Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 7d72e762

History | View | Annotate | Download (74.7 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4

    
5
@documentlanguage en
6
@documentencoding UTF-8
7

    
8
@settitle QEMU Emulator User Documentation
9
@exampleindent 0
10
@paragraphindent 0
11
@c %**end of header
12

    
13
@ifinfo
14
@direntry
15
* QEMU: (qemu-doc).    The QEMU Emulator User Documentation.
16
@end direntry
17
@end ifinfo
18

    
19
@iftex
20
@titlepage
21
@sp 7
22
@center @titlefont{QEMU Emulator}
23
@sp 1
24
@center @titlefont{User Documentation}
25
@sp 3
26
@end titlepage
27
@end iftex
28

    
29
@ifnottex
30
@node Top
31
@top
32

    
33
@menu
34
* Introduction::
35
* Installation::
36
* QEMU PC System emulator::
37
* QEMU System emulator for non PC targets::
38
* QEMU User space emulator::
39
* compilation:: Compilation from the sources
40
* License::
41
* Index::
42
@end menu
43
@end ifnottex
44

    
45
@contents
46

    
47
@node Introduction
48
@chapter Introduction
49

    
50
@menu
51
* intro_features:: Features
52
@end menu
53

    
54
@node intro_features
55
@section Features
56

    
57
QEMU is a FAST! processor emulator using dynamic translation to
58
achieve good emulation speed.
59

    
60
QEMU has two operating modes:
61

    
62
@itemize
63
@cindex operating modes
64

    
65
@item
66
@cindex system emulation
67
Full system emulation. In this mode, QEMU emulates a full system (for
68
example a PC), including one or several processors and various
69
peripherals. It can be used to launch different Operating Systems
70
without rebooting the PC or to debug system code.
71

    
72
@item
73
@cindex user mode emulation
74
User mode emulation. In this mode, QEMU can launch
75
processes compiled for one CPU on another CPU. It can be used to
76
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77
to ease cross-compilation and cross-debugging.
78

    
79
@end itemize
80

    
81
QEMU can run without an host kernel driver and yet gives acceptable
82
performance.
83

    
84
For system emulation, the following hardware targets are supported:
85
@itemize
86
@cindex emulated target systems
87
@cindex supported target systems
88
@item PC (x86 or x86_64 processor)
89
@item ISA PC (old style PC without PCI bus)
90
@item PREP (PowerPC processor)
91
@item G3 Beige PowerMac (PowerPC processor)
92
@item Mac99 PowerMac (PowerPC processor, in progress)
93
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
94
@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
95
@item Malta board (32-bit and 64-bit MIPS processors)
96
@item MIPS Magnum (64-bit MIPS processor)
97
@item ARM Integrator/CP (ARM)
98
@item ARM Versatile baseboard (ARM)
99
@item ARM RealView Emulation/Platform baseboard (ARM)
100
@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
101
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
103
@item Freescale MCF5208EVB (ColdFire V2).
104
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
105
@item Palm Tungsten|E PDA (OMAP310 processor)
106
@item N800 and N810 tablets (OMAP2420 processor)
107
@item MusicPal (MV88W8618 ARM processor)
108
@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109
@item Siemens SX1 smartphone (OMAP310 processor)
110
@item Syborg SVP base model (ARM Cortex-A8).
111
@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
112
@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
113
@end itemize
114

    
115
@cindex supported user mode targets
116
For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117
ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118
Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
119

    
120
@node Installation
121
@chapter Installation
122

    
123
If you want to compile QEMU yourself, see @ref{compilation}.
124

    
125
@menu
126
* install_linux::   Linux
127
* install_windows:: Windows
128
* install_mac::     Macintosh
129
@end menu
130

    
131
@node install_linux
132
@section Linux
133
@cindex installation (Linux)
134

    
135
If a precompiled package is available for your distribution - you just
136
have to install it. Otherwise, see @ref{compilation}.
137

    
138
@node install_windows
139
@section Windows
140
@cindex installation (Windows)
141

    
142
Download the experimental binary installer at
143
@url{http://www.free.oszoo.org/@/download.html}.
144
TODO (no longer available)
145

    
146
@node install_mac
147
@section Mac OS X
148

    
149
Download the experimental binary installer at
150
@url{http://www.free.oszoo.org/@/download.html}.
151
TODO (no longer available)
152

    
153
@node QEMU PC System emulator
154
@chapter QEMU PC System emulator
155
@cindex system emulation (PC)
156

    
157
@menu
158
* pcsys_introduction:: Introduction
159
* pcsys_quickstart::   Quick Start
160
* sec_invocation::     Invocation
161
* pcsys_keys::         Keys
162
* pcsys_monitor::      QEMU Monitor
163
* disk_images::        Disk Images
164
* pcsys_network::      Network emulation
165
* direct_linux_boot::  Direct Linux Boot
166
* pcsys_usb::          USB emulation
167
* vnc_security::       VNC security
168
* gdb_usage::          GDB usage
169
* pcsys_os_specific::  Target OS specific information
170
@end menu
171

    
172
@node pcsys_introduction
173
@section Introduction
174

    
175
@c man begin DESCRIPTION
176

    
177
The QEMU PC System emulator simulates the
178
following peripherals:
179

    
180
@itemize @minus
181
@item
182
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
183
@item
184
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
185
extensions (hardware level, including all non standard modes).
186
@item
187
PS/2 mouse and keyboard
188
@item
189
2 PCI IDE interfaces with hard disk and CD-ROM support
190
@item
191
Floppy disk
192
@item
193
PCI and ISA network adapters
194
@item
195
Serial ports
196
@item
197
Creative SoundBlaster 16 sound card
198
@item
199
ENSONIQ AudioPCI ES1370 sound card
200
@item
201
Intel 82801AA AC97 Audio compatible sound card
202
@item
203
Intel HD Audio Controller and HDA codec
204
@item
205
Adlib(OPL2) - Yamaha YM3812 compatible chip
206
@item
207
Gravis Ultrasound GF1 sound card
208
@item
209
CS4231A compatible sound card
210
@item
211
PCI UHCI USB controller and a virtual USB hub.
212
@end itemize
213

    
214
SMP is supported with up to 255 CPUs.
215

    
216
Note that adlib, gus and cs4231a are only available when QEMU was
217
configured with --audio-card-list option containing the name(s) of
218
required card(s).
219

    
220
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
221
VGA BIOS.
222

    
223
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
224

    
225
QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
226
by Tibor "TS" Schütz.
227

    
228
Not that, by default, GUS shares IRQ(7) with parallel ports and so
229
qemu must be told to not have parallel ports to have working GUS
230

    
231
@example
232
qemu dos.img -soundhw gus -parallel none
233
@end example
234

    
235
Alternatively:
236
@example
237
qemu dos.img -device gus,irq=5
238
@end example
239

    
240
Or some other unclaimed IRQ.
241

    
242
CS4231A is the chip used in Windows Sound System and GUSMAX products
243

    
244
@c man end
245

    
246
@node pcsys_quickstart
247
@section Quick Start
248
@cindex quick start
249

    
250
Download and uncompress the linux image (@file{linux.img}) and type:
251

    
252
@example
253
qemu linux.img
254
@end example
255

    
256
Linux should boot and give you a prompt.
257

    
258
@node sec_invocation
259
@section Invocation
260

    
261
@example
262
@c man begin SYNOPSIS
263
usage: qemu [options] [@var{disk_image}]
264
@c man end
265
@end example
266

    
267
@c man begin OPTIONS
268
@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
269
targets do not need a disk image.
270

    
271
@include qemu-options.texi
272

    
273
@c man end
274

    
275
@node pcsys_keys
276
@section Keys
277

    
278
@c man begin OPTIONS
279

    
280
During the graphical emulation, you can use the following keys:
281
@table @key
282
@item Ctrl-Alt-f
283
@kindex Ctrl-Alt-f
284
Toggle full screen
285

    
286
@item Ctrl-Alt-u
287
@kindex Ctrl-Alt-u
288
Restore the screen's un-scaled dimensions
289

    
290
@item Ctrl-Alt-n
291
@kindex Ctrl-Alt-n
292
Switch to virtual console 'n'. Standard console mappings are:
293
@table @emph
294
@item 1
295
Target system display
296
@item 2
297
Monitor
298
@item 3
299
Serial port
300
@end table
301

    
302
@item Ctrl-Alt
303
@kindex Ctrl-Alt
304
Toggle mouse and keyboard grab.
305
@end table
306

    
307
@kindex Ctrl-Up
308
@kindex Ctrl-Down
309
@kindex Ctrl-PageUp
310
@kindex Ctrl-PageDown
311
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
312
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
313

    
314
@kindex Ctrl-a h
315
During emulation, if you are using the @option{-nographic} option, use
316
@key{Ctrl-a h} to get terminal commands:
317

    
318
@table @key
319
@item Ctrl-a h
320
@kindex Ctrl-a h
321
@item Ctrl-a ?
322
@kindex Ctrl-a ?
323
Print this help
324
@item Ctrl-a x
325
@kindex Ctrl-a x
326
Exit emulator
327
@item Ctrl-a s
328
@kindex Ctrl-a s
329
Save disk data back to file (if -snapshot)
330
@item Ctrl-a t
331
@kindex Ctrl-a t
332
Toggle console timestamps
333
@item Ctrl-a b
334
@kindex Ctrl-a b
335
Send break (magic sysrq in Linux)
336
@item Ctrl-a c
337
@kindex Ctrl-a c
338
Switch between console and monitor
339
@item Ctrl-a Ctrl-a
340
@kindex Ctrl-a a
341
Send Ctrl-a
342
@end table
343
@c man end
344

    
345
@ignore
346

    
347
@c man begin SEEALSO
348
The HTML documentation of QEMU for more precise information and Linux
349
user mode emulator invocation.
350
@c man end
351

    
352
@c man begin AUTHOR
353
Fabrice Bellard
354
@c man end
355

    
356
@end ignore
357

    
358
@node pcsys_monitor
359
@section QEMU Monitor
360
@cindex QEMU monitor
361

    
362
The QEMU monitor is used to give complex commands to the QEMU
363
emulator. You can use it to:
364

    
365
@itemize @minus
366

    
367
@item
368
Remove or insert removable media images
369
(such as CD-ROM or floppies).
370

