Statistics
| Branch: | Revision:

root / vl.c @ 7e7c5e4c

History | View | Annotate | Download (236.5 kB)

1
/*
2
 * QEMU System Emulator
3
 *
4
 * Copyright (c) 2003-2008 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw/hw.h"
25
#include "hw/boards.h"
26
#include "hw/usb.h"
27
#include "hw/pcmcia.h"
28
#include "hw/pc.h"
29
#include "hw/audiodev.h"
30
#include "hw/isa.h"
31
#include "hw/baum.h"
32
#include "net.h"
33
#include "console.h"
34
#include "sysemu.h"
35
#include "gdbstub.h"
36
#include "qemu-timer.h"
37
#include "qemu-char.h"
38
#include "block.h"
39
#include "audio/audio.h"
40

    
41
#include <unistd.h>
42
#include <fcntl.h>
43
#include <signal.h>
44
#include <time.h>
45
#include <errno.h>
46
#include <sys/time.h>
47
#include <zlib.h>
48

    
49
#ifndef _WIN32
50
#include <sys/times.h>
51
#include <sys/wait.h>
52
#include <termios.h>
53
#include <sys/poll.h>
54
#include <sys/mman.h>
55
#include <sys/ioctl.h>
56
#include <sys/socket.h>
57
#include <netinet/in.h>
58
#include <dirent.h>
59
#include <netdb.h>
60
#include <sys/select.h>
61
#include <arpa/inet.h>
62
#ifdef _BSD
63
#include <sys/stat.h>
64
#ifndef __APPLE__
65
#include <libutil.h>
66
#endif
67
#elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
68
#include <freebsd/stdlib.h>
69
#else
70
#ifndef __sun__
71
#include <linux/if.h>
72
#include <linux/if_tun.h>
73
#include <pty.h>
74
#include <malloc.h>
75
#include <linux/rtc.h>
76

    
77
/* For the benefit of older linux systems which don't supply it,
78
   we use a local copy of hpet.h. */
79
/* #include <linux/hpet.h> */
80
#include "hpet.h"
81

    
82
#include <linux/ppdev.h>
83
#include <linux/parport.h>
84
#else
85
#include <sys/stat.h>
86
#include <sys/ethernet.h>
87
#include <sys/sockio.h>
88
#include <netinet/arp.h>
89
#include <netinet/in.h>
90
#include <netinet/in_systm.h>
91
#include <netinet/ip.h>
92
#include <netinet/ip_icmp.h> // must come after ip.h
93
#include <netinet/udp.h>
94
#include <netinet/tcp.h>
95
#include <net/if.h>
96
#include <syslog.h>
97
#include <stropts.h>
98
#endif
99
#endif
100
#else
101
#include <winsock2.h>
102
int inet_aton(const char *cp, struct in_addr *ia);
103
#endif
104

    
105
#if defined(CONFIG_SLIRP)
106
#include "libslirp.h"
107
#endif
108

    
109
#ifdef _WIN32
110
#include <malloc.h>
111
#include <sys/timeb.h>
112
#include <mmsystem.h>
113
#define getopt_long_only getopt_long
114
#define memalign(align, size) malloc(size)
115
#endif
116

    
117
#include "qemu_socket.h"
118

    
119
#ifdef CONFIG_SDL
120
#ifdef __APPLE__
121
#include <SDL/SDL.h>
122
#endif
123
#endif /* CONFIG_SDL */
124

    
125
#ifdef CONFIG_COCOA
126
#undef main
127
#define main qemu_main
128
#endif /* CONFIG_COCOA */
129

    
130
#include "disas.h"
131

    
132
#include "exec-all.h"
133

    
134
#define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
135
#define DEFAULT_NETWORK_DOWN_SCRIPT "/etc/qemu-ifdown"
136
#ifdef __sun__
137
#define SMBD_COMMAND "/usr/sfw/sbin/smbd"
138
#else
139
#define SMBD_COMMAND "/usr/sbin/smbd"
140
#endif
141

    
142
//#define DEBUG_UNUSED_IOPORT
143
//#define DEBUG_IOPORT
144

    
145
#define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
146

    
147
#ifdef TARGET_PPC
148
#define DEFAULT_RAM_SIZE 144
149
#else
150
#define DEFAULT_RAM_SIZE 128
151
#endif
152
/* in ms */
153
#define GUI_REFRESH_INTERVAL 30
154

    
155
/* Max number of USB devices that can be specified on the commandline.  */
156
#define MAX_USB_CMDLINE 8
157

    
158
/* XXX: use a two level table to limit memory usage */
159
#define MAX_IOPORTS 65536
160

    
161
const char *bios_dir = CONFIG_QEMU_SHAREDIR;
162
const char *bios_name = NULL;
163
void *ioport_opaque[MAX_IOPORTS];
164
IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
165
IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
166
/* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
167
   to store the VM snapshots */
168
DriveInfo drives_table[MAX_DRIVES+1];
169
int nb_drives;
170
/* point to the block driver where the snapshots are managed */
171
BlockDriverState *bs_snapshots;
172
int vga_ram_size;
173
static DisplayState display_state;
174
int nographic;
175
int curses;
176
const char* keyboard_layout = NULL;
177
int64_t ticks_per_sec;
178
int ram_size;
179
int pit_min_timer_count = 0;
180
int nb_nics;
181
NICInfo nd_table[MAX_NICS];
182
int vm_running;
183
static int rtc_utc = 1;
184
static int rtc_date_offset = -1; /* -1 means no change */
185
int cirrus_vga_enabled = 1;
186
int vmsvga_enabled = 0;
187
#ifdef TARGET_SPARC
188
int graphic_width = 1024;
189
int graphic_height = 768;
190
int graphic_depth = 8;
191
#else
192
int graphic_width = 800;
193
int graphic_height = 600;
194
int graphic_depth = 15;
195
#endif
196
int full_screen = 0;
197
int no_frame = 0;
198
int no_quit = 0;
199
CharDriverState *serial_hds[MAX_SERIAL_PORTS];
200
CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
201
#ifdef TARGET_I386
202
int win2k_install_hack = 0;
203
#endif
204
int usb_enabled = 0;
205
static VLANState *first_vlan;
206
int smp_cpus = 1;
207
const char *vnc_display;
208
#if defined(TARGET_SPARC)
209
#define MAX_CPUS 16
210
#elif defined(TARGET_I386)
211
#define MAX_CPUS 255
212
#else
213
#define MAX_CPUS 1
214
#endif
215
int acpi_enabled = 1;
216
int fd_bootchk = 1;
217
int no_reboot = 0;
218
int no_shutdown = 0;
219
int cursor_hide = 1;
220
int graphic_rotate = 0;
221
int daemonize = 0;
222
const char *option_rom[MAX_OPTION_ROMS];
223
int nb_option_roms;
224
int semihosting_enabled = 0;
225
int autostart = 1;
226
#ifdef TARGET_ARM
227
int old_param = 0;
228
#endif
229
const char *qemu_name;
230
int alt_grab = 0;
231
#ifdef TARGET_SPARC
232
unsigned int nb_prom_envs = 0;
233
const char *prom_envs[MAX_PROM_ENVS];
234
#endif
235
int nb_drives_opt;
236
struct drive_opt {
237
    const char *file;
238
    char opt[1024];
239
} drives_opt[MAX_DRIVES];
240

    
241
static CPUState *cur_cpu;
242
static CPUState *next_cpu;
243
static int event_pending = 1;
244

    
245
#define TFR(expr) do { if ((expr) != -1) break; } while (errno == EINTR)
246

    
247
/***********************************************************/
248
/* x86 ISA bus support */
249

    
250
target_phys_addr_t isa_mem_base = 0;
251
PicState2 *isa_pic;
252

    
253
static uint32_t default_ioport_readb(void *opaque, uint32_t address)
254
{
255
#ifdef DEBUG_UNUSED_IOPORT
256
    fprintf(stderr, "unused inb: port=0x%04x\n", address);
257
#endif
258
    return 0xff;
259
}
260

    
261
static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
262
{
263
#ifdef DEBUG_UNUSED_IOPORT
264
    fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
265
#endif
266
}
267

    
268
/* default is to make two byte accesses */
269
static uint32_t default_ioport_readw(void *opaque, uint32_t address)
270
{
271
    uint32_t data;
272
    data = ioport_read_table[0][address](ioport_opaque[address], address);
273
    address = (address + 1) & (MAX_IOPORTS - 1);
274
    data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8;
275
    return data;
276
}
277

    
278
static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
279
{
280
    ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff);
281
    address = (address + 1) & (MAX_IOPORTS - 1);
282
    ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff);
283
}
284

    
285
static uint32_t default_ioport_readl(void *opaque, uint32_t address)
286
{
287
#ifdef DEBUG_UNUSED_IOPORT
288
    fprintf(stderr, "unused inl: port=0x%04x\n", address);
289
#endif
290
    return 0xffffffff;
291
}
292

    
293
static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
294
{
295
#ifdef DEBUG_UNUSED_IOPORT
296
    fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
297
#endif
298
}
299

    
300
static void init_ioports(void)
301
{
302
    int i;
303

    
304
    for(i = 0; i < MAX_IOPORTS; i++) {
305
        ioport_read_table[0][i] = default_ioport_readb;
306
        ioport_write_table[0][i] = default_ioport_writeb;
307
        ioport_read_table[1][i] = default_ioport_readw;
308
        ioport_write_table[1][i] = default_ioport_writew;
309
        ioport_read_table[2][i] = default_ioport_readl;
310
        ioport_write_table[2][i] = default_ioport_writel;
311
    }
312
}
313

    
314
/* size is the word size in byte */
315
int register_ioport_read(int start, int length, int size,
316
                         IOPortReadFunc *func, void *opaque)
317
{
318
    int i, bsize;
319

    
320
    if (size == 1) {
321
        bsize = 0;
322
    } else if (size == 2) {
323
        bsize = 1;
324
    } else if (size == 4) {
325
        bsize = 2;
326
    } else {
327
        hw_error("register_ioport_read: invalid size");
328
        return -1;
329
    }
330
    for(i = start; i < start + length; i += size) {
331
        ioport_read_table[bsize][i] = func;
332
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
333
            hw_error("register_ioport_read: invalid opaque");
334
        ioport_opaque[i] = opaque;
335
    }
336
    return 0;
337
}
338

    
339
/* size is the word size in byte */
340
int register_ioport_write(int start, int length, int size,
341
                          IOPortWriteFunc *func, void *opaque)
342
{
343
    int i, bsize;
344

    
345
    if (size == 1) {
346
        bsize = 0;
347
    } else if (size == 2) {
348
        bsize = 1;
349
    } else if (size == 4) {
350
        bsize = 2;
351
    } else {
352
        hw_error("register_ioport_write: invalid size");
353
        return -1;
354
    }
355
    for(i = start; i < start + length; i += size) {
356
        ioport_write_table[bsize][i] = func;
357
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
358
            hw_error("register_ioport_write: invalid opaque");
359
        ioport_opaque[i] = opaque;
360
    }
361
    return 0;
362
}
363

    
364
void isa_unassign_ioport(int start, int length)
365
{
366
    int i;
367

    
368
    for(i = start; i < start + length; i++) {
369
        ioport_read_table[0][i] = default_ioport_readb;
370
        ioport_read_table[1][i] = default_ioport_readw;
371
        ioport_read_table[2][i] = default_ioport_readl;
372

    
373
        ioport_write_table[0][i] = default_ioport_writeb;
374
        ioport_write_table[1][i] = default_ioport_writew;
375
        ioport_write_table[2][i] = default_ioport_writel;
376
    }
377
}
378

    
379
/***********************************************************/
380

    
381
void cpu_outb(CPUState *env, int addr, int val)
382
{
383
#ifdef DEBUG_IOPORT
384
    if (loglevel & CPU_LOG_IOPORT)
385
        fprintf(logfile, "outb: %04x %02x\n", addr, val);
386
#endif
387
    ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
388
#ifdef USE_KQEMU
389
    if (env)
390
        env->last_io_time = cpu_get_time_fast();
391
#endif
392
}
393

    
394
void cpu_outw(CPUState *env, int addr, int val)
395
{
396
#ifdef DEBUG_IOPORT
397
    if (loglevel & CPU_LOG_IOPORT)
398
        fprintf(logfile, "outw: %04x %04x\n", addr, val);
399
#endif
400
    ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
401
#ifdef USE_KQEMU
402
    if (env)
403
        env->last_io_time = cpu_get_time_fast();
404
#endif
405
}
406

    
407
void cpu_outl(CPUState *env, int addr, int val)
408
{
409
#ifdef DEBUG_IOPORT
410
    if (loglevel & CPU_LOG_IOPORT)
411
        fprintf(logfile, "outl: %04x %08x\n", addr, val);
412
#endif
413
    ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
414
#ifdef USE_KQEMU
415
    if (env)
416
        env->last_io_time = cpu_get_time_fast();
417
#endif
418
}
419

    
420
int cpu_inb(CPUState *env, int addr)
421
{
422
    int val;
423
    val = ioport_read_table[0][addr](ioport_opaque[addr], addr);
424
#ifdef DEBUG_IOPORT
425
    if (loglevel & CPU_LOG_IOPORT)
426
        fprintf(logfile, "inb : %04x %02x\n", addr, val);
427
#endif
428
#ifdef USE_KQEMU
429
    if (env)
430
        env->last_io_time = cpu_get_time_fast();
431
#endif
432
    return val;
433
}
434

    
435
int cpu_inw(CPUState *env, int addr)
436
{
437
    int val;
438
    val = ioport_read_table[1][addr](ioport_opaque[addr], addr);
439
#ifdef DEBUG_IOPORT
440
    if (loglevel & CPU_LOG_IOPORT)
441
        fprintf(logfile, "inw : %04x %04x\n", addr, val);
442
#endif
443
#ifdef USE_KQEMU
444
    if (env)
445
        env->last_io_time = cpu_get_time_fast();
446
#endif
447
    return val;
448
}
449

    
450
int cpu_inl(CPUState *env, int addr)
451
{
452
    int val;
453
    val = ioport_read_table[2][addr](ioport_opaque[addr], addr);
454
#ifdef DEBUG_IOPORT
455
    if (loglevel & CPU_LOG_IOPORT)
456
        fprintf(logfile, "inl : %04x %08x\n", addr, val);
457
#endif
458
#ifdef USE_KQEMU
459
    if (env)
460
        env->last_io_time = cpu_get_time_fast();
461
#endif
462
    return val;
463
}
464

    
465
/***********************************************************/
466
void hw_error(const char *fmt, ...)
467
{
468
    va_list ap;
469
    CPUState *env;
470

    
471
    va_start(ap, fmt);
472
    fprintf(stderr, "qemu: hardware error: ");
473
    vfprintf(stderr, fmt, ap);
474
    fprintf(stderr, "\n");
475
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
476
        fprintf(stderr, "CPU #%d:\n", env->cpu_index);
477
#ifdef TARGET_I386
478
        cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
479
#else
480
        cpu_dump_state(env, stderr, fprintf, 0);
481
#endif
482
    }
483
    va_end(ap);
484
    abort();
485
}
486

    
487
/***********************************************************/
488
/* keyboard/mouse */
489

    
490
static QEMUPutKBDEvent *qemu_put_kbd_event;
491
static void *qemu_put_kbd_event_opaque;
492
static QEMUPutMouseEntry *qemu_put_mouse_event_head;
493
static QEMUPutMouseEntry *qemu_put_mouse_event_current;
494

    
495
void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
496
{
497
    qemu_put_kbd_event_opaque = opaque;
498
    qemu_put_kbd_event = func;
499
}
500

    
501
QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
502
                                                void *opaque, int absolute,
503
                                                const char *name)
504
{
505
    QEMUPutMouseEntry *s, *cursor;
506

    
507
    s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
508
    if (!s)
509
        return NULL;
510

    
511
    s->qemu_put_mouse_event = func;
512
    s->qemu_put_mouse_event_opaque = opaque;
513
    s->qemu_put_mouse_event_absolute = absolute;
514
    s->qemu_put_mouse_event_name = qemu_strdup(name);
515
    s->next = NULL;
516

    
517
    if (!qemu_put_mouse_event_head) {
518
        qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
519
        return s;
520
    }
521

    
522
    cursor = qemu_put_mouse_event_head;
523
    while (cursor->next != NULL)
524
        cursor = cursor->next;
525

    
526
    cursor->next = s;
527
    qemu_put_mouse_event_current = s;
528

    
529
    return s;
530
}
531

    
532
void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
533
{
534
    QEMUPutMouseEntry *prev = NULL, *cursor;
535

    
536
    if (!qemu_put_mouse_event_head || entry == NULL)
537
        return;
538

    
539
    cursor = qemu_put_mouse_event_head;
540
    while (cursor != NULL && cursor != entry) {
541
        prev = cursor;
542
        cursor = cursor->next;
543
    }
544

    
545
    if (cursor == NULL) // does not exist or list empty
546
        return;
547
    else if (prev == NULL) { // entry is head
548
        qemu_put_mouse_event_head = cursor->next;
549
        if (qemu_put_mouse_event_current == entry)
550
            qemu_put_mouse_event_current = cursor->next;
551
        qemu_free(entry->qemu_put_mouse_event_name);
552
        qemu_free(entry);
553
        return;
554
    }
555

    
556
    prev->next = entry->next;
557

    
558
    if (qemu_put_mouse_event_current == entry)
559
        qemu_put_mouse_event_current = prev;
560

    
561
    qemu_free(entry->qemu_put_mouse_event_name);
562
    qemu_free(entry);
563
}
564

    
565
void kbd_put_keycode(int keycode)
566
{
567
    if (qemu_put_kbd_event) {
568
        qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
569
    }
570
}
571

    
572
void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
573
{
574
    QEMUPutMouseEvent *mouse_event;
575
    void *mouse_event_opaque;
576
    int width;
577

    
578
    if (!qemu_put_mouse_event_current) {
579
        return;
580
    }
581

    
582
    mouse_event =
583
        qemu_put_mouse_event_current->qemu_put_mouse_event;
584
    mouse_event_opaque =
585
        qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
586

    
587
    if (mouse_event) {
588
        if (graphic_rotate) {
589
            if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
590
                width = 0x7fff;
591
            else
592
                width = graphic_width - 1;
593
            mouse_event(mouse_event_opaque,
594
                                 width - dy, dx, dz, buttons_state);
595
        } else
596
            mouse_event(mouse_event_opaque,
597
                                 dx, dy, dz, buttons_state);
598
    }
599
}
600

    
601
int kbd_mouse_is_absolute(void)
602
{
603
    if (!qemu_put_mouse_event_current)
604
        return 0;
605

    
606
    return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
607
}
608

    
609
void do_info_mice(void)
610
{
611
    QEMUPutMouseEntry *cursor;
612
    int index = 0;
613

    
614
    if (!qemu_put_mouse_event_head) {
615
        term_printf("No mouse devices connected\n");
616
        return;
617
    }
618

    
619
    term_printf("Mouse devices available:\n");
620
    cursor = qemu_put_mouse_event_head;
621
    while (cursor != NULL) {
622
        term_printf("%c Mouse #%d: %s\n",
623
                    (cursor == qemu_put_mouse_event_current ? '*' : ' '),
624
                    index, cursor->qemu_put_mouse_event_name);
625
        index++;
626
        cursor = cursor->next;
627
    }
628
}
629

    
630
void do_mouse_set(int index)
631
{
632
    QEMUPutMouseEntry *cursor;
633
    int i = 0;
634

    
635
    if (!qemu_put_mouse_event_head) {
636
        term_printf("No mouse devices connected\n");
637
        return;
638
    }
639

    
640
    cursor = qemu_put_mouse_event_head;
641
    while (cursor != NULL && index != i) {
642
        i++;
643
        cursor = cursor->next;
644
    }
645

    
646
    if (cursor != NULL)
647
        qemu_put_mouse_event_current = cursor;
648
    else
649
        term_printf("Mouse at given index not found\n");
650
}
651

