Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 7e0af5d0

History | View | Annotate | Download (77.1 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4
@settitle QEMU Emulator User Documentation
5
@exampleindent 0
6
@paragraphindent 0
7
@c %**end of header
8

    
9
@iftex
10
@titlepage
11
@sp 7
12
@center @titlefont{QEMU Emulator}
13
@sp 1
14
@center @titlefont{User Documentation}
15
@sp 3
16
@end titlepage
17
@end iftex
18

    
19
@ifnottex
20
@node Top
21
@top
22

    
23
@menu
24
* Introduction::
25
* Installation::
26
* QEMU PC System emulator::
27
* QEMU System emulator for non PC targets::
28
* QEMU User space emulator::
29
* compilation:: Compilation from the sources
30
* Index::
31
@end menu
32
@end ifnottex
33

    
34
@contents
35

    
36
@node Introduction
37
@chapter Introduction
38

    
39
@menu
40
* intro_features:: Features
41
@end menu
42

    
43
@node intro_features
44
@section Features
45

    
46
QEMU is a FAST! processor emulator using dynamic translation to
47
achieve good emulation speed.
48

    
49
QEMU has two operating modes:
50

    
51
@itemize @minus
52

    
53
@item
54
Full system emulation. In this mode, QEMU emulates a full system (for
55
example a PC), including one or several processors and various
56
peripherals. It can be used to launch different Operating Systems
57
without rebooting the PC or to debug system code.
58

    
59
@item
60
User mode emulation. In this mode, QEMU can launch
61
processes compiled for one CPU on another CPU. It can be used to
62
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63
to ease cross-compilation and cross-debugging.
64

    
65
@end itemize
66

    
67
QEMU can run without an host kernel driver and yet gives acceptable
68
performance.
69

    
70
For system emulation, the following hardware targets are supported:
71
@itemize
72
@item PC (x86 or x86_64 processor)
73
@item ISA PC (old style PC without PCI bus)
74
@item PREP (PowerPC processor)
75
@item G3 BW PowerMac (PowerPC processor)
76
@item Mac99 PowerMac (PowerPC processor, in progress)
77
@item Sun4m (32-bit Sparc processor)
78
@item Sun4u (64-bit Sparc processor, in progress)
79
@item Malta board (32-bit MIPS processor)
80
@item ARM Integrator/CP (ARM926E, 1026E or 946E processor)
81
@item ARM Versatile baseboard (ARM926E)
82
@item ARM RealView Emulation baseboard (ARM926EJ-S)
83
@item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
84
@item Freescale MCF5208EVB (ColdFire V2).
85
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
86
@item Palm Tungsten|E PDA (OMAP310 processor)
87
@end itemize
88

    
89
For user emulation, x86, PowerPC, ARM, MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
90

    
91
@node Installation
92
@chapter Installation
93

    
94
If you want to compile QEMU yourself, see @ref{compilation}.
95

    
96
@menu
97
* install_linux::   Linux
98
* install_windows:: Windows
99
* install_mac::     Macintosh
100
@end menu
101

    
102
@node install_linux
103
@section Linux
104

    
105
If a precompiled package is available for your distribution - you just
106
have to install it. Otherwise, see @ref{compilation}.
107

    
108
@node install_windows
109
@section Windows
110

    
111
Download the experimental binary installer at
112
@url{http://www.free.oszoo.org/@/download.html}.
113

    
114
@node install_mac
115
@section Mac OS X
116

    
117
Download the experimental binary installer at
118
@url{http://www.free.oszoo.org/@/download.html}.
119

    
120
@node QEMU PC System emulator
121
@chapter QEMU PC System emulator
122

    
123
@menu
124
* pcsys_introduction:: Introduction
125
* pcsys_quickstart::   Quick Start
126
* sec_invocation::     Invocation
127
* pcsys_keys::         Keys
128
* pcsys_monitor::      QEMU Monitor
129
* disk_images::        Disk Images
130
* pcsys_network::      Network emulation
131
* direct_linux_boot::  Direct Linux Boot
132
* pcsys_usb::          USB emulation
133
* vnc_security::       VNC security
134
* gdb_usage::          GDB usage
135
* pcsys_os_specific::  Target OS specific information
136
@end menu
137

    
138
@node pcsys_introduction
139
@section Introduction
140

    
141
@c man begin DESCRIPTION
142

    
143
The QEMU PC System emulator simulates the
144
following peripherals:
145

    
146
@itemize @minus
147
@item
148
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
149
@item
150
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
151
extensions (hardware level, including all non standard modes).
152
@item
153
PS/2 mouse and keyboard
154
@item
155
2 PCI IDE interfaces with hard disk and CD-ROM support
156
@item
157
Floppy disk
158
@item
159
PCI/ISA PCI network adapters
160
@item
161
Serial ports
162
@item
163
Creative SoundBlaster 16 sound card
164
@item
165
ENSONIQ AudioPCI ES1370 sound card
166
@item
167
Adlib(OPL2) - Yamaha YM3812 compatible chip
168
@item
169
PCI UHCI USB controller and a virtual USB hub.
170
@end itemize
171

    
172
SMP is supported with up to 255 CPUs.
173

    
174
Note that adlib is only available when QEMU was configured with
175
-enable-adlib
176

    
177
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
178
VGA BIOS.
179

    
180
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
181

    
182
@c man end
183

    
184
@node pcsys_quickstart
185
@section Quick Start
186

    
187
Download and uncompress the linux image (@file{linux.img}) and type:
188

    
189
@example
190
qemu linux.img
191
@end example
192

    
193
Linux should boot and give you a prompt.
194

    
195
@node sec_invocation
196
@section Invocation
197

    
198
@example
199
@c man begin SYNOPSIS
200
usage: qemu [options] [disk_image]
201
@c man end
202
@end example
203

    
204
@c man begin OPTIONS
205
@var{disk_image} is a raw hard disk image for IDE hard disk 0.
206

    
207
General options:
208
@table @option
209
@item -M machine
210
Select the emulated machine (@code{-M ?} for list)
211

    
212
@item -fda file
213
@item -fdb file
214
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
215
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
216

    
217
@item -hda file
218
@item -hdb file
219
@item -hdc file
220
@item -hdd file
221
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
222

    
223
@item -cdrom file
224
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and and
225
@option{-cdrom} at the same time). You can use the host CD-ROM by
226
using @file{/dev/cdrom} as filename (@pxref{host_drives}).
227

    
228
@item -boot [a|c|d|n]
229
Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
230
is the default.
231

    
232
@item -snapshot
233
Write to temporary files instead of disk image files. In this case,
234
the raw disk image you use is not written back. You can however force
235
the write back by pressing @key{C-a s} (@pxref{disk_images}).
236

    
237
@item -no-fd-bootchk
238
Disable boot signature checking for floppy disks in Bochs BIOS. It may
239
be needed to boot from old floppy disks.
240

    
241
@item -m megs
242
Set virtual RAM size to @var{megs} megabytes. Default is 128 MB.
243

    
244
@item -smp n
245
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
246
CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
247
to 4.
248

    
249
@item -audio-help
250

    
251
Will show the audio subsystem help: list of drivers, tunable
252
parameters.
253

    
254
@item -soundhw card1,card2,... or -soundhw all
255

    
256
Enable audio and selected sound hardware. Use ? to print all
257
available sound hardware.
258

    
259
@example
260
qemu -soundhw sb16,adlib hda
261
qemu -soundhw es1370 hda
262
qemu -soundhw all hda
263
qemu -soundhw ?
264
@end example
265

    
266
@item -localtime
267
Set the real time clock to local time (the default is to UTC
268
time). This option is needed to have correct date in MS-DOS or
269
Windows.
270

    
271
@item -startdate date
272
Set the initial date of the real time clock. Valid format for
273
@var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
274
@code{2006-06-17}. The default value is @code{now}.
275

    
276
@item -pidfile file
277
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
278
from a script.
279

    
280
@item -daemonize
281
Daemonize the QEMU process after initialization.  QEMU will not detach from
282
standard IO until it is ready to receive connections on any of its devices.
283
This option is a useful way for external programs to launch QEMU without having
284
to cope with initialization race conditions.
285

    
286
@item -win2k-hack
287
Use it when installing Windows 2000 to avoid a disk full bug. After
288
Windows 2000 is installed, you no longer need this option (this option
289
slows down the IDE transfers).
290

    
291
@item -option-rom file
292
Load the contents of file as an option ROM.  This option is useful to load
293
things like EtherBoot.
294

    
295
@item -name string
296
Sets the name of the guest.  This name will be display in the SDL window
297
caption.  The name will also be used for the VNC server.
298

    
299
@end table
300

    
301
Display options:
302
@table @option
303

    
304
@item -nographic
305

    
306
Normally, QEMU uses SDL to display the VGA output. With this option,
307
you can totally disable graphical output so that QEMU is a simple
308
command line application. The emulated serial port is redirected on
309
the console. Therefore, you can still use QEMU to debug a Linux kernel
310
with a serial console.
311

    
312
@item -no-frame
313

    
314
Do not use decorations for SDL windows and start them using the whole
315
available screen space. This makes the using QEMU in a dedicated desktop
316
workspace more convenient.
317

    
318
@item -full-screen
319
Start in full screen.
320

    
321
@item -vnc display[,option[,option[,...]]]
322

    
323
Normally, QEMU uses SDL to display the VGA output.  With this option,
324
you can have QEMU listen on VNC display @var{display} and redirect the VGA
325
display over the VNC session.  It is very useful to enable the usb
326
tablet device when using this option (option @option{-usbdevice
327
tablet}). When using the VNC display, you must use the @option{-k}
328
parameter to set the keyboard layout if you are not using en-us. Valid
329
syntax for the @var{display} is
330

    
331
@table @code
332

    
333
@item @var{interface:d}
334

    
335
TCP connections will only be allowed from @var{interface} on display @var{d}.
336
By convention the TCP port is 5900+@var{d}. Optionally, @var{interface} can
337
be omitted in which case the server will bind to all interfaces.
338

    
339
@item @var{unix:path}
340

    
341
Connections will be allowed over UNIX domain sockets where @var{path} is the
342
location of a unix socket to listen for connections on.
343

    
344
@item @var{none}
345

    
346
VNC is initialized by not started. The monitor @code{change} command can be used
347
to later start the VNC server.
348