    
371
@item
372
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
373
from a disk file.
374

    
375
@item Inspect the VM state without an external debugger.
376

    
377
@end itemize
378

    
379
@subsection Commands
380

    
381
The following commands are available:
382

    
383
@include qemu-monitor.texi
384

    
385
@subsection Integer expressions
386

    
387
The monitor understands integers expressions for every integer
388
argument. You can use register names to get the value of specifics
389
CPU registers by prefixing them with @emph{$}.
390

    
391
@node disk_images
392
@section Disk Images
393

    
394
Since version 0.6.1, QEMU supports many disk image formats, including
395
growable disk images (their size increase as non empty sectors are
396
written), compressed and encrypted disk images. Version 0.8.3 added
397
the new qcow2 disk image format which is essential to support VM
398
snapshots.
399

    
400
@menu
401
* disk_images_quickstart::    Quick start for disk image creation
402
* disk_images_snapshot_mode:: Snapshot mode
403
* vm_snapshots::              VM snapshots
404
* qemu_img_invocation::       qemu-img Invocation
405
* qemu_nbd_invocation::       qemu-nbd Invocation
406
* host_drives::               Using host drives
407
* disk_images_fat_images::    Virtual FAT disk images
408
* disk_images_nbd::           NBD access
409
@end menu
410

    
411
@node disk_images_quickstart
412
@subsection Quick start for disk image creation
413

    
414
You can create a disk image with the command:
415
@example
416
qemu-img create myimage.img mysize
417
@end example
418
where @var{myimage.img} is the disk image filename and @var{mysize} is its
419
size in kilobytes. You can add an @code{M} suffix to give the size in
420
megabytes and a @code{G} suffix for gigabytes.
421

    
422
See @ref{qemu_img_invocation} for more information.
423

    
424
@node disk_images_snapshot_mode
425
@subsection Snapshot mode
426

    
427
If you use the option @option{-snapshot}, all disk images are
428
considered as read only. When sectors in written, they are written in
429
a temporary file created in @file{/tmp}. You can however force the
430
write back to the raw disk images by using the @code{commit} monitor
431
command (or @key{C-a s} in the serial console).
432

    
433
@node vm_snapshots
434
@subsection VM snapshots
435

    
436
VM snapshots are snapshots of the complete virtual machine including
437
CPU state, RAM, device state and the content of all the writable
438
disks. In order to use VM snapshots, you must have at least one non
439
removable and writable block device using the @code{qcow2} disk image
440
format. Normally this device is the first virtual hard drive.
441

    
442
Use the monitor command @code{savevm} to create a new VM snapshot or
443
replace an existing one. A human readable name can be assigned to each
444
snapshot in addition to its numerical ID.
445

    
446
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
447
a VM snapshot. @code{info snapshots} lists the available snapshots
448
with their associated information:
449

    
450
@example
451
(qemu) info snapshots
452
Snapshot devices: hda
453
Snapshot list (from hda):
454
ID        TAG                 VM SIZE                DATE       VM CLOCK
455
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
456
2                                 40M 2006-08-06 12:43:29   00:00:18.633
457
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
458
@end example
459

    
460
A VM snapshot is made of a VM state info (its size is shown in
461
@code{info snapshots}) and a snapshot of every writable disk image.
462
The VM state info is stored in the first @code{qcow2} non removable
463
and writable block device. The disk image snapshots are stored in
464
every disk image. The size of a snapshot in a disk image is difficult
465
to evaluate and is not shown by @code{info snapshots} because the
466
associated disk sectors are shared among all the snapshots to save
467
disk space (otherwise each snapshot would need a full copy of all the
468
disk images).
469

    
470
When using the (unrelated) @code{-snapshot} option
471
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
472
but they are deleted as soon as you exit QEMU.
473

    
474
VM snapshots currently have the following known limitations:
475
@itemize
476
@item
477
They cannot cope with removable devices if they are removed or
478
inserted after a snapshot is done.
479
@item
480
A few device drivers still have incomplete snapshot support so their
481
state is not saved or restored properly (in particular USB).
482
@end itemize
483

    
484
@node qemu_img_invocation
485
@subsection @code{qemu-img} Invocation
486

    
487
@include qemu-img.texi
488

    
489
@node qemu_nbd_invocation
490
@subsection @code{qemu-nbd} Invocation
491

    
492
@include qemu-nbd.texi
493

    
494
@node host_drives
495
@subsection Using host drives
496

    
497
In addition to disk image files, QEMU can directly access host
498
devices. We describe here the usage for QEMU version >= 0.8.3.
499

    
500
@subsubsection Linux
501

    
502
On Linux, you can directly use the host device filename instead of a
503
disk image filename provided you have enough privileges to access
504
it. For example, use @file{/dev/cdrom} to access to the CDROM or
505
@file{/dev/fd0} for the floppy.
506

    
507
@table @code
508
@item CD
509
You can specify a CDROM device even if no CDROM is loaded. QEMU has
510
specific code to detect CDROM insertion or removal. CDROM ejection by
511
the guest OS is supported. Currently only data CDs are supported.
512
@item Floppy
513
You can specify a floppy device even if no floppy is loaded. Floppy
514
removal is currently not detected accurately (if you change floppy
515
without doing floppy access while the floppy is not loaded, the guest
516
OS will think that the same floppy is loaded).
517
@item Hard disks
518
Hard disks can be used. Normally you must specify the whole disk
519
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
520
see it as a partitioned disk. WARNING: unless you know what you do, it
521
is better to only make READ-ONLY accesses to the hard disk otherwise
522
you may corrupt your host data (use the @option{-snapshot} command
523
line option or modify the device permissions accordingly).
524
@end table
525

    
526
@subsubsection Windows
527

    
528
@table @code
529
@item CD
530
The preferred syntax is the drive letter (e.g. @file{d:}). The
531
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
532
supported as an alias to the first CDROM drive.
533

    
534
Currently there is no specific code to handle removable media, so it
535
is better to use the @code{change} or @code{eject} monitor commands to
536
change or eject media.
537
@item Hard disks
538
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
539
where @var{N} is the drive number (0 is the first hard disk).
540

    
541
WARNING: unless you know what you do, it is better to only make
542
READ-ONLY accesses to the hard disk otherwise you may corrupt your
543
host data (use the @option{-snapshot} command line so that the
544
modifications are written in a temporary file).
545
@end table
546

    
547

    
548
@subsubsection Mac OS X
549

    
550
@file{/dev/cdrom} is an alias to the first CDROM.
551

    
552
Currently there is no specific code to handle removable media, so it
553
is better to use the @code{change} or @code{eject} monitor commands to
554
change or eject media.
555

    
556
@node disk_images_fat_images
557
@subsection Virtual FAT disk images
558

    
559
QEMU can automatically create a virtual FAT disk image from a
560
directory tree. In order to use it, just type:
561

    
562
@example
563
qemu linux.img -hdb fat:/my_directory
564
@end example
565

    
566
Then you access access to all the files in the @file{/my_directory}
567
directory without having to copy them in a disk image or to export
568
them via SAMBA or NFS. The default access is @emph{read-only}.
569

    
570
Floppies can be emulated with the @code{:floppy:} option:
571

    
572
@example
573
qemu linux.img -fda fat:floppy:/my_directory
574
@end example
575

    
576
A read/write support is available for testing (beta stage) with the
577
@code{:rw:} option:
578

    
579
@example
580
qemu linux.img -fda fat:floppy:rw:/my_directory
581
@end example
582

    
583
What you should @emph{never} do:
584
@itemize
585
@item use non-ASCII filenames ;
586
@item use "-snapshot" together with ":rw:" ;
587
@item expect it to work when loadvm'ing ;
588
@item write to the FAT directory on the host system while accessing it with the guest system.
589
@end itemize
590

    
591
@node disk_images_nbd
592
@subsection NBD access
593

    
594
QEMU can access directly to block device exported using the Network Block Device
595
protocol.
596

    
597
@example
598
qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
599
@end example
600

    
601
If the NBD server is located on the same host, you can use an unix socket instead
602
of an inet socket:
603

    
604
@example
605
qemu linux.img -hdb nbd:unix:/tmp/my_socket
606
@end example
607

    
608
In this case, the block device must be exported using qemu-nbd:
609

    
610
@example
611
qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
612
@end example
613

    
614
The use of qemu-nbd allows to share a disk between several guests:
615
@example
616
qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
617
@end example
618

    
619
and then you can use it with two guests:
620
@example
621
qemu linux1.img -hdb nbd:unix:/tmp/my_socket
622
qemu linux2.img -hdb nbd:unix:/tmp/my_socket
623
@end example
624

    
625
If the nbd-server uses named exports (since NBD 2.9.18), you must use the
626
"exportname" option:
627
@example
628
qemu -cdrom nbd:localhost:exportname=debian-500-ppc-netinst
629
qemu -cdrom nbd:localhost:exportname=openSUSE-11.1-ppc-netinst
630
@end example
631

    
632
@node pcsys_network
633
@section Network emulation
634

    
635
QEMU can simulate several network cards (PCI or ISA cards on the PC
636
target) and can connect them to an arbitrary number of Virtual Local
637
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
638
VLAN. VLAN can be connected between separate instances of QEMU to
639
simulate large networks. For simpler usage, a non privileged user mode
640
network stack can replace the TAP device to have a basic network
641
connection.
642

    
643
@subsection VLANs
644

    
645
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
646
connection between several network devices. These devices can be for
647
example QEMU virtual Ethernet cards or virtual Host ethernet devices
648
(TAP devices).
649

    
650
@subsection Using TAP network interfaces
651

    
652
This is the standard way to connect QEMU to a real network. QEMU adds
653
a virtual network device on your host (called @code{tapN}), and you
654
can then configure it as if it was a real ethernet card.
655

    
656
@subsubsection Linux host
657

    
658
As an example, you can download the @file{linux-test-xxx.tar.gz}
659
archive and copy the script @file{qemu-ifup} in @file{/etc} and
660
configure properly @code{sudo} so that the command @code{ifconfig}
661
contained in @file{qemu-ifup} can be executed as root. You must verify
662
that your host kernel supports the TAP network interfaces: the
663
device @file{/dev/net/tun} must be present.
664