    
652
/* compute with 96 bit intermediate result: (a*b)/c */
653
uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
654
{
655
    union {
656
        uint64_t ll;
657
        struct {
658
#ifdef WORDS_BIGENDIAN
659
            uint32_t high, low;
660
#else
661
            uint32_t low, high;
662
#endif
663
        } l;
664
    } u, res;
665
    uint64_t rl, rh;
666

    
667
    u.ll = a;
668
    rl = (uint64_t)u.l.low * (uint64_t)b;
669
    rh = (uint64_t)u.l.high * (uint64_t)b;
670
    rh += (rl >> 32);
671
    res.l.high = rh / c;
672
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
673
    return res.ll;
674
}
675

    
676
/***********************************************************/
677
/* real time host monotonic timer */
678

    
679
#define QEMU_TIMER_BASE 1000000000LL
680

    
681
#ifdef WIN32
682

    
683
static int64_t clock_freq;
684

    
685
static void init_get_clock(void)
686
{
687
    LARGE_INTEGER freq;
688
    int ret;
689
    ret = QueryPerformanceFrequency(&freq);
690
    if (ret == 0) {
691
        fprintf(stderr, "Could not calibrate ticks\n");
692
        exit(1);
693
    }
694
    clock_freq = freq.QuadPart;
695
}
696

    
697
static int64_t get_clock(void)
698
{
699
    LARGE_INTEGER ti;
700
    QueryPerformanceCounter(&ti);
701
    return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
702
}
703

    
704
#else
705

    
706
static int use_rt_clock;
707

    
708
static void init_get_clock(void)
709
{
710
    use_rt_clock = 0;
711
#if defined(__linux__)
712
    {
713
        struct timespec ts;
714
        if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
715
            use_rt_clock = 1;
716
        }
717
    }
718
#endif
719
}
720

    
721
static int64_t get_clock(void)
722
{
723
#if defined(__linux__)
724
    if (use_rt_clock) {
725
        struct timespec ts;
726
        clock_gettime(CLOCK_MONOTONIC, &ts);
727
        return ts.tv_sec * 1000000000LL + ts.tv_nsec;
728
    } else
729
#endif
730
    {
731
        /* XXX: using gettimeofday leads to problems if the date
732
           changes, so it should be avoided. */
733
        struct timeval tv;
734
        gettimeofday(&tv, NULL);
735
        return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
736
    }
737
}
738

    
739
#endif
740

    
741
/***********************************************************/
742
/* guest cycle counter */
743

    
744
static int64_t cpu_ticks_prev;
745
static int64_t cpu_ticks_offset;
746
static int64_t cpu_clock_offset;
747
static int cpu_ticks_enabled;
748

    
749
/* return the host CPU cycle counter and handle stop/restart */
750
int64_t cpu_get_ticks(void)
751
{
752
    if (!cpu_ticks_enabled) {
753
        return cpu_ticks_offset;
754
    } else {
755
        int64_t ticks;
756
        ticks = cpu_get_real_ticks();
757
        if (cpu_ticks_prev > ticks) {
758
            /* Note: non increasing ticks may happen if the host uses
759
               software suspend */
760
            cpu_ticks_offset += cpu_ticks_prev - ticks;
761
        }
762
        cpu_ticks_prev = ticks;
763
        return ticks + cpu_ticks_offset;
764
    }
765
}
766

    
767
/* return the host CPU monotonic timer and handle stop/restart */
768
static int64_t cpu_get_clock(void)
769
{
770
    int64_t ti;
771
    if (!cpu_ticks_enabled) {
772
        return cpu_clock_offset;
773
    } else {
774
        ti = get_clock();
775
        return ti + cpu_clock_offset;
776
    }
777
}
778

    
779
/* enable cpu_get_ticks() */
780
void cpu_enable_ticks(void)
781
{
782
    if (!cpu_ticks_enabled) {
783
        cpu_ticks_offset -= cpu_get_real_ticks();
784
        cpu_clock_offset -= get_clock();
785
        cpu_ticks_enabled = 1;
786
    }
787
}
788

    
789
/* disable cpu_get_ticks() : the clock is stopped. You must not call
790
   cpu_get_ticks() after that.  */
791
void cpu_disable_ticks(void)
792
{
793
    if (cpu_ticks_enabled) {
794
        cpu_ticks_offset = cpu_get_ticks();
795
        cpu_clock_offset = cpu_get_clock();
796
        cpu_ticks_enabled = 0;
797
    }
798
}
799

    
800
/***********************************************************/
801
/* timers */
802

    
803
#define QEMU_TIMER_REALTIME 0
804
#define QEMU_TIMER_VIRTUAL  1
805

    
806
struct QEMUClock {
807
    int type;
808
    /* XXX: add frequency */
809
};
810

    
811
struct QEMUTimer {
812
    QEMUClock *clock;
813
    int64_t expire_time;
814
    QEMUTimerCB *cb;
815
    void *opaque;
816
    struct QEMUTimer *next;
817
};
818

    
819
struct qemu_alarm_timer {
820
    char const *name;
821
    unsigned int flags;
822

    
823
    int (*start)(struct qemu_alarm_timer *t);
824
    void (*stop)(struct qemu_alarm_timer *t);
825
    void (*rearm)(struct qemu_alarm_timer *t);
826
    void *priv;
827
};
828

    
829
#define ALARM_FLAG_DYNTICKS  0x1
830
#define ALARM_FLAG_EXPIRED   0x2
831

    
832
static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
833
{
834
    return t->flags & ALARM_FLAG_DYNTICKS;
835
}
836

    
837
static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
838
{
839
    if (!alarm_has_dynticks(t))
840
        return;
841

    
842
    t->rearm(t);
843
}
844

    
845
/* TODO: MIN_TIMER_REARM_US should be optimized */
846
#define MIN_TIMER_REARM_US 250
847

    
848
static struct qemu_alarm_timer *alarm_timer;
849

    
850
#ifdef _WIN32
851

    
852
struct qemu_alarm_win32 {
853
    MMRESULT timerId;
854
    HANDLE host_alarm;
855
    unsigned int period;
856
} alarm_win32_data = {0, NULL, -1};
857

    
858
static int win32_start_timer(struct qemu_alarm_timer *t);
859
static void win32_stop_timer(struct qemu_alarm_timer *t);
860
static void win32_rearm_timer(struct qemu_alarm_timer *t);
861

    
862
#else
863

    
864
static int unix_start_timer(struct qemu_alarm_timer *t);
865
static void unix_stop_timer(struct qemu_alarm_timer *t);
866

    
867
#ifdef __linux__
868

    
869
static int dynticks_start_timer(struct qemu_alarm_timer *t);
870
static void dynticks_stop_timer(struct qemu_alarm_timer *t);
871
static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
872

    
873
static int hpet_start_timer(struct qemu_alarm_timer *t);
874
static void hpet_stop_timer(struct qemu_alarm_timer *t);
875

    
876
static int rtc_start_timer(struct qemu_alarm_timer *t);
877
static void rtc_stop_timer(struct qemu_alarm_timer *t);
878

    
879
#endif /* __linux__ */
880

    
881
#endif /* _WIN32 */
882

    
883
static struct qemu_alarm_timer alarm_timers[] = {
884
#ifndef _WIN32
885
#ifdef __linux__
886
    {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
887
     dynticks_stop_timer, dynticks_rearm_timer, NULL},
888
    /* HPET - if available - is preferred */
889
    {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
890
    /* ...otherwise try RTC */
891
    {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
892
#endif
893
    {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
894
#else
895
    {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
896
     win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
897
    {"win32", 0, win32_start_timer,
898
     win32_stop_timer, NULL, &alarm_win32_data},
899
#endif
900
    {NULL, }
901
};
902

    
903
static void show_available_alarms(void)
904
{
905
    int i;
906

    
907
    printf("Available alarm timers, in order of precedence:\n");
908
    for (i = 0; alarm_timers[i].name; i++)
909
        printf("%s\n", alarm_timers[i].name);
910
}
911

    
912
static void configure_alarms(char const *opt)
913
{
914
    int i;
915
    int cur = 0;
916
    int count = (sizeof(alarm_timers) / sizeof(*alarm_timers)) - 1;
917
    char *arg;
918
    char *name;
919

    
920
    if (!strcmp(opt, "?")) {
921
        show_available_alarms();
922
        exit(0);
923
    }
924

    
925
    arg = strdup(opt);
926

    
927
    /* Reorder the array */
928
    name = strtok(arg, ",");
929
    while (name) {
930
        struct qemu_alarm_timer tmp;
931

    
932
        for (i = 0; i < count && alarm_timers[i].name; i++) {
933
            if (!strcmp(alarm_timers[i].name, name))
934
                break;
935
        }
936

    
937
        if (i == count) {
938
            fprintf(stderr, "Unknown clock %s\n", name);
939
            goto next;
940
        }
941

    
942
        if (i < cur)
943
            /* Ignore */
944
            goto next;
945

    
946
        /* Swap */
947
        tmp = alarm_timers[i];
948
        alarm_timers[i] = alarm_timers[cur];
949
        alarm_timers[cur] = tmp;
950

    
951
        cur++;
952
next:
953
        name = strtok(NULL, ",");
954
    }
955

    
956
    free(arg);
957

    
958
    if (cur) {
959
        /* Disable remaining timers */
960
        for (i = cur; i < count; i++)
961
            alarm_timers[i].name = NULL;
962
    } else {
963
        show_available_alarms();
964
        exit(1);
965
    }
966
}
967

    
968
QEMUClock *rt_clock;
969
QEMUClock *vm_clock;
970

    
971
static QEMUTimer *active_timers[2];
972

    
973
static QEMUClock *qemu_new_clock(int type)
974
{
975
    QEMUClock *clock;
976
    clock = qemu_mallocz(sizeof(QEMUClock));
977
    if (!clock)
978
        return NULL;
979
    clock->type = type;
980
    return clock;
981
}
982

    
983
QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
984
{
985
    QEMUTimer *ts;
986

    
987
    ts = qemu_mallocz(sizeof(QEMUTimer));
988
    ts->clock = clock;
989
    ts->cb = cb;
990
    ts->opaque = opaque;
991
    return ts;
992
}
993

    
994
void qemu_free_timer(QEMUTimer *ts)
995
{
996
    qemu_free(ts);
997
}
998

    
999
/* stop a timer, but do not dealloc it */
1000
void qemu_del_timer(QEMUTimer *ts)
1001
{
1002
    QEMUTimer **pt, *t;
1003

    
1004
    /* NOTE: this code must be signal safe because
1005
       qemu_timer_expired() can be called from a signal. */
1006
    pt = &active_timers[ts->clock->type];
1007
    for(;;) {
1008
        t = *pt;
1009
        if (!t)
1010
            break;
1011
        if (t == ts) {
1012
            *pt = t->next;
1013
            break;
1014
        }
1015
        pt = &t->next;
1016
    }
1017
}
1018

    
1019
/* modify the current timer so that it will be fired when current_time
1020
   >= expire_time. The corresponding callback will be called. */
1021
void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1022
{
1023
    QEMUTimer **pt, *t;
1024

    
1025
    qemu_del_timer(ts);
1026

    
1027
    /* add the timer in the sorted list */
1028
    /* NOTE: this code must be signal safe because
1029
       qemu_timer_expired() can be called from a signal. */
1030
    pt = &active_timers[ts->clock->type];
1031
    for(;;) {
1032
        t = *pt;
1033
        if (!t)
1034
            break;
1035
        if (t->expire_time > expire_time)
1036
            break;
1037
        pt = &t->next;
1038
    }
1039
    ts->expire_time = expire_time;
1040
    ts->next = *pt;
1041
    *pt = ts;
1042

    
1043
    /* Rearm if necessary  */
1044
    if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0 &&
1045
        pt == &active_timers[ts->clock->type])
1046
        qemu_rearm_alarm_timer(alarm_timer);
1047
}
1048

    
1049
int qemu_timer_pending(QEMUTimer *ts)
1050
{
1051
    QEMUTimer *t;
1052
    for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1053
        if (t == ts)
1054
            return 1;
1055
    }
1056
    return 0;
1057
}
1058

    
1059
static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1060
{
1061
    if (!timer_head)
1062
        return 0;
1063
    return (timer_head->expire_time <= current_time);
1064
}
1065

    
1066
static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1067
{
1068
    QEMUTimer *ts;
1069

    
1070
    for(;;) {
1071
        ts = *ptimer_head;
1072
        if (!ts || ts->expire_time > current_time)
1073
            break;
1074
        /* remove timer from the list before calling the callback */
1075
        *ptimer_head = ts->next;
1076
        ts->next = NULL;
1077

    
1078
        /* run the callback (the timer list can be modified) */
1079
        ts->cb(ts->opaque);
1080
    }
1081
}
1082

    
1083
int64_t qemu_get_clock(QEMUClock *clock)
1084
{
1085
    switch(clock->type) {
1086
    case QEMU_TIMER_REALTIME:
1087
        return get_clock() / 1000000;
1088
    default:
1089
    case QEMU_TIMER_VIRTUAL:
1090
        return cpu_get_clock();
1091
    }
1092
}
1093

    
1094
static void init_timers(void)
1095
{
1096
    init_get_clock();
1097
    ticks_per_sec = QEMU_TIMER_BASE;
1098
    rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1099
    vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1100
}
1101

    
1102
/* save a timer */
1103
void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1104
{
1105
    uint64_t expire_time;
1106

    
1107
    if (qemu_timer_pending(ts)) {
1108
        expire_time = ts->expire_time;
1109
    } else {
1110
        expire_time = -1;
1111
    }
1112
    qemu_put_be64(f, expire_time);
1113
}
1114

    
1115
void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1116
{
1117
    uint64_t expire_time;
1118

    
1119
    expire_time = qemu_get_be64(f);
1120
    if (expire_time != -1) {
1121
        qemu_mod_timer(ts, expire_time);
1122
    } else {
1123
        qemu_del_timer(ts);
1124
    }
1125
}
1126

    
1127
static void timer_save(QEMUFile *f, void *opaque)
1128
{
1129
    if (cpu_ticks_enabled) {
1130
        hw_error("cannot save state if virtual timers are running");
1131
    }
1132
    qemu_put_be64(f, cpu_ticks_offset);
1133
    qemu_put_be64(f, ticks_per_sec);
1134
    qemu_put_be64(f, cpu_clock_offset);
1135
}
1136

    
1137
static int timer_load(QEMUFile *f, void *opaque, int version_id)
1138
{
1139
    if (version_id != 1 && version_id != 2)
1140
        return -EINVAL;
1141
    if (cpu_ticks_enabled) {
1142
        return -EINVAL;
1143
    }
1144
    cpu_ticks_offset=qemu_get_be64(f);
1145
    ticks_per_sec=qemu_get_be64(f);
1146
    if (version_id == 2) {
1147
        cpu_clock_offset=qemu_get_be64(f);
1148
    }
1149
    return 0;
1150
}
1151

    
1152
#ifdef _WIN32
1153
void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1154
                                 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1155
#else
1156
static void host_alarm_handler(int host_signum)
1157
#endif
1158
{
1159
#if 0
1160
#define DISP_FREQ 1000
1161
    {
1162
        static int64_t delta_min = INT64_MAX;
1163
        static int64_t delta_max, delta_cum, last_clock, delta, ti;
1164
        static int count;
1165
        ti = qemu_get_clock(vm_clock);
1166
        if (last_clock != 0) {
1167
            delta = ti - last_clock;
1168
            if (delta < delta_min)
1169
                delta_min = delta;
1170
            if (delta > delta_max)
1171
                delta_max = delta;
1172
            delta_cum += delta;
1173
            if (++count == DISP_FREQ) {
1174
                printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1175
                       muldiv64(delta_min, 1000000, ticks_per_sec),
1176
                       muldiv64(delta_max, 1000000, ticks_per_sec),
1177
                       muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1178
                       (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1179
                count = 0;
1180
                delta_min = INT64_MAX;
1181
                delta_max = 0;
1182
                delta_cum = 0;
1183
            }
1184
        }
1185
        last_clock = ti;
1186
    }
1187
#endif
1188
    if (alarm_has_dynticks(alarm_timer) ||
1189
        qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1190
                           qemu_get_clock(vm_clock)) ||
1191
        qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1192
                           qemu_get_clock(rt_clock))) {
1193
#ifdef _WIN32
1194
        struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1195
        SetEvent(data->host_alarm);
1196
#endif
1197
        CPUState *env = next_cpu;
1198

    
1199
        alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1200

    
1201
        if (env) {
1202
            /* stop the currently executing cpu because a timer occured */
1203
            cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1204
#ifdef USE_KQEMU
1205
            if (env->kqemu_enabled) {
1206
                kqemu_cpu_interrupt(env);
1207
            }
1208
#endif
1209
        }
1210
        event_pending = 1;
1211
    }
1212
}
1213

    
1214
static uint64_t qemu_next_deadline(void)
1215
{
1216
    int64_t nearest_delta_us = INT64_MAX;
1217
    int64_t vmdelta_us;
1218

    
1219
    if (active_timers[QEMU_TIMER_REALTIME])
1220
        nearest_delta_us = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1221
                            qemu_get_clock(rt_clock))*1000;
1222

    
1223
    if (active_timers[QEMU_TIMER_VIRTUAL]) {
1224
        /* round up */
1225
        vmdelta_us = (active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1226
                      qemu_get_clock(vm_clock)+999)/1000;
1227
        if (vmdelta_us < nearest_delta_us)
1228
            nearest_delta_us = vmdelta_us;
1229
    }
1230

    
1231
    /* Avoid arming the timer to negative, zero, or too low values */
1232
    if (nearest_delta_us <= MIN_TIMER_REARM_US)
1233
        nearest_delta_us = MIN_TIMER_REARM_US;
1234

    
1235
    return nearest_delta_us;
1236
}
1237

    
1238
#ifndef _WIN32
1239

    
1240
#if defined(__linux__)
1241

    
1242
#define RTC_FREQ 1024
1243

    
1244
static void enable_sigio_timer(int fd)
1245
{
1246
    struct sigaction act;
1247

    
1248
    /* timer signal */
1249
    sigfillset(&act.sa_mask);
1250
    act.sa_flags = 0;
1251
    act.sa_handler = host_alarm_handler;
1252

    
1253
    sigaction(SIGIO, &act, NULL);
1254
    fcntl(fd, F_SETFL, O_ASYNC);
1255
    fcntl(fd, F_SETOWN, getpid());
1256
}
1257

    
1258
static int hpet_start_timer(struct qemu_alarm_timer *t)
1259
{
1260
    struct hpet_info info;
1261
    int r, fd;
1262

    
1263
    fd = open("/dev/hpet", O_RDONLY);
1264
    if (fd < 0)
1265
        return -1;
1266

    
1267
    /* Set frequency */
1268
    r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1269
    if (r < 0) {
1270
        fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1271
                "error, but for better emulation accuracy type:\n"
1272
                "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1273
        goto fail;
1274
    }
1275

    
1276
    /* Check capabilities */
1277
    r = ioctl(fd, HPET_INFO, &info);
1278
    if (r < 0)
1279
        goto fail;
1280

    
1281
    /* Enable periodic mode */
1282
    r = ioctl(fd, HPET_EPI, 0);
1283
    if (info.hi_flags && (r < 0))
1284
        goto fail;
1285

    
1286
    /* Enable interrupt */
1287
    r = ioctl(fd, HPET_IE_ON, 0);
1288
    if (r < 0)
1289
        goto fail;
1290

    
1291
    enable_sigio_timer(fd);
1292
    t->priv = (void *)(long)fd;
1293

    
1294
    return 0;
1295
fail:
1296
    close(fd);
1297
    return -1;
1298
}
1299

    
1300
static void hpet_stop_timer(struct qemu_alarm_timer *t)
1301
{
1302
    int fd = (long)t->priv;
1303

    
1304
    close(fd);
1305
}
1306

    
1307
static int rtc_start_timer(struct qemu_alarm_timer *t)
1308
{
1309
    int rtc_fd;
1310
    unsigned long current_rtc_freq = 0;
1311

