
4047
    case 0x18:        /* MCR2 */
4048
        return s->mcr[1];
4049
    case 0x1a:        /* MCR1 */
4050
        return s->mcr[0];
4051
    case 0x1c:        /* RCERA */
4052
        return s->rcer[0];
4053
    case 0x1e:        /* RCERB */
4054
        return s->rcer[1];
4055
    case 0x20:        /* XCERA */
4056
        return s->xcer[0];
4057
    case 0x22:        /* XCERB */
4058
        return s->xcer[1];
4059
    case 0x24:        /* PCR0 */
4060
        return s->pcr;
4061
    case 0x26:        /* RCERC */
4062
        return s->rcer[2];
4063
    case 0x28:        /* RCERD */
4064
        return s->rcer[3];
4065
    case 0x2a:        /* XCERC */
4066
        return s->xcer[2];
4067
    case 0x2c:        /* XCERD */
4068
        return s->xcer[3];
4069
    case 0x2e:        /* RCERE */
4070
        return s->rcer[4];
4071
    case 0x30:        /* RCERF */
4072
        return s->rcer[5];
4073
    case 0x32:        /* XCERE */
4074
        return s->xcer[4];
4075
    case 0x34:        /* XCERF */
4076
        return s->xcer[5];
4077
    case 0x36:        /* RCERG */
4078
        return s->rcer[6];
4079
    case 0x38:        /* RCERH */
4080
        return s->rcer[7];
4081
    case 0x3a:        /* XCERG */
4082
        return s->xcer[6];
4083
    case 0x3c:        /* XCERH */
4084
        return s->xcer[7];
4085
    }
4086

    
4087
    OMAP_BAD_REG(addr);
4088
    return 0;
4089
}
4090

    
4091
static void omap_mcbsp_writeh(void *opaque, target_phys_addr_t addr,
4092
                uint32_t value)
4093
{
4094
    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
4095
    int offset = addr & OMAP_MPUI_REG_MASK;
4096

    
4097
    switch (offset) {
4098
    case 0x00:        /* DRR2 */
4099
    case 0x02:        /* DRR1 */
4100
        OMAP_RO_REG(addr);
4101
        return;
4102

    
4103
    case 0x04:        /* DXR2 */
4104
        if (((s->xcr[0] >> 5) & 7) < 3)                        /* XWDLEN1 */
4105
            return;
4106
        /* Fall through.  */
4107
    case 0x06:        /* DXR1 */
4108
        if (s->tx_req > 1) {
4109
            s->tx_req -= 2;
4110
            if (s->codec && s->codec->cts) {
4111
                s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
4112
                s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
4113
            }
4114
            if (s->tx_req < 2)
4115
                omap_mcbsp_tx_done(s);
4116
        } else
4117
            printf("%s: Tx FIFO overrun\n", __FUNCTION__);
4118
        return;
4119

    
4120
    case 0x08:        /* SPCR2 */
4121
        s->spcr[1] &= 0x0002;
4122
        s->spcr[1] |= 0x03f9 & value;
4123
        s->spcr[1] |= 0x0004 & (value << 2);                /* XEMPTY := XRST */
4124
        if (~value & 1)                                        /* XRST */
4125
            s->spcr[1] &= ~6;
4126
        omap_mcbsp_req_update(s);
4127
        return;
4128
    case 0x0a:        /* SPCR1 */
4129
        s->spcr[0] &= 0x0006;
4130
        s->spcr[0] |= 0xf8f9 & value;
4131
        if (value & (1 << 15))                                /* DLB */
4132
            printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
4133
        if (~value & 1) {                                /* RRST */
4134
            s->spcr[0] &= ~6;
4135
            s->rx_req = 0;
4136
            omap_mcbsp_rx_done(s);
4137
        }
4138
        omap_mcbsp_req_update(s);
4139
        return;
4140