    
665
See @ref{sec_invocation} to have examples of command lines using the
666
TAP network interfaces.
667

    
668
@subsubsection Windows host
669

    
670
There is a virtual ethernet driver for Windows 2000/XP systems, called
671
TAP-Win32. But it is not included in standard QEMU for Windows,
672
so you will need to get it separately. It is part of OpenVPN package,
673
so download OpenVPN from : @url{http://openvpn.net/}.
674

    
675
@subsection Using the user mode network stack
676

    
677
By using the option @option{-net user} (default configuration if no
678
@option{-net} option is specified), QEMU uses a completely user mode
679
network stack (you don't need root privilege to use the virtual
680
network). The virtual network configuration is the following:
681

    
682
@example
683

    
684
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
685
                           |          (10.0.2.2)
686
                           |
687
                           ---->  DNS server (10.0.2.3)
688
                           |
689
                           ---->  SMB server (10.0.2.4)
690
@end example
691

    
692
The QEMU VM behaves as if it was behind a firewall which blocks all
693
incoming connections. You can use a DHCP client to automatically
694
configure the network in the QEMU VM. The DHCP server assign addresses
695
to the hosts starting from 10.0.2.15.
696

    
697
In order to check that the user mode network is working, you can ping
698
the address 10.0.2.2 and verify that you got an address in the range
699
10.0.2.x from the QEMU virtual DHCP server.
700

    
701
Note that @code{ping} is not supported reliably to the internet as it
702
would require root privileges. It means you can only ping the local
703
router (10.0.2.2).
704

    
705
When using the built-in TFTP server, the router is also the TFTP
706
server.
707

    
708
When using the @option{-redir} option, TCP or UDP connections can be
709
redirected from the host to the guest. It allows for example to
710
redirect X11, telnet or SSH connections.
711

    
712
@subsection Connecting VLANs between QEMU instances
713

    
714
Using the @option{-net socket} option, it is possible to make VLANs
715
that span several QEMU instances. See @ref{sec_invocation} to have a
716
basic example.
717

    
718
@section Other Devices
719

    
720
@subsection Inter-VM Shared Memory device
721

    
722
With KVM enabled on a Linux host, a shared memory device is available.  Guests
723
map a POSIX shared memory region into the guest as a PCI device that enables
724
zero-copy communication to the application level of the guests.  The basic
725
syntax is:
726

    
727
@example
728
qemu -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
729
@end example
730

    
731
If desired, interrupts can be sent between guest VMs accessing the same shared
732
memory region.  Interrupt support requires using a shared memory server and
733
using a chardev socket to connect to it.  The code for the shared memory server
734
is qemu.git/contrib/ivshmem-server.  An example syntax when using the shared
735
memory server is:
736

    
737
@example
738
qemu -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
739
                        [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
740
qemu -chardev socket,path=<path>,id=<id>
741
@end example
742

    
743
When using the server, the guest will be assigned a VM ID (>=0) that allows guests
744
using the same server to communicate via interrupts.  Guests can read their
745
VM ID from a device register (see example code).  Since receiving the shared
746
memory region from the server is asynchronous, there is a (small) chance the
747
guest may boot before the shared memory is attached.  To allow an application
748
to ensure shared memory is attached, the VM ID register will return -1 (an
749
invalid VM ID) until the memory is attached.  Once the shared memory is
750
attached, the VM ID will return the guest's valid VM ID.  With these semantics,
751
the guest application can check to ensure the shared memory is attached to the
752
guest before proceeding.
753

    
754
The @option{role} argument can be set to either master or peer and will affect
755
how the shared memory is migrated.  With @option{role=master}, the guest will
756
copy the shared memory on migration to the destination host.  With
757
@option{role=peer}, the guest will not be able to migrate with the device attached.
758
With the @option{peer} case, the device should be detached and then reattached
759
after migration using the PCI hotplug support.
760

    
761
@node direct_linux_boot
762
@section Direct Linux Boot
763

    
764
This section explains how to launch a Linux kernel inside QEMU without
765
having to make a full bootable image. It is very useful for fast Linux
766
kernel testing.
767

    
768
The syntax is:
769
@example
770
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
771
@end example
772

    
773
Use @option{-kernel} to provide the Linux kernel image and
774
@option{-append} to give the kernel command line arguments. The
775
@option{-initrd} option can be used to provide an INITRD image.
776

    
777
When using the direct Linux boot, a disk image for the first hard disk
778
@file{hda} is required because its boot sector is used to launch the
779
Linux kernel.
780

    
781
If you do not need graphical output, you can disable it and redirect
782
the virtual serial port and the QEMU monitor to the console with the
783
@option{-nographic} option. The typical command line is:
784
@example
785
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
786
     -append "root=/dev/hda console=ttyS0" -nographic
787
@end example
788

    
789
Use @key{Ctrl-a c} to switch between the serial console and the
790
monitor (@pxref{pcsys_keys}).
791

    
792
@node pcsys_usb
793
@section USB emulation
794

    
795
QEMU emulates a PCI UHCI USB controller. You can virtually plug
796
virtual USB devices or real host USB devices (experimental, works only
797
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
798
as necessary to connect multiple USB devices.
799

    
800
@menu
801
* usb_devices::
802
* host_usb_devices::
803
@end menu
804
@node usb_devices
805
@subsection Connecting USB devices
806

    
807
USB devices can be connected with the @option{-usbdevice} commandline option
808
or the @code{usb_add} monitor command.  Available devices are:
809

    
810
@table @code
811
@item mouse
812
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
813
@item tablet
814
Pointer device that uses absolute coordinates (like a touchscreen).
815
This means qemu is able to report the mouse position without having
816
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
817
@item disk:@var{file}
818
Mass storage device based on @var{file} (@pxref{disk_images})
819
@item host:@var{bus.addr}
820
Pass through the host device identified by @var{bus.addr}
821
(Linux only)
822
@item host:@var{vendor_id:product_id}
823
Pass through the host device identified by @var{vendor_id:product_id}
824
(Linux only)
825
@item wacom-tablet
826
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
827
above but it can be used with the tslib library because in addition to touch
828
coordinates it reports touch pressure.
829
@item keyboard
830
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
831
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
832
Serial converter. This emulates an FTDI FT232BM chip connected to host character
833
device @var{dev}. The available character devices are the same as for the
834
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
835
used to override the default 0403:6001. For instance, 
836
@example
837
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
838
@end example
839
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
840
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
841
@item braille
842
Braille device.  This will use BrlAPI to display the braille output on a real
843
or fake device.
844
@item net:@var{options}
845
Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
846
specifies NIC options as with @code{-net nic,}@var{options} (see description).
847
For instance, user-mode networking can be used with
848
@example
849
qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
850
@end example
851
Currently this cannot be used in machines that support PCI NICs.
852
@item bt[:@var{hci-type}]
853
Bluetooth dongle whose type is specified in the same format as with
854
the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
855
no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
856
This USB device implements the USB Transport Layer of HCI.  Example
857
usage:
858
@example
859
qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
860
@end example
861
@end table
862

    
863
@node host_usb_devices
864
@subsection Using host USB devices on a Linux host
865

    
866
WARNING: this is an experimental feature. QEMU will slow down when
867
using it. USB devices requiring real time streaming (i.e. USB Video
868
Cameras) are not supported yet.
869

    
870
@enumerate
871
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
872
is actually using the USB device. A simple way to do that is simply to
873
disable the corresponding kernel module by renaming it from @file{mydriver.o}
874
to @file{mydriver.o.disabled}.
875

    
876
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
877
@example
878
ls /proc/bus/usb
879
001  devices  drivers
880
@end example
881

    
882
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
883
@example
884
chown -R myuid /proc/bus/usb
885
@end example
886

    
887
@item Launch QEMU and do in the monitor:
888
@example
889
info usbhost
890
  Device 1.2, speed 480 Mb/s
891
    Class 00: USB device 1234:5678, USB DISK
892
@end example
893
You should see the list of the devices you can use (Never try to use
894
hubs, it won't work).
895

    
896
@item Add the device in QEMU by using:
897
@example
898
usb_add host:1234:5678
899
@end example
900

    
901
Normally the guest OS should report that a new USB device is
902
plugged. You can use the option @option{-usbdevice} to do the same.
903

    
904
@item Now you can try to use the host USB device in QEMU.
905

    
906
@end enumerate
907

    
908
When relaunching QEMU, you may have to unplug and plug again the USB
909
device to make it work again (this is a bug).
910

    
911
@node vnc_security
912
@section VNC security
913

    
914
The VNC server capability provides access to the graphical console
915
of the guest VM across the network. This has a number of security
916
considerations depending on the deployment scenarios.
917

    
918
@menu
919
* vnc_sec_none::
920
* vnc_sec_password::
921
* vnc_sec_certificate::
922
* vnc_sec_certificate_verify::
923
* vnc_sec_certificate_pw::
924
* vnc_sec_sasl::
925
* vnc_sec_certificate_sasl::
926
* vnc_generate_cert::
927
* vnc_setup_sasl::
928
@end menu
929
@node vnc_sec_none
930
@subsection Without passwords
931

    
932
The simplest VNC server setup does not include any form of authentication.
933
For this setup it is recommended to restrict it to listen on a UNIX domain
934
socket only. For example
935

    
936
@example
937
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
938
@end example
939

    
940
This ensures that only users on local box with read/write access to that
941
path can access the VNC server. To securely access the VNC server from a
942
remote machine, a combination of netcat+ssh can be used to provide a secure
943
tunnel.
944

    
945
@node vnc_sec_password
946
@subsection With passwords
947

    
948
The VNC protocol has limited support for password based authentication. Since
949
the protocol limits passwords to 8 characters it should not be considered
950
to provide high security. The password can be fairly easily brute-forced by
951
a client making repeat connections. For this reason, a VNC server using password
952
authentication should be restricted to only listen on the loopback interface
953
or UNIX domain sockets. Password authentication is requested with the @code{password}
954
option, and then once QEMU is running the password is set with the monitor. Until
955
the monitor is used to set the password all clients will be rejected.
956