    
1312
    TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1313
    if (rtc_fd < 0)
1314
        return -1;
1315
    ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1316
    if (current_rtc_freq != RTC_FREQ &&
1317
        ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1318
        fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1319
                "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1320
                "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1321
        goto fail;
1322
    }
1323
    if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1324
    fail:
1325
        close(rtc_fd);
1326
        return -1;
1327
    }
1328

    
1329
    enable_sigio_timer(rtc_fd);
1330

    
1331
    t->priv = (void *)(long)rtc_fd;
1332

    
1333
    return 0;
1334
}
1335

    
1336
static void rtc_stop_timer(struct qemu_alarm_timer *t)
1337
{
1338
    int rtc_fd = (long)t->priv;
1339

    
1340
    close(rtc_fd);
1341
}
1342

    
1343
static int dynticks_start_timer(struct qemu_alarm_timer *t)
1344
{
1345
    struct sigevent ev;
1346
    timer_t host_timer;
1347
    struct sigaction act;
1348

    
1349
    sigfillset(&act.sa_mask);
1350
    act.sa_flags = 0;
1351
    act.sa_handler = host_alarm_handler;
1352

    
1353
    sigaction(SIGALRM, &act, NULL);
1354

    
1355
    ev.sigev_value.sival_int = 0;
1356
    ev.sigev_notify = SIGEV_SIGNAL;
1357
    ev.sigev_signo = SIGALRM;
1358

    
1359
    if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1360
        perror("timer_create");
1361

    
1362
        /* disable dynticks */
1363
        fprintf(stderr, "Dynamic Ticks disabled\n");
1364

    
1365
        return -1;
1366
    }
1367

    
1368
    t->priv = (void *)host_timer;
1369

    
1370
    return 0;
1371
}
1372

    
1373
static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1374
{
1375
    timer_t host_timer = (timer_t)t->priv;
1376

    
1377
    timer_delete(host_timer);
1378
}
1379

    
1380
static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1381
{
1382
    timer_t host_timer = (timer_t)t->priv;
1383
    struct itimerspec timeout;
1384
    int64_t nearest_delta_us = INT64_MAX;
1385
    int64_t current_us;
1386

    
1387
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1388
                !active_timers[QEMU_TIMER_VIRTUAL])
1389
        return;
1390

    
1391
    nearest_delta_us = qemu_next_deadline();
1392

    
1393
    /* check whether a timer is already running */
1394
    if (timer_gettime(host_timer, &timeout)) {
1395
        perror("gettime");
1396
        fprintf(stderr, "Internal timer error: aborting\n");
1397
        exit(1);
1398
    }
1399
    current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1400
    if (current_us && current_us <= nearest_delta_us)
1401
        return;
1402

    
1403
    timeout.it_interval.tv_sec = 0;
1404
    timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1405
    timeout.it_value.tv_sec =  nearest_delta_us / 1000000;
1406
    timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1407
    if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1408
        perror("settime");
1409
        fprintf(stderr, "Internal timer error: aborting\n");
1410
        exit(1);
1411
    }
1412
}
1413

    
1414
#endif /* defined(__linux__) */
1415

    
1416
static int unix_start_timer(struct qemu_alarm_timer *t)
1417
{
1418
    struct sigaction act;
1419
    struct itimerval itv;
1420
    int err;
1421

    
1422
    /* timer signal */
1423
    sigfillset(&act.sa_mask);
1424
    act.sa_flags = 0;
1425
    act.sa_handler = host_alarm_handler;
1426

    
1427
    sigaction(SIGALRM, &act, NULL);
1428

    
1429
    itv.it_interval.tv_sec = 0;
1430
    /* for i386 kernel 2.6 to get 1 ms */
1431
    itv.it_interval.tv_usec = 999;
1432
    itv.it_value.tv_sec = 0;
1433
    itv.it_value.tv_usec = 10 * 1000;
1434

    
1435
    err = setitimer(ITIMER_REAL, &itv, NULL);
1436
    if (err)
1437
        return -1;
1438

    
1439
    return 0;
1440
}
1441

    
1442
static void unix_stop_timer(struct qemu_alarm_timer *t)
1443
{
1444
    struct itimerval itv;
1445

    
1446
    memset(&itv, 0, sizeof(itv));
1447
    setitimer(ITIMER_REAL, &itv, NULL);
1448
}
1449

    
1450
#endif /* !defined(_WIN32) */
1451

    
1452
#ifdef _WIN32
1453

    
1454
static int win32_start_timer(struct qemu_alarm_timer *t)
1455
{
1456
    TIMECAPS tc;
1457
    struct qemu_alarm_win32 *data = t->priv;
1458
    UINT flags;
1459

    
1460
    data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1461
    if (!data->host_alarm) {
1462
        perror("Failed CreateEvent");
1463
        return -1;
1464
    }
1465

    
1466
    memset(&tc, 0, sizeof(tc));
1467
    timeGetDevCaps(&tc, sizeof(tc));
1468

    
1469
    if (data->period < tc.wPeriodMin)
1470
        data->period = tc.wPeriodMin;
1471

    
1472
    timeBeginPeriod(data->period);
1473

    
1474
    flags = TIME_CALLBACK_FUNCTION;
1475
    if (alarm_has_dynticks(t))
1476
        flags |= TIME_ONESHOT;
1477
    else
1478
        flags |= TIME_PERIODIC;
1479

    
1480
    data->timerId = timeSetEvent(1,         // interval (ms)
1481
                        data->period,       // resolution
1482
                        host_alarm_handler, // function
1483
                        (DWORD)t,           // parameter
1484
                        flags);
1485

    
1486
    if (!data->timerId) {
1487
        perror("Failed to initialize win32 alarm timer");
1488

    
1489
        timeEndPeriod(data->period);
1490
        CloseHandle(data->host_alarm);
1491
        return -1;
1492
    }
1493

    
1494
    qemu_add_wait_object(data->host_alarm, NULL, NULL);
1495

    
1496
    return 0;
1497
}
1498

    
1499
static void win32_stop_timer(struct qemu_alarm_timer *t)
1500
{
1501
    struct qemu_alarm_win32 *data = t->priv;
1502

    
1503
    timeKillEvent(data->timerId);
1504
    timeEndPeriod(data->period);
1505

    
1506
    CloseHandle(data->host_alarm);
1507
}
1508

    
1509
static void win32_rearm_timer(struct qemu_alarm_timer *t)
1510
{
1511
    struct qemu_alarm_win32 *data = t->priv;
1512
    uint64_t nearest_delta_us;
1513

    
1514
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1515
                !active_timers[QEMU_TIMER_VIRTUAL])
1516
        return;
1517

    
1518
    nearest_delta_us = qemu_next_deadline();
1519
    nearest_delta_us /= 1000;
1520

    
1521
    timeKillEvent(data->timerId);
1522

    
1523
    data->timerId = timeSetEvent(1,
1524
                        data->period,
1525
                        host_alarm_handler,
1526
                        (DWORD)t,
1527
                        TIME_ONESHOT | TIME_PERIODIC);
1528

    
1529
    if (!data->timerId) {
1530
        perror("Failed to re-arm win32 alarm timer");
1531

    
1532
        timeEndPeriod(data->period);
1533
        CloseHandle(data->host_alarm);
1534
        exit(1);
1535
    }
1536
}
1537

    
1538
#endif /* _WIN32 */
1539

    
1540
static void init_timer_alarm(void)
1541
{
1542
    struct qemu_alarm_timer *t;
1543
    int i, err = -1;
1544

    
1545
    for (i = 0; alarm_timers[i].name; i++) {
1546
        t = &alarm_timers[i];
1547

    
1548
        err = t->start(t);
1549
        if (!err)
1550
            break;
1551
    }
1552

    
1553
    if (err) {
1554
        fprintf(stderr, "Unable to find any suitable alarm timer.\n");
1555
        fprintf(stderr, "Terminating\n");
1556
        exit(1);
1557
    }
1558

    
1559
    alarm_timer = t;
1560
}
1561

    
1562
static void quit_timers(void)
1563
{
1564
    alarm_timer->stop(alarm_timer);
1565
    alarm_timer = NULL;
1566
}
1567

    
1568
/***********************************************************/
1569
/* host time/date access */
1570
void qemu_get_timedate(struct tm *tm, int offset)
1571
{
1572
    time_t ti;
1573
    struct tm *ret;
1574

    
1575
    time(&ti);
1576
    ti += offset;
1577
    if (rtc_date_offset == -1) {
1578
        if (rtc_utc)
1579
            ret = gmtime(&ti);
1580
        else
1581
            ret = localtime(&ti);
1582
    } else {
1583
        ti -= rtc_date_offset;
1584
        ret = gmtime(&ti);
1585
    }
1586

    
1587
    memcpy(tm, ret, sizeof(struct tm));
1588
}
1589

    
1590
int qemu_timedate_diff(struct tm *tm)
1591
{
1592
    time_t seconds;
1593

    
1594
    if (rtc_date_offset == -1)
1595
        if (rtc_utc)
1596
            seconds = mktimegm(tm);
1597
        else
1598
            seconds = mktime(tm);
1599
    else
1600
        seconds = mktimegm(tm) + rtc_date_offset;
1601

    
1602
    return seconds - time(NULL);
1603
}
1604

    
1605
/***********************************************************/
1606
/* character device */
1607

    
1608
static void qemu_chr_event(CharDriverState *s, int event)
1609
{
1610
    if (!s->chr_event)
1611
        return;
1612
    s->chr_event(s->handler_opaque, event);
1613
}
1614

    
1615
static void qemu_chr_reset_bh(void *opaque)
1616
{
1617
    CharDriverState *s = opaque;
1618
    qemu_chr_event(s, CHR_EVENT_RESET);
1619
    qemu_bh_delete(s->bh);
1620
    s->bh = NULL;
1621
}
1622

    
1623
void qemu_chr_reset(CharDriverState *s)
1624
{
1625
    if (s->bh == NULL) {
1626
        s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1627
        qemu_bh_schedule(s->bh);
1628
    }
1629
}
1630

    
1631
int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1632
{
1633
    return s->chr_write(s, buf, len);
1634
}
1635

    
1636
int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1637
{
1638
    if (!s->chr_ioctl)
1639
        return -ENOTSUP;
1640
    return s->chr_ioctl(s, cmd, arg);
1641
}
1642

    
1643
int qemu_chr_can_read(CharDriverState *s)
1644
{
1645
    if (!s->chr_can_read)
1646
        return 0;
1647
    return s->chr_can_read(s->handler_opaque);
1648
}
1649

    
1650
void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1651
{
1652
    s->chr_read(s->handler_opaque, buf, len);
1653
}
1654

    
1655
void qemu_chr_accept_input(CharDriverState *s)
1656
{
1657
    if (s->chr_accept_input)
1658
        s->chr_accept_input(s);
1659
}
1660

    
1661
void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1662
{
1663
    char buf[4096];
1664
    va_list ap;
1665
    va_start(ap, fmt);
1666
    vsnprintf(buf, sizeof(buf), fmt, ap);
1667
    qemu_chr_write(s, (uint8_t *)buf, strlen(buf));
1668
    va_end(ap);
1669
}
1670

    
1671
void qemu_chr_send_event(CharDriverState *s, int event)
1672
{
1673
    if (s->chr_send_event)
1674
        s->chr_send_event(s, event);
1675
}
1676

    
1677
void qemu_chr_add_handlers(CharDriverState *s,
1678
                           IOCanRWHandler *fd_can_read,
1679
                           IOReadHandler *fd_read,
1680
                           IOEventHandler *fd_event,
1681
                           void *opaque)
1682
{
1683
    s->chr_can_read = fd_can_read;
1684
    s->chr_read = fd_read;
1685
    s->chr_event = fd_event;
1686
    s->handler_opaque = opaque;
1687
    if (s->chr_update_read_handler)
1688
        s->chr_update_read_handler(s);
1689
}
1690

    
1691
static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1692
{
1693
    return len;
1694
}
1695

    
1696
static CharDriverState *qemu_chr_open_null(void)
1697
{
1698
    CharDriverState *chr;
1699

    
1700
    chr = qemu_mallocz(sizeof(CharDriverState));
1701
    if (!chr)
1702
        return NULL;
1703
    chr->chr_write = null_chr_write;
1704
    return chr;
1705
}
1706

    
1707
/* MUX driver for serial I/O splitting */
1708
static int term_timestamps;
1709
static int64_t term_timestamps_start;
1710
#define MAX_MUX 4
1711
#define MUX_BUFFER_SIZE 32        /* Must be a power of 2.  */
1712
#define MUX_BUFFER_MASK (MUX_BUFFER_SIZE - 1)
1713
typedef struct {
1714
    IOCanRWHandler *chr_can_read[MAX_MUX];
1715
    IOReadHandler *chr_read[MAX_MUX];
1716
    IOEventHandler *chr_event[MAX_MUX];
1717
    void *ext_opaque[MAX_MUX];
1718
    CharDriverState *drv;
1719
    unsigned char buffer[MUX_BUFFER_SIZE];
1720
    int prod;
1721
    int cons;
1722
    int mux_cnt;
1723
    int term_got_escape;
1724
    int max_size;
1725
} MuxDriver;
1726

    
1727

    
1728
static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1729
{
1730
    MuxDriver *d = chr->opaque;
1731
    int ret;
1732
    if (!term_timestamps) {
1733
        ret = d->drv->chr_write(d->drv, buf, len);
1734
    } else {
1735
        int i;
1736

    
1737
        ret = 0;
1738
        for(i = 0; i < len; i++) {
1739
            ret += d->drv->chr_write(d->drv, buf+i, 1);
1740
            if (buf[i] == '\n') {
1741
                char buf1[64];
1742
                int64_t ti;
1743
                int secs;
1744

    
1745
                ti = get_clock();
1746
                if (term_timestamps_start == -1)
1747
                    term_timestamps_start = ti;
1748
                ti -= term_timestamps_start;
1749
                secs = ti / 1000000000;
1750
                snprintf(buf1, sizeof(buf1),
1751
                         "[%02d:%02d:%02d.%03d] ",
1752
                         secs / 3600,
1753
                         (secs / 60) % 60,
1754
                         secs % 60,
1755
                         (int)((ti / 1000000) % 1000));
1756
                d->drv->chr_write(d->drv, (uint8_t *)buf1, strlen(buf1));
1757
            }
1758
        }
1759
    }
1760
    return ret;
1761
}
1762

    
1763
static char *mux_help[] = {
1764
    "% h    print this help\n\r",
1765
    "% x    exit emulator\n\r",
1766
    "% s    save disk data back to file (if -snapshot)\n\r",
1767
    "% t    toggle console timestamps\n\r"
1768
    "% b    send break (magic sysrq)\n\r",
1769
    "% c    switch between console and monitor\n\r",
1770
    "% %  sends %\n\r",
1771
    NULL
1772
};
1773

    
1774
static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1775
static void mux_print_help(CharDriverState *chr)
1776
{
1777
    int i, j;
1778
    char ebuf[15] = "Escape-Char";
1779
    char cbuf[50] = "\n\r";
1780

    
1781
    if (term_escape_char > 0 && term_escape_char < 26) {
1782
        sprintf(cbuf,"\n\r");
1783
        sprintf(ebuf,"C-%c", term_escape_char - 1 + 'a');
1784
    } else {
1785
        sprintf(cbuf,"\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r",
1786
            term_escape_char);
1787
    }
1788
    chr->chr_write(chr, (uint8_t *)cbuf, strlen(cbuf));
1789
    for (i = 0; mux_help[i] != NULL; i++) {
1790
        for (j=0; mux_help[i][j] != '\0'; j++) {
1791
            if (mux_help[i][j] == '%')
1792
                chr->chr_write(chr, (uint8_t *)ebuf, strlen(ebuf));
1793
            else
1794
                chr->chr_write(chr, (uint8_t *)&mux_help[i][j], 1);
1795
        }
1796
    }
1797
}
1798

    
1799
static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1800
{
1801
    if (d->term_got_escape) {
1802
        d->term_got_escape = 0;
1803
        if (ch == term_escape_char)
1804
            goto send_char;
1805
        switch(ch) {
1806
        case '?':
1807
        case 'h':
1808
            mux_print_help(chr);
1809
            break;
1810
        case 'x':
1811
            {
1812
                 char *term =  "QEMU: Terminated\n\r";
1813
                 chr->chr_write(chr,(uint8_t *)term,strlen(term));
1814
                 exit(0);
1815
                 break;
1816
            }
1817
        case 's':
1818
            {
1819
                int i;
1820
                for (i = 0; i < nb_drives; i++) {
1821
                        bdrv_commit(drives_table[i].bdrv);
1822
                }
1823
            }
1824
            break;
1825
        case 'b':
1826
            qemu_chr_event(chr, CHR_EVENT_BREAK);
1827
            break;
1828
        case 'c':
1829
            /* Switch to the next registered device */
1830
            chr->focus++;
1831
            if (chr->focus >= d->mux_cnt)
1832
                chr->focus = 0;
1833
            break;
1834
       case 't':
1835
           term_timestamps = !term_timestamps;
1836
           term_timestamps_start = -1;
1837
           break;
1838
        }
1839
    } else if (ch == term_escape_char) {
1840
        d->term_got_escape = 1;
1841
    } else {
1842
    send_char:
1843
        return 1;
1844
    }
1845
    return 0;
1846
}
1847

    
1848
static void mux_chr_accept_input(CharDriverState *chr)
1849
{
1850
    int m = chr->focus;
1851
    MuxDriver *d = chr->opaque;
1852

    
1853
    while (d->prod != d->cons &&
1854
           d->chr_can_read[m] &&
1855
           d->chr_can_read[m](d->ext_opaque[m])) {
1856
        d->chr_read[m](d->ext_opaque[m],
1857
                       &d->buffer[d->cons++ & MUX_BUFFER_MASK], 1);
1858
    }
1859
}
1860

    
1861
static int mux_chr_can_read(void *opaque)
1862
{
1863
    CharDriverState *chr = opaque;
1864
    MuxDriver *d = chr->opaque;
1865

    
1866
    if ((d->prod - d->cons) < MUX_BUFFER_SIZE)
1867
        return 1;
1868
    if (d->chr_can_read[chr->focus])
1869
        return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
1870
    return 0;
1871
}
1872

    
1873
static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
1874
{
1875
    CharDriverState *chr = opaque;
1876
    MuxDriver *d = chr->opaque;
1877
    int m = chr->focus;
1878
    int i;
1879

    
1880
    mux_chr_accept_input (opaque);
1881

    
1882
    for(i = 0; i < size; i++)
1883
        if (mux_proc_byte(chr, d, buf[i])) {
1884
            if (d->prod == d->cons &&
1885
                d->chr_can_read[m] &&
1886
                d->chr_can_read[m](d->ext_opaque[m]))
1887
                d->chr_read[m](d->ext_opaque[m], &buf[i], 1);
1888
            else
1889
                d->buffer[d->prod++ & MUX_BUFFER_MASK] = buf[i];
1890
        }
1891
}
1892

    
1893
static void mux_chr_event(void *opaque, int event)
1894
{
1895
    CharDriverState *chr = opaque;
1896
    MuxDriver *d = chr->opaque;
1897
    int i;
1898

    
1899
    /* Send the event to all registered listeners */
1900
    for (i = 0; i < d->mux_cnt; i++)
1901
        if (d->chr_event[i])
1902
            d->chr_event[i](d->ext_opaque[i], event);
1903
}
1904

    
1905
static void mux_chr_update_read_handler(CharDriverState *chr)
1906
{
1907
    MuxDriver *d = chr->opaque;
1908

    
1909
    if (d->mux_cnt >= MAX_MUX) {
1910
        fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
1911
        return;
1912
    }
1913
    d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
1914
    d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
1915
    d->chr_read[d->mux_cnt] = chr->chr_read;
1916
    d->chr_event[d->mux_cnt] = chr->chr_event;
1917
    /* Fix up the real driver with mux routines */
1918
    if (d->mux_cnt == 0) {
1919
        qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
1920
                              mux_chr_event, chr);
1921
    }
1922
    chr->focus = d->mux_cnt;
1923
    d->mux_cnt++;
1924
}
1925