    
4141
    case 0x0c:        /* RCR2 */
4142
        s->rcr[1] = value & 0xffff;
4143
        return;
4144
    case 0x0e:        /* RCR1 */
4145
        s->rcr[0] = value & 0x7fe0;
4146
        return;
4147
    case 0x10:        /* XCR2 */
4148
        s->xcr[1] = value & 0xffff;
4149
        return;
4150
    case 0x12:        /* XCR1 */
4151
        s->xcr[0] = value & 0x7fe0;
4152
        return;
4153
    case 0x14:        /* SRGR2 */
4154
        s->srgr[1] = value & 0xffff;
4155
        omap_mcbsp_req_update(s);
4156
        return;
4157
    case 0x16:        /* SRGR1 */
4158
        s->srgr[0] = value & 0xffff;
4159
        omap_mcbsp_req_update(s);
4160
        return;
4161
    case 0x18:        /* MCR2 */
4162
        s->mcr[1] = value & 0x03e3;
4163
        if (value & 3)                                        /* XMCM */
4164
            printf("%s: Tx channel selection mode enable attempt\n",
4165
                            __FUNCTION__);
4166
        return;
4167
    case 0x1a:        /* MCR1 */
4168
        s->mcr[0] = value & 0x03e1;
4169
        if (value & 1)                                        /* RMCM */
4170
            printf("%s: Rx channel selection mode enable attempt\n",
4171
                            __FUNCTION__);
4172
        return;
4173
    case 0x1c:        /* RCERA */
4174
        s->rcer[0] = value & 0xffff;
4175
        return;
4176
    case 0x1e:        /* RCERB */
4177
        s->rcer[1] = value & 0xffff;
4178
        return;
4179
    case 0x20:        /* XCERA */
4180
        s->xcer[0] = value & 0xffff;
4181
        return;
4182
    case 0x22:        /* XCERB */
4183
        s->xcer[1] = value & 0xffff;
4184
        return;
4185
    case 0x24:        /* PCR0 */
4186
        s->pcr = value & 0x7faf;
4187
        return;
4188
    case 0x26:        /* RCERC */
4189
        s->rcer[2] = value & 0xffff;
4190
        return;
4191
    case 0x28:        /* RCERD */
4192
        s->rcer[3] = value & 0xffff;
4193
        return;
4194
    case 0x2a:        /* XCERC */
4195
        s->xcer[2] = value & 0xffff;
4196
        return;
4197
    case 0x2c:        /* XCERD */
4198
        s->xcer[3] = value & 0xffff;
4199
        return;
4200
    case 0x2e:        /* RCERE */
4201
        s->rcer[4] = value & 0xffff;
4202
        return;
4203
    case 0x30:        /* RCERF */
4204
        s->rcer[5] = value & 0xffff;
4205
        return;
4206
    case 0x32:        /* XCERE */
4207
        s->xcer[4] = value & 0xffff;
4208
        return;
4209
    case 0x34:        /* XCERF */
4210
        s->xcer[5] = value & 0xffff;
4211
        return;
4212
    case 0x36:        /* RCERG */
4213
        s->rcer[6] = value & 0xffff;
4214
        return;
4215
    case 0x38:        /* RCERH */
4216
        s->rcer[7] = value & 0xffff;
4217
        return;
4218
    case 0x3a:        /* XCERG */
4219
        s->xcer[6] = value & 0xffff;
4220
        return;
4221
    case 0x3c:        /* XCERH */
4222
        s->xcer[7] = value & 0xffff;
4223
        return;
4224
    }
4225

    
4226
    OMAP_BAD_REG(addr);
4227
}
4228

    
4229
static void omap_mcbsp_writew(void *opaque, target_phys_addr_t addr,
4230
                uint32_t value)
4231
{
4232
    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
4233
    int offset = addr & OMAP_MPUI_REG_MASK;
4234

    
4235
    if (offset == 0x04) {                                /* DXR */
4236
        if (((s->xcr[0] >> 5) & 7) < 3)                        /* XWDLEN1 */
4237
            return;
4238
        if (s->tx_req > 3) {
4239
            s->tx_req -= 4;
4240
            if (s->codec && s->codec->cts) {
4241
                s->codec->out.fifo[s->codec->out.len ++] =
4242
                        (value >> 24) & 0xff;
4243
                s->codec->out.fifo[s->codec->out.len ++] =
4244
                        (value >> 16) & 0xff;
4245
                s->codec->out.fifo[s->codec->out.len ++] =
4246
                        (value >> 8) & 0xff;
4247
                s->codec->out.fifo[s->codec->out.len ++] =
4248
                        (value >> 0) & 0xff;
4249
            }
4250
            if (s->tx_req < 4)
4251
                omap_mcbsp_tx_done(s);
4252
        } else
4253
            printf("%s: Tx FIFO overrun\n", __FUNCTION__);
4254
        return;
4255
    }
4256

    
4257
    omap_badwidth_write16(opaque, addr, value);
4258
}
4259

    
4260
static CPUReadMemoryFunc *omap_mcbsp_readfn[] = {
4261
    omap_badwidth_read16,
4262
    omap_mcbsp_read,
4263
    omap_badwidth_read16,
4264
};
4265

    
4266
static CPUWriteMemoryFunc *omap_mcbsp_writefn[] = {
4267
    omap_badwidth_write16,
4268
    omap_mcbsp_writeh,
4269
    omap_mcbsp_writew,
4270
};
4271