    
957
@example
958
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
959
(qemu) change vnc password
960
Password: ********
961
(qemu)
962
@end example
963

    
964
@node vnc_sec_certificate
965
@subsection With x509 certificates
966

    
967
The QEMU VNC server also implements the VeNCrypt extension allowing use of
968
TLS for encryption of the session, and x509 certificates for authentication.
969
The use of x509 certificates is strongly recommended, because TLS on its
970
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
971
support provides a secure session, but no authentication. This allows any
972
client to connect, and provides an encrypted session.
973

    
974
@example
975
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
976
@end example
977

    
978
In the above example @code{/etc/pki/qemu} should contain at least three files,
979
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
980
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
981
NB the @code{server-key.pem} file should be protected with file mode 0600 to
982
only be readable by the user owning it.
983

    
984
@node vnc_sec_certificate_verify
985
@subsection With x509 certificates and client verification
986

    
987
Certificates can also provide a means to authenticate the client connecting.
988
The server will request that the client provide a certificate, which it will
989
then validate against the CA certificate. This is a good choice if deploying
990
in an environment with a private internal certificate authority.
991

    
992
@example
993
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
994
@end example
995

    
996

    
997
@node vnc_sec_certificate_pw
998
@subsection With x509 certificates, client verification and passwords
999

    
1000
Finally, the previous method can be combined with VNC password authentication
1001
to provide two layers of authentication for clients.
1002

    
1003
@example
1004
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1005
(qemu) change vnc password
1006
Password: ********
1007
(qemu)
1008
@end example
1009

    
1010

    
1011
@node vnc_sec_sasl
1012
@subsection With SASL authentication
1013

    
1014
The SASL authentication method is a VNC extension, that provides an
1015
easily extendable, pluggable authentication method. This allows for
1016
integration with a wide range of authentication mechanisms, such as
1017
PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1018
The strength of the authentication depends on the exact mechanism
1019
configured. If the chosen mechanism also provides a SSF layer, then
1020
it will encrypt the datastream as well.
1021

    
1022
Refer to the later docs on how to choose the exact SASL mechanism
1023
used for authentication, but assuming use of one supporting SSF,
1024
then QEMU can be launched with:
1025

    
1026
@example
1027
qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio
1028
@end example
1029

    
1030
@node vnc_sec_certificate_sasl
1031
@subsection With x509 certificates and SASL authentication
1032

    
1033
If the desired SASL authentication mechanism does not supported
1034
SSF layers, then it is strongly advised to run it in combination
1035
with TLS and x509 certificates. This provides securely encrypted
1036
data stream, avoiding risk of compromising of the security
1037
credentials. This can be enabled, by combining the 'sasl' option
1038
with the aforementioned TLS + x509 options:
1039

    
1040
@example
1041
qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1042
@end example
1043

    
1044

    
1045
@node vnc_generate_cert
1046
@subsection Generating certificates for VNC
1047

    
1048
The GNU TLS packages provides a command called @code{certtool} which can
1049
be used to generate certificates and keys in PEM format. At a minimum it
1050
is neccessary to setup a certificate authority, and issue certificates to
1051
each server. If using certificates for authentication, then each client
1052
will also need to be issued a certificate. The recommendation is for the
1053
server to keep its certificates in either @code{/etc/pki/qemu} or for
1054
unprivileged users in @code{$HOME/.pki/qemu}.
1055

    
1056
@menu
1057
* vnc_generate_ca::
1058
* vnc_generate_server::
1059
* vnc_generate_client::
1060
@end menu
1061
@node vnc_generate_ca
1062
@subsubsection Setup the Certificate Authority
1063

    
1064
This step only needs to be performed once per organization / organizational
1065
unit. First the CA needs a private key. This key must be kept VERY secret
1066
and secure. If this key is compromised the entire trust chain of the certificates
1067
issued with it is lost.
1068

    
1069
@example
1070
# certtool --generate-privkey > ca-key.pem
1071
@end example
1072

    
1073
A CA needs to have a public certificate. For simplicity it can be a self-signed
1074
certificate, or one issue by a commercial certificate issuing authority. To
1075
generate a self-signed certificate requires one core piece of information, the
1076
name of the organization.
1077

    
1078
@example
1079
# cat > ca.info <<EOF
1080
cn = Name of your organization
1081
ca
1082
cert_signing_key
1083
EOF
1084
# certtool --generate-self-signed \
1085
           --load-privkey ca-key.pem
1086
           --template ca.info \
1087
           --outfile ca-cert.pem
1088
@end example
1089

    
1090
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1091
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1092

    
1093
@node vnc_generate_server
1094
@subsubsection Issuing server certificates
1095

    
1096
Each server (or host) needs to be issued with a key and certificate. When connecting
1097
the certificate is sent to the client which validates it against the CA certificate.
1098
The core piece of information for a server certificate is the hostname. This should
1099
be the fully qualified hostname that the client will connect with, since the client
1100
will typically also verify the hostname in the certificate. On the host holding the
1101
secure CA private key:
1102

    
1103
@example
1104
# cat > server.info <<EOF
1105
organization = Name  of your organization
1106
cn = server.foo.example.com
1107
tls_www_server
1108
encryption_key
1109
signing_key
1110
EOF
1111
# certtool --generate-privkey > server-key.pem
1112
# certtool --generate-certificate \
1113
           --load-ca-certificate ca-cert.pem \
1114
           --load-ca-privkey ca-key.pem \
1115
           --load-privkey server server-key.pem \
1116
           --template server.info \
1117
           --outfile server-cert.pem
1118
@end example
1119

    
1120
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1121
to the server for which they were generated. The @code{server-key.pem} is security
1122
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1123

    
1124
@node vnc_generate_client
1125
@subsubsection Issuing client certificates
1126

    
1127
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1128
certificates as its authentication mechanism, each client also needs to be issued
1129
a certificate. The client certificate contains enough metadata to uniquely identify
1130
the client, typically organization, state, city, building, etc. On the host holding
1131
the secure CA private key:
1132

    
1133
@example
1134
# cat > client.info <<EOF
1135
country = GB
1136
state = London
1137
locality = London
1138
organiazation = Name of your organization
1139
cn = client.foo.example.com
1140
tls_www_client
1141
encryption_key
1142
signing_key
1143
EOF
1144
# certtool --generate-privkey > client-key.pem
1145
# certtool --generate-certificate \
1146
           --load-ca-certificate ca-cert.pem \
1147
           --load-ca-privkey ca-key.pem \
1148
           --load-privkey client-key.pem \
1149
           --template client.info \
1150
           --outfile client-cert.pem
1151
@end example
1152

    
1153
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1154
copied to the client for which they were generated.
1155

    
1156

    
1157
@node vnc_setup_sasl
1158

    
1159
@subsection Configuring SASL mechanisms
1160

    
1161
The following documentation assumes use of the Cyrus SASL implementation on a
1162
Linux host, but the principals should apply to any other SASL impl. When SASL
1163
is enabled, the mechanism configuration will be loaded from system default
1164
SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1165
unprivileged user, an environment variable SASL_CONF_PATH can be used
1166
to make it search alternate locations for the service config.
1167

    
1168
The default configuration might contain
1169

    
1170
@example
1171
mech_list: digest-md5
1172
sasldb_path: /etc/qemu/passwd.db
1173
@end example
1174

    
1175
This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1176
Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1177
in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1178
command. While this mechanism is easy to configure and use, it is not
1179
considered secure by modern standards, so only suitable for developers /
1180
ad-hoc testing.
1181

    
1182
A more serious deployment might use Kerberos, which is done with the 'gssapi'
1183
mechanism
1184

    
1185
@example
1186
mech_list: gssapi
1187
keytab: /etc/qemu/krb5.tab
1188
@end example
1189

    
1190
For this to work the administrator of your KDC must generate a Kerberos
1191
principal for the server, with a name of  'qemu/somehost.example.com@@EXAMPLE.COM'
1192
replacing 'somehost.example.com' with the fully qualified host name of the
1193
machine running QEMU, and 'EXAMPLE.COM' with the Keberos Realm.
1194

    
1195
Other configurations will be left as an exercise for the reader. It should
1196
be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1197
encryption. For all other mechanisms, VNC should always be configured to
1198
use TLS and x509 certificates to protect security credentials from snooping.
1199

    
1200
@node gdb_usage
1201
@section GDB usage
1202

    
1203
QEMU has a primitive support to work with gdb, so that you can do
1204
'Ctrl-C' while the virtual machine is running and inspect its state.
1205

    
1206
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1207
gdb connection:
1208
@example
1209
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1210
       -append "root=/dev/hda"
1211
Connected to host network interface: tun0
1212
Waiting gdb connection on port 1234
1213
@end example
1214

    
1215
Then launch gdb on the 'vmlinux' executable:
1216
@example
1217
> gdb vmlinux
1218
@end example
1219

    
1220
In gdb, connect to QEMU:
1221
@example
1222
(gdb) target remote localhost:1234
1223
@end example
1224

    
1225
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1226
@example
1227
(gdb) c
1228
@end example
1229

    
1230
Here are some useful tips in order to use gdb on system code:
1231

    
1232
@enumerate
1233
@item
1234
Use @code{info reg} to display all the CPU registers.
1235
@item
1236
Use @code{x/10i $eip} to display the code at the PC position.
1237
@item
1238
Use @code{set architecture i8086} to dump 16 bit code. Then use
1239
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1240
@end enumerate
1241

    
1242
Advanced debugging options:
1243

    
1244
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1245
@table @code
1246
@item maintenance packet qqemu.sstepbits
1247

    
1248
This will display the MASK bits used to control the single stepping IE:
1249
@example
1250
(gdb) maintenance packet qqemu.sstepbits
1251
sending: "qqemu.sstepbits"
1252
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1253
@end example
1254
@item maintenance packet qqemu.sstep
1255

    
1256
This will display the current value of the mask used when single stepping IE:
1257
@example
1258
(gdb) maintenance packet qqemu.sstep
1259
sending: "qqemu.sstep"
1260
received: "0x7"
1261
@end example
1262
@item maintenance packet Qqemu.sstep=HEX_VALUE
1263