    
349
@end table
350

    
351
Following the @var{display} value there may be one or more @var{option} flags
352
separated by commas. Valid options are
353

    
354
@table @code
355

    
356
@item @var{password}
357

    
358
Require that password based authentication is used for client connections.
359
The password must be set separately using the @code{change} command in the
360
@ref{pcsys_monitor}
361

    
362
@item @var{tls}
363

    
364
Require that client use TLS when communicating with the VNC server. This
365
uses anonymous TLS credentials so is susceptible to a man-in-the-middle
366
attack. It is recommended that this option be combined with either the
367
@var{x509} or @var{x509verify} options.
368

    
369
@item @var{x509=/path/to/certificate/dir}
370

    
371
Valid if @var{tls} is specified. Require that x509 credentials are used
372
for negotiating the TLS session. The server will send its x509 certificate
373
to the client. It is recommended that a password be set on the VNC server
374
to provide authentication of the client when this is used. The path following
375
this option specifies where the x509 certificates are to be loaded from.
376
See the @ref{vnc_security} section for details on generating certificates.
377

    
378
@item @var{x509verify=/path/to/certificate/dir}
379

    
380
Valid if @var{tls} is specified. Require that x509 credentials are used
381
for negotiating the TLS session. The server will send its x509 certificate
382
to the client, and request that the client send its own x509 certificate.
383
The server will validate the client's certificate against the CA certificate,
384
and reject clients when validation fails. If the certificate authority is
385
trusted, this is a sufficient authentication mechanism. You may still wish
386
to set a password on the VNC server as a second authentication layer. The
387
path following this option specifies where the x509 certificates are to
388
be loaded from. See the @ref{vnc_security} section for details on generating
389
certificates.
390

    
391
@end table
392

    
393
@item -k language
394

    
395
Use keyboard layout @var{language} (for example @code{fr} for
396
French). This option is only needed where it is not easy to get raw PC
397
keycodes (e.g. on Macs, with some X11 servers or with a VNC
398
display). You don't normally need to use it on PC/Linux or PC/Windows
399
hosts.
400

    
401
The available layouts are:
402
@example
403
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
404
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
405
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
406
@end example
407

    
408
The default is @code{en-us}.
409

    
410
@end table
411

    
412
USB options:
413
@table @option
414

    
415
@item -usb
416
Enable the USB driver (will be the default soon)
417

    
418
@item -usbdevice devname
419
Add the USB device @var{devname}. @xref{usb_devices}.
420
@end table
421

    
422
Network options:
423

    
424
@table @option
425

    
426
@item -net nic[,vlan=n][,macaddr=addr][,model=type]
427
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
428
= 0 is the default). The NIC is an ne2k_pci by default on the PC
429
target. Optionally, the MAC address can be changed. If no
430
@option{-net} option is specified, a single NIC is created.
431
Qemu can emulate several different models of network card.
432
Valid values for @var{type} are
433
@code{i82551}, @code{i82557b}, @code{i82559er},
434
@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
435
@code{smc91c111}, @code{lance} and @code{mcf_fec}.
436
Not all devices are supported on all targets.  Use -net nic,model=?
437
for a list of available devices for your target.
438

    
439
@item -net user[,vlan=n][,hostname=name]
440
Use the user mode network stack which requires no administrator
441
privilege to run.  @option{hostname=name} can be used to specify the client
442
hostname reported by the builtin DHCP server.
443

    
444
@item -net tap[,vlan=n][,fd=h][,ifname=name][,script=file]
445
Connect the host TAP network interface @var{name} to VLAN @var{n} and
446
use the network script @var{file} to configure it. The default
447
network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
448
disable script execution. If @var{name} is not
449
provided, the OS automatically provides one.  @option{fd=h} can be
450
used to specify the handle of an already opened host TAP interface. Example:
451

    
452
@example
453
qemu linux.img -net nic -net tap
454
@end example
455

    
456
More complicated example (two NICs, each one connected to a TAP device)
457
@example
458
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
459
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
460
@end example
461

    
462

    
463
@item -net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]
464

    
465
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
466
machine using a TCP socket connection. If @option{listen} is
467
specified, QEMU waits for incoming connections on @var{port}
468
(@var{host} is optional). @option{connect} is used to connect to
469
another QEMU instance using the @option{listen} option. @option{fd=h}
470
specifies an already opened TCP socket.
471

    
472
Example:
473
@example
474
# launch a first QEMU instance
475
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
476
               -net socket,listen=:1234
477
# connect the VLAN 0 of this instance to the VLAN 0
478
# of the first instance
479
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
480
               -net socket,connect=127.0.0.1:1234
481
@end example
482

    
483
@item -net socket[,vlan=n][,fd=h][,mcast=maddr:port]
484

    
485
Create a VLAN @var{n} shared with another QEMU virtual
486
machines using a UDP multicast socket, effectively making a bus for
487
every QEMU with same multicast address @var{maddr} and @var{port}.
488
NOTES:
489
@enumerate
490
@item
491
Several QEMU can be running on different hosts and share same bus (assuming
492
correct multicast setup for these hosts).
493
@item
494
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
495
@url{http://user-mode-linux.sf.net}.
496
@item
497
Use @option{fd=h} to specify an already opened UDP multicast socket.
498
@end enumerate
499

    
500
Example:
501
@example
502
# launch one QEMU instance
503
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
504
               -net socket,mcast=230.0.0.1:1234
505
# launch another QEMU instance on same "bus"
506
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
507
               -net socket,mcast=230.0.0.1:1234
508
# launch yet another QEMU instance on same "bus"
509
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
510
               -net socket,mcast=230.0.0.1:1234
511
@end example
512

    
513
Example (User Mode Linux compat.):
514
@example
515
# launch QEMU instance (note mcast address selected
516
# is UML's default)
517
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
518
               -net socket,mcast=239.192.168.1:1102
519
# launch UML
520
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
521
@end example
522

    
523
@item -net none
524
Indicate that no network devices should be configured. It is used to
525
override the default configuration (@option{-net nic -net user}) which
526
is activated if no @option{-net} options are provided.
527

    
528
@item -tftp dir
529
When using the user mode network stack, activate a built-in TFTP
530
server. The files in @var{dir} will be exposed as the root of a TFTP server.
531
The TFTP client on the guest must be configured in binary mode (use the command
532
@code{bin} of the Unix TFTP client). The host IP address on the guest is as
533
usual 10.0.2.2.
534

    
535
@item -bootp file
536
When using the user mode network stack, broadcast @var{file} as the BOOTP
537
filename.  In conjunction with @option{-tftp}, this can be used to network boot
538
a guest from a local directory.
539

    
540
Example (using pxelinux):
541
@example
542
qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
543
@end example
544

    
545
@item -smb dir
546
When using the user mode network stack, activate a built-in SMB
547
server so that Windows OSes can access to the host files in @file{dir}
548
transparently.
549

    
550
In the guest Windows OS, the line:
551
@example
552
10.0.2.4 smbserver
553
@end example
554
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
555
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
556

    
557
Then @file{dir} can be accessed in @file{\\smbserver\qemu}.
558

    
559
Note that a SAMBA server must be installed on the host OS in
560
@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
561
2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
562

    
563
@item -redir [tcp|udp]:host-port:[guest-host]:guest-port
564

    
565
When using the user mode network stack, redirect incoming TCP or UDP
566
connections to the host port @var{host-port} to the guest
567
@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
568
is not specified, its value is 10.0.2.15 (default address given by the
569
built-in DHCP server).
570

    
571
For example, to redirect host X11 connection from screen 1 to guest
572
screen 0, use the following:
573

    
574
@example
575
# on the host
576
qemu -redir tcp:6001::6000 [...]
577
# this host xterm should open in the guest X11 server
578
xterm -display :1
579
@end example
580

    
581
To redirect telnet connections from host port 5555 to telnet port on
582
the guest, use the following:
583

    
584
@example
585
# on the host
586
qemu -redir tcp:5555::23 [...]
587
telnet localhost 5555
588
@end example
589

    
590
Then when you use on the host @code{telnet localhost 5555}, you
591
connect to the guest telnet server.
592

    
593
@end table
594

    
595
Linux boot specific: When using these options, you can use a given
596
Linux kernel without installing it in the disk image. It can be useful
597
for easier testing of various kernels.
598

    
599
@table @option
600

    
601
@item -kernel bzImage
602
Use @var{bzImage} as kernel image.
603

    
604
@item -append cmdline
605
Use @var{cmdline} as kernel command line
606

    
607
@item -initrd file
608
Use @var{file} as initial ram disk.
609

    
610
@end table
611

    
612
Debug/Expert options:
613
@table @option
614

    
615
@item -serial dev
616
Redirect the virtual serial port to host character device
617
@var{dev}. The default device is @code{vc} in graphical mode and
618
@code{stdio} in non graphical mode.
619

    
620
This option can be used several times to simulate up to 4 serials
621
ports.
622

    
623
Use @code{-serial none} to disable all serial ports.
624

    
625
Available character devices are:
626
@table @code
627
@item vc[:WxH]
628
Virtual console. Optionally, a width and height can be given in pixel with
629
@example
630
vc:800x600
631
@end example
632
It is also possible to specify width or height in characters:
633
@example
634
vc:80Cx24C
635
@end example
636
@item pty
637
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
638
@item none
639
No device is allocated.
640
@item null
641
void device
642
@item /dev/XXX
643
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
644
parameters are set according to the emulated ones.
645
@item /dev/parportN
646
[Linux only, parallel port only] Use host parallel port
647
@var{N}. Currently SPP and EPP parallel port features can be used.
648
@item file:filename
649
Write output to filename. No character can be read.
650
@item stdio
651
[Unix only] standard input/output
652
@item pipe:filename
653
name pipe @var{filename}
654
@item COMn
655
[Windows only] Use host serial port @var{n}
656
@item udp:[remote_host]:remote_port[@@[src_ip]:src_port]
657
This implements UDP Net Console.  When @var{remote_host} or @var{src_ip} are not specified they default to @code{0.0.0.0}.  When not using a specified @var{src_port} a random port is automatically chosen.
658

    
659
If you just want a simple readonly console you can use @code{netcat} or
660
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
661
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
662
will appear in the netconsole session.
663