    
4272
static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
4273
{
4274
    memset(&s->spcr, 0, sizeof(s->spcr));
4275
    memset(&s->rcr, 0, sizeof(s->rcr));
4276
    memset(&s->xcr, 0, sizeof(s->xcr));
4277
    s->srgr[0] = 0x0001;
4278
    s->srgr[1] = 0x2000;
4279
    memset(&s->mcr, 0, sizeof(s->mcr));
4280
    memset(&s->pcr, 0, sizeof(s->pcr));
4281
    memset(&s->rcer, 0, sizeof(s->rcer));
4282
    memset(&s->xcer, 0, sizeof(s->xcer));
4283
    s->tx_req = 0;
4284
    s->rx_req = 0;
4285
    s->tx_rate = 0;
4286
    s->rx_rate = 0;
4287
    qemu_del_timer(s->source_timer);
4288
    qemu_del_timer(s->sink_timer);
4289
}
4290

    
4291
struct omap_mcbsp_s *omap_mcbsp_init(target_phys_addr_t base,
4292
                qemu_irq *irq, qemu_irq *dma, omap_clk clk)
4293
{
4294
    int iomemtype;
4295
    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *)
4296
            qemu_mallocz(sizeof(struct omap_mcbsp_s));
4297

    
4298
    s->base = base;
4299
    s->txirq = irq[0];
4300
    s->rxirq = irq[1];
4301
    s->txdrq = dma[0];
4302
    s->rxdrq = dma[1];
4303
    s->sink_timer = qemu_new_timer(vm_clock, omap_mcbsp_sink_tick, s);
4304
    s->source_timer = qemu_new_timer(vm_clock, omap_mcbsp_source_tick, s);
4305
    omap_mcbsp_reset(s);
4306

    
4307
    iomemtype = cpu_register_io_memory(0, omap_mcbsp_readfn,
4308
                    omap_mcbsp_writefn, s);
4309
    cpu_register_physical_memory(s->base, 0x800, iomemtype);
4310

    
4311
    return s;
4312
}
4313

    
4314
static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
4315
{
4316
    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
4317

    
4318
    if (s->rx_rate) {
4319
        s->rx_req = s->codec->in.len;
4320
        omap_mcbsp_rx_newdata(s);
4321
    }
4322
}
4323

    
4324
static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
4325
{
4326
    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
4327

    
4328
    if (s->tx_rate) {
4329
        s->tx_req = s->codec->out.size;
4330
        omap_mcbsp_tx_newdata(s);
4331
    }
4332
}
4333

    
4334
void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, struct i2s_codec_s *slave)
4335
{
4336
    s->codec = slave;
4337
    slave->rx_swallow = qemu_allocate_irqs(omap_mcbsp_i2s_swallow, s, 1)[0];
4338
    slave->tx_start = qemu_allocate_irqs(omap_mcbsp_i2s_start, s, 1)[0];
4339
}
4340

    
4341
/* LED Pulse Generators */
4342
struct omap_lpg_s {
4343
    target_phys_addr_t base;
4344
    QEMUTimer *tm;
4345

    
4346
    uint8_t control;
4347
    uint8_t power;
4348
    int64_t on;
4349
    int64_t period;
4350
    int clk;
4351
    int cycle;
4352
};
4353

    
4354
static void omap_lpg_tick(void *opaque)
4355
{
4356
    struct omap_lpg_s *s = opaque;
4357

    
4358
    if (s->cycle)
4359
        qemu_mod_timer(s->tm, qemu_get_clock(rt_clock) + s->period - s->on);
4360
    else
4361
        qemu_mod_timer(s->tm, qemu_get_clock(rt_clock) + s->on);
4362

    
4363
    s->cycle = !s->cycle;
4364
    printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
4365
}
4366

    
4367
static void omap_lpg_update(struct omap_lpg_s *s)
4368
{
4369
    int64_t on, period = 1, ticks = 1000;
4370
    static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
4371

    
4372
    if (~s->control & (1 << 6))                                        /* LPGRES */
4373
        on = 0;
4374
    else if (s->control & (1 << 7))                                /* PERM_ON */
4375
        on = period;
4376
    else {
4377
        period = muldiv64(ticks, per[s->control & 7],                /* PERCTRL */
4378
                        256 / 32);
4379
        on = (s->clk && s->power) ? muldiv64(ticks,
4380
                        per[(s->control >> 3) & 7], 256) : 0;        /* ONCTRL */
4381
    }
4382