    
1264
This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1265
@example
1266
(gdb) maintenance packet Qqemu.sstep=0x5
1267
sending: "qemu.sstep=0x5"
1268
received: "OK"
1269
@end example
1270
@end table
1271

    
1272
@node pcsys_os_specific
1273
@section Target OS specific information
1274

    
1275
@subsection Linux
1276

    
1277
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1278
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1279
color depth in the guest and the host OS.
1280

    
1281
When using a 2.6 guest Linux kernel, you should add the option
1282
@code{clock=pit} on the kernel command line because the 2.6 Linux
1283
kernels make very strict real time clock checks by default that QEMU
1284
cannot simulate exactly.
1285

    
1286
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1287
not activated because QEMU is slower with this patch. The QEMU
1288
Accelerator Module is also much slower in this case. Earlier Fedora
1289
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1290
patch by default. Newer kernels don't have it.
1291

    
1292
@subsection Windows
1293

    
1294
If you have a slow host, using Windows 95 is better as it gives the
1295
best speed. Windows 2000 is also a good choice.
1296

    
1297
@subsubsection SVGA graphic modes support
1298

    
1299
QEMU emulates a Cirrus Logic GD5446 Video
1300
card. All Windows versions starting from Windows 95 should recognize
1301
and use this graphic card. For optimal performances, use 16 bit color
1302
depth in the guest and the host OS.
1303

    
1304
If you are using Windows XP as guest OS and if you want to use high
1305
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1306
1280x1024x16), then you should use the VESA VBE virtual graphic card
1307
(option @option{-std-vga}).
1308

    
1309
@subsubsection CPU usage reduction
1310

    
1311
Windows 9x does not correctly use the CPU HLT
1312
instruction. The result is that it takes host CPU cycles even when
1313
idle. You can install the utility from
1314
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1315
problem. Note that no such tool is needed for NT, 2000 or XP.
1316

    
1317
@subsubsection Windows 2000 disk full problem
1318

    
1319
Windows 2000 has a bug which gives a disk full problem during its
1320
installation. When installing it, use the @option{-win2k-hack} QEMU
1321
option to enable a specific workaround. After Windows 2000 is
1322
installed, you no longer need this option (this option slows down the
1323
IDE transfers).
1324

    
1325
@subsubsection Windows 2000 shutdown
1326

    
1327
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1328
can. It comes from the fact that Windows 2000 does not automatically
1329
use the APM driver provided by the BIOS.
1330

    
1331
In order to correct that, do the following (thanks to Struan
1332
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1333
Add/Troubleshoot a device => Add a new device & Next => No, select the
1334
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1335
(again) a few times. Now the driver is installed and Windows 2000 now
1336
correctly instructs QEMU to shutdown at the appropriate moment.
1337

    
1338
@subsubsection Share a directory between Unix and Windows
1339

    
1340
See @ref{sec_invocation} about the help of the option @option{-smb}.
1341

    
1342
@subsubsection Windows XP security problem
1343

    
1344
Some releases of Windows XP install correctly but give a security
1345
error when booting:
1346
@example
1347
A problem is preventing Windows from accurately checking the
1348
license for this computer. Error code: 0x800703e6.
1349
@end example
1350

    
1351
The workaround is to install a service pack for XP after a boot in safe
1352
mode. Then reboot, and the problem should go away. Since there is no
1353
network while in safe mode, its recommended to download the full
1354
installation of SP1 or SP2 and transfer that via an ISO or using the
1355
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1356

    
1357
@subsection MS-DOS and FreeDOS
1358

    
1359
@subsubsection CPU usage reduction
1360

    
1361
DOS does not correctly use the CPU HLT instruction. The result is that
1362
it takes host CPU cycles even when idle. You can install the utility
1363
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1364
problem.
1365

    
1366
@node QEMU System emulator for non PC targets
1367
@chapter QEMU System emulator for non PC targets
1368

    
1369
QEMU is a generic emulator and it emulates many non PC
1370
machines. Most of the options are similar to the PC emulator. The
1371
differences are mentioned in the following sections.
1372

    
1373
@menu
1374
* PowerPC System emulator::
1375
* Sparc32 System emulator::
1376
* Sparc64 System emulator::
1377
* MIPS System emulator::
1378
* ARM System emulator::
1379
* ColdFire System emulator::
1380
* Cris System emulator::
1381
* Microblaze System emulator::
1382
* SH4 System emulator::
1383
@end menu
1384

    
1385
@node PowerPC System emulator
1386
@section PowerPC System emulator
1387
@cindex system emulation (PowerPC)
1388

    
1389
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1390
or PowerMac PowerPC system.
1391

    
1392
QEMU emulates the following PowerMac peripherals:
1393

    
1394
@itemize @minus
1395
@item
1396
UniNorth or Grackle PCI Bridge
1397
@item
1398
PCI VGA compatible card with VESA Bochs Extensions
1399
@item
1400
2 PMAC IDE interfaces with hard disk and CD-ROM support
1401
@item
1402
NE2000 PCI adapters
1403
@item
1404
Non Volatile RAM
1405
@item
1406
VIA-CUDA with ADB keyboard and mouse.
1407
@end itemize
1408

    
1409
QEMU emulates the following PREP peripherals:
1410

    
1411
@itemize @minus
1412
@item
1413
PCI Bridge
1414
@item
1415
PCI VGA compatible card with VESA Bochs Extensions
1416
@item
1417
2 IDE interfaces with hard disk and CD-ROM support
1418
@item
1419
Floppy disk
1420
@item
1421
NE2000 network adapters
1422
@item
1423
Serial port
1424
@item
1425
PREP Non Volatile RAM
1426
@item
1427
PC compatible keyboard and mouse.
1428
@end itemize
1429

    
1430
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1431
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1432

    
1433
Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1434
for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1435
v2) portable firmware implementation. The goal is to implement a 100%
1436
IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1437

    
1438
@c man begin OPTIONS
1439

    
1440
The following options are specific to the PowerPC emulation:
1441

    
1442
@table @option
1443

    
1444
@item -g @var{W}x@var{H}[x@var{DEPTH}]
1445

    
1446
Set the initial VGA graphic mode. The default is 800x600x15.
1447

    
1448
@item -prom-env @var{string}
1449

    
1450
Set OpenBIOS variables in NVRAM, for example:
1451

    
1452
@example
1453
qemu-system-ppc -prom-env 'auto-boot?=false' \
1454
 -prom-env 'boot-device=hd:2,\yaboot' \
1455
 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1456
@end example
1457

    
1458
These variables are not used by Open Hack'Ware.
1459

    
1460
@end table
1461

    
1462
@c man end
1463

    
1464

    
1465
More information is available at
1466
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1467

    
1468
@node Sparc32 System emulator
1469
@section Sparc32 System emulator
1470
@cindex system emulation (Sparc32)
1471

    
1472
Use the executable @file{qemu-system-sparc} to simulate the following
1473
Sun4m architecture machines:
1474
@itemize @minus
1475
@item
1476
SPARCstation 4
1477
@item
1478
SPARCstation 5
1479
@item
1480
SPARCstation 10
1481
@item
1482
SPARCstation 20
1483
@item
1484
SPARCserver 600MP
1485
@item
1486
SPARCstation LX
1487
@item
1488
SPARCstation Voyager
1489
@item
1490
SPARCclassic
1491
@item
1492
SPARCbook
1493
@end itemize
1494

    
1495
The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1496
but Linux limits the number of usable CPUs to 4.
1497

    
1498
It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1499
SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1500
emulators are not usable yet.
1501

    
1502
QEMU emulates the following sun4m/sun4c/sun4d peripherals:
1503

    
1504
@itemize @minus
1505
@item
1506
IOMMU or IO-UNITs
1507
@item
1508
TCX Frame buffer
1509
@item
1510
Lance (Am7990) Ethernet
1511
@item
1512
Non Volatile RAM M48T02/M48T08
1513
@item
1514
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1515
and power/reset logic
1516
@item
1517
ESP SCSI controller with hard disk and CD-ROM support
1518
@item
1519
Floppy drive (not on SS-600MP)
1520
@item
1521
CS4231 sound device (only on SS-5, not working yet)
1522
@end itemize
1523

    
1524
The number of peripherals is fixed in the architecture.  Maximum
1525
memory size depends on the machine type, for SS-5 it is 256MB and for
1526
others 2047MB.
1527

    
1528
Since version 0.8.2, QEMU uses OpenBIOS
1529
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1530
firmware implementation. The goal is to implement a 100% IEEE
1531
1275-1994 (referred to as Open Firmware) compliant firmware.
1532

    
1533
A sample Linux 2.6 series kernel and ram disk image are available on
1534
the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1535
some kernel versions work. Please note that currently Solaris kernels
1536
don't work probably due to interface issues between OpenBIOS and
1537
Solaris.
1538

    
1539
@c man begin OPTIONS
1540

    
1541
The following options are specific to the Sparc32 emulation:
1542

    
1543
@table @option
1544

    
1545
@item -g @var{W}x@var{H}x[x@var{DEPTH}]
1546

    
1547
Set the initial TCX graphic mode. The default is 1024x768x8, currently
1548
the only other possible mode is 1024x768x24.
1549

    
1550
@item -prom-env @var{string}
1551

    
1552
Set OpenBIOS variables in NVRAM, for example:
1553

    
1554
@example
1555
qemu-system-sparc -prom-env 'auto-boot?=false' \
1556
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1557
@end example
1558

    
1559
@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook|SS-2|SS-1000|SS-2000]
1560

    
1561
Set the emulated machine type. Default is SS-5.
1562

    
1563
@end table
1564

    
1565
@c man end
1566

    
1567
@node Sparc64 System emulator
1568
@section Sparc64 System emulator
1569
@cindex system emulation (Sparc64)
1570

    
1571
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1572
(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1573
Niagara (T1) machine. The emulator is not usable for anything yet, but
1574
it can launch some kernels.
1575

    
1576
QEMU emulates the following peripherals:
1577

    
1578
@itemize @minus
1579
@item
1580
UltraSparc IIi APB PCI Bridge
1581
@item
1582
PCI VGA compatible card with VESA Bochs Extensions
1583
@item
1584
PS/2 mouse and keyboard
1585
@item
1586
Non Volatile RAM M48T59
1587
@item
1588
PC-compatible serial ports
1589
@item
1590
2 PCI IDE interfaces with hard disk and CD-ROM support
1591
@item
1592
Floppy disk
1593
@end itemize
1594

