Revision 7e049b8a

b/Makefile.target
467 467
VL_OBJS+= shix.o sh7750.o sh7750_regnames.o tc58128.o
468 468
endif
469 469
ifeq ($(TARGET_BASE_ARCH), m68k)
470
VL_OBJS+= an5206.o mcf5206.o ptimer.o mcf_uart.o mcf_intc.o mcf5208.o
470
VL_OBJS+= an5206.o mcf5206.o ptimer.o mcf_uart.o mcf_intc.o mcf5208.o mcf_fec.o
471 471
VL_OBJS+= m68k-semi.o
472 472
endif
473 473
ifdef CONFIG_GDBSTUB
b/hw/mcf5208.c
236 236

  
237 237
    mcf5208_sys_init(pic);
238 238

  
239
    if (nb_nics > 1) {
240
        fprintf(stderr, "Too many NICs\n");
241
        exit(1);
242
    }
243
    if (nd_table[0].vlan) {
244
        if (nd_table[0].model == NULL
245
            || strcmp(nd_table[0].model, "mcf_fec") == 0) {
246
            mcf_fec_init(&nd_table[0], 0xfc030000, pic + 36);
247
        } else if (strcmp(nd_table[0].model, "?") == 0) {
248
            fprintf(stderr, "qemu: Supported NICs: mcf_fec\n");
249
            exit (1);
250
        } else {
251
            fprintf(stderr, "qemu: Unsupported NIC: %s\n", nd_table[0].model);
252
            exit (1);
253
        }
254
    }
255

  
239 256
    /*  0xfc000000 SCM.  */
240 257
    /*  0xfc004000 XBS.  */
241 258
    /*  0xfc008000 FlexBus CS.  */
242
    /*  0xfc030000 FEC.  */
259
    /* 0xfc030000 FEC.  */
243 260
    /*  0xfc040000 SCM + Power management.  */
244 261
    /*  0xfc044000 eDMA.  */
245 262
    /* 0xfc048000 INTC.  */
b/hw/mcf_fec.c
1
/* 
2
 * ColdFire Fast Ethernet Controller emulation.
3
 *
4
 * Copyright (c) 2007 CodeSourcery.
5
 *
6
 * This code is licenced under the GPL
7
 */
8
#include "vl.h"
9
/* For crc32 */
10
#include <zlib.h>
11

  
12
//#define DEBUG_FEC 1
13

  
14
#ifdef DEBUG_FEC
15
#define DPRINTF(fmt, args...) \
16
do { printf("mcf_fec: " fmt , ##args); } while (0)
17
#else
18
#define DPRINTF(fmt, args...) do {} while(0)
19
#endif
20

  
21
#define FEC_MAX_FRAME_SIZE 2032
22

  
23
typedef struct {
24
    qemu_irq *irq;
25
    VLANClientState *vc;
26
    uint32_t irq_state;
27
    uint32_t eir;
28
    uint32_t eimr;
29
    int rx_enabled;
30
    uint32_t rx_descriptor;
31
    uint32_t tx_descriptor;
32
    uint32_t ecr;
33
    uint32_t mmfr;
34
    uint32_t mscr;
35
    uint32_t rcr;
36
    uint32_t tcr;
37
    uint32_t tfwr;
38
    uint32_t rfsr;
39
    uint32_t erdsr;
40
    uint32_t etdsr;
41
    uint32_t emrbr;
42
    uint8_t macaddr[6];
43
} mcf_fec_state;
44

  
45
#define FEC_INT_HB   0x80000000
46
#define FEC_INT_BABR 0x40000000
47
#define FEC_INT_BABT 0x20000000
48
#define FEC_INT_GRA  0x10000000
49
#define FEC_INT_TXF  0x08000000
50
#define FEC_INT_TXB  0x04000000
51
#define FEC_INT_RXF  0x02000000
52
#define FEC_INT_RXB  0x01000000
53
#define FEC_INT_MII  0x00800000
54
#define FEC_INT_EB   0x00400000
55
#define FEC_INT_LC   0x00200000
56
#define FEC_INT_RL   0x00100000
57
#define FEC_INT_UN   0x00080000
58