    
4383
    qemu_del_timer(s->tm);
4384
    if (on == period && s->on < s->period)
4385
        printf("%s: LED is on\n", __FUNCTION__);
4386
    else if (on == 0 && s->on)
4387
        printf("%s: LED is off\n", __FUNCTION__);
4388
    else if (on && (on != s->on || period != s->period)) {
4389
        s->cycle = 0;
4390
        s->on = on;
4391
        s->period = period;
4392
        omap_lpg_tick(s);
4393
        return;
4394
    }
4395

    
4396
    s->on = on;
4397
    s->period = period;
4398
}
4399

    
4400
static void omap_lpg_reset(struct omap_lpg_s *s)
4401
{
4402
    s->control = 0x00;
4403
    s->power = 0x00;
4404
    s->clk = 1;
4405
    omap_lpg_update(s);
4406
}
4407

    
4408
static uint32_t omap_lpg_read(void *opaque, target_phys_addr_t addr)
4409
{
4410
    struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
4411
    int offset = addr & OMAP_MPUI_REG_MASK;
4412

    
4413
    switch (offset) {
4414
    case 0x00:        /* LCR */
4415
        return s->control;
4416

    
4417
    case 0x04:        /* PMR */
4418
        return s->power;
4419
    }
4420

    
4421
    OMAP_BAD_REG(addr);
4422
    return 0;
4423
}
4424

    
4425
static void omap_lpg_write(void *opaque, target_phys_addr_t addr,
4426
                uint32_t value)
4427
{
4428
    struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
4429
    int offset = addr & OMAP_MPUI_REG_MASK;
4430

    
4431
    switch (offset) {
4432
    case 0x00:        /* LCR */
4433
        if (~value & (1 << 6))                                        /* LPGRES */
4434
            omap_lpg_reset(s);
4435
        s->control = value & 0xff;
4436
        omap_lpg_update(s);
4437
        return;
4438

    
4439
    case 0x04:        /* PMR */
4440
        s->power = value & 0x01;
4441
        omap_lpg_update(s);
4442
        return;
4443

    
4444
    default:
4445
        OMAP_BAD_REG(addr);
4446
        return;
4447
    }
4448
}
4449

    
4450
static CPUReadMemoryFunc *omap_lpg_readfn[] = {
4451
    omap_lpg_read,
4452
    omap_badwidth_read8,
4453
    omap_badwidth_read8,
4454
};
4455

    
4456
static CPUWriteMemoryFunc *omap_lpg_writefn[] = {
4457
    omap_lpg_write,
4458
    omap_badwidth_write8,
4459
    omap_badwidth_write8,
4460
};
4461

    
4462
static void omap_lpg_clk_update(void *opaque, int line, int on)
4463
{
4464
    struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
4465

    
4466
    s->clk = on;
4467
    omap_lpg_update(s);
4468
}
4469

    
4470
struct omap_lpg_s *omap_lpg_init(target_phys_addr_t base, omap_clk clk)
4471
{
4472
    int iomemtype;
4473
    struct omap_lpg_s *s = (struct omap_lpg_s *)
4474
            qemu_mallocz(sizeof(struct omap_lpg_s));
4475

    
4476
    s->base = base;
4477
    s->tm = qemu_new_timer(rt_clock, omap_lpg_tick, s);
4478

    
4479
    omap_lpg_reset(s);
4480

    
4481
    iomemtype = cpu_register_io_memory(0, omap_lpg_readfn,
4482
                    omap_lpg_writefn, s);
4483
    cpu_register_physical_memory(s->base, 0x800, iomemtype);
4484

    
4485
    omap_clk_adduser(clk, qemu_allocate_irqs(omap_lpg_clk_update, s, 1)[0]);
4486

    
4487
    return s;
4488
}
4489

    
4490
/* MPUI Peripheral Bridge configuration */
4491
static uint32_t omap_mpui_io_read(void *opaque, target_phys_addr_t addr)
4492
{
4493
    if (addr == OMAP_MPUI_BASE)        /* CMR */
4494
        return 0xfe4d;
4495

    
4496
    OMAP_BAD_REG(addr);
4497
    return 0;
4498
}
4499

    
4500
static CPUReadMemoryFunc *omap_mpui_io_readfn[] = {
4501
    omap_badwidth_read16,
4502
    omap_mpui_io_read,
4503
    omap_badwidth_read16,
4504
};
4505

    
4506
static CPUWriteMemoryFunc *omap_mpui_io_writefn[] = {
4507
    omap_badwidth_write16,
4508
    omap_badwidth_write16,
4509
    omap_badwidth_write16,
4510
};
4511