    
1926
static CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
1927
{
1928
    CharDriverState *chr;
1929
    MuxDriver *d;
1930

    
1931
    chr = qemu_mallocz(sizeof(CharDriverState));
1932
    if (!chr)
1933
        return NULL;
1934
    d = qemu_mallocz(sizeof(MuxDriver));
1935
    if (!d) {
1936
        free(chr);
1937
        return NULL;
1938
    }
1939

    
1940
    chr->opaque = d;
1941
    d->drv = drv;
1942
    chr->focus = -1;
1943
    chr->chr_write = mux_chr_write;
1944
    chr->chr_update_read_handler = mux_chr_update_read_handler;
1945
    chr->chr_accept_input = mux_chr_accept_input;
1946
    return chr;
1947
}
1948

    
1949

    
1950
#ifdef _WIN32
1951

    
1952
static void socket_cleanup(void)
1953
{
1954
    WSACleanup();
1955
}
1956

    
1957
static int socket_init(void)
1958
{
1959
    WSADATA Data;
1960
    int ret, err;
1961

    
1962
    ret = WSAStartup(MAKEWORD(2,2), &Data);
1963
    if (ret != 0) {
1964
        err = WSAGetLastError();
1965
        fprintf(stderr, "WSAStartup: %d\n", err);
1966
        return -1;
1967
    }
1968
    atexit(socket_cleanup);
1969
    return 0;
1970
}
1971

    
1972
static int send_all(int fd, const uint8_t *buf, int len1)
1973
{
1974
    int ret, len;
1975

    
1976
    len = len1;
1977
    while (len > 0) {
1978
        ret = send(fd, buf, len, 0);
1979
        if (ret < 0) {
1980
            int errno;
1981
            errno = WSAGetLastError();
1982
            if (errno != WSAEWOULDBLOCK) {
1983
                return -1;
1984
            }
1985
        } else if (ret == 0) {
1986
            break;
1987
        } else {
1988
            buf += ret;
1989
            len -= ret;
1990
        }
1991
    }
1992
    return len1 - len;
1993
}
1994

    
1995
void socket_set_nonblock(int fd)
1996
{
1997
    unsigned long opt = 1;
1998
    ioctlsocket(fd, FIONBIO, &opt);
1999
}
2000

    
2001
#else
2002

    
2003
static int unix_write(int fd, const uint8_t *buf, int len1)
2004
{
2005
    int ret, len;
2006

    
2007
    len = len1;
2008
    while (len > 0) {
2009
        ret = write(fd, buf, len);
2010
        if (ret < 0) {
2011
            if (errno != EINTR && errno != EAGAIN)
2012
                return -1;
2013
        } else if (ret == 0) {
2014
            break;
2015
        } else {
2016
            buf += ret;
2017
            len -= ret;
2018
        }
2019
    }
2020
    return len1 - len;
2021
}
2022

    
2023
static inline int send_all(int fd, const uint8_t *buf, int len1)
2024
{
2025
    return unix_write(fd, buf, len1);
2026
}
2027

    
2028
void socket_set_nonblock(int fd)
2029
{
2030
    fcntl(fd, F_SETFL, O_NONBLOCK);
2031
}
2032
#endif /* !_WIN32 */
2033

    
2034
#ifndef _WIN32
2035

    
2036
typedef struct {
2037
    int fd_in, fd_out;
2038
    int max_size;
2039
} FDCharDriver;
2040

    
2041
#define STDIO_MAX_CLIENTS 1
2042
static int stdio_nb_clients = 0;
2043

    
2044
static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2045
{
2046
    FDCharDriver *s = chr->opaque;
2047
    return unix_write(s->fd_out, buf, len);
2048
}
2049

    
2050
static int fd_chr_read_poll(void *opaque)
2051
{
2052
    CharDriverState *chr = opaque;
2053
    FDCharDriver *s = chr->opaque;
2054

    
2055
    s->max_size = qemu_chr_can_read(chr);
2056
    return s->max_size;
2057
}
2058

    
2059
static void fd_chr_read(void *opaque)
2060
{
2061
    CharDriverState *chr = opaque;
2062
    FDCharDriver *s = chr->opaque;
2063
    int size, len;
2064
    uint8_t buf[1024];
2065

    
2066
    len = sizeof(buf);
2067
    if (len > s->max_size)
2068
        len = s->max_size;
2069
    if (len == 0)
2070
        return;
2071
    size = read(s->fd_in, buf, len);
2072
    if (size == 0) {
2073
        /* FD has been closed. Remove it from the active list.  */
2074
        qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
2075
        return;
2076
    }
2077
    if (size > 0) {
2078
        qemu_chr_read(chr, buf, size);
2079
    }
2080
}
2081

    
2082
static void fd_chr_update_read_handler(CharDriverState *chr)
2083
{
2084
    FDCharDriver *s = chr->opaque;
2085

    
2086
    if (s->fd_in >= 0) {
2087
        if (nographic && s->fd_in == 0) {
2088
        } else {
2089
            qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
2090
                                 fd_chr_read, NULL, chr);
2091
        }
2092
    }
2093
}
2094

    
2095
static void fd_chr_close(struct CharDriverState *chr)
2096
{
2097
    FDCharDriver *s = chr->opaque;
2098

    
2099
    if (s->fd_in >= 0) {
2100
        if (nographic && s->fd_in == 0) {
2101
        } else {
2102
            qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
2103
        }
2104
    }
2105

    
2106
    qemu_free(s);
2107
}
2108

    
2109
/* open a character device to a unix fd */
2110
static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
2111
{
2112
    CharDriverState *chr;
2113
    FDCharDriver *s;
2114

    
2115
    chr = qemu_mallocz(sizeof(CharDriverState));
2116
    if (!chr)
2117
        return NULL;
2118
    s = qemu_mallocz(sizeof(FDCharDriver));
2119
    if (!s) {
2120
        free(chr);
2121
        return NULL;
2122
    }
2123
    s->fd_in = fd_in;
2124
    s->fd_out = fd_out;
2125
    chr->opaque = s;
2126
    chr->chr_write = fd_chr_write;
2127
    chr->chr_update_read_handler = fd_chr_update_read_handler;
2128
    chr->chr_close = fd_chr_close;
2129

    
2130
    qemu_chr_reset(chr);
2131

    
2132
    return chr;
2133
}
2134

    
2135
static CharDriverState *qemu_chr_open_file_out(const char *file_out)
2136
{
2137
    int fd_out;
2138

    
2139
    TFR(fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666));
2140
    if (fd_out < 0)
2141
        return NULL;
2142
    return qemu_chr_open_fd(-1, fd_out);
2143
}
2144

    
2145
static CharDriverState *qemu_chr_open_pipe(const char *filename)
2146
{
2147
    int fd_in, fd_out;
2148
    char filename_in[256], filename_out[256];
2149

    
2150
    snprintf(filename_in, 256, "%s.in", filename);
2151
    snprintf(filename_out, 256, "%s.out", filename);
2152
    TFR(fd_in = open(filename_in, O_RDWR | O_BINARY));
2153
    TFR(fd_out = open(filename_out, O_RDWR | O_BINARY));
2154
    if (fd_in < 0 || fd_out < 0) {
2155
        if (fd_in >= 0)
2156
            close(fd_in);
2157
        if (fd_out >= 0)
2158
            close(fd_out);
2159
        TFR(fd_in = fd_out = open(filename, O_RDWR | O_BINARY));
2160
        if (fd_in < 0)
2161
            return NULL;
2162
    }
2163
    return qemu_chr_open_fd(fd_in, fd_out);
2164
}
2165

    
2166

    
2167
/* for STDIO, we handle the case where several clients use it
2168
   (nographic mode) */
2169

    
2170
#define TERM_FIFO_MAX_SIZE 1
2171

    
2172
static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
2173
static int term_fifo_size;
2174

    
2175
static int stdio_read_poll(void *opaque)
2176
{
2177
    CharDriverState *chr = opaque;
2178

    
2179
    /* try to flush the queue if needed */
2180
    if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
2181
        qemu_chr_read(chr, term_fifo, 1);
2182
        term_fifo_size = 0;
2183
    }
2184
    /* see if we can absorb more chars */
2185
    if (term_fifo_size == 0)
2186
        return 1;
2187
    else
2188
        return 0;
2189
}
2190

    
2191
static void stdio_read(void *opaque)
2192
{
2193
    int size;
2194
    uint8_t buf[1];
2195
    CharDriverState *chr = opaque;
2196

    
2197
    size = read(0, buf, 1);
2198
    if (size == 0) {
2199
        /* stdin has been closed. Remove it from the active list.  */
2200
        qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2201
        return;
2202
    }
2203
    if (size > 0) {
2204
        if (qemu_chr_can_read(chr) > 0) {
2205
            qemu_chr_read(chr, buf, 1);
2206
        } else if (term_fifo_size == 0) {
2207
            term_fifo[term_fifo_size++] = buf[0];
2208
        }
2209
    }
2210
}
2211

    
2212
/* init terminal so that we can grab keys */
2213
static struct termios oldtty;
2214
static int old_fd0_flags;
2215
static int term_atexit_done;
2216

    
2217
static void term_exit(void)
2218
{
2219
    tcsetattr (0, TCSANOW, &oldtty);
2220
    fcntl(0, F_SETFL, old_fd0_flags);
2221
}
2222

    
2223
static void term_init(void)
2224
{
2225
    struct termios tty;
2226

    
2227
    tcgetattr (0, &tty);
2228
    oldtty = tty;
2229
    old_fd0_flags = fcntl(0, F_GETFL);
2230

    
2231
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2232
                          |INLCR|IGNCR|ICRNL|IXON);
2233
    tty.c_oflag |= OPOST;
2234
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
2235
    /* if graphical mode, we allow Ctrl-C handling */
2236
    if (nographic)
2237
        tty.c_lflag &= ~ISIG;
2238
    tty.c_cflag &= ~(CSIZE|PARENB);
2239
    tty.c_cflag |= CS8;
2240
    tty.c_cc[VMIN] = 1;
2241
    tty.c_cc[VTIME] = 0;
2242

    
2243
    tcsetattr (0, TCSANOW, &tty);
2244

    
2245
    if (!term_atexit_done++)
2246
        atexit(term_exit);
2247

    
2248
    fcntl(0, F_SETFL, O_NONBLOCK);
2249
}
2250

    
2251
static void qemu_chr_close_stdio(struct CharDriverState *chr)
2252
{
2253
    term_exit();
2254
    stdio_nb_clients--;
2255
    qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2256
    fd_chr_close(chr);
2257
}
2258

    
2259
static CharDriverState *qemu_chr_open_stdio(void)
2260
{
2261
    CharDriverState *chr;
2262

    
2263
    if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
2264
        return NULL;
2265
    chr = qemu_chr_open_fd(0, 1);
2266
    chr->chr_close = qemu_chr_close_stdio;
2267
    qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
2268
    stdio_nb_clients++;
2269
    term_init();
2270

    
2271
    return chr;
2272
}
2273

    
2274
#if defined(__linux__) || defined(__sun__)
2275
static CharDriverState *qemu_chr_open_pty(void)
2276
{
2277
    struct termios tty;
2278
    char slave_name[1024];
2279
    int master_fd, slave_fd;
2280

    
2281
#if defined(__linux__)
2282
    /* Not satisfying */
2283
    if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) {
2284
        return NULL;
2285
    }
2286
#endif
2287

    
2288
    /* Disabling local echo and line-buffered output */
2289
    tcgetattr (master_fd, &tty);
2290
    tty.c_lflag &= ~(ECHO|ICANON|ISIG);
2291
    tty.c_cc[VMIN] = 1;
2292
    tty.c_cc[VTIME] = 0;
2293
    tcsetattr (master_fd, TCSAFLUSH, &tty);
2294

    
2295
    fprintf(stderr, "char device redirected to %s\n", slave_name);
2296
    return qemu_chr_open_fd(master_fd, master_fd);
2297
}
2298

    
2299
static void tty_serial_init(int fd, int speed,
2300
                            int parity, int data_bits, int stop_bits)
2301
{
2302
    struct termios tty;
2303
    speed_t spd;
2304

    
2305
#if 0
2306
    printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
2307
           speed, parity, data_bits, stop_bits);
2308
#endif
2309
    tcgetattr (fd, &tty);
2310

    
2311
#define MARGIN 1.1
2312
    if (speed <= 50 * MARGIN)
2313
        spd = B50;
2314
    else if (speed <= 75 * MARGIN)
2315
        spd = B75;
2316
    else if (speed <= 300 * MARGIN)
2317
        spd = B300;
2318
    else if (speed <= 600 * MARGIN)
2319
        spd = B600;
2320
    else if (speed <= 1200 * MARGIN)
2321
        spd = B1200;
2322
    else if (speed <= 2400 * MARGIN)
2323
        spd = B2400;
2324
    else if (speed <= 4800 * MARGIN)
2325
        spd = B4800;
2326
    else if (speed <= 9600 * MARGIN)
2327
        spd = B9600;
2328
    else if (speed <= 19200 * MARGIN)
2329
        spd = B19200;
2330
    else if (speed <= 38400 * MARGIN)
2331
        spd = B38400;
2332
    else if (speed <= 57600 * MARGIN)
2333
        spd = B57600;
2334
    else if (speed <= 115200 * MARGIN)
2335
        spd = B115200;
2336
    else
2337
        spd = B115200;
2338

    
2339
    cfsetispeed(&tty, spd);
2340
    cfsetospeed(&tty, spd);
2341

    
2342
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2343
                          |INLCR|IGNCR|ICRNL|IXON);
2344
    tty.c_oflag |= OPOST;
2345
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
2346
    tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
2347
    switch(data_bits) {
2348
    default:
2349
    case 8:
2350
        tty.c_cflag |= CS8;
2351
        break;
2352
    case 7:
2353
        tty.c_cflag |= CS7;
2354
        break;
2355
    case 6:
2356
        tty.c_cflag |= CS6;
2357
        break;
2358
    case 5:
2359
        tty.c_cflag |= CS5;
2360
        break;
2361
    }
2362
    switch(parity) {
2363
    default:
2364
    case 'N':
2365
        break;
2366
    case 'E':
2367
        tty.c_cflag |= PARENB;
2368
        break;
2369
    case 'O':
2370
        tty.c_cflag |= PARENB | PARODD;
2371
        break;
2372
    }
2373
    if (stop_bits == 2)
2374
        tty.c_cflag |= CSTOPB;
2375

    
2376
    tcsetattr (fd, TCSANOW, &tty);
2377
}
2378

    
2379
static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
2380
{
2381
    FDCharDriver *s = chr->opaque;
2382

    
2383
    switch(cmd) {
2384
    case CHR_IOCTL_SERIAL_SET_PARAMS:
2385
        {
2386
            QEMUSerialSetParams *ssp = arg;
2387
            tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
2388
                            ssp->data_bits, ssp->stop_bits);
2389
        }
2390
        break;
2391
    case CHR_IOCTL_SERIAL_SET_BREAK:
2392
        {
2393
            int enable = *(int *)arg;
2394
            if (enable)
2395
                tcsendbreak(s->fd_in, 1);
2396
        }
2397
        break;
2398
    default:
2399
        return -ENOTSUP;
2400
    }
2401
    return 0;
2402
}
2403

    
2404
static CharDriverState *qemu_chr_open_tty(const char *filename)
2405
{
2406
    CharDriverState *chr;
2407
    int fd;
2408

    
2409
    TFR(fd = open(filename, O_RDWR | O_NONBLOCK));
2410
    fcntl(fd, F_SETFL, O_NONBLOCK);
2411
    tty_serial_init(fd, 115200, 'N', 8, 1);
2412
    chr = qemu_chr_open_fd(fd, fd);
2413
    if (!chr) {
2414
        close(fd);
2415
        return NULL;
2416
    }
2417
    chr->chr_ioctl = tty_serial_ioctl;
2418
    qemu_chr_reset(chr);
2419
    return chr;
2420
}
2421
#else  /* ! __linux__ && ! __sun__ */
2422
static CharDriverState *qemu_chr_open_pty(void)
2423
{
2424
    return NULL;
2425
}
2426
#endif /* __linux__ || __sun__ */
2427

    
2428
#if defined(__linux__)
2429
typedef struct {
2430
    int fd;
2431
    int mode;
2432
} ParallelCharDriver;
2433

    
2434
static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
2435
{
2436
    if (s->mode != mode) {
2437
        int m = mode;
2438
        if (ioctl(s->fd, PPSETMODE, &m) < 0)
2439
            return 0;
2440
        s->mode = mode;
2441
    }
2442
    return 1;
2443
}
2444

    
2445
static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
2446
{
2447
    ParallelCharDriver *drv = chr->opaque;
2448
    int fd = drv->fd;
2449
    uint8_t b;
2450

    
2451
    switch(cmd) {
2452
    case CHR_IOCTL_PP_READ_DATA:
2453
        if (ioctl(fd, PPRDATA, &b) < 0)
2454
            return -ENOTSUP;
2455
        *(uint8_t *)arg = b;
2456
        break;
2457
    case CHR_IOCTL_PP_WRITE_DATA:
2458
        b = *(uint8_t *)arg;
2459
        if (ioctl(fd, PPWDATA, &b) < 0)
2460
            return -ENOTSUP;
2461
        break;
2462
    case CHR_IOCTL_PP_READ_CONTROL:
2463
        if (ioctl(fd, PPRCONTROL, &b) < 0)
2464
            return -ENOTSUP;
2465
        /* Linux gives only the lowest bits, and no way to know data
2466
           direction! For better compatibility set the fixed upper
2467
           bits. */
2468
        *(uint8_t *)arg = b | 0xc0;
2469
        break;
2470
    case CHR_IOCTL_PP_WRITE_CONTROL:
2471
        b = *(uint8_t *)arg;
2472
        if (ioctl(fd, PPWCONTROL, &b) < 0)
2473
            return -ENOTSUP;
2474
        break;
2475
    case CHR_IOCTL_PP_READ_STATUS:
2476
        if (ioctl(fd, PPRSTATUS, &b) < 0)
2477
            return -ENOTSUP;
2478
        *(uint8_t *)arg = b;
2479
        break;
2480
    case CHR_IOCTL_PP_EPP_READ_ADDR:
2481
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2482
            struct ParallelIOArg *parg = arg;
2483
            int n = read(fd, parg->buffer, parg->count);
2484
            if (n != parg->count) {
2485
                return -EIO;
2486
            }
2487
        }
2488
        break;
2489
    case CHR_IOCTL_PP_EPP_READ:
2490
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2491
            struct ParallelIOArg *parg = arg;
2492
            int n = read(fd, parg->buffer, parg->count);
2493
            if (n != parg->count) {
2494
                return -EIO;
2495
            }
2496
        }
2497
        break;
2498
    case CHR_IOCTL_PP_EPP_WRITE_ADDR:
2499
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2500
            struct ParallelIOArg *parg = arg;
2501
            int n = write(fd, parg->buffer, parg->count);
2502
            if (n != parg->count) {
2503
                return -EIO;
2504
            }
2505
        }
2506
        break;
2507
    case CHR_IOCTL_PP_EPP_WRITE:
2508
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2509
            struct ParallelIOArg *parg = arg;
2510
            int n = write(fd, parg->buffer, parg->count);
2511
            if (n != parg->count) {
2512
                return -EIO;
2513
            }
2514
        }
2515
        break;
2516
    default:
2517
        return -ENOTSUP;
2518
    }
2519
    return 0;
2520
}
2521

    
2522
static void pp_close(CharDriverState *chr)
2523
{
2524
    ParallelCharDriver *drv = chr->opaque;
2525
    int fd = drv->fd;
2526

    
2527
    pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
2528
    ioctl(fd, PPRELEASE);
2529
    close(fd);
2530
    qemu_free(drv);
2531
}
2532

    
2533
static CharDriverState *qemu_chr_open_pp(const char *filename)
2534
{
2535
    CharDriverState *chr;
2536
    ParallelCharDriver *drv;
2537
    int fd;
2538