  
59
#define FEC_EN      2
60
#define FEC_RESET   1
61

  
62
/* Map interrupt flags onto IRQ lines.  */
63
#define FEC_NUM_IRQ 13
64
static const uint32_t mcf_fec_irq_map[FEC_NUM_IRQ] = {
65
    FEC_INT_TXF,
66
    FEC_INT_TXB,
67
    FEC_INT_UN,
68
    FEC_INT_RL,
69
    FEC_INT_RXF,
70
    FEC_INT_RXB,
71
    FEC_INT_MII,
72
    FEC_INT_LC,
73
    FEC_INT_HB,
74
    FEC_INT_GRA,
75
    FEC_INT_EB,
76
    FEC_INT_BABT,
77
    FEC_INT_BABR
78
};
79

  
80
/* Buffer Descriptor.  */
81
typedef struct {
82
    uint16_t flags;
83
    uint16_t length;
84
    uint32_t data;
85
} mcf_fec_bd;
86

  
87
#define FEC_BD_R    0x8000
88
#define FEC_BD_E    0x8000
89
#define FEC_BD_O1   0x4000
90
#define FEC_BD_W    0x2000
91
#define FEC_BD_O2   0x1000
92
#define FEC_BD_L    0x0800
93
#define FEC_BD_TC   0x0400
94
#define FEC_BD_ABC  0x0200
95
#define FEC_BD_M    0x0100
96
#define FEC_BD_BC   0x0080
97
#define FEC_BD_MC   0x0040
98
#define FEC_BD_LG   0x0020
99
#define FEC_BD_NO   0x0010
100
#define FEC_BD_CR   0x0004
101
#define FEC_BD_OV   0x0002
102
#define FEC_BD_TR   0x0001
103

  
104
static void mcf_fec_read_bd(mcf_fec_bd *bd, uint32_t addr)
105
{
106
    cpu_physical_memory_read(addr, (uint8_t *)bd, sizeof(*bd));
107
    be16_to_cpus(&bd->flags);
108
    be16_to_cpus(&bd->length);
109
    be32_to_cpus(&bd->data);
110
}
111

  
112
static void mcf_fec_write_bd(mcf_fec_bd *bd, uint32_t addr)
113
{
114
    mcf_fec_bd tmp;
115
    tmp.flags = cpu_to_be16(bd->flags);
116
    tmp.length = cpu_to_be16(bd->length);
117
    tmp.data = cpu_to_be32(bd->data);
118
    cpu_physical_memory_write(addr, (uint8_t *)&tmp, sizeof(tmp));
119
}
120

  
121
static void mcf_fec_update(mcf_fec_state *s)
122
{
123
    uint32_t active;
124
    uint32_t changed;
125
    uint32_t mask;
126
    int i;
127

  
128
    active = s->eir & s->eimr;
129
    changed = active ^s->irq_state;
130
    for (i = 0; i < FEC_NUM_IRQ; i++) {
131
        mask = mcf_fec_irq_map[i];
132
        if (changed & mask) {
133
            DPRINTF("IRQ %d = %d\n", i, (active & mask) != 0);
134
            qemu_set_irq(s->irq[i], (active & mask) != 0);
135
        }
136
    }
137
    s->irq_state = active;
138
}
139

  
140
static void mcf_fec_do_tx(mcf_fec_state *s)
141
{
142
    uint32_t addr;
143
    mcf_fec_bd bd;
144
    int frame_size;
145
    int len;
146
    uint8_t frame[FEC_MAX_FRAME_SIZE];
147
    uint8_t *ptr;
148