    
4512
static void omap_setup_mpui_io(struct omap_mpu_state_s *mpu)
4513
{
4514
    int iomemtype = cpu_register_io_memory(0, omap_mpui_io_readfn,
4515
                    omap_mpui_io_writefn, mpu);
4516
    cpu_register_physical_memory(OMAP_MPUI_BASE, 0x7fff, iomemtype);
4517
}
4518

    
4519
/* General chip reset */
4520
static void omap1_mpu_reset(void *opaque)
4521
{
4522
    struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
4523

    
4524
    omap_inth_reset(mpu->ih[0]);
4525
    omap_inth_reset(mpu->ih[1]);
4526
    omap_dma_reset(mpu->dma);
4527
    omap_mpu_timer_reset(mpu->timer[0]);
4528
    omap_mpu_timer_reset(mpu->timer[1]);
4529
    omap_mpu_timer_reset(mpu->timer[2]);
4530
    omap_wd_timer_reset(mpu->wdt);
4531
    omap_os_timer_reset(mpu->os_timer);
4532
    omap_lcdc_reset(mpu->lcd);
4533
    omap_ulpd_pm_reset(mpu);
4534
    omap_pin_cfg_reset(mpu);
4535
    omap_mpui_reset(mpu);
4536
    omap_tipb_bridge_reset(mpu->private_tipb);
4537
    omap_tipb_bridge_reset(mpu->public_tipb);
4538
    omap_dpll_reset(&mpu->dpll[0]);
4539
    omap_dpll_reset(&mpu->dpll[1]);
4540
    omap_dpll_reset(&mpu->dpll[2]);
4541
    omap_uart_reset(mpu->uart[0]);
4542
    omap_uart_reset(mpu->uart[1]);
4543
    omap_uart_reset(mpu->uart[2]);
4544
    omap_mmc_reset(mpu->mmc);
4545
    omap_mpuio_reset(mpu->mpuio);
4546
    omap_gpio_reset(mpu->gpio);
4547
    omap_uwire_reset(mpu->microwire);
4548
    omap_pwl_reset(mpu);
4549
    omap_pwt_reset(mpu);
4550
    omap_i2c_reset(mpu->i2c[0]);
4551
    omap_rtc_reset(mpu->rtc);
4552
    omap_mcbsp_reset(mpu->mcbsp1);
4553
    omap_mcbsp_reset(mpu->mcbsp2);
4554
    omap_mcbsp_reset(mpu->mcbsp3);
4555
    omap_lpg_reset(mpu->led[0]);
4556
    omap_lpg_reset(mpu->led[1]);
4557
    omap_clkm_reset(mpu);
4558
    cpu_reset(mpu->env);
4559
}
4560

    
4561
static const struct omap_map_s {
4562
    target_phys_addr_t phys_dsp;
4563
    target_phys_addr_t phys_mpu;
4564
    uint32_t size;
4565
    const char *name;
4566
} omap15xx_dsp_mm[] = {
4567
    /* Strobe 0 */
4568
    { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" },                /* CS0 */
4569
    { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" },                /* CS1 */
4570
    { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" },                /* CS3 */
4571
    { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" },        /* CS4 */
4572
    { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" },        /* CS5 */
4573
    { 0xe1013000, 0xfffb3000, 0x800, "uWire" },                        /* CS6 */
4574
    { 0xe1013800, 0xfffb3800, 0x800, "I^2C" },                        /* CS7 */
4575
    { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" },                /* CS8 */
4576
    { 0xe1014800, 0xfffb4800, 0x800, "RTC" },                        /* CS9 */
4577
    { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" },                        /* CS10 */
4578
    { 0xe1015800, 0xfffb5800, 0x800, "PWL" },                        /* CS11 */
4579
    { 0xe1016000, 0xfffb6000, 0x800, "PWT" },                        /* CS12 */
4580
    { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" },                /* CS14 */
4581
    { 0xe1017800, 0xfffb7800, 0x800, "MMC" },                        /* CS15 */
4582
    { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" },                /* CS18 */
4583
    { 0xe1019800, 0xfffb9800, 0x800, "UART3" },                        /* CS19 */
4584
    { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" },                /* CS25 */
4585
    /* Strobe 1 */
4586
    { 0xe101e000, 0xfffce000, 0x800, "GPIOs" },                        /* CS28 */
4587

    
4588
    { 0 }
4589
};
4590

    
4591
static void omap_setup_dsp_mapping(const struct omap_map_s *map)
4592
{
4593
    int io;
4594

    
4595
    for (; map->phys_dsp; map ++) {
4596
        io = cpu_get_physical_page_desc(map->phys_mpu);
4597

    
4598
        cpu_register_physical_memory(map->phys_dsp, map->size, io);
4599
    }
4600
}
4601