    
2539
    TFR(fd = open(filename, O_RDWR));
2540
    if (fd < 0)
2541
        return NULL;
2542

    
2543
    if (ioctl(fd, PPCLAIM) < 0) {
2544
        close(fd);
2545
        return NULL;
2546
    }
2547

    
2548
    drv = qemu_mallocz(sizeof(ParallelCharDriver));
2549
    if (!drv) {
2550
        close(fd);
2551
        return NULL;
2552
    }
2553
    drv->fd = fd;
2554
    drv->mode = IEEE1284_MODE_COMPAT;
2555

    
2556
    chr = qemu_mallocz(sizeof(CharDriverState));
2557
    if (!chr) {
2558
        qemu_free(drv);
2559
        close(fd);
2560
        return NULL;
2561
    }
2562
    chr->chr_write = null_chr_write;
2563
    chr->chr_ioctl = pp_ioctl;
2564
    chr->chr_close = pp_close;
2565
    chr->opaque = drv;
2566

    
2567
    qemu_chr_reset(chr);
2568

    
2569
    return chr;
2570
}
2571
#endif /* __linux__ */
2572

    
2573
#else /* _WIN32 */
2574

    
2575
typedef struct {
2576
    int max_size;
2577
    HANDLE hcom, hrecv, hsend;
2578
    OVERLAPPED orecv, osend;
2579
    BOOL fpipe;
2580
    DWORD len;
2581
} WinCharState;
2582

    
2583
#define NSENDBUF 2048
2584
#define NRECVBUF 2048
2585
#define MAXCONNECT 1
2586
#define NTIMEOUT 5000
2587

    
2588
static int win_chr_poll(void *opaque);
2589
static int win_chr_pipe_poll(void *opaque);
2590

    
2591
static void win_chr_close(CharDriverState *chr)
2592
{
2593
    WinCharState *s = chr->opaque;
2594

    
2595
    if (s->hsend) {
2596
        CloseHandle(s->hsend);
2597
        s->hsend = NULL;
2598
    }
2599
    if (s->hrecv) {
2600
        CloseHandle(s->hrecv);
2601
        s->hrecv = NULL;
2602
    }
2603
    if (s->hcom) {
2604
        CloseHandle(s->hcom);
2605
        s->hcom = NULL;
2606
    }
2607
    if (s->fpipe)
2608
        qemu_del_polling_cb(win_chr_pipe_poll, chr);
2609
    else
2610
        qemu_del_polling_cb(win_chr_poll, chr);
2611
}
2612

    
2613
static int win_chr_init(CharDriverState *chr, const char *filename)
2614
{
2615
    WinCharState *s = chr->opaque;
2616
    COMMCONFIG comcfg;
2617
    COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2618
    COMSTAT comstat;
2619
    DWORD size;
2620
    DWORD err;
2621

    
2622
    s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2623
    if (!s->hsend) {
2624
        fprintf(stderr, "Failed CreateEvent\n");
2625
        goto fail;
2626
    }
2627
    s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2628
    if (!s->hrecv) {
2629
        fprintf(stderr, "Failed CreateEvent\n");
2630
        goto fail;
2631
    }
2632

    
2633
    s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2634
                      OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
2635
    if (s->hcom == INVALID_HANDLE_VALUE) {
2636
        fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
2637
        s->hcom = NULL;
2638
        goto fail;
2639
    }
2640

    
2641
    if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
2642
        fprintf(stderr, "Failed SetupComm\n");
2643
        goto fail;
2644
    }
2645

    
2646
    ZeroMemory(&comcfg, sizeof(COMMCONFIG));
2647
    size = sizeof(COMMCONFIG);
2648
    GetDefaultCommConfig(filename, &comcfg, &size);
2649
    comcfg.dcb.DCBlength = sizeof(DCB);
2650
    CommConfigDialog(filename, NULL, &comcfg);
2651

    
2652
    if (!SetCommState(s->hcom, &comcfg.dcb)) {
2653
        fprintf(stderr, "Failed SetCommState\n");
2654
        goto fail;
2655
    }
2656

    
2657
    if (!SetCommMask(s->hcom, EV_ERR)) {
2658
        fprintf(stderr, "Failed SetCommMask\n");
2659
        goto fail;
2660
    }
2661

    
2662
    cto.ReadIntervalTimeout = MAXDWORD;
2663
    if (!SetCommTimeouts(s->hcom, &cto)) {
2664
        fprintf(stderr, "Failed SetCommTimeouts\n");
2665
        goto fail;
2666
    }
2667

    
2668
    if (!ClearCommError(s->hcom, &err, &comstat)) {
2669
        fprintf(stderr, "Failed ClearCommError\n");
2670
        goto fail;
2671
    }
2672
    qemu_add_polling_cb(win_chr_poll, chr);
2673
    return 0;
2674

    
2675
 fail:
2676
    win_chr_close(chr);
2677
    return -1;
2678
}
2679

    
2680
static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
2681
{
2682
    WinCharState *s = chr->opaque;
2683
    DWORD len, ret, size, err;
2684

    
2685
    len = len1;
2686
    ZeroMemory(&s->osend, sizeof(s->osend));
2687
    s->osend.hEvent = s->hsend;
2688
    while (len > 0) {
2689
        if (s->hsend)
2690
            ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
2691
        else
2692
            ret = WriteFile(s->hcom, buf, len, &size, NULL);
2693
        if (!ret) {
2694
            err = GetLastError();
2695
            if (err == ERROR_IO_PENDING) {
2696
                ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
2697
                if (ret) {
2698
                    buf += size;
2699
                    len -= size;
2700
                } else {
2701
                    break;
2702
                }
2703
            } else {
2704
                break;
2705
            }
2706
        } else {
2707
            buf += size;
2708
            len -= size;
2709
        }
2710
    }
2711
    return len1 - len;
2712
}
2713

    
2714
static int win_chr_read_poll(CharDriverState *chr)
2715
{
2716
    WinCharState *s = chr->opaque;
2717

    
2718
    s->max_size = qemu_chr_can_read(chr);
2719
    return s->max_size;
2720
}
2721

    
2722
static void win_chr_readfile(CharDriverState *chr)
2723
{
2724
    WinCharState *s = chr->opaque;
2725
    int ret, err;
2726
    uint8_t buf[1024];
2727
    DWORD size;
2728

    
2729
    ZeroMemory(&s->orecv, sizeof(s->orecv));
2730
    s->orecv.hEvent = s->hrecv;
2731
    ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
2732
    if (!ret) {
2733
        err = GetLastError();
2734
        if (err == ERROR_IO_PENDING) {
2735
            ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
2736
        }
2737
    }
2738

    
2739
    if (size > 0) {
2740
        qemu_chr_read(chr, buf, size);
2741
    }
2742
}
2743

    
2744
static void win_chr_read(CharDriverState *chr)
2745
{
2746
    WinCharState *s = chr->opaque;
2747

    
2748
    if (s->len > s->max_size)
2749
        s->len = s->max_size;
2750
    if (s->len == 0)
2751
        return;
2752

    
2753
    win_chr_readfile(chr);
2754
}
2755

    
2756
static int win_chr_poll(void *opaque)
2757
{
2758
    CharDriverState *chr = opaque;
2759
    WinCharState *s = chr->opaque;
2760
    COMSTAT status;
2761
    DWORD comerr;
2762

    
2763
    ClearCommError(s->hcom, &comerr, &status);
2764
    if (status.cbInQue > 0) {
2765
        s->len = status.cbInQue;
2766
        win_chr_read_poll(chr);
2767
        win_chr_read(chr);
2768
        return 1;
2769
    }
2770
    return 0;
2771
}
2772

    
2773
static CharDriverState *qemu_chr_open_win(const char *filename)
2774
{
2775
    CharDriverState *chr;
2776
    WinCharState *s;
2777

    
2778
    chr = qemu_mallocz(sizeof(CharDriverState));
2779
    if (!chr)
2780
        return NULL;
2781
    s = qemu_mallocz(sizeof(WinCharState));
2782
    if (!s) {
2783
        free(chr);
2784
        return NULL;
2785
    }
2786
    chr->opaque = s;
2787
    chr->chr_write = win_chr_write;
2788
    chr->chr_close = win_chr_close;
2789

    
2790
    if (win_chr_init(chr, filename) < 0) {
2791
        free(s);
2792
        free(chr);
2793
        return NULL;
2794
    }
2795
    qemu_chr_reset(chr);
2796
    return chr;
2797
}
2798

    
2799
static int win_chr_pipe_poll(void *opaque)
2800
{
2801
    CharDriverState *chr = opaque;
2802
    WinCharState *s = chr->opaque;
2803
    DWORD size;
2804

    
2805
    PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
2806
    if (size > 0) {
2807
        s->len = size;
2808
        win_chr_read_poll(chr);
2809
        win_chr_read(chr);
2810
        return 1;
2811
    }
2812
    return 0;
2813
}
2814

    
2815
static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
2816
{
2817
    WinCharState *s = chr->opaque;
2818
    OVERLAPPED ov;
2819
    int ret;
2820
    DWORD size;
2821
    char openname[256];
2822

    
2823
    s->fpipe = TRUE;
2824

    
2825
    s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2826
    if (!s->hsend) {
2827
        fprintf(stderr, "Failed CreateEvent\n");
2828
        goto fail;
2829
    }
2830
    s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2831
    if (!s->hrecv) {
2832
        fprintf(stderr, "Failed CreateEvent\n");
2833
        goto fail;
2834
    }
2835

    
2836
    snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
2837
    s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
2838
                              PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
2839
                              PIPE_WAIT,
2840
                              MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
2841
    if (s->hcom == INVALID_HANDLE_VALUE) {
2842
        fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
2843
        s->hcom = NULL;
2844
        goto fail;
2845
    }
2846

    
2847
    ZeroMemory(&ov, sizeof(ov));
2848
    ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
2849
    ret = ConnectNamedPipe(s->hcom, &ov);
2850
    if (ret) {
2851
        fprintf(stderr, "Failed ConnectNamedPipe\n");
2852
        goto fail;
2853
    }
2854

    
2855
    ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
2856
    if (!ret) {
2857
        fprintf(stderr, "Failed GetOverlappedResult\n");
2858
        if (ov.hEvent) {
2859
            CloseHandle(ov.hEvent);
2860
            ov.hEvent = NULL;
2861
        }
2862
        goto fail;
2863
    }
2864

    
2865
    if (ov.hEvent) {
2866
        CloseHandle(ov.hEvent);
2867
        ov.hEvent = NULL;
2868
    }
2869
    qemu_add_polling_cb(win_chr_pipe_poll, chr);
2870
    return 0;
2871

    
2872
 fail:
2873
    win_chr_close(chr);
2874
    return -1;
2875
}
2876

    
2877

    
2878
static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
2879
{
2880
    CharDriverState *chr;
2881
    WinCharState *s;
2882

    
2883
    chr = qemu_mallocz(sizeof(CharDriverState));
2884
    if (!chr)
2885
        return NULL;
2886
    s = qemu_mallocz(sizeof(WinCharState));
2887
    if (!s) {
2888
        free(chr);
2889
        return NULL;
2890
    }
2891
    chr->opaque = s;
2892
    chr->chr_write = win_chr_write;
2893
    chr->chr_close = win_chr_close;
2894

    
2895
    if (win_chr_pipe_init(chr, filename) < 0) {
2896
        free(s);
2897
        free(chr);
2898
        return NULL;
2899
    }
2900
    qemu_chr_reset(chr);
2901
    return chr;
2902
}
2903

    
2904
static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
2905
{
2906
    CharDriverState *chr;
2907
    WinCharState *s;
2908

    
2909
    chr = qemu_mallocz(sizeof(CharDriverState));
2910
    if (!chr)
2911
        return NULL;
2912
    s = qemu_mallocz(sizeof(WinCharState));
2913
    if (!s) {
2914
        free(chr);
2915
        return NULL;
2916
    }
2917
    s->hcom = fd_out;
2918
    chr->opaque = s;
2919
    chr->chr_write = win_chr_write;
2920
    qemu_chr_reset(chr);
2921
    return chr;
2922
}
2923

    
2924
static CharDriverState *qemu_chr_open_win_con(const char *filename)
2925
{
2926
    return qemu_chr_open_win_file(GetStdHandle(STD_OUTPUT_HANDLE));
2927
}
2928

    
2929
static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
2930
{
2931
    HANDLE fd_out;
2932

    
2933
    fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
2934
                        OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
2935
    if (fd_out == INVALID_HANDLE_VALUE)
2936
        return NULL;
2937

    
2938
    return qemu_chr_open_win_file(fd_out);
2939
}
2940
#endif /* !_WIN32 */
2941

    
2942
/***********************************************************/
2943
/* UDP Net console */
2944

    
2945
typedef struct {
2946
    int fd;
2947
    struct sockaddr_in daddr;
2948
    uint8_t buf[1024];
2949
    int bufcnt;
2950
    int bufptr;
2951
    int max_size;
2952
} NetCharDriver;
2953

    
2954
static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2955
{
2956
    NetCharDriver *s = chr->opaque;
2957

    
2958
    return sendto(s->fd, buf, len, 0,
2959
                  (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
2960
}
2961

    
2962
static int udp_chr_read_poll(void *opaque)
2963
{
2964
    CharDriverState *chr = opaque;
2965
    NetCharDriver *s = chr->opaque;
2966

    
2967
    s->max_size = qemu_chr_can_read(chr);
2968

    
2969
    /* If there were any stray characters in the queue process them
2970
     * first
2971
     */
2972
    while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2973
        qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2974
        s->bufptr++;
2975
        s->max_size = qemu_chr_can_read(chr);
2976
    }
2977
    return s->max_size;
2978
}
2979

    
2980
static void udp_chr_read(void *opaque)
2981
{
2982
    CharDriverState *chr = opaque;
2983
    NetCharDriver *s = chr->opaque;
2984

    
2985
    if (s->max_size == 0)
2986
        return;
2987
    s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
2988
    s->bufptr = s->bufcnt;
2989
    if (s->bufcnt <= 0)
2990
        return;
2991

    
2992
    s->bufptr = 0;
2993
    while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2994
        qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2995
        s->bufptr++;
2996
        s->max_size = qemu_chr_can_read(chr);
2997
    }
2998
}
2999

    
3000
static void udp_chr_update_read_handler(CharDriverState *chr)
3001
{
3002
    NetCharDriver *s = chr->opaque;
3003

    
3004
    if (s->fd >= 0) {
3005
        qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
3006
                             udp_chr_read, NULL, chr);
3007
    }
3008
}
3009

    
3010
int parse_host_port(struct sockaddr_in *saddr, const char *str);
3011
#ifndef _WIN32
3012
static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
3013
#endif
3014
int parse_host_src_port(struct sockaddr_in *haddr,
3015
                        struct sockaddr_in *saddr,
3016
                        const char *str);
3017

    
3018
static CharDriverState *qemu_chr_open_udp(const char *def)
3019
{
3020
    CharDriverState *chr = NULL;
3021
    NetCharDriver *s = NULL;
3022
    int fd = -1;
3023
    struct sockaddr_in saddr;
3024

    
3025
    chr = qemu_mallocz(sizeof(CharDriverState));
3026
    if (!chr)
3027
        goto return_err;
3028
    s = qemu_mallocz(sizeof(NetCharDriver));
3029
    if (!s)
3030
        goto return_err;
3031

    
3032
    fd = socket(PF_INET, SOCK_DGRAM, 0);
3033
    if (fd < 0) {
3034
        perror("socket(PF_INET, SOCK_DGRAM)");
3035
        goto return_err;
3036
    }
3037

    
3038
    if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
3039
        printf("Could not parse: %s\n", def);
3040
        goto return_err;
3041
    }
3042

    
3043
    if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
3044
    {
3045
        perror("bind");
3046
        goto return_err;
3047
    }
3048

    
3049
    s->fd = fd;
3050
    s->bufcnt = 0;
3051
    s->bufptr = 0;
3052
    chr->opaque = s;
3053
    chr->chr_write = udp_chr_write;
3054
    chr->chr_update_read_handler = udp_chr_update_read_handler;
3055
    return chr;
3056

    
3057
return_err:
3058
    if (chr)
3059
        free(chr);
3060
    if (s)
3061
        free(s);
3062
    if (fd >= 0)
3063
        closesocket(fd);
3064
    return NULL;
3065
}
3066

    
3067
/***********************************************************/
3068
/* TCP Net console */
3069

    
3070
typedef struct {
3071
    int fd, listen_fd;
3072
    int connected;
3073
    int max_size;
3074
    int do_telnetopt;
3075
    int do_nodelay;
3076
    int is_unix;
3077
} TCPCharDriver;
3078

    
3079
static void tcp_chr_accept(void *opaque);
3080

    
3081
static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
3082
{
3083
    TCPCharDriver *s = chr->opaque;
3084
    if (s->connected) {
3085
        return send_all(s->fd, buf, len);
3086
    } else {
3087
        /* XXX: indicate an error ? */
3088
        return len;
3089
    }
3090
}
3091

    
3092
static int tcp_chr_read_poll(void *opaque)
3093
{
3094
    CharDriverState *chr = opaque;
3095
    TCPCharDriver *s = chr->opaque;
3096
    if (!s->connected)
3097
        return 0;
3098
    s->max_size = qemu_chr_can_read(chr);
3099
    return s->max_size;
3100
}
3101

    
3102
#define IAC 255
3103
#define IAC_BREAK 243
3104
static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
3105
                                      TCPCharDriver *s,
3106
                                      uint8_t *buf, int *size)
3107
{
3108
    /* Handle any telnet client's basic IAC options to satisfy char by
3109
     * char mode with no echo.  All IAC options will be removed from
3110
     * the buf and the do_telnetopt variable will be used to track the
3111
     * state of the width of the IAC information.
3112
     *
3113
     * IAC commands come in sets of 3 bytes with the exception of the
3114
     * "IAC BREAK" command and the double IAC.
3115
     */
3116

    
3117
    int i;
3118
    int j = 0;
3119

    
3120
    for (i = 0; i < *size; i++) {
3121
        if (s->do_telnetopt > 1) {
3122
            if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
3123
                /* Double IAC means send an IAC */
3124
                if (j != i)
3125
                    buf[j] = buf[i];
3126
                j++;
3127
                s->do_telnetopt = 1;
3128
            } else {
3129
                if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
3130
                    /* Handle IAC break commands by sending a serial break */
3131
                    qemu_chr_event(chr, CHR_EVENT_BREAK);
3132
                    s->do_telnetopt++;
3133
                }
3134
                s->do_telnetopt++;
3135
            }
3136
            if (s->do_telnetopt >= 4) {
3137
                s->do_telnetopt = 1;
3138
            }
3139
        } else {
3140
            if ((unsigned char)buf[i] == IAC) {
3141
                s->do_telnetopt = 2;
3142
            } else {
3143
                if (j != i)
3144
                    buf[j] = buf[i];
3145
                j++;
3146
            }
3147
        }
3148
    }
3149
    *size = j;
3150
}
3151

    
3152
static void tcp_chr_read(void *opaque)
3153
{
3154
    CharDriverState *chr = opaque;
3155
    TCPCharDriver *s = chr->opaque;
3156
    uint8_t buf[1024];
3157
    int len, size;
3158

    
3159
    if (!s->connected || s->max_size <= 0)
3160
        return;
3161
    len = sizeof(buf);
3162
    if (len > s->max_size)
3163
        len = s->max_size;
3164
    size = recv(s->fd, buf, len, 0);
3165
    if (size == 0) {
3166
        /* connection closed */
3167
        s->connected = 0;
3168
        if (s->listen_fd >= 0) {
3169
            qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3170
        }
3171
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3172
        closesocket(s->fd);
3173
        s->fd = -1;
3174
    } else if (size > 0) {
3175
        if (s->do_telnetopt)
3176
            tcp_chr_process_IAC_bytes(chr, s, buf, &size);
3177
        if (size > 0)
3178
            qemu_chr_read(chr, buf, size);
3179
    }
3180
}
3181

    
3182
static void tcp_chr_connect(void *opaque)
3183
{
3184
    CharDriverState *chr = opaque;
3185
    TCPCharDriver *s = chr->opaque;
3186