    
1595
@c man begin OPTIONS
1596

    
1597
The following options are specific to the Sparc64 emulation:
1598

    
1599
@table @option
1600

    
1601
@item -prom-env @var{string}
1602

    
1603
Set OpenBIOS variables in NVRAM, for example:
1604

    
1605
@example
1606
qemu-system-sparc64 -prom-env 'auto-boot?=false'
1607
@end example
1608

    
1609
@item -M [sun4u|sun4v|Niagara]
1610

    
1611
Set the emulated machine type. The default is sun4u.
1612

    
1613
@end table
1614

    
1615
@c man end
1616

    
1617
@node MIPS System emulator
1618
@section MIPS System emulator
1619
@cindex system emulation (MIPS)
1620

    
1621
Four executables cover simulation of 32 and 64-bit MIPS systems in
1622
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1623
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
1624
Five different machine types are emulated:
1625

    
1626
@itemize @minus
1627
@item
1628
A generic ISA PC-like machine "mips"
1629
@item
1630
The MIPS Malta prototype board "malta"
1631
@item
1632
An ACER Pica "pica61". This machine needs the 64-bit emulator.
1633
@item
1634
MIPS emulator pseudo board "mipssim"
1635
@item
1636
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
1637
@end itemize
1638

    
1639
The generic emulation is supported by Debian 'Etch' and is able to
1640
install Debian into a virtual disk image. The following devices are
1641
emulated:
1642

    
1643
@itemize @minus
1644
@item
1645
A range of MIPS CPUs, default is the 24Kf
1646
@item
1647
PC style serial port
1648
@item
1649
PC style IDE disk
1650
@item
1651
NE2000 network card
1652
@end itemize
1653

    
1654
The Malta emulation supports the following devices:
1655

    
1656
@itemize @minus
1657
@item
1658
Core board with MIPS 24Kf CPU and Galileo system controller
1659
@item
1660
PIIX4 PCI/USB/SMbus controller
1661
@item
1662
The Multi-I/O chip's serial device
1663
@item
1664
PCI network cards (PCnet32 and others)
1665
@item
1666
Malta FPGA serial device
1667
@item
1668
Cirrus (default) or any other PCI VGA graphics card
1669
@end itemize
1670

    
1671
The ACER Pica emulation supports:
1672

    
1673
@itemize @minus
1674
@item
1675
MIPS R4000 CPU
1676
@item
1677
PC-style IRQ and DMA controllers
1678
@item
1679
PC Keyboard
1680
@item
1681
IDE controller
1682
@end itemize
1683

    
1684
The mipssim pseudo board emulation provides an environment similiar
1685
to what the proprietary MIPS emulator uses for running Linux.
1686
It supports:
1687

    
1688
@itemize @minus
1689
@item
1690
A range of MIPS CPUs, default is the 24Kf
1691
@item
1692
PC style serial port
1693
@item
1694
MIPSnet network emulation
1695
@end itemize
1696

    
1697
The MIPS Magnum R4000 emulation supports:
1698

    
1699
@itemize @minus
1700
@item
1701
MIPS R4000 CPU
1702
@item
1703
PC-style IRQ controller
1704
@item
1705
PC Keyboard
1706
@item
1707
SCSI controller
1708
@item
1709
G364 framebuffer
1710
@end itemize
1711

    
1712

    
1713
@node ARM System emulator
1714
@section ARM System emulator
1715
@cindex system emulation (ARM)
1716

    
1717
Use the executable @file{qemu-system-arm} to simulate a ARM
1718
machine. The ARM Integrator/CP board is emulated with the following
1719
devices:
1720

    
1721
@itemize @minus
1722
@item
1723
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
1724
@item
1725
Two PL011 UARTs
1726
@item
1727
SMC 91c111 Ethernet adapter
1728
@item
1729
PL110 LCD controller
1730
@item
1731
PL050 KMI with PS/2 keyboard and mouse.
1732
@item
1733
PL181 MultiMedia Card Interface with SD card.
1734
@end itemize
1735

    
1736
The ARM Versatile baseboard is emulated with the following devices:
1737

    
1738
@itemize @minus
1739
@item
1740
ARM926E, ARM1136 or Cortex-A8 CPU
1741
@item
1742
PL190 Vectored Interrupt Controller
1743
@item
1744
Four PL011 UARTs
1745
@item
1746
SMC 91c111 Ethernet adapter
1747
@item
1748
PL110 LCD controller
1749
@item
1750
PL050 KMI with PS/2 keyboard and mouse.
1751
@item
1752
PCI host bridge.  Note the emulated PCI bridge only provides access to
1753
PCI memory space.  It does not provide access to PCI IO space.
1754
This means some devices (eg. ne2k_pci NIC) are not usable, and others
1755
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
1756
mapped control registers.
1757
@item
1758
PCI OHCI USB controller.
1759
@item
1760
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1761
@item
1762
PL181 MultiMedia Card Interface with SD card.
1763
@end itemize
1764

    
1765
Several variants of the ARM RealView baseboard are emulated,
1766
including the EB, PB-A8 and PBX-A9.  Due to interactions with the
1767
bootloader, only certain Linux kernel configurations work out
1768
of the box on these boards.
1769

    
1770
Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1771
enabled in the kernel, and expect 512M RAM.  Kernels for The PBX-A9 board
1772
should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1773
disabled and expect 1024M RAM.
1774

    
1775
The following devices are emuilated:
1776

    
1777
@itemize @minus
1778
@item
1779
ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
1780
@item
1781
ARM AMBA Generic/Distributed Interrupt Controller
1782
@item
1783
Four PL011 UARTs
1784
@item
1785
SMC 91c111 or SMSC LAN9118 Ethernet adapter
1786
@item
1787
PL110 LCD controller
1788
@item
1789
PL050 KMI with PS/2 keyboard and mouse
1790
@item
1791
PCI host bridge
1792
@item
1793
PCI OHCI USB controller
1794
@item
1795
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
1796
@item
1797
PL181 MultiMedia Card Interface with SD card.
1798
@end itemize
1799

    
1800
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1801
and "Terrier") emulation includes the following peripherals:
1802

    
1803
@itemize @minus
1804
@item
1805
Intel PXA270 System-on-chip (ARM V5TE core)
1806
@item
1807
NAND Flash memory
1808
@item
1809
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1810
@item
1811
On-chip OHCI USB controller
1812
@item
1813
On-chip LCD controller
1814
@item
1815
On-chip Real Time Clock
1816
@item
1817
TI ADS7846 touchscreen controller on SSP bus
1818
@item
1819
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1820
@item
1821
GPIO-connected keyboard controller and LEDs
1822
@item
1823
Secure Digital card connected to PXA MMC/SD host
1824
@item
1825
Three on-chip UARTs
1826
@item
1827
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
1828
@end itemize
1829

    
1830
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
1831
following elements:
1832

    
1833
@itemize @minus
1834
@item
1835
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1836
@item
1837
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
1838
@item
1839
On-chip LCD controller
1840
@item
1841
On-chip Real Time Clock
1842
@item
1843
TI TSC2102i touchscreen controller / analog-digital converter / Audio
1844
CODEC, connected through MicroWire and I@math{^2}S busses
1845
@item
1846
GPIO-connected matrix keypad
1847
@item
1848
Secure Digital card connected to OMAP MMC/SD host
1849
@item
1850
Three on-chip UARTs
1851
@end itemize
1852

    
1853
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
1854
emulation supports the following elements:
1855

    
1856
@itemize @minus
1857
@item
1858
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
1859
@item
1860
RAM and non-volatile OneNAND Flash memories
1861
@item
1862
Display connected to EPSON remote framebuffer chip and OMAP on-chip
1863
display controller and a LS041y3 MIPI DBI-C controller
1864
@item
1865
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
1866
driven through SPI bus
1867
@item
1868
National Semiconductor LM8323-controlled qwerty keyboard driven
1869
through I@math{^2}C bus
1870
@item
1871
Secure Digital card connected to OMAP MMC/SD host
1872
@item
1873
Three OMAP on-chip UARTs and on-chip STI debugging console
1874
@item
1875
A Bluetooth(R) transciever and HCI connected to an UART
1876
@item
1877
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
1878
TUSB6010 chip - only USB host mode is supported
1879
@item
1880
TI TMP105 temperature sensor driven through I@math{^2}C bus
1881
@item
1882
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
1883
@item
1884
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
1885
through CBUS
1886
@end itemize
1887

    
1888
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
1889
devices:
1890

    
1891
@itemize @minus
1892
@item
1893
Cortex-M3 CPU core.
1894
@item
1895
64k Flash and 8k SRAM.
1896
@item
1897
Timers, UARTs, ADC and I@math{^2}C interface.
1898
@item
1899
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
1900
@end itemize
1901

    
1902
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
1903
devices:
1904

    
1905
@itemize @minus
1906
@item
1907
Cortex-M3 CPU core.
1908
@item
1909
256k Flash and 64k SRAM.
1910
@item
1911
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
1912
@item
1913
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
1914
@end itemize
1915

    
1916
The Freecom MusicPal internet radio emulation includes the following
1917
elements:
1918

    
1919
@itemize @minus
1920
@item
1921
Marvell MV88W8618 ARM core.
1922
@item
1923
32 MB RAM, 256 KB SRAM, 8 MB flash.
1924
@item
1925
Up to 2 16550 UARTs
1926
@item
1927
MV88W8xx8 Ethernet controller
1928
@item
1929
MV88W8618 audio controller, WM8750 CODEC and mixer
1930
@item
1931
128×64 display with brightness control
1932
@item
1933
2 buttons, 2 navigation wheels with button function
1934
@end itemize
1935

    
1936
The Siemens SX1 models v1 and v2 (default) basic emulation.
1937
The emulaton includes the following elements:
1938

    
1939
@itemize @minus
1940
@item
1941
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1942
@item
1943
ROM and RAM memories (ROM firmware image can be loaded with -pflash)
1944
V1
1945
1 Flash of 16MB and 1 Flash of 8MB
1946
V2
1947
1 Flash of 32MB
1948
@item
1949
On-chip LCD controller
1950
@item
1951
On-chip Real Time Clock
1952
@item
1953
Secure Digital card connected to OMAP MMC/SD host
1954
@item
1955
Three on-chip UARTs
1956
@end itemize
1957