    
4602
void omap_mpu_wakeup(void *opaque, int irq, int req)
4603
{
4604
    struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
4605

    
4606
    if (mpu->env->halted)
4607
        cpu_interrupt(mpu->env, CPU_INTERRUPT_EXITTB);
4608
}
4609

    
4610
static const struct dma_irq_map omap1_dma_irq_map[] = {
4611
    { 0, OMAP_INT_DMA_CH0_6 },
4612
    { 0, OMAP_INT_DMA_CH1_7 },
4613
    { 0, OMAP_INT_DMA_CH2_8 },
4614
    { 0, OMAP_INT_DMA_CH3 },
4615
    { 0, OMAP_INT_DMA_CH4 },
4616
    { 0, OMAP_INT_DMA_CH5 },
4617
    { 1, OMAP_INT_1610_DMA_CH6 },
4618
    { 1, OMAP_INT_1610_DMA_CH7 },
4619
    { 1, OMAP_INT_1610_DMA_CH8 },
4620
    { 1, OMAP_INT_1610_DMA_CH9 },
4621
    { 1, OMAP_INT_1610_DMA_CH10 },
4622
    { 1, OMAP_INT_1610_DMA_CH11 },
4623
    { 1, OMAP_INT_1610_DMA_CH12 },
4624
    { 1, OMAP_INT_1610_DMA_CH13 },
4625
    { 1, OMAP_INT_1610_DMA_CH14 },
4626
    { 1, OMAP_INT_1610_DMA_CH15 }
4627
};
4628

    
4629
/* DMA ports for OMAP1 */
4630
static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
4631
                target_phys_addr_t addr)
4632
{
4633
    return addr >= OMAP_EMIFF_BASE && addr < OMAP_EMIFF_BASE + s->sdram_size;
4634
}
4635

    
4636
static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
4637
                target_phys_addr_t addr)
4638
{
4639
    return addr >= OMAP_EMIFS_BASE && addr < OMAP_EMIFF_BASE;
4640
}
4641

    
4642
static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
4643
                target_phys_addr_t addr)
4644
{
4645
    return addr >= OMAP_IMIF_BASE && addr < OMAP_IMIF_BASE + s->sram_size;
4646
}
4647

    
4648
static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
4649
                target_phys_addr_t addr)
4650
{
4651
    return addr >= 0xfffb0000 && addr < 0xffff0000;
4652
}
4653

    
4654
static int omap_validate_local_addr(struct omap_mpu_state_s *s,
4655
                target_phys_addr_t addr)
4656
{
4657
    return addr >= OMAP_LOCALBUS_BASE && addr < OMAP_LOCALBUS_BASE + 0x1000000;
4658
}
4659

    
4660
static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
4661
                target_phys_addr_t addr)
4662
{
4663
    return addr >= 0xe1010000 && addr < 0xe1020004;
4664
}
4665

    
4666
struct omap_mpu_state_s *omap310_mpu_init(unsigned long sdram_size,
4667
                DisplayState *ds, const char *core)
4668
{
4669
    int i;
4670
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *)
4671
            qemu_mallocz(sizeof(struct omap_mpu_state_s));
4672
    ram_addr_t imif_base, emiff_base;
4673
    qemu_irq *cpu_irq;
4674
    qemu_irq dma_irqs[6];
4675
    int sdindex;
4676

    
4677
    if (!core)
4678
        core = "ti925t";
4679

    
4680
    /* Core */
4681
    s->mpu_model = omap310;
4682
    s->env = cpu_init(core);
4683
    if (!s->env) {
4684
        fprintf(stderr, "Unable to find CPU definition\n");
4685
        exit(1);
4686
    }
4687
    s->sdram_size = sdram_size;
4688
    s->sram_size = OMAP15XX_SRAM_SIZE;
4689

    
4690
    s->wakeup = qemu_allocate_irqs(omap_mpu_wakeup, s, 1)[0];
4691

    
4692
    /* Clocks */
4693
    omap_clk_init(s);
4694

    
4695
    /* Memory-mapped stuff */
4696
    cpu_register_physical_memory(OMAP_EMIFF_BASE, s->sdram_size,
4697
                    (emiff_base = qemu_ram_alloc(s->sdram_size)) | IO_MEM_RAM);
4698
    cpu_register_physical_memory(OMAP_IMIF_BASE, s->sram_size,
4699
                    (imif_base = qemu_ram_alloc(s->sram_size)) | IO_MEM_RAM);
4700