    
3187
    s->connected = 1;
3188
    qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
3189
                         tcp_chr_read, NULL, chr);
3190
    qemu_chr_reset(chr);
3191
}
3192

    
3193
#define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
3194
static void tcp_chr_telnet_init(int fd)
3195
{
3196
    char buf[3];
3197
    /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
3198
    IACSET(buf, 0xff, 0xfb, 0x01);  /* IAC WILL ECHO */
3199
    send(fd, (char *)buf, 3, 0);
3200
    IACSET(buf, 0xff, 0xfb, 0x03);  /* IAC WILL Suppress go ahead */
3201
    send(fd, (char *)buf, 3, 0);
3202
    IACSET(buf, 0xff, 0xfb, 0x00);  /* IAC WILL Binary */
3203
    send(fd, (char *)buf, 3, 0);
3204
    IACSET(buf, 0xff, 0xfd, 0x00);  /* IAC DO Binary */
3205
    send(fd, (char *)buf, 3, 0);
3206
}
3207

    
3208
static void socket_set_nodelay(int fd)
3209
{
3210
    int val = 1;
3211
    setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
3212
}
3213

    
3214
static void tcp_chr_accept(void *opaque)
3215
{
3216
    CharDriverState *chr = opaque;
3217
    TCPCharDriver *s = chr->opaque;
3218
    struct sockaddr_in saddr;
3219
#ifndef _WIN32
3220
    struct sockaddr_un uaddr;
3221
#endif
3222
    struct sockaddr *addr;
3223
    socklen_t len;
3224
    int fd;
3225

    
3226
    for(;;) {
3227
#ifndef _WIN32
3228
        if (s->is_unix) {
3229
            len = sizeof(uaddr);
3230
            addr = (struct sockaddr *)&uaddr;
3231
        } else
3232
#endif
3233
        {
3234
            len = sizeof(saddr);
3235
            addr = (struct sockaddr *)&saddr;
3236
        }
3237
        fd = accept(s->listen_fd, addr, &len);
3238
        if (fd < 0 && errno != EINTR) {
3239
            return;
3240
        } else if (fd >= 0) {
3241
            if (s->do_telnetopt)
3242
                tcp_chr_telnet_init(fd);
3243
            break;
3244
        }
3245
    }
3246
    socket_set_nonblock(fd);
3247
    if (s->do_nodelay)
3248
        socket_set_nodelay(fd);
3249
    s->fd = fd;
3250
    qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
3251
    tcp_chr_connect(chr);
3252
}
3253

    
3254
static void tcp_chr_close(CharDriverState *chr)
3255
{
3256
    TCPCharDriver *s = chr->opaque;
3257
    if (s->fd >= 0)
3258
        closesocket(s->fd);
3259
    if (s->listen_fd >= 0)
3260
        closesocket(s->listen_fd);
3261
    qemu_free(s);
3262
}
3263

    
3264
static CharDriverState *qemu_chr_open_tcp(const char *host_str,
3265
                                          int is_telnet,
3266
                                          int is_unix)
3267
{
3268
    CharDriverState *chr = NULL;
3269
    TCPCharDriver *s = NULL;
3270
    int fd = -1, ret, err, val;
3271
    int is_listen = 0;
3272
    int is_waitconnect = 1;
3273
    int do_nodelay = 0;
3274
    const char *ptr;
3275
    struct sockaddr_in saddr;
3276
#ifndef _WIN32
3277
    struct sockaddr_un uaddr;
3278
#endif
3279
    struct sockaddr *addr;
3280
    socklen_t addrlen;
3281

    
3282
#ifndef _WIN32
3283
    if (is_unix) {
3284
        addr = (struct sockaddr *)&uaddr;
3285
        addrlen = sizeof(uaddr);
3286
        if (parse_unix_path(&uaddr, host_str) < 0)
3287
            goto fail;
3288
    } else
3289
#endif
3290
    {
3291
        addr = (struct sockaddr *)&saddr;
3292
        addrlen = sizeof(saddr);
3293
        if (parse_host_port(&saddr, host_str) < 0)
3294
            goto fail;
3295
    }
3296

    
3297
    ptr = host_str;
3298
    while((ptr = strchr(ptr,','))) {
3299
        ptr++;
3300
        if (!strncmp(ptr,"server",6)) {
3301
            is_listen = 1;
3302
        } else if (!strncmp(ptr,"nowait",6)) {
3303
            is_waitconnect = 0;
3304
        } else if (!strncmp(ptr,"nodelay",6)) {
3305
            do_nodelay = 1;
3306
        } else {
3307
            printf("Unknown option: %s\n", ptr);
3308
            goto fail;
3309
        }
3310
    }
3311
    if (!is_listen)
3312
        is_waitconnect = 0;
3313

    
3314
    chr = qemu_mallocz(sizeof(CharDriverState));
3315
    if (!chr)
3316
        goto fail;
3317
    s = qemu_mallocz(sizeof(TCPCharDriver));
3318
    if (!s)
3319
        goto fail;
3320

    
3321
#ifndef _WIN32
3322
    if (is_unix)
3323
        fd = socket(PF_UNIX, SOCK_STREAM, 0);
3324
    else
3325
#endif
3326
        fd = socket(PF_INET, SOCK_STREAM, 0);
3327

    
3328
    if (fd < 0)
3329
        goto fail;
3330

    
3331
    if (!is_waitconnect)
3332
        socket_set_nonblock(fd);
3333

    
3334
    s->connected = 0;
3335
    s->fd = -1;
3336
    s->listen_fd = -1;
3337
    s->is_unix = is_unix;
3338
    s->do_nodelay = do_nodelay && !is_unix;
3339

    
3340
    chr->opaque = s;
3341
    chr->chr_write = tcp_chr_write;
3342
    chr->chr_close = tcp_chr_close;
3343

    
3344
    if (is_listen) {
3345
        /* allow fast reuse */
3346
#ifndef _WIN32
3347
        if (is_unix) {
3348
            char path[109];
3349
            strncpy(path, uaddr.sun_path, 108);
3350
            path[108] = 0;
3351
            unlink(path);
3352
        } else
3353
#endif
3354
        {
3355
            val = 1;
3356
            setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
3357
        }
3358

    
3359
        ret = bind(fd, addr, addrlen);
3360
        if (ret < 0)
3361
            goto fail;
3362

    
3363
        ret = listen(fd, 0);
3364
        if (ret < 0)
3365
            goto fail;
3366

    
3367
        s->listen_fd = fd;
3368
        qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3369
        if (is_telnet)
3370
            s->do_telnetopt = 1;
3371
    } else {
3372
        for(;;) {
3373
            ret = connect(fd, addr, addrlen);
3374
            if (ret < 0) {
3375
                err = socket_error();
3376
                if (err == EINTR || err == EWOULDBLOCK) {
3377
                } else if (err == EINPROGRESS) {
3378
                    break;
3379
#ifdef _WIN32
3380
                } else if (err == WSAEALREADY) {
3381
                    break;
3382
#endif
3383
                } else {
3384
                    goto fail;
3385
                }
3386
            } else {
3387
                s->connected = 1;
3388
                break;
3389
            }
3390
        }
3391
        s->fd = fd;
3392
        socket_set_nodelay(fd);
3393
        if (s->connected)
3394
            tcp_chr_connect(chr);
3395
        else
3396
            qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
3397
    }
3398

    
3399
    if (is_listen && is_waitconnect) {
3400
        printf("QEMU waiting for connection on: %s\n", host_str);
3401
        tcp_chr_accept(chr);
3402
        socket_set_nonblock(s->listen_fd);
3403
    }
3404

    
3405
    return chr;
3406
 fail:
3407
    if (fd >= 0)
3408
        closesocket(fd);
3409
    qemu_free(s);
3410
    qemu_free(chr);
3411
    return NULL;
3412
}
3413

    
3414
CharDriverState *qemu_chr_open(const char *filename)
3415
{
3416
    const char *p;
3417

    
3418
    if (!strcmp(filename, "vc")) {
3419
        return text_console_init(&display_state, 0);
3420
    } else if (strstart(filename, "vc:", &p)) {
3421
        return text_console_init(&display_state, p);
3422
    } else if (!strcmp(filename, "null")) {
3423
        return qemu_chr_open_null();
3424
    } else
3425
    if (strstart(filename, "tcp:", &p)) {
3426
        return qemu_chr_open_tcp(p, 0, 0);
3427
    } else
3428
    if (strstart(filename, "telnet:", &p)) {
3429
        return qemu_chr_open_tcp(p, 1, 0);
3430
    } else
3431
    if (strstart(filename, "udp:", &p)) {
3432
        return qemu_chr_open_udp(p);
3433
    } else
3434
    if (strstart(filename, "mon:", &p)) {
3435
        CharDriverState *drv = qemu_chr_open(p);
3436
        if (drv) {
3437
            drv = qemu_chr_open_mux(drv);
3438
            monitor_init(drv, !nographic);
3439
            return drv;
3440
        }
3441
        printf("Unable to open driver: %s\n", p);
3442
        return 0;
3443
    } else
3444
#ifndef _WIN32
3445
    if (strstart(filename, "unix:", &p)) {
3446
        return qemu_chr_open_tcp(p, 0, 1);
3447
    } else if (strstart(filename, "file:", &p)) {
3448
        return qemu_chr_open_file_out(p);
3449
    } else if (strstart(filename, "pipe:", &p)) {
3450
        return qemu_chr_open_pipe(p);
3451
    } else if (!strcmp(filename, "pty")) {
3452
        return qemu_chr_open_pty();
3453
    } else if (!strcmp(filename, "stdio")) {
3454
        return qemu_chr_open_stdio();
3455
    } else
3456
#if defined(__linux__)
3457
    if (strstart(filename, "/dev/parport", NULL)) {
3458
        return qemu_chr_open_pp(filename);
3459
    } else
3460
#endif
3461
#if defined(__linux__) || defined(__sun__)
3462
    if (strstart(filename, "/dev/", NULL)) {
3463
        return qemu_chr_open_tty(filename);
3464
    } else
3465
#endif
3466
#else /* !_WIN32 */
3467
    if (strstart(filename, "COM", NULL)) {
3468
        return qemu_chr_open_win(filename);
3469
    } else
3470
    if (strstart(filename, "pipe:", &p)) {
3471
        return qemu_chr_open_win_pipe(p);
3472
    } else
3473
    if (strstart(filename, "con:", NULL)) {
3474
        return qemu_chr_open_win_con(filename);
3475
    } else
3476
    if (strstart(filename, "file:", &p)) {
3477
        return qemu_chr_open_win_file_out(p);
3478
    } else
3479
#endif
3480
#ifdef CONFIG_BRLAPI
3481
    if (!strcmp(filename, "braille")) {
3482
        return chr_baum_init();
3483
    } else
3484
#endif
3485
    {
3486
        return NULL;
3487
    }
3488
}
3489

    
3490
void qemu_chr_close(CharDriverState *chr)
3491
{
3492
    if (chr->chr_close)
3493
        chr->chr_close(chr);
3494
    qemu_free(chr);
3495
}
3496

    
3497
/***********************************************************/
3498
/* network device redirectors */
3499

    
3500
__attribute__ (( unused ))
3501
static void hex_dump(FILE *f, const uint8_t *buf, int size)
3502
{
3503
    int len, i, j, c;
3504

    
3505
    for(i=0;i<size;i+=16) {
3506
        len = size - i;
3507
        if (len > 16)
3508
            len = 16;
3509
        fprintf(f, "%08x ", i);
3510
        for(j=0;j<16;j++) {
3511
            if (j < len)
3512
                fprintf(f, " %02x", buf[i+j]);
3513
            else
3514
                fprintf(f, "   ");
3515
        }
3516
        fprintf(f, " ");
3517
        for(j=0;j<len;j++) {
3518
            c = buf[i+j];
3519
            if (c < ' ' || c > '~')
3520
                c = '.';
3521
            fprintf(f, "%c", c);
3522
        }
3523
        fprintf(f, "\n");
3524
    }
3525
}
3526

    
3527
static int parse_macaddr(uint8_t *macaddr, const char *p)
3528
{
3529
    int i;
3530
    char *last_char;
3531
    long int offset;
3532

    
3533
    errno = 0;
3534
    offset = strtol(p, &last_char, 0);    
3535
    if (0 == errno && '\0' == *last_char &&
3536
            offset >= 0 && offset <= 0xFFFFFF) {
3537
        macaddr[3] = (offset & 0xFF0000) >> 16;
3538
        macaddr[4] = (offset & 0xFF00) >> 8;
3539
        macaddr[5] = offset & 0xFF;
3540
        return 0;
3541
    } else {
3542
        for(i = 0; i < 6; i++) {
3543
            macaddr[i] = strtol(p, (char **)&p, 16);
3544
            if (i == 5) {
3545
                if (*p != '\0')
3546
                    return -1;
3547
            } else {
3548
                if (*p != ':' && *p != '-')
3549
                    return -1;
3550
                p++;
3551
            }
3552
        }
3553
        return 0;    
3554
    }
3555

    
3556
    return -1;
3557
}
3558

    
3559
static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3560
{
3561
    const char *p, *p1;
3562
    int len;
3563
    p = *pp;
3564
    p1 = strchr(p, sep);
3565
    if (!p1)
3566
        return -1;
3567
    len = p1 - p;
3568
    p1++;
3569
    if (buf_size > 0) {
3570
        if (len > buf_size - 1)
3571
            len = buf_size - 1;
3572
        memcpy(buf, p, len);
3573
        buf[len] = '\0';
3574
    }
3575
    *pp = p1;
3576
    return 0;
3577
}
3578

    
3579
int parse_host_src_port(struct sockaddr_in *haddr,
3580
                        struct sockaddr_in *saddr,
3581
                        const char *input_str)
3582
{
3583
    char *str = strdup(input_str);
3584
    char *host_str = str;
3585
    char *src_str;
3586
    char *ptr;
3587

    
3588
    /*
3589
     * Chop off any extra arguments at the end of the string which
3590
     * would start with a comma, then fill in the src port information
3591
     * if it was provided else use the "any address" and "any port".
3592
     */
3593
    if ((ptr = strchr(str,',')))
3594
        *ptr = '\0';
3595

    
3596
    if ((src_str = strchr(input_str,'@'))) {
3597
        *src_str = '\0';
3598
        src_str++;
3599
    }
3600

    
3601
    if (parse_host_port(haddr, host_str) < 0)
3602
        goto fail;
3603

    
3604
    if (!src_str || *src_str == '\0')
3605
        src_str = ":0";
3606

    
3607
    if (parse_host_port(saddr, src_str) < 0)
3608
        goto fail;
3609

    
3610
    free(str);
3611
    return(0);
3612

    
3613
fail:
3614
    free(str);
3615
    return -1;
3616
}
3617

    
3618
int parse_host_port(struct sockaddr_in *saddr, const char *str)
3619
{
3620
    char buf[512];
3621
    struct hostent *he;
3622
    const char *p, *r;
3623
    int port;
3624

    
3625
    p = str;
3626
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3627
        return -1;
3628
    saddr->sin_family = AF_INET;
3629
    if (buf[0] == '\0') {
3630
        saddr->sin_addr.s_addr = 0;
3631
    } else {
3632
        if (isdigit(buf[0])) {
3633
            if (!inet_aton(buf, &saddr->sin_addr))
3634
                return -1;
3635
        } else {
3636
            if ((he = gethostbyname(buf)) == NULL)
3637
                return - 1;
3638
            saddr->sin_addr = *(struct in_addr *)he->h_addr;
3639
        }
3640
    }
3641
    port = strtol(p, (char **)&r, 0);
3642
    if (r == p)
3643
        return -1;
3644
    saddr->sin_port = htons(port);
3645
    return 0;
3646
}
3647

    
3648
#ifndef _WIN32
3649
static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
3650
{
3651
    const char *p;
3652
    int len;
3653

    
3654
    len = MIN(108, strlen(str));
3655
    p = strchr(str, ',');
3656
    if (p)
3657
        len = MIN(len, p - str);
3658

    
3659
    memset(uaddr, 0, sizeof(*uaddr));
3660

    
3661
    uaddr->sun_family = AF_UNIX;
3662
    memcpy(uaddr->sun_path, str, len);
3663

    
3664
    return 0;
3665
}
3666
#endif
3667

    
3668
/* find or alloc a new VLAN */
3669
VLANState *qemu_find_vlan(int id)
3670
{
3671
    VLANState **pvlan, *vlan;
3672
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
3673
        if (vlan->id == id)
3674
            return vlan;
3675
    }
3676
    vlan = qemu_mallocz(sizeof(VLANState));
3677
    if (!vlan)
3678
        return NULL;
3679
    vlan->id = id;
3680
    vlan->next = NULL;
3681
    pvlan = &first_vlan;
3682
    while (*pvlan != NULL)
3683
        pvlan = &(*pvlan)->next;
3684
    *pvlan = vlan;
3685
    return vlan;
3686
}
3687

    
3688
VLANClientState *qemu_new_vlan_client(VLANState *vlan,
3689
                                      IOReadHandler *fd_read,
3690
                                      IOCanRWHandler *fd_can_read,
3691
                                      void *opaque)
3692
{
3693
    VLANClientState *vc, **pvc;
3694
    vc = qemu_mallocz(sizeof(VLANClientState));
3695
    if (!vc)
3696
        return NULL;
3697
    vc->fd_read = fd_read;
3698
    vc->fd_can_read = fd_can_read;
3699
    vc->opaque = opaque;
3700
    vc->vlan = vlan;
3701

    
3702
    vc->next = NULL;
3703
    pvc = &vlan->first_client;
3704
    while (*pvc != NULL)
3705
        pvc = &(*pvc)->next;
3706
    *pvc = vc;
3707
    return vc;
3708
}
3709

    
3710
int qemu_can_send_packet(VLANClientState *vc1)
3711
{
3712
    VLANState *vlan = vc1->vlan;
3713
    VLANClientState *vc;
3714

    
3715
    for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3716
        if (vc != vc1) {
3717
            if (vc->fd_can_read && vc->fd_can_read(vc->opaque))
3718
                return 1;
3719
        }
3720
    }
3721
    return 0;
3722
}
3723

    
3724
void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
3725
{
3726
    VLANState *vlan = vc1->vlan;
3727
    VLANClientState *vc;
3728

    
3729
#if 0
3730
    printf("vlan %d send:\n", vlan->id);
3731
    hex_dump(stdout, buf, size);
3732
#endif
3733
    for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3734
        if (vc != vc1) {
3735
            vc->fd_read(vc->opaque, buf, size);
3736
        }
3737
    }
3738
}
3739

    
3740
#if defined(CONFIG_SLIRP)
3741

    
3742
/* slirp network adapter */
3743

    
3744
static int slirp_inited;
3745
static VLANClientState *slirp_vc;
3746

    
3747
int slirp_can_output(void)
3748
{
3749
    return !slirp_vc || qemu_can_send_packet(slirp_vc);
3750
}
3751

    
3752
void slirp_output(const uint8_t *pkt, int pkt_len)
3753
{
3754
#if 0
3755
    printf("slirp output:\n");
3756
    hex_dump(stdout, pkt, pkt_len);
3757
#endif
3758
    if (!slirp_vc)
3759
        return;
3760
    qemu_send_packet(slirp_vc, pkt, pkt_len);
3761
}
3762

    
3763
static void slirp_receive(void *opaque, const uint8_t *buf, int size)
3764
{
3765
#if 0
3766
    printf("slirp input:\n");
3767
    hex_dump(stdout, buf, size);
3768
#endif
3769
    slirp_input(buf, size);
3770
}
3771

    
3772
static int net_slirp_init(VLANState *vlan)
3773
{
3774
    if (!slirp_inited) {
3775
        slirp_inited = 1;
3776
        slirp_init();
3777
    }
3778
    slirp_vc = qemu_new_vlan_client(vlan,
3779
                                    slirp_receive, NULL, NULL);
3780
    snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
3781
    return 0;
3782
}
3783

    
3784
static void net_slirp_redir(const char *redir_str)
3785
{
3786
    int is_udp;
3787
    char buf[256], *r;
3788
    const char *p;
3789
    struct in_addr guest_addr;
3790
    int host_port, guest_port;
3791