    
664
If you plan to send characters back via netconsole or you want to stop
665
and start qemu a lot of times, you should have qemu use the same
666
source port each time by using something like @code{-serial
667
udp::4555@@:4556} to qemu. Another approach is to use a patched
668
version of netcat which can listen to a TCP port and send and receive
669
characters via udp.  If you have a patched version of netcat which
670
activates telnet remote echo and single char transfer, then you can
671
use the following options to step up a netcat redirector to allow
672
telnet on port 5555 to access the qemu port.
673
@table @code
674
@item Qemu Options:
675
-serial udp::4555@@:4556
676
@item netcat options:
677
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
678
@item telnet options:
679
localhost 5555
680
@end table
681

    
682

    
683
@item tcp:[host]:port[,server][,nowait][,nodelay]
684
The TCP Net Console has two modes of operation.  It can send the serial
685
I/O to a location or wait for a connection from a location.  By default
686
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
687
the @var{server} option QEMU will wait for a client socket application
688
to connect to the port before continuing, unless the @code{nowait}
689
option was specified.  The @code{nodelay} option disables the Nagle buffering
690
algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
691
one TCP connection at a time is accepted. You can use @code{telnet} to
692
connect to the corresponding character device.
693
@table @code
694
@item Example to send tcp console to 192.168.0.2 port 4444
695
-serial tcp:192.168.0.2:4444
696
@item Example to listen and wait on port 4444 for connection
697
-serial tcp::4444,server
698
@item Example to not wait and listen on ip 192.168.0.100 port 4444
699
-serial tcp:192.168.0.100:4444,server,nowait
700
@end table
701

    
702
@item telnet:host:port[,server][,nowait][,nodelay]
703
The telnet protocol is used instead of raw tcp sockets.  The options
704
work the same as if you had specified @code{-serial tcp}.  The
705
difference is that the port acts like a telnet server or client using
706
telnet option negotiation.  This will also allow you to send the
707
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
708
sequence.  Typically in unix telnet you do it with Control-] and then
709
type "send break" followed by pressing the enter key.
710

    
711
@item unix:path[,server][,nowait]
712
A unix domain socket is used instead of a tcp socket.  The option works the
713
same as if you had specified @code{-serial tcp} except the unix domain socket
714
@var{path} is used for connections.
715

    
716
@item mon:dev_string
717
This is a special option to allow the monitor to be multiplexed onto
718
another serial port.  The monitor is accessed with key sequence of
719
@key{Control-a} and then pressing @key{c}. See monitor access
720
@ref{pcsys_keys} in the -nographic section for more keys.
721
@var{dev_string} should be any one of the serial devices specified
722
above.  An example to multiplex the monitor onto a telnet server
723
listening on port 4444 would be:
724
@table @code
725
@item -serial mon:telnet::4444,server,nowait
726
@end table
727

    
728
@end table
729

    
730
@item -parallel dev
731
Redirect the virtual parallel port to host device @var{dev} (same
732
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
733
be used to use hardware devices connected on the corresponding host
734
parallel port.
735

    
736
This option can be used several times to simulate up to 3 parallel
737
ports.
738

    
739
Use @code{-parallel none} to disable all parallel ports.
740

    
741
@item -monitor dev
742
Redirect the monitor to host device @var{dev} (same devices as the
743
serial port).
744
The default device is @code{vc} in graphical mode and @code{stdio} in
745
non graphical mode.
746

    
747
@item -echr numeric_ascii_value
748
Change the escape character used for switching to the monitor when using
749
monitor and serial sharing.  The default is @code{0x01} when using the
750
@code{-nographic} option.  @code{0x01} is equal to pressing
751
@code{Control-a}.  You can select a different character from the ascii
752
control keys where 1 through 26 map to Control-a through Control-z.  For
753
instance you could use the either of the following to change the escape
754
character to Control-t.
755
@table @code
756
@item -echr 0x14
757
@item -echr 20
758
@end table
759

    
760
@item -s
761
Wait gdb connection to port 1234 (@pxref{gdb_usage}).
762
@item -p port
763
Change gdb connection port.  @var{port} can be either a decimal number
764
to specify a TCP port, or a host device (same devices as the serial port).
765
@item -S
766
Do not start CPU at startup (you must type 'c' in the monitor).
767
@item -d
768
Output log in /tmp/qemu.log
769
@item -hdachs c,h,s,[,t]
770
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
771
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
772
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
773
all those parameters. This option is useful for old MS-DOS disk
774
images.
775

    
776
@item -L path
777
Set the directory for the BIOS, VGA BIOS and keymaps.
778

    
779
@item -std-vga
780
Simulate a standard VGA card with Bochs VBE extensions (default is
781
Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
782
VBE extensions (e.g. Windows XP) and if you want to use high
783
resolution modes (>= 1280x1024x16) then you should use this option.
784

    
785
@item -no-acpi
786
Disable ACPI (Advanced Configuration and Power Interface) support. Use
787
it if your guest OS complains about ACPI problems (PC target machine
788
only).
789

    
790
@item -no-reboot
791
Exit instead of rebooting.
792

    
793
@item -loadvm file
794
Start right away with a saved state (@code{loadvm} in monitor)
795

    
796
@item -semihosting
797
Enable semihosting syscall emulation (ARM and M68K target machines only).
798

    
799
On ARM this implements the "Angel" interface.
800
On M68K this implements the "ColdFire GDB" interface used by libgloss.
801

    
802
Note that this allows guest direct access to the host filesystem,
803
so should only be used with trusted guest OS.
804
@end table
805

    
806
@c man end
807

    
808
@node pcsys_keys
809
@section Keys
810

    
811
@c man begin OPTIONS
812

    
813
During the graphical emulation, you can use the following keys:
814
@table @key
815
@item Ctrl-Alt-f
816
Toggle full screen
817

    
818
@item Ctrl-Alt-n
819
Switch to virtual console 'n'. Standard console mappings are:
820
@table @emph
821
@item 1
822
Target system display
823
@item 2
824
Monitor
825
@item 3
826
Serial port
827
@end table
828

    
829
@item Ctrl-Alt
830
Toggle mouse and keyboard grab.
831
@end table
832

    
833
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
834
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
835

    
836
During emulation, if you are using the @option{-nographic} option, use
837
@key{Ctrl-a h} to get terminal commands:
838

    
839
@table @key
840
@item Ctrl-a h
841
Print this help
842
@item Ctrl-a x
843
Exit emulator
844
@item Ctrl-a s
845
Save disk data back to file (if -snapshot)
846
@item Ctrl-a t
847
toggle console timestamps
848
@item Ctrl-a b
849
Send break (magic sysrq in Linux)
850
@item Ctrl-a c
851
Switch between console and monitor
852
@item Ctrl-a Ctrl-a
853
Send Ctrl-a
854
@end table
855
@c man end
856

    
857
@ignore
858

    
859
@c man begin SEEALSO
860
The HTML documentation of QEMU for more precise information and Linux
861
user mode emulator invocation.
862
@c man end
863

    
864
@c man begin AUTHOR
865
Fabrice Bellard
866
@c man end
867

    
868
@end ignore
869

    
870
@node pcsys_monitor
871
@section QEMU Monitor
872

    
873
The QEMU monitor is used to give complex commands to the QEMU
874
emulator. You can use it to:
875

    
876
@itemize @minus
877

    
878
@item
879
Remove or insert removable media images
880
(such as CD-ROM or floppies)
881

    
882
@item
883
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
884
from a disk file.
885

    
886
@item Inspect the VM state without an external debugger.
887

    
888
@end itemize
889

    
890
@subsection Commands
891

    
892
The following commands are available:
893

    
894
@table @option
895

    
896
@item help or ? [cmd]
897
Show the help for all commands or just for command @var{cmd}.
898

    
899
@item commit
900
Commit changes to the disk images (if -snapshot is used)
901

    
902
@item info subcommand
903
show various information about the system state
904

    
905
@table @option
906
@item info network
907
show the various VLANs and the associated devices
908
@item info block
909
show the block devices
910
@item info registers
911
show the cpu registers
912
@item info history
913
show the command line history
914
@item info pci
915
show emulated PCI device
916
@item info usb
917
show USB devices plugged on the virtual USB hub
918
@item info usbhost
919
show all USB host devices
920
@item info capture
921
show information about active capturing
922
@item info snapshots
923
show list of VM snapshots
924
@item info mice
925
show which guest mouse is receiving events
926
@end table
927

    
928
@item q or quit
929
Quit the emulator.
930

    
931
@item eject [-f] device
932
Eject a removable medium (use -f to force it).
933

    
934
@item change device setting
935

    
936
Change the configuration of a device
937

    
938
@table @option
939
@item change @var{diskdevice} @var{filename}
940
Change the medium for a removable disk device to point to @var{filename}. eg
941

    
942
@example
943
(qemu) change cdrom /path/to/some.iso
944
@end example
945

    
946
@item change vnc @var{display,options}
947
Change the configuration of the VNC server. The valid syntax for @var{display}
948
and @var{options} are described at @ref{sec_invocation}. eg
949

    
950
@example
951
(qemu) change vnc localhost:1
952
@end example
953

    
954
@item change vnc password
955

    
956
Change the password associated with the VNC server. The monitor will prompt for
957
the new password to be entered. VNC passwords are only significant upto 8 letters.
958
eg.
959

    
960
@example
961
(qemu) change vnc password
962
Password: ********
963
@end example
964

    
965
@end table
966

    
967
@item screendump filename
968
Save screen into PPM image @var{filename}.
969

    
970
@item mouse_move dx dy [dz]
971
Move the active mouse to the specified coordinates @var{dx} @var{dy}
972
with optional scroll axis @var{dz}.
973

    
974
@item mouse_button val
975
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
976

    
977
@item mouse_set index
978
Set which mouse device receives events at given @var{index}, index
979
can be obtained with
980
@example
981
info mice
982
@end example
983

    
984
@item wavcapture filename [frequency [bits [channels]]]
985
Capture audio into @var{filename}. Using sample rate @var{frequency}
986
bits per sample @var{bits} and number of channels @var{channels}.
987

    
988
Defaults:
989
@itemize @minus
990
@item Sample rate = 44100 Hz - CD quality
991
@item Bits = 16
992
@item Number of channels = 2 - Stereo
993
@end itemize
994

    
995
@item stopcapture index
996
Stop capture with a given @var{index}, index can be obtained with
997
@example
998
info capture
999
@end example
1000

    
1001
@item log item1[,...]
1002
Activate logging of the specified items to @file{/tmp/qemu.log}.
1003