    
4701
    omap_clkm_init(0xfffece00, 0xe1008000, s);
4702

    
4703
    cpu_irq = arm_pic_init_cpu(s->env);
4704
    s->ih[0] = omap_inth_init(0xfffecb00, 0x100, 1, &s->irq[0],
4705
                    cpu_irq[ARM_PIC_CPU_IRQ], cpu_irq[ARM_PIC_CPU_FIQ],
4706
                    omap_findclk(s, "arminth_ck"));
4707
    s->ih[1] = omap_inth_init(0xfffe0000, 0x800, 1, &s->irq[1],
4708
                    s->ih[0]->pins[OMAP_INT_15XX_IH2_IRQ], NULL,
4709
                    omap_findclk(s, "arminth_ck"));
4710

    
4711
    for (i = 0; i < 6; i ++)
4712
        dma_irqs[i] =
4713
                s->irq[omap1_dma_irq_map[i].ih][omap1_dma_irq_map[i].intr];
4714
    s->dma = omap_dma_init(0xfffed800, dma_irqs, s->irq[0][OMAP_INT_DMA_LCD],
4715
                           s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
4716

    
4717
    s->port[emiff    ].addr_valid = omap_validate_emiff_addr;
4718
    s->port[emifs    ].addr_valid = omap_validate_emifs_addr;
4719
    s->port[imif     ].addr_valid = omap_validate_imif_addr;
4720
    s->port[tipb     ].addr_valid = omap_validate_tipb_addr;
4721
    s->port[local    ].addr_valid = omap_validate_local_addr;
4722
    s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
4723

    
4724
    /* Register SDRAM and SRAM DMA ports for fast transfers.  */
4725
    soc_dma_port_add_mem_ram(s->dma,
4726
                    emiff_base, OMAP_EMIFF_BASE, s->sdram_size);
4727
    soc_dma_port_add_mem_ram(s->dma,
4728
                    imif_base, OMAP_IMIF_BASE, s->sram_size);
4729

    
4730
    s->timer[0] = omap_mpu_timer_init(0xfffec500,
4731
                    s->irq[0][OMAP_INT_TIMER1],
4732
                    omap_findclk(s, "mputim_ck"));
4733
    s->timer[1] = omap_mpu_timer_init(0xfffec600,
4734
                    s->irq[0][OMAP_INT_TIMER2],
4735
                    omap_findclk(s, "mputim_ck"));
4736
    s->timer[2] = omap_mpu_timer_init(0xfffec700,
4737
                    s->irq[0][OMAP_INT_TIMER3],
4738
                    omap_findclk(s, "mputim_ck"));
4739

    
4740
    s->wdt = omap_wd_timer_init(0xfffec800,
4741
                    s->irq[0][OMAP_INT_WD_TIMER],
4742
                    omap_findclk(s, "armwdt_ck"));
4743

    
4744
    s->os_timer = omap_os_timer_init(0xfffb9000,
4745
                    s->irq[1][OMAP_INT_OS_TIMER],
4746
                    omap_findclk(s, "clk32-kHz"));
4747

    
4748
    s->lcd = omap_lcdc_init(0xfffec000, s->irq[0][OMAP_INT_LCD_CTRL],
4749
                    omap_dma_get_lcdch(s->dma), ds, imif_base, emiff_base,
4750
                    omap_findclk(s, "lcd_ck"));
4751

    
4752
    omap_ulpd_pm_init(0xfffe0800, s);
4753
    omap_pin_cfg_init(0xfffe1000, s);
4754
    omap_id_init(s);
4755

    
4756
    omap_mpui_init(0xfffec900, s);
4757

    
4758
    s->private_tipb = omap_tipb_bridge_init(0xfffeca00,
4759
                    s->irq[0][OMAP_INT_BRIDGE_PRIV],
4760
                    omap_findclk(s, "tipb_ck"));
4761
    s->public_tipb = omap_tipb_bridge_init(0xfffed300,
4762
                    s->irq[0][OMAP_INT_BRIDGE_PUB],
4763
                    omap_findclk(s, "tipb_ck"));
4764

    
4765
    omap_tcmi_init(0xfffecc00, s);
4766

    
4767
    s->uart[0] = omap_uart_init(0xfffb0000, s->irq[1][OMAP_INT_UART1],
4768
                    omap_findclk(s, "uart1_ck"),
4769
                    omap_findclk(s, "uart1_ck"),
4770
                    s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
4771
                    serial_hds[0]);
4772
    s->uart[1] = omap_uart_init(0xfffb0800, s->irq[1][OMAP_INT_UART2],
4773
                    omap_findclk(s, "uart2_ck"),
4774
                    omap_findclk(s, "uart2_ck"),
4775
                    s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
4776
                    serial_hds[0] ? serial_hds[1] : 0);
4777
    s->uart[2] = omap_uart_init(0xe1019800, s->irq[0][OMAP_INT_UART3],
4778
                    omap_findclk(s, "uart3_ck"),
4779
                    omap_findclk(s, "uart3_ck"),
4780
                    s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
4781
                    serial_hds[0] && serial_hds[1] ? serial_hds[2] : 0);
4782