    
3792
    if (!slirp_inited) {
3793
        slirp_inited = 1;
3794
        slirp_init();
3795
    }
3796

    
3797
    p = redir_str;
3798
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3799
        goto fail;
3800
    if (!strcmp(buf, "tcp")) {
3801
        is_udp = 0;
3802
    } else if (!strcmp(buf, "udp")) {
3803
        is_udp = 1;
3804
    } else {
3805
        goto fail;
3806
    }
3807

    
3808
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3809
        goto fail;
3810
    host_port = strtol(buf, &r, 0);
3811
    if (r == buf)
3812
        goto fail;
3813

    
3814
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3815
        goto fail;
3816
    if (buf[0] == '\0') {
3817
        pstrcpy(buf, sizeof(buf), "10.0.2.15");
3818
    }
3819
    if (!inet_aton(buf, &guest_addr))
3820
        goto fail;
3821

    
3822
    guest_port = strtol(p, &r, 0);
3823
    if (r == p)
3824
        goto fail;
3825

    
3826
    if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
3827
        fprintf(stderr, "qemu: could not set up redirection\n");
3828
        exit(1);
3829
    }
3830
    return;
3831
 fail:
3832
    fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
3833
    exit(1);
3834
}
3835

    
3836
#ifndef _WIN32
3837

    
3838
char smb_dir[1024];
3839

    
3840
static void erase_dir(char *dir_name)
3841
{
3842
    DIR *d;
3843
    struct dirent *de;
3844
    char filename[1024];
3845

    
3846
    /* erase all the files in the directory */
3847
    if ((d = opendir(dir_name)) != 0) {
3848
        for(;;) {
3849
            de = readdir(d);
3850
            if (!de)
3851
                break;
3852
            if (strcmp(de->d_name, ".") != 0 &&
3853
                strcmp(de->d_name, "..") != 0) {
3854
                snprintf(filename, sizeof(filename), "%s/%s",
3855
                         smb_dir, de->d_name);
3856
                if (unlink(filename) != 0)  /* is it a directory? */
3857
                    erase_dir(filename);
3858
            }
3859
        }
3860
        closedir(d);
3861
        rmdir(dir_name);
3862
    }
3863
}
3864

    
3865
/* automatic user mode samba server configuration */
3866
static void smb_exit(void)
3867
{
3868
    erase_dir(smb_dir);
3869
}
3870

    
3871
/* automatic user mode samba server configuration */
3872
static void net_slirp_smb(const char *exported_dir)
3873
{
3874
    char smb_conf[1024];
3875
    char smb_cmdline[1024];
3876
    FILE *f;
3877

    
3878
    if (!slirp_inited) {
3879
        slirp_inited = 1;
3880
        slirp_init();
3881
    }
3882

    
3883
    /* XXX: better tmp dir construction */
3884
    snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
3885
    if (mkdir(smb_dir, 0700) < 0) {
3886
        fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
3887
        exit(1);
3888
    }
3889
    snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
3890

    
3891
    f = fopen(smb_conf, "w");
3892
    if (!f) {
3893
        fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
3894
        exit(1);
3895
    }
3896
    fprintf(f,
3897
            "[global]\n"
3898
            "private dir=%s\n"
3899
            "smb ports=0\n"
3900
            "socket address=127.0.0.1\n"
3901
            "pid directory=%s\n"
3902
            "lock directory=%s\n"
3903
            "log file=%s/log.smbd\n"
3904
            "smb passwd file=%s/smbpasswd\n"
3905
            "security = share\n"
3906
            "[qemu]\n"
3907
            "path=%s\n"
3908
            "read only=no\n"
3909
            "guest ok=yes\n",
3910
            smb_dir,
3911
            smb_dir,
3912
            smb_dir,
3913
            smb_dir,
3914
            smb_dir,
3915
            exported_dir
3916
            );
3917
    fclose(f);
3918
    atexit(smb_exit);
3919

    
3920
    snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
3921
             SMBD_COMMAND, smb_conf);
3922

    
3923
    slirp_add_exec(0, smb_cmdline, 4, 139);
3924
}
3925

    
3926
#endif /* !defined(_WIN32) */
3927
void do_info_slirp(void)
3928
{
3929
    slirp_stats();
3930
}
3931

    
3932
#endif /* CONFIG_SLIRP */
3933

    
3934
#if !defined(_WIN32)
3935

    
3936
typedef struct TAPState {
3937
    VLANClientState *vc;
3938
    int fd;
3939
    char down_script[1024];
3940
} TAPState;
3941

    
3942
static void tap_receive(void *opaque, const uint8_t *buf, int size)
3943
{
3944
    TAPState *s = opaque;
3945
    int ret;
3946
    for(;;) {
3947
        ret = write(s->fd, buf, size);
3948
        if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
3949
        } else {
3950
            break;
3951
        }
3952
    }
3953
}
3954

    
3955
static void tap_send(void *opaque)
3956
{
3957
    TAPState *s = opaque;
3958
    uint8_t buf[4096];
3959
    int size;
3960

    
3961
#ifdef __sun__
3962
    struct strbuf sbuf;
3963
    int f = 0;
3964
    sbuf.maxlen = sizeof(buf);
3965
    sbuf.buf = buf;
3966
    size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
3967
#else
3968
    size = read(s->fd, buf, sizeof(buf));
3969
#endif
3970
    if (size > 0) {
3971
        qemu_send_packet(s->vc, buf, size);
3972
    }
3973
}
3974

    
3975
/* fd support */
3976

    
3977
static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
3978
{
3979
    TAPState *s;
3980

    
3981
    s = qemu_mallocz(sizeof(TAPState));
3982
    if (!s)
3983
        return NULL;
3984
    s->fd = fd;
3985
    s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
3986
    qemu_set_fd_handler(s->fd, tap_send, NULL, s);
3987
    snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
3988
    return s;
3989
}
3990

    
3991
#if defined (_BSD) || defined (__FreeBSD_kernel__)
3992
static int tap_open(char *ifname, int ifname_size)
3993
{
3994
    int fd;
3995
    char *dev;
3996
    struct stat s;
3997

    
3998
    TFR(fd = open("/dev/tap", O_RDWR));
3999
    if (fd < 0) {
4000
        fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
4001
        return -1;
4002
    }
4003

    
4004
    fstat(fd, &s);
4005
    dev = devname(s.st_rdev, S_IFCHR);
4006
    pstrcpy(ifname, ifname_size, dev);
4007

    
4008
    fcntl(fd, F_SETFL, O_NONBLOCK);
4009
    return fd;
4010
}
4011
#elif defined(__sun__)
4012
#define TUNNEWPPA       (('T'<<16) | 0x0001)
4013
/*
4014
 * Allocate TAP device, returns opened fd.
4015
 * Stores dev name in the first arg(must be large enough).
4016
 */
4017
int tap_alloc(char *dev)
4018
{
4019
    int tap_fd, if_fd, ppa = -1;
4020
    static int ip_fd = 0;
4021
    char *ptr;
4022

    
4023
    static int arp_fd = 0;
4024
    int ip_muxid, arp_muxid;
4025
    struct strioctl  strioc_if, strioc_ppa;
4026
    int link_type = I_PLINK;;
4027
    struct lifreq ifr;
4028
    char actual_name[32] = "";
4029

    
4030
    memset(&ifr, 0x0, sizeof(ifr));
4031

    
4032
    if( *dev ){
4033
       ptr = dev;
4034
       while( *ptr && !isdigit((int)*ptr) ) ptr++;
4035
       ppa = atoi(ptr);
4036
    }
4037

    
4038
    /* Check if IP device was opened */
4039
    if( ip_fd )
4040
       close(ip_fd);
4041

    
4042
    TFR(ip_fd = open("/dev/udp", O_RDWR, 0));
4043
    if (ip_fd < 0) {
4044
       syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
4045
       return -1;
4046
    }
4047

    
4048
    TFR(tap_fd = open("/dev/tap", O_RDWR, 0));
4049
    if (tap_fd < 0) {
4050
       syslog(LOG_ERR, "Can't open /dev/tap");
4051
       return -1;
4052
    }
4053

    
4054
    /* Assign a new PPA and get its unit number. */
4055
    strioc_ppa.ic_cmd = TUNNEWPPA;
4056
    strioc_ppa.ic_timout = 0;
4057
    strioc_ppa.ic_len = sizeof(ppa);
4058
    strioc_ppa.ic_dp = (char *)&ppa;
4059
    if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
4060
       syslog (LOG_ERR, "Can't assign new interface");
4061

    
4062
    TFR(if_fd = open("/dev/tap", O_RDWR, 0));
4063
    if (if_fd < 0) {
4064
       syslog(LOG_ERR, "Can't open /dev/tap (2)");
4065
       return -1;
4066
    }
4067
    if(ioctl(if_fd, I_PUSH, "ip") < 0){
4068
       syslog(LOG_ERR, "Can't push IP module");
4069
       return -1;
4070
    }
4071

    
4072
    if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
4073
        syslog(LOG_ERR, "Can't get flags\n");
4074

    
4075
    snprintf (actual_name, 32, "tap%d", ppa);
4076
    strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
4077

    
4078
    ifr.lifr_ppa = ppa;
4079
    /* Assign ppa according to the unit number returned by tun device */
4080

    
4081
    if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
4082
        syslog (LOG_ERR, "Can't set PPA %d", ppa);
4083
    if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
4084
        syslog (LOG_ERR, "Can't get flags\n");
4085
    /* Push arp module to if_fd */
4086
    if (ioctl (if_fd, I_PUSH, "arp") < 0)
4087
        syslog (LOG_ERR, "Can't push ARP module (2)");
4088

    
4089
    /* Push arp module to ip_fd */
4090
    if (ioctl (ip_fd, I_POP, NULL) < 0)
4091
        syslog (LOG_ERR, "I_POP failed\n");
4092
    if (ioctl (ip_fd, I_PUSH, "arp") < 0)
4093
        syslog (LOG_ERR, "Can't push ARP module (3)\n");
4094
    /* Open arp_fd */
4095
    TFR(arp_fd = open ("/dev/tap", O_RDWR, 0));
4096
    if (arp_fd < 0)
4097
       syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
4098

    
4099
    /* Set ifname to arp */
4100
    strioc_if.ic_cmd = SIOCSLIFNAME;
4101
    strioc_if.ic_timout = 0;
4102
    strioc_if.ic_len = sizeof(ifr);
4103
    strioc_if.ic_dp = (char *)&ifr;
4104
    if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
4105
        syslog (LOG_ERR, "Can't set ifname to arp\n");
4106
    }
4107

    
4108
    if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
4109
       syslog(LOG_ERR, "Can't link TAP device to IP");
4110
       return -1;
4111
    }
4112

    
4113
    if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
4114
        syslog (LOG_ERR, "Can't link TAP device to ARP");
4115

    
4116
    close (if_fd);
4117

    
4118
    memset(&ifr, 0x0, sizeof(ifr));
4119
    strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
4120
    ifr.lifr_ip_muxid  = ip_muxid;
4121
    ifr.lifr_arp_muxid = arp_muxid;
4122

    
4123
    if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
4124
    {
4125
      ioctl (ip_fd, I_PUNLINK , arp_muxid);
4126
      ioctl (ip_fd, I_PUNLINK, ip_muxid);
4127
      syslog (LOG_ERR, "Can't set multiplexor id");
4128
    }
4129

    
4130
    sprintf(dev, "tap%d", ppa);
4131
    return tap_fd;
4132
}
4133

    
4134
static int tap_open(char *ifname, int ifname_size)
4135
{
4136
    char  dev[10]="";
4137
    int fd;
4138
    if( (fd = tap_alloc(dev)) < 0 ){
4139
       fprintf(stderr, "Cannot allocate TAP device\n");
4140
       return -1;
4141
    }
4142
    pstrcpy(ifname, ifname_size, dev);
4143
    fcntl(fd, F_SETFL, O_NONBLOCK);
4144
    return fd;
4145
}
4146
#else
4147
static int tap_open(char *ifname, int ifname_size)
4148
{
4149
    struct ifreq ifr;
4150
    int fd, ret;
4151

    
4152
    TFR(fd = open("/dev/net/tun", O_RDWR));
4153
    if (fd < 0) {
4154
        fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
4155
        return -1;
4156
    }
4157
    memset(&ifr, 0, sizeof(ifr));
4158
    ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
4159
    if (ifname[0] != '\0')
4160
        pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
4161
    else
4162
        pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
4163
    ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
4164
    if (ret != 0) {
4165
        fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
4166
        close(fd);
4167
        return -1;
4168
    }
4169
    pstrcpy(ifname, ifname_size, ifr.ifr_name);
4170
    fcntl(fd, F_SETFL, O_NONBLOCK);
4171
    return fd;
4172
}
4173
#endif
4174

    
4175
static int launch_script(const char *setup_script, const char *ifname, int fd)
4176
{
4177
    int pid, status;
4178
    char *args[3];
4179
    char **parg;
4180

    
4181
        /* try to launch network script */
4182
        pid = fork();
4183
        if (pid >= 0) {
4184
            if (pid == 0) {
4185
                int open_max = sysconf (_SC_OPEN_MAX), i;
4186
                for (i = 0; i < open_max; i++)
4187
                    if (i != STDIN_FILENO &&
4188
                        i != STDOUT_FILENO &&
4189
                        i != STDERR_FILENO &&
4190
                        i != fd)
4191
                        close(i);
4192

    
4193
                parg = args;
4194
                *parg++ = (char *)setup_script;
4195
                *parg++ = (char *)ifname;
4196
                *parg++ = NULL;
4197
                execv(setup_script, args);
4198
                _exit(1);
4199
            }
4200
            while (waitpid(pid, &status, 0) != pid);
4201
            if (!WIFEXITED(status) ||
4202
                WEXITSTATUS(status) != 0) {
4203
                fprintf(stderr, "%s: could not launch network script\n",
4204
                        setup_script);
4205
                return -1;
4206
            }
4207
        }
4208
    return 0;
4209
}
4210

    
4211
static int net_tap_init(VLANState *vlan, const char *ifname1,
4212
                        const char *setup_script, const char *down_script)
4213
{
4214
    TAPState *s;
4215
    int fd;
4216
    char ifname[128];
4217

    
4218
    if (ifname1 != NULL)
4219
        pstrcpy(ifname, sizeof(ifname), ifname1);
4220
    else
4221
        ifname[0] = '\0';
4222
    TFR(fd = tap_open(ifname, sizeof(ifname)));
4223
    if (fd < 0)
4224
        return -1;
4225

    
4226
    if (!setup_script || !strcmp(setup_script, "no"))
4227
        setup_script = "";
4228
    if (setup_script[0] != '\0') {
4229
        if (launch_script(setup_script, ifname, fd))
4230
            return -1;
4231
    }
4232
    s = net_tap_fd_init(vlan, fd);
4233
    if (!s)
4234
        return -1;
4235
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4236
             "tap: ifname=%s setup_script=%s", ifname, setup_script);
4237
    if (down_script && strcmp(down_script, "no"))
4238
        snprintf(s->down_script, sizeof(s->down_script), "%s", down_script);
4239
    return 0;
4240
}
4241

    
4242
#endif /* !_WIN32 */
4243

    
4244
/* network connection */
4245
typedef struct NetSocketState {
4246
    VLANClientState *vc;
4247
    int fd;
4248
    int state; /* 0 = getting length, 1 = getting data */
4249
    int index;
4250
    int packet_len;
4251
    uint8_t buf[4096];
4252
    struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
4253
} NetSocketState;
4254

    
4255
typedef struct NetSocketListenState {
4256
    VLANState *vlan;
4257
    int fd;
4258
} NetSocketListenState;
4259

    
4260
/* XXX: we consider we can send the whole packet without blocking */
4261
static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
4262
{
4263
    NetSocketState *s = opaque;
4264
    uint32_t len;
4265
    len = htonl(size);
4266

    
4267
    send_all(s->fd, (const uint8_t *)&len, sizeof(len));
4268
    send_all(s->fd, buf, size);
4269
}
4270

    
4271
static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
4272
{
4273
    NetSocketState *s = opaque;
4274
    sendto(s->fd, buf, size, 0,
4275
           (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
4276
}
4277

    
4278
static void net_socket_send(void *opaque)
4279
{
4280
    NetSocketState *s = opaque;
4281
    int l, size, err;
4282
    uint8_t buf1[4096];
4283
    const uint8_t *buf;
4284

    
4285
    size = recv(s->fd, buf1, sizeof(buf1), 0);
4286
    if (size < 0) {
4287
        err = socket_error();
4288
        if (err != EWOULDBLOCK)
4289
            goto eoc;
4290
    } else if (size == 0) {
4291
        /* end of connection */
4292
    eoc:
4293
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4294
        closesocket(s->fd);
4295
        return;
4296
    }
4297
    buf = buf1;
4298
    while (size > 0) {
4299
        /* reassemble a packet from the network */
4300
        switch(s->state) {
4301
        case 0:
4302
            l = 4 - s->index;
4303
            if (l > size)
4304
                l = size;
4305
            memcpy(s->buf + s->index, buf, l);
4306
            buf += l;
4307
            size -= l;
4308
            s->index += l;
4309
            if (s->index == 4) {
4310
                /* got length */
4311
                s->packet_len = ntohl(*(uint32_t *)s->buf);
4312
                s->index = 0;
4313
                s->state = 1;
4314
            }
4315
            break;
4316
        case 1:
4317
            l = s->packet_len - s->index;
4318
            if (l > size)
4319
                l = size;
4320
            memcpy(s->buf + s->index, buf, l);
4321
            s->index += l;
4322
            buf += l;
4323
            size -= l;
4324
            if (s->index >= s->packet_len) {
4325
                qemu_send_packet(s->vc, s->buf, s->packet_len);
4326
                s->index = 0;
4327
                s->state = 0;
4328
            }
4329
            break;
4330
        }
4331
    }
4332
}
4333

    
4334
static void net_socket_send_dgram(void *opaque)
4335
{
4336
    NetSocketState *s = opaque;
4337
    int size;
4338

    
4339
    size = recv(s->fd, s->buf, sizeof(s->buf), 0);
4340
    if (size < 0)
4341
        return;
4342
    if (size == 0) {
4343
        /* end of connection */
4344
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4345
        return;
4346
    }
4347
    qemu_send_packet(s->vc, s->buf, size);
4348
}
4349

    
4350
static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
4351
{
4352
    struct ip_mreq imr;
4353
    int fd;
4354
    int val, ret;
4355
    if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
4356
        fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
4357
                inet_ntoa(mcastaddr->sin_addr),
4358
                (int)ntohl(mcastaddr->sin_addr.s_addr));
4359
        return -1;
4360

    
4361
    }
4362
    fd = socket(PF_INET, SOCK_DGRAM, 0);
4363
    if (fd < 0) {
4364
        perror("socket(PF_INET, SOCK_DGRAM)");
4365
        return -1;
4366
    }
4367

    
4368
    val = 1;
4369
    ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
4370
                   (const char *)&val, sizeof(val));
4371
    if (ret < 0) {
4372
        perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
4373
        goto fail;
4374
    }
4375

    
4376
    ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
4377
    if (ret < 0) {
4378
        perror("bind");
4379
        goto fail;
4380
    }
4381

    
4382
    /* Add host to multicast group */
4383
    imr.imr_multiaddr = mcastaddr->sin_addr;
4384
    imr.imr_interface.s_addr = htonl(INADDR_ANY);
4385

    
4386
    ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
4387
                     (const char *)&imr, sizeof(struct ip_mreq));
4388
    if (ret < 0) {
4389
        perror("setsockopt(IP_ADD_MEMBERSHIP)");
4390
        goto fail;
4391
    }
4392

    
4393
    /* Force mcast msgs to loopback (eg. several QEMUs in same host */
4394
    val = 1;
4395
    ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
4396
                   (const char *)&val, sizeof(val));
4397
    if (ret < 0) {
4398
        perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
4399
        goto fail;
4400
    }
4401