  
149
    DPRINTF("do_tx\n");
150
    ptr = frame;
151
    frame_size = 0;
152
    addr = s->tx_descriptor;
153
    while (1) {
154
        mcf_fec_read_bd(&bd, addr);
155
        DPRINTF("tx_bd %x flags %04x len %d data %08x\n",
156
                addr, bd.flags, bd.length, bd.data);
157
        if ((bd.flags & FEC_BD_R) == 0) {
158
            /* Run out of descriptors to transmit.  */
159
            break;
160
        }
161
        len = bd.length;
162
        if (frame_size + len > FEC_MAX_FRAME_SIZE) {
163
            len = FEC_MAX_FRAME_SIZE - frame_size;
164
            s->eir |= FEC_INT_BABT;
165
        }
166
        cpu_physical_memory_read(bd.data, ptr, len);
167
        ptr += len;
168
        frame_size += len;
169
        if (bd.flags & FEC_BD_L) {
170
            /* Last buffer in frame.  */
171
            DPRINTF("Sending packet\n");
172
            qemu_send_packet(s->vc, frame, len);
173
            ptr = frame;
174
            frame_size = 0;
175
            s->eir |= FEC_INT_TXF;
176
        }
177
        s->eir |= FEC_INT_TXB;
178
        bd.flags &= ~FEC_BD_R;
179
        /* Write back the modified descriptor.  */
180
        mcf_fec_write_bd(&bd, addr);
181
        /* Advance to the next descriptor.  */
182
        if ((bd.flags & FEC_BD_W) != 0) {
183
            addr = s->etdsr;
184
        } else {
185
            addr += 8;
186
        }
187
    }
188
    s->tx_descriptor = addr;
189
}
190

  
191
static int mcf_fec_enable_rx(mcf_fec_state *s)
192
{
193
    mcf_fec_bd bd;
194

  
195
    mcf_fec_read_bd(&bd, s->rx_descriptor);
196
    s->rx_enabled = ((bd.flags & FEC_BD_E) != 0);
197
    if (!s->rx_enabled)
198
        DPRINTF("RX buffer full\n");
199
}
200

  
201
static void mcf_fec_reset(mcf_fec_state *s)
202
{
203
    s->eir = 0;
204
    s->eimr = 0;
205
    s->rx_enabled = 0;
206
    s->ecr = 0;
207
    s->mscr = 0;
208
    s->rcr = 0x05ee0001;
209
    s->tcr = 0;
210
    s->tfwr = 0;
211
    s->rfsr = 0x500;
212
}
213

  
214
static uint32_t mcf_fec_read(void *opaque, target_phys_addr_t addr)
215
{
216
    mcf_fec_state *s = (mcf_fec_state *)opaque;
217
    switch (addr & 0x3ff) {
218
    case 0x004: return s->eir;
219
    case 0x008: return s->eimr;
220
    case 0x010: return s->rx_enabled ? (1 << 24) : 0; /* RDAR */
221
    case 0x014: return 0; /* TDAR */
222
    case 0x024: return s->ecr;
223
    case 0x040: return s->mmfr;
224
    case 0x044: return s->mscr;
225
    case 0x064: return 0; /* MIBC */
226
    case 0x084: return s->rcr;
227
    case 0x0c4: return s->tcr;
228
    case 0x0e4: /* PALR */
229
        return (s->macaddr[0] << 24) | (s->macaddr[1] << 16)
230
              | (s->macaddr[2] << 8) | s->macaddr[3];
231
        break;
232
    case 0x0e8: /* PAUR */
233
        return (s->macaddr[4] << 24) | (s->macaddr[5] << 16) | 0x8808;
234
    case 0x0ec: return 0x10000; /* OPD */
235
    case 0x118: return 0;
236
    case 0x11c: return 0;
237
    case 0x120: return 0;
238
    case 0x124: return 0;
239
    case 0x144: return s->tfwr;
240
    case 0x14c: return 0x600;
241
    case 0x150: return s->rfsr;
242
    case 0x180: return s->erdsr;
243
    case 0x184: return s->etdsr;
244
    case 0x188: return s->emrbr;
245
    default:
246
        cpu_abort(cpu_single_env, "mcf_fec_read: Bad address 0x%x\n",
247
                  (int)addr);
248
        return 0;
249
    }
250
}
251