    
4783
    omap_dpll_init(&s->dpll[0], 0xfffecf00, omap_findclk(s, "dpll1"));
4784
    omap_dpll_init(&s->dpll[1], 0xfffed000, omap_findclk(s, "dpll2"));
4785
    omap_dpll_init(&s->dpll[2], 0xfffed100, omap_findclk(s, "dpll3"));
4786

    
4787
    sdindex = drive_get_index(IF_SD, 0, 0);
4788
    if (sdindex == -1) {
4789
        fprintf(stderr, "qemu: missing SecureDigital device\n");
4790
        exit(1);
4791
    }
4792
    s->mmc = omap_mmc_init(0xfffb7800, drives_table[sdindex].bdrv,
4793
                    s->irq[1][OMAP_INT_OQN], &s->drq[OMAP_DMA_MMC_TX],
4794
                    omap_findclk(s, "mmc_ck"));
4795

    
4796
    s->mpuio = omap_mpuio_init(0xfffb5000,
4797
                    s->irq[1][OMAP_INT_KEYBOARD], s->irq[1][OMAP_INT_MPUIO],
4798
                    s->wakeup, omap_findclk(s, "clk32-kHz"));
4799

    
4800
    s->gpio = omap_gpio_init(0xfffce000, s->irq[0][OMAP_INT_GPIO_BANK1],
4801
                    omap_findclk(s, "arm_gpio_ck"));
4802

    
4803
    s->microwire = omap_uwire_init(0xfffb3000, &s->irq[1][OMAP_INT_uWireTX],
4804
                    s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4805

    
4806
    omap_pwl_init(0xfffb5800, s, omap_findclk(s, "armxor_ck"));
4807
    omap_pwt_init(0xfffb6000, s, omap_findclk(s, "armxor_ck"));
4808

    
4809
    s->i2c[0] = omap_i2c_init(0xfffb3800, s->irq[1][OMAP_INT_I2C],
4810
                    &s->drq[OMAP_DMA_I2C_RX], omap_findclk(s, "mpuper_ck"));
4811

    
4812
    s->rtc = omap_rtc_init(0xfffb4800, &s->irq[1][OMAP_INT_RTC_TIMER],
4813
                    omap_findclk(s, "clk32-kHz"));
4814

    
4815
    s->mcbsp1 = omap_mcbsp_init(0xfffb1800, &s->irq[1][OMAP_INT_McBSP1TX],
4816
                    &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4817
    s->mcbsp2 = omap_mcbsp_init(0xfffb1000, &s->irq[0][OMAP_INT_310_McBSP2_TX],
4818
                    &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4819
    s->mcbsp3 = omap_mcbsp_init(0xfffb7000, &s->irq[1][OMAP_INT_McBSP3TX],
4820
                    &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4821

    
4822
    s->led[0] = omap_lpg_init(0xfffbd000, omap_findclk(s, "clk32-kHz"));
4823
    s->led[1] = omap_lpg_init(0xfffbd800, omap_findclk(s, "clk32-kHz"));
4824

    
4825
    /* Register mappings not currenlty implemented:
4826
     * MCSI2 Comm        fffb2000 - fffb27ff (not mapped on OMAP310)
4827
     * MCSI1 Bluetooth        fffb2800 - fffb2fff (not mapped on OMAP310)
4828
     * USB W2FC                fffb4000 - fffb47ff
4829
     * Camera Interface        fffb6800 - fffb6fff
4830
     * USB Host                fffba000 - fffba7ff
4831
     * FAC                fffba800 - fffbafff
4832
     * HDQ/1-Wire        fffbc000 - fffbc7ff
4833
     * TIPB switches        fffbc800 - fffbcfff
4834
     * Mailbox                fffcf000 - fffcf7ff
4835
     * Local bus IF        fffec100 - fffec1ff
4836
     * Local bus MMU        fffec200 - fffec2ff
4837
     * DSP MMU                fffed200 - fffed2ff
4838
     */
4839

    
4840
    omap_setup_dsp_mapping(omap15xx_dsp_mm);
4841
    omap_setup_mpui_io(s);
4842

    
4843
    qemu_register_reset(omap1_mpu_reset, s);
4844

    
4845
    return s;
4846
}