    
1958
The "Syborg" Symbian Virtual Platform base model includes the following
1959
elements:
1960

    
1961
@itemize @minus
1962
@item
1963
ARM Cortex-A8 CPU
1964
@item
1965
Interrupt controller
1966
@item
1967
Timer
1968
@item
1969
Real Time Clock
1970
@item
1971
Keyboard
1972
@item
1973
Framebuffer
1974
@item
1975
Touchscreen
1976
@item
1977
UARTs
1978
@end itemize
1979

    
1980
A Linux 2.6 test image is available on the QEMU web site. More
1981
information is available in the QEMU mailing-list archive.
1982

    
1983
@c man begin OPTIONS
1984

    
1985
The following options are specific to the ARM emulation:
1986

    
1987
@table @option
1988

    
1989
@item -semihosting
1990
Enable semihosting syscall emulation.
1991

    
1992
On ARM this implements the "Angel" interface.
1993

    
1994
Note that this allows guest direct access to the host filesystem,
1995
so should only be used with trusted guest OS.
1996

    
1997
@end table
1998

    
1999
@node ColdFire System emulator
2000
@section ColdFire System emulator
2001
@cindex system emulation (ColdFire)
2002
@cindex system emulation (M68K)
2003

    
2004
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2005
The emulator is able to boot a uClinux kernel.
2006

    
2007
The M5208EVB emulation includes the following devices:
2008

    
2009
@itemize @minus
2010
@item
2011
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2012
@item
2013
Three Two on-chip UARTs.
2014
@item
2015
Fast Ethernet Controller (FEC)
2016
@end itemize
2017

    
2018
The AN5206 emulation includes the following devices:
2019

    
2020
@itemize @minus
2021
@item
2022
MCF5206 ColdFire V2 Microprocessor.
2023
@item
2024
Two on-chip UARTs.
2025
@end itemize
2026

    
2027
@c man begin OPTIONS
2028

    
2029
The following options are specific to the ColdFire emulation:
2030

    
2031
@table @option
2032

    
2033
@item -semihosting
2034
Enable semihosting syscall emulation.
2035

    
2036
On M68K this implements the "ColdFire GDB" interface used by libgloss.
2037

    
2038
Note that this allows guest direct access to the host filesystem,
2039
so should only be used with trusted guest OS.
2040

    
2041
@end table
2042

    
2043
@node Cris System emulator
2044
@section Cris System emulator
2045
@cindex system emulation (Cris)
2046

    
2047
TODO
2048

    
2049
@node Microblaze System emulator
2050
@section Microblaze System emulator
2051
@cindex system emulation (Microblaze)
2052

    
2053
TODO
2054

    
2055
@node SH4 System emulator
2056
@section SH4 System emulator
2057
@cindex system emulation (SH4)
2058

    
2059
TODO
2060

    
2061
@node QEMU User space emulator
2062
@chapter QEMU User space emulator
2063

    
2064
@menu
2065
* Supported Operating Systems ::
2066
* Linux User space emulator::
2067
* Mac OS X/Darwin User space emulator ::
2068
* BSD User space emulator ::
2069
@end menu
2070

    
2071
@node Supported Operating Systems
2072
@section Supported Operating Systems
2073

    
2074
The following OS are supported in user space emulation:
2075

    
2076
@itemize @minus
2077
@item
2078
Linux (referred as qemu-linux-user)
2079
@item
2080
Mac OS X/Darwin (referred as qemu-darwin-user)
2081
@item
2082
BSD (referred as qemu-bsd-user)
2083
@end itemize
2084

    
2085
@node Linux User space emulator
2086
@section Linux User space emulator
2087

    
2088
@menu
2089
* Quick Start::
2090
* Wine launch::
2091
* Command line options::
2092
* Other binaries::
2093
@end menu
2094

    
2095
@node Quick Start
2096
@subsection Quick Start
2097

    
2098
In order to launch a Linux process, QEMU needs the process executable
2099
itself and all the target (x86) dynamic libraries used by it.
2100

    
2101
@itemize
2102

    
2103
@item On x86, you can just try to launch any process by using the native
2104
libraries:
2105

    
2106
@example
2107
qemu-i386 -L / /bin/ls
2108
@end example
2109

    
2110
@code{-L /} tells that the x86 dynamic linker must be searched with a
2111
@file{/} prefix.
2112

    
2113
@item Since QEMU is also a linux process, you can launch qemu with
2114
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2115

    
2116
@example
2117
qemu-i386 -L / qemu-i386 -L / /bin/ls
2118
@end example
2119

    
2120
@item On non x86 CPUs, you need first to download at least an x86 glibc
2121
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2122
@code{LD_LIBRARY_PATH} is not set:
2123

    
2124
@example
2125
unset LD_LIBRARY_PATH
2126
@end example
2127

    
2128
Then you can launch the precompiled @file{ls} x86 executable:
2129

    
2130
@example
2131
qemu-i386 tests/i386/ls
2132
@end example
2133
You can look at @file{qemu-binfmt-conf.sh} so that
2134
QEMU is automatically launched by the Linux kernel when you try to
2135
launch x86 executables. It requires the @code{binfmt_misc} module in the
2136
Linux kernel.
2137

    
2138
@item The x86 version of QEMU is also included. You can try weird things such as:
2139
@example
2140
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2141
          /usr/local/qemu-i386/bin/ls-i386
2142
@end example
2143

    
2144
@end itemize
2145

    
2146
@node Wine launch
2147
@subsection Wine launch
2148

    
2149
@itemize
2150

    
2151
@item Ensure that you have a working QEMU with the x86 glibc
2152
distribution (see previous section). In order to verify it, you must be
2153
able to do:
2154

    
2155
@example
2156
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2157
@end example
2158

    
2159
@item Download the binary x86 Wine install
2160
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2161

    
2162
@item Configure Wine on your account. Look at the provided script
2163
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2164
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2165

    
2166
@item Then you can try the example @file{putty.exe}:
2167

    
2168
@example
2169
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2170
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2171
@end example
2172

    
2173
@end itemize
2174

    
2175
@node Command line options
2176
@subsection Command line options
2177

    
2178
@example
2179
usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
2180
@end example
2181

    
2182
@table @option
2183
@item -h
2184
Print the help
2185
@item -L path
2186
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2187
@item -s size
2188
Set the x86 stack size in bytes (default=524288)
2189
@item -cpu model
2190
Select CPU model (-cpu ? for list and additional feature selection)
2191
@item -ignore-environment
2192
Start with an empty environment. Without this option,
2193
the inital environment is a copy of the caller's environment.
2194
@item -E @var{var}=@var{value}
2195
Set environment @var{var} to @var{value}.
2196
@item -U @var{var}
2197
Remove @var{var} from the environment.
2198
@item -B offset
2199
Offset guest address by the specified number of bytes.  This is useful when
2200
the address region required by guest applications is reserved on the host.
2201
This option is currently only supported on some hosts.
2202
@item -R size
2203
Pre-allocate a guest virtual address space of the given size (in bytes).
2204
"G", "M", and "k" suffixes may be used when specifying the size.  
2205
@end table
2206

    
2207
Debug options:
2208

    
2209
@table @option
2210
@item -d
2211
Activate log (logfile=/tmp/qemu.log)
2212
@item -p pagesize
2213
Act as if the host page size was 'pagesize' bytes
2214
@item -g port
2215
Wait gdb connection to port
2216
@item -singlestep
2217
Run the emulation in single step mode.
2218
@end table
2219

    
2220
Environment variables:
2221

    
2222
@table @env
2223
@item QEMU_STRACE
2224
Print system calls and arguments similar to the 'strace' program
2225
(NOTE: the actual 'strace' program will not work because the user
2226
space emulator hasn't implemented ptrace).  At the moment this is
2227
incomplete.  All system calls that don't have a specific argument
2228
format are printed with information for six arguments.  Many
2229
flag-style arguments don't have decoders and will show up as numbers.
2230
@end table
2231

    
2232
@node Other binaries
2233
@subsection Other binaries
2234

    
2235
@cindex user mode (Alpha)
2236
@command{qemu-alpha} TODO.
2237

    
2238
@cindex user mode (ARM)
2239
@command{qemu-armeb} TODO.
2240

    
2241
@cindex user mode (ARM)
2242
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2243
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2244
configurations), and arm-uclinux bFLT format binaries.
2245

    
2246
@cindex user mode (ColdFire)
2247
@cindex user mode (M68K)
2248
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2249
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2250
coldfire uClinux bFLT format binaries.
2251

    
2252
The binary format is detected automatically.
2253

    
2254
@cindex user mode (Cris)
2255
@command{qemu-cris} TODO.
2256

    
2257
@cindex user mode (i386)
2258
@command{qemu-i386} TODO.
2259
@command{qemu-x86_64} TODO.
2260

    
2261
@cindex user mode (Microblaze)
2262
@command{qemu-microblaze} TODO.
2263

    
2264
@cindex user mode (MIPS)
2265
@command{qemu-mips} TODO.
2266
@command{qemu-mipsel} TODO.
2267

    
2268
@cindex user mode (PowerPC)
2269
@command{qemu-ppc64abi32} TODO.
2270
@command{qemu-ppc64} TODO.
2271
@command{qemu-ppc} TODO.
2272

    
2273
@cindex user mode (SH4)
2274
@command{qemu-sh4eb} TODO.
2275
@command{qemu-sh4} TODO.
2276

    
2277
@cindex user mode (SPARC)
2278
@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2279

    
2280
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2281
(Sparc64 CPU, 32 bit ABI).
2282

    
2283
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2284
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2285

    
2286
@node Mac OS X/Darwin User space emulator
2287
@section Mac OS X/Darwin User space emulator
2288

    
2289
@menu
2290
* Mac OS X/Darwin Status::
2291
* Mac OS X/Darwin Quick Start::
2292
* Mac OS X/Darwin Command line options::
2293
@end menu
2294