    
1004
@item savevm [tag|id]
1005
Create a snapshot of the whole virtual machine. If @var{tag} is
1006
provided, it is used as human readable identifier. If there is already
1007
a snapshot with the same tag or ID, it is replaced. More info at
1008
@ref{vm_snapshots}.
1009

    
1010
@item loadvm tag|id
1011
Set the whole virtual machine to the snapshot identified by the tag
1012
@var{tag} or the unique snapshot ID @var{id}.
1013

    
1014
@item delvm tag|id
1015
Delete the snapshot identified by @var{tag} or @var{id}.
1016

    
1017
@item stop
1018
Stop emulation.
1019

    
1020
@item c or cont
1021
Resume emulation.
1022

    
1023
@item gdbserver [port]
1024
Start gdbserver session (default port=1234)
1025

    
1026
@item x/fmt addr
1027
Virtual memory dump starting at @var{addr}.
1028

    
1029
@item xp /fmt addr
1030
Physical memory dump starting at @var{addr}.
1031

    
1032
@var{fmt} is a format which tells the command how to format the
1033
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1034

    
1035
@table @var
1036
@item count
1037
is the number of items to be dumped.
1038

    
1039
@item format
1040
can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1041
c (char) or i (asm instruction).
1042

    
1043
@item size
1044
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1045
@code{h} or @code{w} can be specified with the @code{i} format to
1046
respectively select 16 or 32 bit code instruction size.
1047

    
1048
@end table
1049

    
1050
Examples:
1051
@itemize
1052
@item
1053
Dump 10 instructions at the current instruction pointer:
1054
@example
1055
(qemu) x/10i $eip
1056
0x90107063:  ret
1057
0x90107064:  sti
1058
0x90107065:  lea    0x0(%esi,1),%esi
1059
0x90107069:  lea    0x0(%edi,1),%edi
1060
0x90107070:  ret
1061
0x90107071:  jmp    0x90107080
1062
0x90107073:  nop
1063
0x90107074:  nop
1064
0x90107075:  nop
1065
0x90107076:  nop
1066
@end example
1067

    
1068
@item
1069
Dump 80 16 bit values at the start of the video memory.
1070
@smallexample
1071
(qemu) xp/80hx 0xb8000
1072
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1073
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1074
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1075
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1076
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1077
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1078
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1079
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1080
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1081
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1082
@end smallexample
1083
@end itemize
1084

    
1085
@item p or print/fmt expr
1086

    
1087
Print expression value. Only the @var{format} part of @var{fmt} is
1088
used.
1089

    
1090
@item sendkey keys
1091

    
1092
Send @var{keys} to the emulator. Use @code{-} to press several keys
1093
simultaneously. Example:
1094
@example
1095
sendkey ctrl-alt-f1
1096
@end example
1097

    
1098
This command is useful to send keys that your graphical user interface
1099
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1100

    
1101
@item system_reset
1102

    
1103
Reset the system.
1104

    
1105
@item usb_add devname
1106

    
1107
Add the USB device @var{devname}.  For details of available devices see
1108
@ref{usb_devices}
1109

    
1110
@item usb_del devname
1111

    
1112
Remove the USB device @var{devname} from the QEMU virtual USB
1113
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1114
command @code{info usb} to see the devices you can remove.
1115

    
1116
@end table
1117

    
1118
@subsection Integer expressions
1119

    
1120
The monitor understands integers expressions for every integer
1121
argument. You can use register names to get the value of specifics
1122
CPU registers by prefixing them with @emph{$}.
1123

    
1124
@node disk_images
1125
@section Disk Images
1126

    
1127
Since version 0.6.1, QEMU supports many disk image formats, including
1128
growable disk images (their size increase as non empty sectors are
1129
written), compressed and encrypted disk images. Version 0.8.3 added
1130
the new qcow2 disk image format which is essential to support VM
1131
snapshots.
1132

    
1133
@menu
1134
* disk_images_quickstart::    Quick start for disk image creation
1135
* disk_images_snapshot_mode:: Snapshot mode
1136
* vm_snapshots::              VM snapshots
1137
* qemu_img_invocation::       qemu-img Invocation
1138
* host_drives::               Using host drives
1139
* disk_images_fat_images::    Virtual FAT disk images
1140
@end menu
1141

    
1142
@node disk_images_quickstart
1143
@subsection Quick start for disk image creation
1144

    
1145
You can create a disk image with the command:
1146
@example
1147
qemu-img create myimage.img mysize
1148
@end example
1149
where @var{myimage.img} is the disk image filename and @var{mysize} is its
1150
size in kilobytes. You can add an @code{M} suffix to give the size in
1151
megabytes and a @code{G} suffix for gigabytes.
1152

    
1153
See @ref{qemu_img_invocation} for more information.
1154

    
1155
@node disk_images_snapshot_mode
1156
@subsection Snapshot mode
1157

    
1158
If you use the option @option{-snapshot}, all disk images are
1159
considered as read only. When sectors in written, they are written in
1160
a temporary file created in @file{/tmp}. You can however force the
1161
write back to the raw disk images by using the @code{commit} monitor
1162
command (or @key{C-a s} in the serial console).
1163

    
1164
@node vm_snapshots
1165
@subsection VM snapshots
1166

    
1167
VM snapshots are snapshots of the complete virtual machine including
1168
CPU state, RAM, device state and the content of all the writable
1169
disks. In order to use VM snapshots, you must have at least one non
1170
removable and writable block device using the @code{qcow2} disk image
1171
format. Normally this device is the first virtual hard drive.
1172

    
1173
Use the monitor command @code{savevm} to create a new VM snapshot or
1174
replace an existing one. A human readable name can be assigned to each
1175
snapshot in addition to its numerical ID.
1176

    
1177
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1178
a VM snapshot. @code{info snapshots} lists the available snapshots
1179
with their associated information:
1180

    
1181
@example
1182
(qemu) info snapshots
1183
Snapshot devices: hda
1184
Snapshot list (from hda):
1185
ID        TAG                 VM SIZE                DATE       VM CLOCK
1186
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1187
2                                 40M 2006-08-06 12:43:29   00:00:18.633
1188
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1189
@end example
1190

    
1191
A VM snapshot is made of a VM state info (its size is shown in
1192
@code{info snapshots}) and a snapshot of every writable disk image.
1193
The VM state info is stored in the first @code{qcow2} non removable
1194
and writable block device. The disk image snapshots are stored in
1195
every disk image. The size of a snapshot in a disk image is difficult
1196
to evaluate and is not shown by @code{info snapshots} because the
1197
associated disk sectors are shared among all the snapshots to save
1198
disk space (otherwise each snapshot would need a full copy of all the
1199
disk images).
1200

    
1201
When using the (unrelated) @code{-snapshot} option
1202
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1203
but they are deleted as soon as you exit QEMU.
1204

    
1205
VM snapshots currently have the following known limitations:
1206
@itemize
1207
@item
1208
They cannot cope with removable devices if they are removed or
1209
inserted after a snapshot is done.
1210
@item
1211
A few device drivers still have incomplete snapshot support so their
1212
state is not saved or restored properly (in particular USB).
1213
@end itemize
1214

    
1215
@node qemu_img_invocation
1216
@subsection @code{qemu-img} Invocation
1217

    
1218
@include qemu-img.texi
1219

    
1220
@node host_drives
1221
@subsection Using host drives
1222

    
1223
In addition to disk image files, QEMU can directly access host
1224
devices. We describe here the usage for QEMU version >= 0.8.3.
1225

    
1226
@subsubsection Linux
1227

    
1228
On Linux, you can directly use the host device filename instead of a
1229
disk image filename provided you have enough privileges to access
1230
it. For example, use @file{/dev/cdrom} to access to the CDROM or
1231
@file{/dev/fd0} for the floppy.
1232

    
1233
@table @code
1234
@item CD
1235
You can specify a CDROM device even if no CDROM is loaded. QEMU has
1236
specific code to detect CDROM insertion or removal. CDROM ejection by
1237
the guest OS is supported. Currently only data CDs are supported.
1238
@item Floppy
1239
You can specify a floppy device even if no floppy is loaded. Floppy
1240
removal is currently not detected accurately (if you change floppy
1241
without doing floppy access while the floppy is not loaded, the guest
1242
OS will think that the same floppy is loaded).
1243
@item Hard disks
1244
Hard disks can be used. Normally you must specify the whole disk
1245
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1246
see it as a partitioned disk. WARNING: unless you know what you do, it
1247
is better to only make READ-ONLY accesses to the hard disk otherwise
1248
you may corrupt your host data (use the @option{-snapshot} command
1249
line option or modify the device permissions accordingly).
1250
@end table
1251

    
1252
@subsubsection Windows
1253

    
1254
@table @code
1255
@item CD
1256
The preferred syntax is the drive letter (e.g. @file{d:}). The
1257
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1258
supported as an alias to the first CDROM drive.
1259

    
1260
Currently there is no specific code to handle removable media, so it
1261
is better to use the @code{change} or @code{eject} monitor commands to
1262
change or eject media.
1263
@item Hard disks
1264
Hard disks can be used with the syntax: @file{\\.\PhysicalDriveN}
1265
where @var{N} is the drive number (0 is the first hard disk).
1266

    
1267
WARNING: unless you know what you do, it is better to only make
1268
READ-ONLY accesses to the hard disk otherwise you may corrupt your
1269
host data (use the @option{-snapshot} command line so that the
1270
modifications are written in a temporary file).
1271
@end table
1272

    
1273

    
1274
@subsubsection Mac OS X
1275

    
1276
@file{/dev/cdrom} is an alias to the first CDROM.
1277

    
1278
Currently there is no specific code to handle removable media, so it
1279
is better to use the @code{change} or @code{eject} monitor commands to
1280
change or eject media.
1281

    
1282
@node disk_images_fat_images
1283
@subsection Virtual FAT disk images
1284

    
1285
QEMU can automatically create a virtual FAT disk image from a
1286
directory tree. In order to use it, just type:
1287

    
1288
@example
1289
qemu linux.img -hdb fat:/my_directory
1290
@end example
1291

    
1292
Then you access access to all the files in the @file{/my_directory}
1293
directory without having to copy them in a disk image or to export
1294
them via SAMBA or NFS. The default access is @emph{read-only}.
1295