  
252
void mcf_fec_write(void *opaque, target_phys_addr_t addr, uint32_t value)
253
{
254
    mcf_fec_state *s = (mcf_fec_state *)opaque;
255
    switch (addr & 0x3ff) {
256
    case 0x004:
257
        s->eir &= ~value;
258
        break;
259
    case 0x008:
260
        s->eimr = value;
261
        break;
262
    case 0x010: /* RDAR */
263
        if ((s->ecr & FEC_EN) && !s->rx_enabled) {
264
            DPRINTF("RX enable\n");
265
            mcf_fec_enable_rx(s);
266
        }
267
        break;
268
    case 0x014: /* TDAR */
269
        if (s->ecr & FEC_EN) {
270
            mcf_fec_do_tx(s);
271
        }
272
        break;
273
    case 0x024:
274
        s->ecr = value;
275
        if (value & FEC_RESET) {
276
            DPRINTF("Reset\n");
277
            mcf_fec_reset(s);
278
        }
279
        if ((s->ecr & FEC_EN) == 0) {
280
            s->rx_enabled = 0;
281
        }
282
        break;
283
    case 0x040:
284
        /* TODO: Implement MII.  */
285
        s->mmfr = value;
286
        break;
287
    case 0x044:
288
        s->mscr = value & 0xfe;
289
        break;
290
    case 0x064:
291
        /* TODO: Implement MIB.  */
292
        break;
293
    case 0x084:
294
        s->rcr = value & 0x07ff003f;
295
        /* TODO: Implement LOOP mode.  */
296
        break;
297
    case 0x0c4: /* TCR */
298
        /* We transmit immediately, so raise GRA immediately.  */
299
        s->tcr = value;
300
        if (value & 1)
301
            s->eir |= FEC_INT_GRA;
302
        break;
303
    case 0x0e4: /* PALR */
304
        s->macaddr[0] = value >> 24;
305
        s->macaddr[1] = value >> 16;
306
        s->macaddr[2] = value >> 8;
307
        s->macaddr[3] = value;
308
        break;
309
    case 0x0e8: /* PAUR */
310
        s->macaddr[4] = value >> 24;
311
        s->macaddr[5] = value >> 16;
312
        break;
313
    case 0x0ec:
314
        /* OPD */
315
        break;
316
    case 0x118:
317
    case 0x11c:
318
    case 0x120:
319
    case 0x124:
320
        /* TODO: implement MAC hash filtering.  */
321
        break;
322
    case 0x144:
323
        s->tfwr = value & 3;
324
        break;
325
    case 0x14c:
326
        /* FRBR writes ignored.  */
327
        break;
328
    case 0x150:
329
        s->rfsr = (value & 0x3fc) | 0x400;
330
        break;
331
    case 0x180:
332
        s->erdsr = value & ~3;
333
        s->rx_descriptor = s->erdsr;
334
        break;
335
    case 0x184:
336
        s->etdsr = value & ~3;
337
        s->tx_descriptor = s->etdsr;
338
        break;
339
    case 0x188:
340
        s->emrbr = value & 0x7f0;
341
        break;
342
    default:
343
        cpu_abort(cpu_single_env, "mcf_fec_write Bad address 0x%x\n",
344
                  (int)addr);
345
    }
346
    mcf_fec_update(s);
347
}
348

  
349
static int mcf_fec_can_receive(void *opaque)
350
{
351
    mcf_fec_state *s = (mcf_fec_state *)opaque;
352
    return s->rx_enabled;
353
}
354

  
355
static void mcf_fec_receive(void *opaque, const uint8_t *buf, int size)
356
{
357
    mcf_fec_state *s = (mcf_fec_state *)opaque;
358
    mcf_fec_bd bd;
359
    uint32_t flags = 0;
360
    uint32_t addr;
361
    uint32_t crc;
362
    uint32_t buf_addr;
363
    uint8_t *crc_ptr;
364
    unsigned int buf_len;
365