    
2295
@node Mac OS X/Darwin Status
2296
@subsection Mac OS X/Darwin Status
2297

    
2298
@itemize @minus
2299
@item
2300
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2301
@item
2302
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2303
@item
2304
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2305
@item
2306
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2307
@end itemize
2308

    
2309
[1] If you're host commpage can be executed by qemu.
2310

    
2311
@node Mac OS X/Darwin Quick Start
2312
@subsection Quick Start
2313

    
2314
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2315
itself and all the target dynamic libraries used by it. If you don't have the FAT
2316
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2317
CD or compile them by hand.
2318

    
2319
@itemize
2320

    
2321
@item On x86, you can just try to launch any process by using the native
2322
libraries:
2323

    
2324
@example
2325
qemu-i386 /bin/ls
2326
@end example
2327

    
2328
or to run the ppc version of the executable:
2329

    
2330
@example
2331
qemu-ppc /bin/ls
2332
@end example
2333

    
2334
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2335
are installed:
2336

    
2337
@example
2338
qemu-i386 -L /opt/x86_root/ /bin/ls
2339
@end example
2340

    
2341
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2342
@file{/opt/x86_root/usr/bin/dyld}.
2343

    
2344
@end itemize
2345

    
2346
@node Mac OS X/Darwin Command line options
2347
@subsection Command line options
2348

    
2349
@example
2350
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2351
@end example
2352

    
2353
@table @option
2354
@item -h
2355
Print the help
2356
@item -L path
2357
Set the library root path (default=/)
2358
@item -s size
2359
Set the stack size in bytes (default=524288)
2360
@end table
2361

    
2362
Debug options:
2363

    
2364
@table @option
2365
@item -d
2366
Activate log (logfile=/tmp/qemu.log)
2367
@item -p pagesize
2368
Act as if the host page size was 'pagesize' bytes
2369
@item -singlestep
2370
Run the emulation in single step mode.
2371
@end table
2372

    
2373
@node BSD User space emulator
2374
@section BSD User space emulator
2375

    
2376
@menu
2377
* BSD Status::
2378
* BSD Quick Start::
2379
* BSD Command line options::
2380
@end menu
2381

    
2382
@node BSD Status
2383
@subsection BSD Status
2384

    
2385
@itemize @minus
2386
@item
2387
target Sparc64 on Sparc64: Some trivial programs work.
2388
@end itemize
2389

    
2390
@node BSD Quick Start
2391
@subsection Quick Start
2392

    
2393
In order to launch a BSD process, QEMU needs the process executable
2394
itself and all the target dynamic libraries used by it.
2395

    
2396
@itemize
2397

    
2398
@item On Sparc64, you can just try to launch any process by using the native
2399
libraries:
2400

    
2401
@example
2402
qemu-sparc64 /bin/ls
2403
@end example
2404

    
2405
@end itemize
2406

    
2407
@node BSD Command line options
2408
@subsection Command line options
2409

    
2410
@example
2411
usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2412
@end example
2413

    
2414
@table @option
2415
@item -h
2416
Print the help
2417
@item -L path
2418
Set the library root path (default=/)
2419
@item -s size
2420
Set the stack size in bytes (default=524288)
2421
@item -ignore-environment
2422
Start with an empty environment. Without this option,
2423
the inital environment is a copy of the caller's environment.
2424
@item -E @var{var}=@var{value}
2425
Set environment @var{var} to @var{value}.
2426
@item -U @var{var}
2427
Remove @var{var} from the environment.
2428
@item -bsd type
2429
Set the type of the emulated BSD Operating system. Valid values are
2430
FreeBSD, NetBSD and OpenBSD (default).
2431
@end table
2432

    
2433
Debug options:
2434

    
2435
@table @option
2436
@item -d
2437
Activate log (logfile=/tmp/qemu.log)
2438
@item -p pagesize
2439
Act as if the host page size was 'pagesize' bytes
2440
@item -singlestep
2441
Run the emulation in single step mode.
2442
@end table
2443

    
2444
@node compilation
2445
@chapter Compilation from the sources
2446

    
2447
@menu
2448
* Linux/Unix::
2449
* Windows::
2450
* Cross compilation for Windows with Linux::
2451
* Mac OS X::
2452
* Make targets::
2453
@end menu
2454

    
2455
@node Linux/Unix
2456
@section Linux/Unix
2457

    
2458
@subsection Compilation
2459

    
2460
First you must decompress the sources:
2461
@example
2462
cd /tmp
2463
tar zxvf qemu-x.y.z.tar.gz
2464
cd qemu-x.y.z
2465
@end example
2466

    
2467
Then you configure QEMU and build it (usually no options are needed):
2468
@example
2469
./configure
2470
make
2471
@end example
2472

    
2473
Then type as root user:
2474
@example
2475
make install
2476
@end example
2477
to install QEMU in @file{/usr/local}.
2478

    
2479
@node Windows
2480
@section Windows
2481

    
2482
@itemize
2483
@item Install the current versions of MSYS and MinGW from
2484
@url{http://www.mingw.org/}. You can find detailed installation
2485
instructions in the download section and the FAQ.
2486

    
2487
@item Download
2488
the MinGW development library of SDL 1.2.x
2489
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2490
@url{http://www.libsdl.org}. Unpack it in a temporary place and
2491
edit the @file{sdl-config} script so that it gives the
2492
correct SDL directory when invoked.
2493

    
2494
@item Install the MinGW version of zlib and make sure
2495
@file{zlib.h} and @file{libz.dll.a} are in
2496
MingGW's default header and linker search paths.
2497

    
2498
@item Extract the current version of QEMU.
2499

    
2500
@item Start the MSYS shell (file @file{msys.bat}).
2501

    
2502
@item Change to the QEMU directory. Launch @file{./configure} and
2503
@file{make}.  If you have problems using SDL, verify that
2504
@file{sdl-config} can be launched from the MSYS command line.
2505

    
2506
@item You can install QEMU in @file{Program Files/Qemu} by typing
2507
@file{make install}. Don't forget to copy @file{SDL.dll} in
2508
@file{Program Files/Qemu}.
2509

    
2510
@end itemize
2511

    
2512
@node Cross compilation for Windows with Linux
2513
@section Cross compilation for Windows with Linux
2514

    
2515
@itemize
2516
@item
2517
Install the MinGW cross compilation tools available at
2518
@url{http://www.mingw.org/}.
2519

    
2520
@item Download
2521
the MinGW development library of SDL 1.2.x
2522
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2523
@url{http://www.libsdl.org}. Unpack it in a temporary place and
2524
edit the @file{sdl-config} script so that it gives the
2525
correct SDL directory when invoked.  Set up the @code{PATH} environment
2526
variable so that @file{sdl-config} can be launched by
2527
the QEMU configuration script.
2528

    
2529
@item Install the MinGW version of zlib and make sure
2530
@file{zlib.h} and @file{libz.dll.a} are in
2531
MingGW's default header and linker search paths.
2532

    
2533
@item
2534
Configure QEMU for Windows cross compilation:
2535
@example
2536
PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2537
@end example
2538
The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2539
MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
2540
We set the @code{PATH} environment variable to ensure the MingW version of @file{sdl-config} is used and
2541
use --cross-prefix to specify the name of the cross compiler.
2542
You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/Qemu}.
2543

    
2544
Under Fedora Linux, you can run:
2545
@example
2546
yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
2547
@end example
2548
to get a suitable cross compilation environment.
2549

    
2550
@item You can install QEMU in the installation directory by typing
2551
@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
2552
installation directory.
2553

    
2554
@end itemize
2555

    
2556
Wine can be used to launch the resulting qemu.exe compiled for Win32.
2557

    
2558
@node Mac OS X
2559
@section Mac OS X
2560

    
2561
The Mac OS X patches are not fully merged in QEMU, so you should look
2562
at the QEMU mailing list archive to have all the necessary
2563
information.
2564

    
2565
@node Make targets
2566
@section Make targets
2567

    
2568
@table @code
2569

    
2570
@item make
2571
@item make all
2572
Make everything which is typically needed.
2573

    
2574
@item install
2575
TODO
2576

    
2577
@item install-doc
2578
TODO
2579

    
2580
@item make clean
2581
Remove most files which were built during make.
2582

    
2583
@item make distclean
2584
Remove everything which was built during make.
2585

    
2586
@item make dvi
2587
@item make html
2588
@item make info
2589
@item make pdf
2590
Create documentation in dvi, html, info or pdf format.
2591

    
2592
@item make cscope
2593
TODO
2594

    
2595
@item make defconfig
2596
(Re-)create some build configuration files.
2597
User made changes will be overwritten.
2598

    
2599
@item tar
2600
@item tarbin
2601
TODO
2602

    
2603
@end table
2604

    
2605
@node License
2606
@appendix License
2607

    
2608
QEMU is a trademark of Fabrice Bellard.
2609

    
2610
QEMU is released under the GNU General Public License (TODO: add link).
2611
Parts of QEMU have specific licenses, see file LICENSE.
2612

    
2613
TODO (refer to file LICENSE, include it, include the GPL?)
2614

    
2615
@node Index
2616
@appendix Index
2617
@menu
2618
* Concept Index::
2619
* Function Index::
2620
* Keystroke Index::
2621
* Program Index::
2622
* Data Type Index::
2623
* Variable Index::
2624
@end menu
2625

    
2626
@node Concept Index
2627
@section Concept Index
2628
This is the main index. Should we combine all keywords in one index? TODO
2629
@printindex cp
2630

    
2631
@node Function Index
2632
@section Function Index
2633
This index could be used for command line options and monitor functions.
2634
@printindex fn
2635

    
2636
@node Keystroke Index
2637
@section Keystroke Index
2638

    
2639
This is a list of all keystrokes which have a special function
2640
in system emulation.
2641

    
2642
@printindex ky
2643

    
2644
@node Program Index
2645
@section Program Index
2646
@printindex pg
2647

    
2648
@node Data Type Index
2649
@section Data Type Index
2650

    
2651
This index could be used for qdev device names and options.
2652

    
2653
@printindex tp
2654

    
2655
@node Variable Index
2656
@section Variable Index
2657
@printindex vr
2658

    
2659
@bye