    
1296
Floppies can be emulated with the @code{:floppy:} option:
1297

    
1298
@example
1299
qemu linux.img -fda fat:floppy:/my_directory
1300
@end example
1301

    
1302
A read/write support is available for testing (beta stage) with the
1303
@code{:rw:} option:
1304

    
1305
@example
1306
qemu linux.img -fda fat:floppy:rw:/my_directory
1307
@end example
1308

    
1309
What you should @emph{never} do:
1310
@itemize
1311
@item use non-ASCII filenames ;
1312
@item use "-snapshot" together with ":rw:" ;
1313
@item expect it to work when loadvm'ing ;
1314
@item write to the FAT directory on the host system while accessing it with the guest system.
1315
@end itemize
1316

    
1317
@node pcsys_network
1318
@section Network emulation
1319

    
1320
QEMU can simulate several network cards (PCI or ISA cards on the PC
1321
target) and can connect them to an arbitrary number of Virtual Local
1322
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1323
VLAN. VLAN can be connected between separate instances of QEMU to
1324
simulate large networks. For simpler usage, a non privileged user mode
1325
network stack can replace the TAP device to have a basic network
1326
connection.
1327

    
1328
@subsection VLANs
1329

    
1330
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1331
connection between several network devices. These devices can be for
1332
example QEMU virtual Ethernet cards or virtual Host ethernet devices
1333
(TAP devices).
1334

    
1335
@subsection Using TAP network interfaces
1336

    
1337
This is the standard way to connect QEMU to a real network. QEMU adds
1338
a virtual network device on your host (called @code{tapN}), and you
1339
can then configure it as if it was a real ethernet card.
1340

    
1341
@subsubsection Linux host
1342

    
1343
As an example, you can download the @file{linux-test-xxx.tar.gz}
1344
archive and copy the script @file{qemu-ifup} in @file{/etc} and
1345
configure properly @code{sudo} so that the command @code{ifconfig}
1346
contained in @file{qemu-ifup} can be executed as root. You must verify
1347
that your host kernel supports the TAP network interfaces: the
1348
device @file{/dev/net/tun} must be present.
1349

    
1350
See @ref{sec_invocation} to have examples of command lines using the
1351
TAP network interfaces.
1352

    
1353
@subsubsection Windows host
1354

    
1355
There is a virtual ethernet driver for Windows 2000/XP systems, called
1356
TAP-Win32. But it is not included in standard QEMU for Windows,
1357
so you will need to get it separately. It is part of OpenVPN package,
1358
so download OpenVPN from : @url{http://openvpn.net/}.
1359

    
1360
@subsection Using the user mode network stack
1361

    
1362
By using the option @option{-net user} (default configuration if no
1363
@option{-net} option is specified), QEMU uses a completely user mode
1364
network stack (you don't need root privilege to use the virtual
1365
network). The virtual network configuration is the following:
1366

    
1367
@example
1368

    
1369
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1370
                           |          (10.0.2.2)
1371
                           |
1372
                           ---->  DNS server (10.0.2.3)
1373
                           |
1374
                           ---->  SMB server (10.0.2.4)
1375
@end example
1376

    
1377
The QEMU VM behaves as if it was behind a firewall which blocks all
1378
incoming connections. You can use a DHCP client to automatically
1379
configure the network in the QEMU VM. The DHCP server assign addresses
1380
to the hosts starting from 10.0.2.15.
1381

    
1382
In order to check that the user mode network is working, you can ping
1383
the address 10.0.2.2 and verify that you got an address in the range
1384
10.0.2.x from the QEMU virtual DHCP server.
1385

    
1386
Note that @code{ping} is not supported reliably to the internet as it
1387
would require root privileges. It means you can only ping the local
1388
router (10.0.2.2).
1389

    
1390
When using the built-in TFTP server, the router is also the TFTP
1391
server.
1392

    
1393
When using the @option{-redir} option, TCP or UDP connections can be
1394
redirected from the host to the guest. It allows for example to
1395
redirect X11, telnet or SSH connections.
1396

    
1397
@subsection Connecting VLANs between QEMU instances
1398

    
1399
Using the @option{-net socket} option, it is possible to make VLANs
1400
that span several QEMU instances. See @ref{sec_invocation} to have a
1401
basic example.
1402

    
1403
@node direct_linux_boot
1404
@section Direct Linux Boot
1405

    
1406
This section explains how to launch a Linux kernel inside QEMU without
1407
having to make a full bootable image. It is very useful for fast Linux
1408
kernel testing.
1409

    
1410
The syntax is:
1411
@example
1412
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1413
@end example
1414

    
1415
Use @option{-kernel} to provide the Linux kernel image and
1416
@option{-append} to give the kernel command line arguments. The
1417
@option{-initrd} option can be used to provide an INITRD image.
1418

    
1419
When using the direct Linux boot, a disk image for the first hard disk
1420
@file{hda} is required because its boot sector is used to launch the
1421
Linux kernel.
1422

    
1423
If you do not need graphical output, you can disable it and redirect
1424
the virtual serial port and the QEMU monitor to the console with the
1425
@option{-nographic} option. The typical command line is:
1426
@example
1427
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1428
     -append "root=/dev/hda console=ttyS0" -nographic
1429
@end example
1430

    
1431
Use @key{Ctrl-a c} to switch between the serial console and the
1432
monitor (@pxref{pcsys_keys}).
1433

    
1434
@node pcsys_usb
1435
@section USB emulation
1436

    
1437
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1438
virtual USB devices or real host USB devices (experimental, works only
1439
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1440
as necessary to connect multiple USB devices.
1441

    
1442
@menu
1443
* usb_devices::
1444
* host_usb_devices::
1445
@end menu
1446
@node usb_devices
1447
@subsection Connecting USB devices
1448

    
1449
USB devices can be connected with the @option{-usbdevice} commandline option
1450
or the @code{usb_add} monitor command.  Available devices are:
1451

    
1452
@table @var
1453
@item @code{mouse}
1454
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1455
@item @code{tablet}
1456
Pointer device that uses absolute coordinates (like a touchscreen).
1457
This means qemu is able to report the mouse position without having
1458
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1459
@item @code{disk:file}
1460
Mass storage device based on @var{file} (@pxref{disk_images})
1461
@item @code{host:bus.addr}
1462
Pass through the host device identified by @var{bus.addr}
1463
(Linux only)
1464
@item @code{host:vendor_id:product_id}
1465
Pass through the host device identified by @var{vendor_id:product_id}
1466
(Linux only)
1467
@item @code{wacom-tablet}
1468
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1469
above but it can be used with the tslib library because in addition to touch
1470
coordinates it reports touch pressure.
1471
@item @code{keyboard}
1472
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1473
@end table
1474

    
1475
@node host_usb_devices
1476
@subsection Using host USB devices on a Linux host
1477

    
1478
WARNING: this is an experimental feature. QEMU will slow down when
1479
using it. USB devices requiring real time streaming (i.e. USB Video
1480
Cameras) are not supported yet.
1481

    
1482
@enumerate
1483
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1484
is actually using the USB device. A simple way to do that is simply to
1485
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1486
to @file{mydriver.o.disabled}.
1487

    
1488
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1489
@example
1490
ls /proc/bus/usb
1491
001  devices  drivers
1492
@end example
1493

    
1494
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1495
@example
1496
chown -R myuid /proc/bus/usb
1497
@end example
1498

    
1499
@item Launch QEMU and do in the monitor:
1500
@example
1501
info usbhost
1502
  Device 1.2, speed 480 Mb/s
1503
    Class 00: USB device 1234:5678, USB DISK
1504
@end example
1505
You should see the list of the devices you can use (Never try to use
1506
hubs, it won't work).
1507

    
1508
@item Add the device in QEMU by using:
1509
@example
1510
usb_add host:1234:5678
1511
@end example
1512

    
1513
Normally the guest OS should report that a new USB device is
1514
plugged. You can use the option @option{-usbdevice} to do the same.
1515

    
1516
@item Now you can try to use the host USB device in QEMU.
1517

    
1518
@end enumerate
1519

    
1520
When relaunching QEMU, you may have to unplug and plug again the USB
1521
device to make it work again (this is a bug).
1522

    
1523
@node vnc_security
1524
@section VNC security
1525

    
1526
The VNC server capability provides access to the graphical console
1527
of the guest VM across the network. This has a number of security
1528
considerations depending on the deployment scenarios.
1529

    
1530
@menu
1531
* vnc_sec_none::
1532
* vnc_sec_password::
1533
* vnc_sec_certificate::
1534
* vnc_sec_certificate_verify::
1535
* vnc_sec_certificate_pw::
1536
* vnc_generate_cert::
1537
@end menu
1538
@node vnc_sec_none
1539
@subsection Without passwords
1540

    
1541
The simplest VNC server setup does not include any form of authentication.
1542
For this setup it is recommended to restrict it to listen on a UNIX domain
1543
socket only. For example
1544

    
1545
@example
1546
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1547
@end example
1548

    
1549
This ensures that only users on local box with read/write access to that
1550
path can access the VNC server. To securely access the VNC server from a
1551
remote machine, a combination of netcat+ssh can be used to provide a secure
1552
tunnel.
1553

    
1554
@node vnc_sec_password
1555
@subsection With passwords
1556

    
1557
The VNC protocol has limited support for password based authentication. Since
1558
the protocol limits passwords to 8 characters it should not be considered
1559
to provide high security. The password can be fairly easily brute-forced by
1560
a client making repeat connections. For this reason, a VNC server using password
1561
authentication should be restricted to only listen on the loopback interface
1562
or UNIX domain sockets. Password ayuthentication is requested with the @code{password}
1563
option, and then once QEMU is running the password is set with the monitor. Until
1564
the monitor is used to set the password all clients will be rejected.
1565

    
1566
@example
1567
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1568
(qemu) change vnc password
1569
Password: ********
1570
(qemu)
1571
@end example
1572

    
1573
@node vnc_sec_certificate
1574
@subsection With x509 certificates
1575

    
1576
The QEMU VNC server also implements the VeNCrypt extension allowing use of
1577
TLS for encryption of the session, and x509 certificates for authentication.
1578
The use of x509 certificates is strongly recommended, because TLS on its
1579
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1580
support provides a secure session, but no authentication. This allows any
1581
client to connect, and provides an encrypted session.
1582

    
1583
@example
1584
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1585
@end example
1586