  
366
    DPRINTF("do_rx len %d\n", size);
367
    if (!s->rx_enabled) {
368
        fprintf(stderr, "mcf_fec_receive: Unexpected packet\n");
369
    }
370
    /* 4 bytes for the CRC.  */
371
    size += 4;
372
    crc = cpu_to_be32(crc32(~0, buf, size));
373
    crc_ptr = (uint8_t *)&crc;
374
    /* Huge frames are truncted.  */
375
    if (size > FEC_MAX_FRAME_SIZE) {
376
        size = FEC_MAX_FRAME_SIZE;
377
        flags |= FEC_BD_TR | FEC_BD_LG;
378
    }
379
    /* Frames larger than the user limit just set error flags.  */
380
    if (size > (s->rcr >> 16)) {
381
        flags |= FEC_BD_LG;
382
    }
383
    addr = s->rx_descriptor;
384
    while (size > 0) {
385
        mcf_fec_read_bd(&bd, addr);
386
        if ((bd.flags & FEC_BD_E) == 0) {
387
            /* No descriptors available.  Bail out.  */
388
            /* FIXME: This is wrong.  We should probably either save the
389
               remainder for when more RX buffers are available, or
390
               flag an error.  */
391
            fprintf(stderr, "mcf_fec: Lost end of frame\n");
392
            break;
393
        }
394
        buf_len = (size <= s->emrbr) ? size: s->emrbr;
395
        bd.length = buf_len;
396
        size -= buf_len;
397
        DPRINTF("rx_bd %x length %d\n", addr, bd.length);
398
        /* The last 4 bytes are the CRC.  */
399
        if (size < 4)
400
            buf_len += size - 4;
401
        buf_addr = bd.data;
402
        cpu_physical_memory_write(buf_addr, buf, buf_len);
403
        buf += buf_len;
404
        if (size < 4) {
405
            cpu_physical_memory_write(buf_addr + buf_len, crc_ptr, 4 - size);
406
            crc_ptr += 4 - size;
407
        }
408
        bd.flags &= ~FEC_BD_E;
409
        if (size == 0) {
410
            /* Last buffer in frame.  */
411
            bd.flags |= flags | FEC_BD_L;
412
            DPRINTF("rx frame flags %04x\n", bd.flags);
413
            s->eir |= FEC_INT_RXF;
414
        } else {
415
            s->eir |= FEC_INT_RXB;
416
        }
417
        mcf_fec_write_bd(&bd, addr);
418
        /* Advance to the next descriptor.  */
419
        if ((bd.flags & FEC_BD_W) != 0) {
420
            addr = s->erdsr;
421
        } else {
422
            addr += 8;
423
        }
424
    }
425
    s->rx_descriptor = addr;
426
    mcf_fec_enable_rx(s);
427
    mcf_fec_update(s);
428
}
429

  
430
static CPUReadMemoryFunc *mcf_fec_readfn[] = {
431
   mcf_fec_read,
432
   mcf_fec_read,
433
   mcf_fec_read
434
};
435

  
436
static CPUWriteMemoryFunc *mcf_fec_writefn[] = {
437
   mcf_fec_write,
438
   mcf_fec_write,
439
   mcf_fec_write
440
};
441

  
442
void mcf_fec_init(NICInfo *nd, target_phys_addr_t base, qemu_irq *irq)
443
{
444
    mcf_fec_state *s;
445
    int iomemtype;
446

  
447
    s = (mcf_fec_state *)qemu_mallocz(sizeof(mcf_fec_state));
448
    s->irq = irq;
449
    iomemtype = cpu_register_io_memory(0, mcf_fec_readfn,
450
                                       mcf_fec_writefn, s);
451
    cpu_register_physical_memory(base, 0x400, iomemtype);
452

  
453
    s->vc = qemu_new_vlan_client(nd->vlan, mcf_fec_receive,
454
                                 mcf_fec_can_receive, s);
455
    memcpy(s->macaddr, nd->macaddr, 6);
456
}
b/qemu-doc.texi
362 362
Valid values for @var{type} are
363 363
@code{i82551}, @code{i82557b}, @code{i82559er},
364 364
@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
365
@code{smc91c111} and @code{lance}.
365
@code{smc91c111}, @code{lance} and @code{mcf_fec}.
366 366
Not all devices are supported on all targets.  Use -net nic,model=?
367 367
for a list of available devices for your target.
368 368

  
b/vl.h
1603 1603
/* mcf_intc.c */
1604 1604
qemu_irq *mcf_intc_init(target_phys_addr_t base, CPUState *env);
1605 1605

  
1606
/* mcf_fec.c */
1607
void mcf_fec_init(NICInfo *nd, target_phys_addr_t base, qemu_irq *irq);
1608

  
1606 1609
/* mcf5206.c */
1607 1610
qemu_irq *mcf5206_init(uint32_t base, CPUState *env);
1608 1611

  

Also available in: Unified diff