    
1587
In the above example @code{/etc/pki/qemu} should contain at least three files,
1588
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1589
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1590
NB the @code{server-key.pem} file should be protected with file mode 0600 to
1591
only be readable by the user owning it.
1592

    
1593
@node vnc_sec_certificate_verify
1594
@subsection With x509 certificates and client verification
1595

    
1596
Certificates can also provide a means to authenticate the client connecting.
1597
The server will request that the client provide a certificate, which it will
1598
then validate against the CA certificate. This is a good choice if deploying
1599
in an environment with a private internal certificate authority.
1600

    
1601
@example
1602
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1603
@end example
1604

    
1605

    
1606
@node vnc_sec_certificate_pw
1607
@subsection With x509 certificates, client verification and passwords
1608

    
1609
Finally, the previous method can be combined with VNC password authentication
1610
to provide two layers of authentication for clients.
1611

    
1612
@example
1613
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1614
(qemu) change vnc password
1615
Password: ********
1616
(qemu)
1617
@end example
1618

    
1619
@node vnc_generate_cert
1620
@subsection Generating certificates for VNC
1621

    
1622
The GNU TLS packages provides a command called @code{certtool} which can
1623
be used to generate certificates and keys in PEM format. At a minimum it
1624
is neccessary to setup a certificate authority, and issue certificates to
1625
each server. If using certificates for authentication, then each client
1626
will also need to be issued a certificate. The recommendation is for the
1627
server to keep its certificates in either @code{/etc/pki/qemu} or for
1628
unprivileged users in @code{$HOME/.pki/qemu}.
1629

    
1630
@menu
1631
* vnc_generate_ca::
1632
* vnc_generate_server::
1633
* vnc_generate_client::
1634
@end menu
1635
@node vnc_generate_ca
1636
@subsubsection Setup the Certificate Authority
1637

    
1638
This step only needs to be performed once per organization / organizational
1639
unit. First the CA needs a private key. This key must be kept VERY secret
1640
and secure. If this key is compromised the entire trust chain of the certificates
1641
issued with it is lost.
1642

    
1643
@example
1644
# certtool --generate-privkey > ca-key.pem
1645
@end example
1646

    
1647
A CA needs to have a public certificate. For simplicity it can be a self-signed
1648
certificate, or one issue by a commercial certificate issuing authority. To
1649
generate a self-signed certificate requires one core piece of information, the
1650
name of the organization.
1651

    
1652
@example
1653
# cat > ca.info <<EOF
1654
cn = Name of your organization
1655
ca
1656
cert_signing_key
1657
EOF
1658
# certtool --generate-self-signed \
1659
           --load-privkey ca-key.pem
1660
           --template ca.info \
1661
           --outfile ca-cert.pem
1662
@end example
1663

    
1664
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1665
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1666

    
1667
@node vnc_generate_server
1668
@subsubsection Issuing server certificates
1669

    
1670
Each server (or host) needs to be issued with a key and certificate. When connecting
1671
the certificate is sent to the client which validates it against the CA certificate.
1672
The core piece of information for a server certificate is the hostname. This should
1673
be the fully qualified hostname that the client will connect with, since the client
1674
will typically also verify the hostname in the certificate. On the host holding the
1675
secure CA private key:
1676

    
1677
@example
1678
# cat > server.info <<EOF
1679
organization = Name  of your organization
1680
cn = server.foo.example.com
1681
tls_www_server
1682
encryption_key
1683
signing_key
1684
EOF
1685
# certtool --generate-privkey > server-key.pem
1686
# certtool --generate-certificate \
1687
           --load-ca-certificate ca-cert.pem \
1688
           --load-ca-privkey ca-key.pem \
1689
           --load-privkey server server-key.pem \
1690
           --template server.info \
1691
           --outfile server-cert.pem
1692
@end example
1693

    
1694
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1695
to the server for which they were generated. The @code{server-key.pem} is security
1696
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1697

    
1698
@node vnc_generate_client
1699
@subsubsection Issuing client certificates
1700

    
1701
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1702
certificates as its authentication mechanism, each client also needs to be issued
1703
a certificate. The client certificate contains enough metadata to uniquely identify
1704
the client, typically organization, state, city, building, etc. On the host holding
1705
the secure CA private key:
1706

    
1707
@example
1708
# cat > client.info <<EOF
1709
country = GB
1710
state = London
1711
locality = London
1712
organiazation = Name of your organization
1713
cn = client.foo.example.com
1714
tls_www_client
1715
encryption_key
1716
signing_key
1717
EOF
1718
# certtool --generate-privkey > client-key.pem
1719
# certtool --generate-certificate \
1720
           --load-ca-certificate ca-cert.pem \
1721
           --load-ca-privkey ca-key.pem \
1722
           --load-privkey client-key.pem \
1723
           --template client.info \
1724
           --outfile client-cert.pem
1725
@end example
1726

    
1727
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1728
copied to the client for which they were generated.
1729

    
1730
@node gdb_usage
1731
@section GDB usage
1732

    
1733
QEMU has a primitive support to work with gdb, so that you can do
1734
'Ctrl-C' while the virtual machine is running and inspect its state.
1735

    
1736
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1737
gdb connection:
1738
@example
1739
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1740
       -append "root=/dev/hda"
1741
Connected to host network interface: tun0
1742
Waiting gdb connection on port 1234
1743
@end example
1744

    
1745
Then launch gdb on the 'vmlinux' executable:
1746
@example
1747
> gdb vmlinux
1748
@end example
1749

    
1750
In gdb, connect to QEMU:
1751
@example
1752
(gdb) target remote localhost:1234
1753
@end example
1754

    
1755
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1756
@example
1757
(gdb) c
1758
@end example
1759

    
1760
Here are some useful tips in order to use gdb on system code:
1761

    
1762
@enumerate
1763
@item
1764
Use @code{info reg} to display all the CPU registers.
1765
@item
1766
Use @code{x/10i $eip} to display the code at the PC position.
1767
@item
1768
Use @code{set architecture i8086} to dump 16 bit code. Then use
1769
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1770
@end enumerate
1771

    
1772
@node pcsys_os_specific
1773
@section Target OS specific information
1774

    
1775
@subsection Linux
1776

    
1777
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1778
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1779
color depth in the guest and the host OS.
1780

    
1781
When using a 2.6 guest Linux kernel, you should add the option
1782
@code{clock=pit} on the kernel command line because the 2.6 Linux
1783
kernels make very strict real time clock checks by default that QEMU
1784
cannot simulate exactly.
1785

    
1786
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1787
not activated because QEMU is slower with this patch. The QEMU
1788
Accelerator Module is also much slower in this case. Earlier Fedora
1789
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1790
patch by default. Newer kernels don't have it.
1791

    
1792
@subsection Windows
1793

    
1794
If you have a slow host, using Windows 95 is better as it gives the
1795
best speed. Windows 2000 is also a good choice.
1796

    
1797
@subsubsection SVGA graphic modes support
1798

    
1799
QEMU emulates a Cirrus Logic GD5446 Video
1800
card. All Windows versions starting from Windows 95 should recognize
1801
and use this graphic card. For optimal performances, use 16 bit color
1802
depth in the guest and the host OS.
1803

    
1804
If you are using Windows XP as guest OS and if you want to use high
1805
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1806
1280x1024x16), then you should use the VESA VBE virtual graphic card
1807
(option @option{-std-vga}).
1808

    
1809
@subsubsection CPU usage reduction
1810

    
1811
Windows 9x does not correctly use the CPU HLT
1812
instruction. The result is that it takes host CPU cycles even when
1813
idle. You can install the utility from
1814
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1815
problem. Note that no such tool is needed for NT, 2000 or XP.
1816

    
1817
@subsubsection Windows 2000 disk full problem
1818

    
1819
Windows 2000 has a bug which gives a disk full problem during its
1820
installation. When installing it, use the @option{-win2k-hack} QEMU
1821
option to enable a specific workaround. After Windows 2000 is
1822
installed, you no longer need this option (this option slows down the
1823
IDE transfers).
1824

    
1825
@subsubsection Windows 2000 shutdown
1826

    
1827
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1828
can. It comes from the fact that Windows 2000 does not automatically
1829
use the APM driver provided by the BIOS.
1830

    
1831
In order to correct that, do the following (thanks to Struan
1832
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1833
Add/Troubleshoot a device => Add a new device & Next => No, select the
1834
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1835
(again) a few times. Now the driver is installed and Windows 2000 now
1836
correctly instructs QEMU to shutdown at the appropriate moment.
1837

    
1838
@subsubsection Share a directory between Unix and Windows
1839

    
1840
See @ref{sec_invocation} about the help of the option @option{-smb}.
1841

    
1842
@subsubsection Windows XP security problem
1843

    
1844
Some releases of Windows XP install correctly but give a security
1845
error when booting:
1846
@example
1847
A problem is preventing Windows from accurately checking the
1848
license for this computer. Error code: 0x800703e6.
1849
@end example
1850

    
1851
The workaround is to install a service pack for XP after a boot in safe
1852
mode. Then reboot, and the problem should go away. Since there is no
1853
network while in safe mode, its recommended to download the full
1854
installation of SP1 or SP2 and transfer that via an ISO or using the
1855
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1856

    
1857
@subsection MS-DOS and FreeDOS
1858

    
1859
@subsubsection CPU usage reduction
1860

    
1861
DOS does not correctly use the CPU HLT instruction. The result is that
1862
it takes host CPU cycles even when idle. You can install the utility
1863
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1864
problem.
1865

    
1866
@node QEMU System emulator for non PC targets
1867
@chapter QEMU System emulator for non PC targets
1868

    
1869
QEMU is a generic emulator and it emulates many non PC
1870
machines. Most of the options are similar to the PC emulator. The
1871
differences are mentioned in the following sections.
1872

    
1873
@menu
1874
* QEMU PowerPC System emulator::
1875
* Sparc32 System emulator::
1876
* Sparc64 System emulator::
1877
* MIPS System emulator::
1878
* ARM System emulator::
1879
* ColdFire System emulator::
1880
@end menu
1881

    
1882
@node QEMU PowerPC System emulator
1883
@section QEMU PowerPC System emulator
1884

    
1885
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1886
or PowerMac PowerPC system.
1887

    
1888
QEMU emulates the following PowerMac peripherals:
1889

    
1890
@itemize @minus
1891
@item
1892
UniNorth PCI Bridge
1893
@item
1894
PCI VGA compatible card with VESA Bochs Extensions
1895
@item
1896
2 PMAC IDE interfaces with hard disk and CD-ROM support
1897
@item
1898
NE2000 PCI adapters
1899
@item
1900
Non Volatile RAM
1901
@item
1902
VIA-CUDA with ADB keyboard and mouse.
1903
@end itemize
1904

    
1905
QEMU emulates the following PREP peripherals:
1906

    
1907
@itemize @minus
1908
@item
1909
PCI Bridge
1910
@item
1911
PCI VGA compatible card with VESA Bochs Extensions
1912
@item
1913
2 IDE interfaces with hard disk and CD-ROM support
1914
@item
1915
Floppy disk
1916
@item
1917
NE2000 network adapters
1918
@item
1919
Serial port
1920
@item
1921
PREP Non Volatile RAM
1922
@item
1923
PC compatible keyboard and mouse.
1924
@end itemize
1925

    
1926
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1927
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1928

    
1929
@c man begin OPTIONS
1930

    
1931
The following options are specific to the PowerPC emulation:
1932

    
1933
@table @option
1934

    
1935
@item -g WxH[xDEPTH]
1936

    
1937
Set the initial VGA graphic mode. The default is 800x600x15.
1938

    
1939
@end table
1940

    
1941
@c man end
1942

    
1943

    
1944
More information is available at
1945
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1946

    
1947
@node Sparc32 System emulator
1948
@section Sparc32 System emulator
1949

    
1950
Use the executable @file{qemu-system-sparc} to simulate a SparcStation 5
1951
or SparcStation 10 (sun4m architecture). The emulation is somewhat complete.
1952
SMP up to 16 CPUs is supported, but Linux limits the number of usable CPUs
1953
to 4.
1954

    
1955
QEMU emulates the following sun4m peripherals:
1956

    
1957
@itemize @minus
1958
@item
1959
IOMMU
1960
@item
1961
TCX Frame buffer
1962
@item
1963
Lance (Am7990) Ethernet
1964
@item
1965
Non Volatile RAM M48T08
1966
@item
1967
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1968
and power/reset logic
1969
@item
1970
ESP SCSI controller with hard disk and CD-ROM support
1971
@item
1972
Floppy drive
1973
@item
1974
CS4231 sound device (only on SS-5, not working yet)
1975
@end itemize
1976

    
1977
The number of peripherals is fixed in the architecture.  Maximum memory size
1978
depends on the machine type, for SS-5 it is 256MB and for SS-10 2047MB.
1979

    
1980
Since version 0.8.2, QEMU uses OpenBIOS
1981
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1982
firmware implementation. The goal is to implement a 100% IEEE
1983
1275-1994 (referred to as Open Firmware) compliant firmware.
1984

    
1985
A sample Linux 2.6 series kernel and ram disk image are available on
1986
the QEMU web site. Please note that currently NetBSD, OpenBSD or
1987
Solaris kernels don't work.
1988

    
1989
@c man begin OPTIONS
1990

    
1991
The following options are specific to the Sparc32 emulation:
1992

    
1993
@table @option
1994

    
1995
@item -g WxHx[xDEPTH]
1996

    
1997
Set the initial TCX graphic mode. The default is 1024x768x8, currently
1998
the only other possible mode is 1024x768x24.
1999

    
2000
@item -prom-env string
2001

    
2002
Set OpenBIOS variables in NVRAM, for example:
2003

    
2004
@example
2005
qemu-system-sparc -prom-env 'auto-boot?=false' \
2006
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2007
@end example
2008

    
2009
@item -M [SS-5|SS-10]
2010

    
2011
Set the emulated machine type. Default is SS-5.
2012

    
2013
@end table
2014

    
2015
@c man end
2016

    
2017
@node Sparc64 System emulator
2018
@section Sparc64 System emulator
2019

    
2020
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
2021
The emulator is not usable for anything yet.
2022

    
2023
QEMU emulates the following sun4u peripherals:
2024

    
2025
@itemize @minus
2026
@item
2027
UltraSparc IIi APB PCI Bridge
2028
@item
2029
PCI VGA compatible card with VESA Bochs Extensions
2030
@item
2031
Non Volatile RAM M48T59
2032
@item
2033
PC-compatible serial ports
2034
@end itemize
2035

    
2036
@node MIPS System emulator
2037
@section MIPS System emulator
2038

    
2039
Use the executable @file{qemu-system-mips} to simulate a MIPS machine.
2040
Three different machine types are emulated:
2041

    
2042
@itemize @minus
2043
@item
2044
A generic ISA PC-like machine "mips"
2045
@item
2046
The MIPS Malta prototype board "malta"
2047
@item
2048
An ACER Pica "pica61"
2049
@item
2050
MIPS emulator pseudo board "mipssim"
2051
@end itemize
2052

    
2053
The generic emulation is supported by Debian 'Etch' and is able to
2054
install Debian into a virtual disk image. The following devices are
2055
emulated:
2056

    
2057
@itemize @minus
2058
@item
2059
A range of MIPS CPUs, default is the 24Kf
2060
@item
2061
PC style serial port
2062
@item
2063
PC style IDE disk
2064
@item
2065
NE2000 network card
2066
@end itemize
2067

    
2068
The Malta emulation supports the following devices:
2069

    
2070
@itemize @minus
2071
@item
2072
Core board with MIPS 24Kf CPU and Galileo system controller
2073
@item
2074
PIIX4 PCI/USB/SMbus controller
2075
@item
2076
The Multi-I/O chip's serial device
2077
@item
2078
PCnet32 PCI network card
2079
@item
2080
Malta FPGA serial device
2081
@item
2082
Cirrus VGA graphics card
2083
@end itemize
2084

    
2085
The ACER Pica emulation supports:
2086

    
2087
@itemize @minus
2088
@item
2089
MIPS R4000 CPU
2090
@item
2091
PC-style IRQ and DMA controllers
2092
@item
2093
PC Keyboard
2094
@item
2095
IDE controller
2096
@end itemize
2097

    
2098
The mipssim pseudo board emulation provides an environment similiar
2099
to what the proprietary MIPS emulator uses for running Linux.
2100
It supports:
2101

    
2102
@itemize @minus
2103
@item
2104
A range of MIPS CPUs, default is the 24Kf
2105
@item
2106
PC style serial port
2107
@item
2108
MIPSnet network emulation
2109
@end itemize
2110

    
2111
@node ARM System emulator
2112
@section ARM System emulator
2113

    
2114
Use the executable @file{qemu-system-arm} to simulate a ARM
2115
machine. The ARM Integrator/CP board is emulated with the following
2116
devices:
2117

    
2118
@itemize @minus
2119
@item
2120
ARM926E, ARM1026E or ARM946E CPU
2121
@item
2122
Two PL011 UARTs
2123
@item
2124
SMC 91c111 Ethernet adapter
2125
@item
2126
PL110 LCD controller
2127
@item
2128
PL050 KMI with PS/2 keyboard and mouse.
2129
@item
2130
PL181 MultiMedia Card Interface with SD card.
2131
@end itemize
2132

    
2133
The ARM Versatile baseboard is emulated with the following devices:
2134

    
2135
@itemize @minus
2136
@item
2137
ARM926E CPU
2138
@item
2139
PL190 Vectored Interrupt Controller
2140
@item
2141
Four PL011 UARTs
2142
@item
2143
SMC 91c111 Ethernet adapter
2144
@item
2145
PL110 LCD controller
2146
@item
2147
PL050 KMI with PS/2 keyboard and mouse.
2148
@item
2149
PCI host bridge.  Note the emulated PCI bridge only provides access to
2150
PCI memory space.  It does not provide access to PCI IO space.
2151
This means some devices (eg. ne2k_pci NIC) are not usable, and others
2152
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2153
mapped control registers.
2154
@item
2155
PCI OHCI USB controller.
2156
@item
2157
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2158
@item
2159
PL181 MultiMedia Card Interface with SD card.
2160
@end itemize
2161

    
2162
The ARM RealView Emulation baseboard is emulated with the following devices:
2163

    
2164
@itemize @minus
2165
@item
2166
ARM926E CPU
2167
@item
2168
ARM AMBA Generic/Distributed Interrupt Controller
2169
@item
2170
Four PL011 UARTs
2171
@item
2172
SMC 91c111 Ethernet adapter
2173
@item
2174
PL110 LCD controller
2175
@item
2176
PL050 KMI with PS/2 keyboard and mouse
2177
@item
2178
PCI host bridge
2179
@item
2180
PCI OHCI USB controller
2181
@item
2182
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2183
@item
2184
PL181 MultiMedia Card Interface with SD card.
2185
@end itemize
2186

    
2187
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2188
and "Terrier") emulation includes the following peripherals:
2189

    
2190
@itemize @minus
2191
@item
2192
Intel PXA270 System-on-chip (ARM V5TE core)
2193
@item
2194
NAND Flash memory
2195
@item
2196
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2197
@item
2198
On-chip OHCI USB controller
2199
@item
2200
On-chip LCD controller
2201
@item
2202
On-chip Real Time Clock
2203
@item
2204
TI ADS7846 touchscreen controller on SSP bus
2205
@item
2206
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2207
@item
2208
GPIO-connected keyboard controller and LEDs
2209
@item
2210
Secure Digital card connected to PXA MMC/SD host
2211
@item
2212
Three on-chip UARTs
2213
@item
2214
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2215
@end itemize
2216

    
2217
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2218
following elements:
2219

    
2220
@itemize @minus
2221
@item
2222
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2223
@item
2224
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2225
@item
2226
On-chip LCD controller
2227
@item
2228
On-chip Real Time Clock
2229
@item
2230
TI TSC2102i touchscreen controller / analog-digital converter / Audio
2231
CODEC, connected through MicroWire and I@math{^2}S busses
2232
@item
2233
GPIO-connected matrix keypad
2234
@item
2235
Secure Digital card connected to OMAP MMC/SD host
2236
@item
2237
Three on-chip UARTs
2238
@end itemize
2239

    
2240
A Linux 2.6 test image is available on the QEMU web site. More
2241
information is available in the QEMU mailing-list archive.
2242

    
2243
@node ColdFire System emulator
2244
@section ColdFire System emulator
2245

    
2246
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2247
The emulator is able to boot a uClinux kernel.
2248

    
2249
The M5208EVB emulation includes the following devices:
2250

    
2251
@itemize @minus
2252
@item
2253
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2254
@item
2255
Three Two on-chip UARTs.
2256
@item
2257
Fast Ethernet Controller (FEC)
2258
@end itemize
2259

    
2260
The AN5206 emulation includes the following devices:
2261

    
2262
@itemize @minus
2263
@item
2264
MCF5206 ColdFire V2 Microprocessor.
2265
@item
2266
Two on-chip UARTs.
2267
@end itemize
2268

    
2269
@node QEMU User space emulator
2270
@chapter QEMU User space emulator
2271

    
2272
@menu
2273
* Supported Operating Systems ::
2274
* Linux User space emulator::
2275
* Mac OS X/Darwin User space emulator ::
2276
@end menu
2277

    
2278
@node Supported Operating Systems
2279
@section Supported Operating Systems
2280

    
2281
The following OS are supported in user space emulation:
2282

    
2283
@itemize @minus
2284
@item
2285
Linux (referred as qemu-linux-user)
2286
@item
2287
Mac OS X/Darwin (referred as qemu-darwin-user)
2288
@end itemize
2289

    
2290
@node Linux User space emulator
2291
@section Linux User space emulator
2292

    
2293
@menu
2294
* Quick Start::
2295
* Wine launch::
2296
* Command line options::
2297
* Other binaries::
2298
@end menu
2299

    
2300
@node Quick Start
2301
@subsection Quick Start
2302

    
2303
In order to launch a Linux process, QEMU needs the process executable
2304
itself and all the target (x86) dynamic libraries used by it.
2305

    
2306
@itemize
2307

    
2308
@item On x86, you can just try to launch any process by using the native
2309
libraries:
2310

    
2311
@example
2312
qemu-i386 -L / /bin/ls
2313
@end example
2314

    
2315
@code{-L /} tells that the x86 dynamic linker must be searched with a
2316
@file{/} prefix.
2317

    
2318
@item Since QEMU is also a linux process, you can launch qemu with
2319
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2320

    
2321
@example
2322
qemu-i386 -L / qemu-i386 -L / /bin/ls
2323
@end example
2324

    
2325
@item On non x86 CPUs, you need first to download at least an x86 glibc
2326
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2327
@code{LD_LIBRARY_PATH} is not set:
2328

    
2329
@example
2330
unset LD_LIBRARY_PATH
2331
@end example
2332

    
2333
Then you can launch the precompiled @file{ls} x86 executable:
2334

    
2335
@example
2336
qemu-i386 tests/i386/ls
2337
@end example
2338
You can look at @file{qemu-binfmt-conf.sh} so that
2339
QEMU is automatically launched by the Linux kernel when you try to
2340
launch x86 executables. It requires the @code{binfmt_misc} module in the
2341
Linux kernel.
2342

    
2343
@item The x86 version of QEMU is also included. You can try weird things such as:
2344
@example
2345
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2346
          /usr/local/qemu-i386/bin/ls-i386
2347
@end example
2348

    
2349
@end itemize
2350

    
2351
@node Wine launch
2352
@subsection Wine launch
2353

    
2354
@itemize
2355

    
2356
@item Ensure that you have a working QEMU with the x86 glibc
2357
distribution (see previous section). In order to verify it, you must be
2358
able to do:
2359

    
2360
@example
2361
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2362
@end example
2363

    
2364
@item Download the binary x86 Wine install
2365
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2366

    
2367
@item Configure Wine on your account. Look at the provided script
2368
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2369
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2370

    
2371
@item Then you can try the example @file{putty.exe}:
2372

    
2373
@example
2374
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2375
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2376
@end example
2377

    
2378
@end itemize
2379

    
2380
@node Command line options
2381
@subsection Command line options
2382

    
2383
@example
2384
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2385
@end example
2386

    
2387
@table @option
2388
@item -h
2389
Print the help
2390
@item -L path
2391
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2392
@item -s size
2393
Set the x86 stack size in bytes (default=524288)
2394
@end table
2395

    
2396
Debug options:
2397

    
2398
@table @option
2399
@item -d
2400
Activate log (logfile=/tmp/qemu.log)
2401
@item -p pagesize
2402
Act as if the host page size was 'pagesize' bytes
2403
@end table
2404

    
2405
@node Other binaries
2406
@subsection Other binaries
2407

    
2408
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2409
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2410
configurations), and arm-uclinux bFLT format binaries.
2411

    
2412
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2413
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2414
coldfire uClinux bFLT format binaries.
2415

    
2416
The binary format is detected automatically.
2417

    
2418
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2419
(Sparc64 CPU, 32 bit ABI).
2420

    
2421
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2422
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2423

    
2424
@node Mac OS X/Darwin User space emulator
2425
@section Mac OS X/Darwin User space emulator
2426

    
2427
@menu
2428
* Mac OS X/Darwin Status::
2429
* Mac OS X/Darwin Quick Start::
2430
* Mac OS X/Darwin Command line options::
2431
@end menu
2432

    
2433
@node Mac OS X/Darwin Status
2434
@subsection Mac OS X/Darwin Status
2435

    
2436
@itemize @minus
2437
@item
2438
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2439
@item
2440
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2441
@item
2442
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2443
@item
2444
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2445
@end itemize
2446

    
2447
[1] If you're host commpage can be executed by qemu.
2448

    
2449
@node Mac OS X/Darwin Quick Start
2450
@subsection Quick Start
2451

    
2452
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2453
itself and all the target dynamic libraries used by it. If you don't have the FAT
2454
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2455
CD or compile them by hand.
2456

    
2457
@itemize
2458

    
2459
@item On x86, you can just try to launch any process by using the native
2460
libraries:
2461

    
2462
@example
2463
qemu-i386 /bin/ls
2464
@end example
2465

    
2466
or to run the ppc version of the executable:
2467

    
2468
@example
2469
qemu-ppc /bin/ls
2470
@end example
2471

    
2472
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2473
are installed:
2474

    
2475
@example
2476
qemu-i386 -L /opt/x86_root/ /bin/ls
2477
@end example
2478

    
2479
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2480
@file{/opt/x86_root/usr/bin/dyld}.
2481

    
2482
@end itemize
2483

    
2484
@node Mac OS X/Darwin Command line options
2485
@subsection Command line options
2486

    
2487
@example
2488
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2489
@end example
2490

    
2491
@table @option
2492
@item -h
2493
Print the help
2494
@item -L path
2495
Set the library root path (default=/)
2496
@item -s size
2497
Set the stack size in bytes (default=524288)
2498
@end table
2499

    
2500
Debug options:
2501

    
2502
@table @option
2503
@item -d
2504
Activate log (logfile=/tmp/qemu.log)
2505
@item -p pagesize
2506
Act as if the host page size was 'pagesize' bytes
2507
@end table
2508

    
2509
@node compilation
2510
@chapter Compilation from the sources
2511

    
2512
@menu
2513
* Linux/Unix::
2514
* Windows::
2515
* Cross compilation for Windows with Linux::
2516
* Mac OS X::
2517
@end menu
2518

    
2519
@node Linux/Unix
2520
@section Linux/Unix
2521

    
2522
@subsection Compilation
2523

    
2524
First you must decompress the sources:
2525
@example
2526
cd /tmp
2527
tar zxvf qemu-x.y.z.tar.gz
2528
cd qemu-x.y.z
2529
@end example
2530

    
2531
Then you configure QEMU and build it (usually no options are needed):
2532
@example
2533
./configure
2534
make
2535
@end example
2536

    
2537
Then type as root user:
2538
@example
2539
make install
2540
@end example
2541
to install QEMU in @file{/usr/local}.
2542

    
2543
@subsection GCC version
2544

    
2545
In order to compile QEMU successfully, it is very important that you
2546
have the right tools. The most important one is gcc. On most hosts and
2547
in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2548
Linux distribution includes a gcc 4.x compiler, you can usually
2549
install an older version (it is invoked by @code{gcc32} or
2550
@code{gcc34}). The QEMU configure script automatically probes for
2551
these older versions so that usually you don't have to do anything.
2552

    
2553
@node Windows
2554
@section Windows
2555

    
2556
@itemize
2557
@item Install the current versions of MSYS and MinGW from
2558
@url{http://www.mingw.org/}. You can find detailed installation
2559
instructions in the download section and the FAQ.
2560

    
2561
@item Download
2562
the MinGW development library of SDL 1.2.x
2563
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2564
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
2565
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2566
directory. Edit the @file{sdl-config} script so that it gives the
2567
correct SDL directory when invoked.
2568

    
2569
@item Extract the current version of QEMU.
2570

    
2571
@item Start the MSYS shell (file @file{msys.bat}).
2572

    
2573
@item Change to the QEMU directory. Launch @file{./configure} and
2574
@file{make}.  If you have problems using SDL, verify that
2575
@file{sdl-config} can be launched from the MSYS command line.
2576

    
2577
@item You can install QEMU in @file{Program Files/Qemu} by typing
2578
@file{make install}. Don't forget to copy @file{SDL.dll} in
2579
@file{Program Files/Qemu}.
2580

    
2581
@end itemize
2582

    
2583
@node Cross compilation for Windows with Linux
2584
@section Cross compilation for Windows with Linux
2585

    
2586
@itemize
2587
@item
2588
Install the MinGW cross compilation tools available at
2589
@url{http://www.mingw.org/}.
2590

    
2591
@item
2592
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2593
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2594
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2595
the QEMU configuration script.
2596

    
2597
@item
2598
Configure QEMU for Windows cross compilation:
2599
@example
2600
./configure --enable-mingw32
2601
@end example
2602
If necessary, you can change the cross-prefix according to the prefix
2603
chosen for the MinGW tools with --cross-prefix. You can also use
2604
--prefix to set the Win32 install path.
2605

    
2606
@item You can install QEMU in the installation directory by typing
2607
@file{make install}. Don't forget to copy @file{SDL.dll} in the
2608
installation directory.
2609

    
2610
@end itemize
2611

    
2612
Note: Currently, Wine does not seem able to launch
2613
QEMU for Win32.
2614

    
2615
@node Mac OS X
2616
@section Mac OS X
2617

    
2618
The Mac OS X patches are not fully merged in QEMU, so you should look
2619
at the QEMU mailing list archive to have all the necessary
2620
information.
2621

    
2622
@node Index
2623
@chapter Index
2624
@printindex cp
2625

    
2626
@bye