    
4402
    socket_set_nonblock(fd);
4403
    return fd;
4404
fail:
4405
    if (fd >= 0)
4406
        closesocket(fd);
4407
    return -1;
4408
}
4409

    
4410
static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
4411
                                          int is_connected)
4412
{
4413
    struct sockaddr_in saddr;
4414
    int newfd;
4415
    socklen_t saddr_len;
4416
    NetSocketState *s;
4417

    
4418
    /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
4419
     * Because this may be "shared" socket from a "master" process, datagrams would be recv()
4420
     * by ONLY ONE process: we must "clone" this dgram socket --jjo
4421
     */
4422

    
4423
    if (is_connected) {
4424
        if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
4425
            /* must be bound */
4426
            if (saddr.sin_addr.s_addr==0) {
4427
                fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
4428
                        fd);
4429
                return NULL;
4430
            }
4431
            /* clone dgram socket */
4432
            newfd = net_socket_mcast_create(&saddr);
4433
            if (newfd < 0) {
4434
                /* error already reported by net_socket_mcast_create() */
4435
                close(fd);
4436
                return NULL;
4437
            }
4438
            /* clone newfd to fd, close newfd */
4439
            dup2(newfd, fd);
4440
            close(newfd);
4441

    
4442
        } else {
4443
            fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
4444
                    fd, strerror(errno));
4445
            return NULL;
4446
        }
4447
    }
4448

    
4449
    s = qemu_mallocz(sizeof(NetSocketState));
4450
    if (!s)
4451
        return NULL;
4452
    s->fd = fd;
4453

    
4454
    s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
4455
    qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
4456

    
4457
    /* mcast: save bound address as dst */
4458
    if (is_connected) s->dgram_dst=saddr;
4459

    
4460
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4461
            "socket: fd=%d (%s mcast=%s:%d)",
4462
            fd, is_connected? "cloned" : "",
4463
            inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4464
    return s;
4465
}
4466

    
4467
static void net_socket_connect(void *opaque)
4468
{
4469
    NetSocketState *s = opaque;
4470
    qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
4471
}
4472

    
4473
static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
4474
                                          int is_connected)
4475
{
4476
    NetSocketState *s;
4477
    s = qemu_mallocz(sizeof(NetSocketState));
4478
    if (!s)
4479
        return NULL;
4480
    s->fd = fd;
4481
    s->vc = qemu_new_vlan_client(vlan,
4482
                                 net_socket_receive, NULL, s);
4483
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4484
             "socket: fd=%d", fd);
4485
    if (is_connected) {
4486
        net_socket_connect(s);
4487
    } else {
4488
        qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
4489
    }
4490
    return s;
4491
}
4492

    
4493
static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
4494
                                          int is_connected)
4495
{
4496
    int so_type=-1, optlen=sizeof(so_type);
4497

    
4498
    if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type,
4499
        (socklen_t *)&optlen)< 0) {
4500
        fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
4501
        return NULL;
4502
    }
4503
    switch(so_type) {
4504
    case SOCK_DGRAM:
4505
        return net_socket_fd_init_dgram(vlan, fd, is_connected);
4506
    case SOCK_STREAM:
4507
        return net_socket_fd_init_stream(vlan, fd, is_connected);
4508
    default:
4509
        /* who knows ... this could be a eg. a pty, do warn and continue as stream */
4510
        fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
4511
        return net_socket_fd_init_stream(vlan, fd, is_connected);
4512
    }
4513
    return NULL;
4514
}
4515

    
4516
static void net_socket_accept(void *opaque)
4517
{
4518
    NetSocketListenState *s = opaque;
4519
    NetSocketState *s1;
4520
    struct sockaddr_in saddr;
4521
    socklen_t len;
4522
    int fd;
4523

    
4524
    for(;;) {
4525
        len = sizeof(saddr);
4526
        fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
4527
        if (fd < 0 && errno != EINTR) {
4528
            return;
4529
        } else if (fd >= 0) {
4530
            break;
4531
        }
4532
    }
4533
    s1 = net_socket_fd_init(s->vlan, fd, 1);
4534
    if (!s1) {
4535
        closesocket(fd);
4536
    } else {
4537
        snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
4538
                 "socket: connection from %s:%d",
4539
                 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4540
    }
4541
}
4542

    
4543
static int net_socket_listen_init(VLANState *vlan, const char *host_str)
4544
{
4545
    NetSocketListenState *s;
4546
    int fd, val, ret;
4547
    struct sockaddr_in saddr;
4548

    
4549
    if (parse_host_port(&saddr, host_str) < 0)
4550
        return -1;
4551

    
4552
    s = qemu_mallocz(sizeof(NetSocketListenState));
4553
    if (!s)
4554
        return -1;
4555

    
4556
    fd = socket(PF_INET, SOCK_STREAM, 0);
4557
    if (fd < 0) {
4558
        perror("socket");
4559
        return -1;
4560
    }
4561
    socket_set_nonblock(fd);
4562

    
4563
    /* allow fast reuse */
4564
    val = 1;
4565
    setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
4566

    
4567
    ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4568
    if (ret < 0) {
4569
        perror("bind");
4570
        return -1;
4571
    }
4572
    ret = listen(fd, 0);
4573
    if (ret < 0) {
4574
        perror("listen");
4575
        return -1;
4576
    }
4577
    s->vlan = vlan;
4578
    s->fd = fd;
4579
    qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
4580
    return 0;
4581
}
4582

    
4583
static int net_socket_connect_init(VLANState *vlan, const char *host_str)
4584
{
4585
    NetSocketState *s;
4586
    int fd, connected, ret, err;
4587
    struct sockaddr_in saddr;
4588

    
4589
    if (parse_host_port(&saddr, host_str) < 0)
4590
        return -1;
4591

    
4592
    fd = socket(PF_INET, SOCK_STREAM, 0);
4593
    if (fd < 0) {
4594
        perror("socket");
4595
        return -1;
4596
    }
4597
    socket_set_nonblock(fd);
4598

    
4599
    connected = 0;
4600
    for(;;) {
4601
        ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4602
        if (ret < 0) {
4603
            err = socket_error();
4604
            if (err == EINTR || err == EWOULDBLOCK) {
4605
            } else if (err == EINPROGRESS) {
4606
                break;
4607
#ifdef _WIN32
4608
            } else if (err == WSAEALREADY) {
4609
                break;
4610
#endif
4611
            } else {
4612
                perror("connect");
4613
                closesocket(fd);
4614
                return -1;
4615
            }
4616
        } else {
4617
            connected = 1;
4618
            break;
4619
        }
4620
    }
4621
    s = net_socket_fd_init(vlan, fd, connected);
4622
    if (!s)
4623
        return -1;
4624
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4625
             "socket: connect to %s:%d",
4626
             inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4627
    return 0;
4628
}
4629

    
4630
static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
4631
{
4632
    NetSocketState *s;
4633
    int fd;
4634
    struct sockaddr_in saddr;
4635

    
4636
    if (parse_host_port(&saddr, host_str) < 0)
4637
        return -1;
4638

    
4639

    
4640
    fd = net_socket_mcast_create(&saddr);
4641
    if (fd < 0)
4642
        return -1;
4643

    
4644
    s = net_socket_fd_init(vlan, fd, 0);
4645
    if (!s)
4646
        return -1;
4647

    
4648
    s->dgram_dst = saddr;
4649

    
4650
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4651
             "socket: mcast=%s:%d",
4652
             inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4653
    return 0;
4654

    
4655
}
4656

    
4657
static const char *get_opt_name(char *buf, int buf_size, const char *p)
4658
{
4659
    char *q;
4660

    
4661
    q = buf;
4662
    while (*p != '\0' && *p != '=') {
4663
        if (q && (q - buf) < buf_size - 1)
4664
            *q++ = *p;
4665
        p++;
4666
    }
4667
    if (q)
4668
        *q = '\0';
4669

    
4670
    return p;
4671
}
4672

    
4673
static const char *get_opt_value(char *buf, int buf_size, const char *p)
4674
{
4675
    char *q;
4676

    
4677
    q = buf;
4678
    while (*p != '\0') {
4679
        if (*p == ',') {
4680
            if (*(p + 1) != ',')
4681
                break;
4682
            p++;
4683
        }
4684
        if (q && (q - buf) < buf_size - 1)
4685
            *q++ = *p;
4686
        p++;
4687
    }
4688
    if (q)
4689
        *q = '\0';
4690

    
4691
    return p;
4692
}
4693

    
4694
static int get_param_value(char *buf, int buf_size,
4695
                           const char *tag, const char *str)
4696
{
4697
    const char *p;
4698
    char option[128];
4699

    
4700
    p = str;
4701
    for(;;) {
4702
        p = get_opt_name(option, sizeof(option), p);
4703
        if (*p != '=')
4704
            break;
4705
        p++;
4706
        if (!strcmp(tag, option)) {
4707
            (void)get_opt_value(buf, buf_size, p);
4708
            return strlen(buf);
4709
        } else {
4710
            p = get_opt_value(NULL, 0, p);
4711
        }
4712
        if (*p != ',')
4713
            break;
4714
        p++;
4715
    }
4716
    return 0;
4717
}
4718

    
4719
static int check_params(char *buf, int buf_size,
4720
                        char **params, const char *str)
4721
{
4722
    const char *p;
4723
    int i;
4724

    
4725
    p = str;
4726
    for(;;) {
4727
        p = get_opt_name(buf, buf_size, p);
4728
        if (*p != '=')
4729
            return -1;
4730
        p++;
4731
        for(i = 0; params[i] != NULL; i++)
4732
            if (!strcmp(params[i], buf))
4733
                break;
4734
        if (params[i] == NULL)
4735
            return -1;
4736
        p = get_opt_value(NULL, 0, p);
4737
        if (*p != ',')
4738
            break;
4739
        p++;
4740
    }
4741
    return 0;
4742
}
4743

    
4744

    
4745
static int net_client_init(const char *str)
4746
{
4747
    const char *p;
4748
    char *q;
4749
    char device[64];
4750
    char buf[1024];
4751
    int vlan_id, ret;
4752
    VLANState *vlan;
4753

    
4754
    p = str;
4755
    q = device;
4756
    while (*p != '\0' && *p != ',') {
4757
        if ((q - device) < sizeof(device) - 1)
4758
            *q++ = *p;
4759
        p++;
4760
    }
4761
    *q = '\0';
4762
    if (*p == ',')
4763
        p++;
4764
    vlan_id = 0;
4765
    if (get_param_value(buf, sizeof(buf), "vlan", p)) {
4766
        vlan_id = strtol(buf, NULL, 0);
4767
    }
4768
    vlan = qemu_find_vlan(vlan_id);
4769
    if (!vlan) {
4770
        fprintf(stderr, "Could not create vlan %d\n", vlan_id);
4771
        return -1;
4772
    }
4773
    if (!strcmp(device, "nic")) {
4774
        NICInfo *nd;
4775
        uint8_t *macaddr;
4776

    
4777
        if (nb_nics >= MAX_NICS) {
4778
            fprintf(stderr, "Too Many NICs\n");
4779
            return -1;
4780
        }
4781
        nd = &nd_table[nb_nics];
4782
        macaddr = nd->macaddr;
4783
        macaddr[0] = 0x52;
4784
        macaddr[1] = 0x54;
4785
        macaddr[2] = 0x00;
4786
        macaddr[3] = 0x12;
4787
        macaddr[4] = 0x34;
4788
        macaddr[5] = 0x56 + nb_nics;
4789

    
4790
        if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
4791
            if (parse_macaddr(macaddr, buf) < 0) {
4792
                fprintf(stderr, "invalid syntax for ethernet address\n");
4793
                return -1;
4794
            }
4795
        }
4796
        if (get_param_value(buf, sizeof(buf), "model", p)) {
4797
            nd->model = strdup(buf);
4798
        }
4799
        nd->vlan = vlan;
4800
        nb_nics++;
4801
        vlan->nb_guest_devs++;
4802
        ret = 0;
4803
    } else
4804
    if (!strcmp(device, "none")) {
4805
        /* does nothing. It is needed to signal that no network cards
4806
           are wanted */
4807
        ret = 0;
4808
    } else
4809
#ifdef CONFIG_SLIRP
4810
    if (!strcmp(device, "user")) {
4811
        if (get_param_value(buf, sizeof(buf), "hostname", p)) {
4812
            pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
4813
        }
4814
        vlan->nb_host_devs++;
4815
        ret = net_slirp_init(vlan);
4816
    } else
4817
#endif
4818
#ifdef _WIN32
4819
    if (!strcmp(device, "tap")) {
4820
        char ifname[64];
4821
        if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4822
            fprintf(stderr, "tap: no interface name\n");
4823
            return -1;
4824
        }
4825
        vlan->nb_host_devs++;
4826
        ret = tap_win32_init(vlan, ifname);
4827
    } else
4828
#else
4829
    if (!strcmp(device, "tap")) {
4830
        char ifname[64];
4831
        char setup_script[1024], down_script[1024];
4832
        int fd;
4833
        vlan->nb_host_devs++;
4834
        if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4835
            fd = strtol(buf, NULL, 0);
4836
            fcntl(fd, F_SETFL, O_NONBLOCK);
4837
            ret = -1;
4838
            if (net_tap_fd_init(vlan, fd))
4839
                ret = 0;
4840
        } else {
4841
            if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4842
                ifname[0] = '\0';
4843
            }
4844
            if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
4845
                pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
4846
            }
4847
            if (get_param_value(down_script, sizeof(down_script), "downscript", p) == 0) {
4848
                pstrcpy(down_script, sizeof(down_script), DEFAULT_NETWORK_DOWN_SCRIPT);
4849
            }
4850
            ret = net_tap_init(vlan, ifname, setup_script, down_script);
4851
        }
4852
    } else
4853
#endif
4854
    if (!strcmp(device, "socket")) {
4855
        if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4856
            int fd;
4857
            fd = strtol(buf, NULL, 0);
4858
            ret = -1;
4859
            if (net_socket_fd_init(vlan, fd, 1))
4860
                ret = 0;
4861
        } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
4862
            ret = net_socket_listen_init(vlan, buf);
4863
        } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
4864
            ret = net_socket_connect_init(vlan, buf);
4865
        } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
4866
            ret = net_socket_mcast_init(vlan, buf);
4867
        } else {
4868
            fprintf(stderr, "Unknown socket options: %s\n", p);
4869
            return -1;
4870
        }
4871
        vlan->nb_host_devs++;
4872
    } else
4873
    {
4874
        fprintf(stderr, "Unknown network device: %s\n", device);
4875
        return -1;
4876
    }
4877
    if (ret < 0) {
4878
        fprintf(stderr, "Could not initialize device '%s'\n", device);
4879
    }
4880

    
4881
    return ret;
4882
}
4883

    
4884
void do_info_network(void)
4885
{
4886
    VLANState *vlan;
4887
    VLANClientState *vc;
4888

    
4889
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
4890
        term_printf("VLAN %d devices:\n", vlan->id);
4891
        for(vc = vlan->first_client; vc != NULL; vc = vc->next)
4892
            term_printf("  %s\n", vc->info_str);
4893
    }
4894
}
4895

    
4896
#define HD_ALIAS "index=%d,media=disk"
4897
#ifdef TARGET_PPC
4898
#define CDROM_ALIAS "index=1,media=cdrom"
4899
#else
4900
#define CDROM_ALIAS "index=2,media=cdrom"
4901
#endif
4902
#define FD_ALIAS "index=%d,if=floppy"
4903
#define PFLASH_ALIAS "if=pflash"
4904
#define MTD_ALIAS "if=mtd"
4905
#define SD_ALIAS "index=0,if=sd"
4906

    
4907
static int drive_add(const char *file, const char *fmt, ...)
4908
{
4909
    va_list ap;
4910

    
4911
    if (nb_drives_opt >= MAX_DRIVES) {
4912
        fprintf(stderr, "qemu: too many drives\n");
4913
        exit(1);
4914
    }
4915

    
4916
    drives_opt[nb_drives_opt].file = file;
4917
    va_start(ap, fmt);
4918
    vsnprintf(drives_opt[nb_drives_opt].opt,
4919
              sizeof(drives_opt[0].opt), fmt, ap);
4920
    va_end(ap);
4921

    
4922
    return nb_drives_opt++;
4923
}
4924

    
4925
int drive_get_index(BlockInterfaceType type, int bus, int unit)
4926
{
4927
    int index;
4928

    
4929
    /* seek interface, bus and unit */
4930

    
4931
    for (index = 0; index < nb_drives; index++)
4932
        if (drives_table[index].type == type &&
4933
            drives_table[index].bus == bus &&
4934
            drives_table[index].unit == unit)
4935
        return index;
4936

    
4937
    return -1;
4938
}
4939

    
4940
int drive_get_max_bus(BlockInterfaceType type)
4941
{
4942
    int max_bus;
4943
    int index;
4944

    
4945
    max_bus = -1;
4946
    for (index = 0; index < nb_drives; index++) {
4947
        if(drives_table[index].type == type &&
4948
           drives_table[index].bus > max_bus)
4949
            max_bus = drives_table[index].bus;
4950
    }
4951
    return max_bus;
4952
}
4953

    
4954
static int drive_init(struct drive_opt *arg, int snapshot,
4955
                      QEMUMachine *machine)
4956
{
4957
    char buf[128];
4958
    char file[1024];
4959
    char devname[128];
4960
    const char *mediastr = "";
4961
    BlockInterfaceType type;
4962
    enum { MEDIA_DISK, MEDIA_CDROM } media;
4963
    int bus_id, unit_id;
4964
    int cyls, heads, secs, translation;
4965
    BlockDriverState *bdrv;
4966
    int max_devs;
4967
    int index;
4968
    int cache;
4969
    int bdrv_flags;
4970
    char *str = arg->opt;
4971
    char *params[] = { "bus", "unit", "if", "index", "cyls", "heads",
4972
                       "secs", "trans", "media", "snapshot", "file",
4973
                       "cache", NULL };
4974

    
4975
    if (check_params(buf, sizeof(buf), params, str) < 0) {
4976
         fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
4977
                         buf, str);
4978
         return -1;
4979
    }
4980

    
4981
    file[0] = 0;
4982
    cyls = heads = secs = 0;
4983
    bus_id = 0;
4984
    unit_id = -1;
4985
    translation = BIOS_ATA_TRANSLATION_AUTO;
4986
    index = -1;
4987
    cache = 1;
4988

    
4989
    if (!strcmp(machine->name, "realview") ||
4990
        !strcmp(machine->name, "SS-5") ||
4991
        !strcmp(machine->name, "SS-10") ||
4992
        !strcmp(machine->name, "SS-600MP") ||
4993
        !strcmp(machine->name, "versatilepb") ||
4994
        !strcmp(machine->name, "versatileab")) {
4995
        type = IF_SCSI;
4996
        max_devs = MAX_SCSI_DEVS;
4997
        strcpy(devname, "scsi");
4998
    } else {
4999
        type = IF_IDE;
5000
        max_devs = MAX_IDE_DEVS;
5001
        strcpy(devname, "ide");
5002
    }
5003
    media = MEDIA_DISK;
5004

    
5005
    /* extract parameters */
5006

    
5007
    if (get_param_value(buf, sizeof(buf), "bus", str)) {
5008
        bus_id = strtol(buf, NULL, 0);
5009
        if (bus_id < 0) {
5010
            fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
5011
            return -1;
5012
        }
5013
    }
5014

    
5015
    if (get_param_value(buf, sizeof(buf), "unit", str)) {
5016
        unit_id = strtol(buf, NULL, 0);
5017
        if (unit_id < 0) {
5018
            fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
5019
            return -1;
5020
        }
5021
    }
5022

    
5023
    if (get_param_value(buf, sizeof(buf), "if", str)) {
5024
        strncpy(devname, buf, sizeof(devname));
5025
        if (!strcmp(buf, "ide")) {
5026
            type = IF_IDE;
5027
            max_devs = MAX_IDE_DEVS;
5028
        } else if (!strcmp(buf, "scsi")) {
5029
            type = IF_SCSI;
5030
            max_devs = MAX_SCSI_DEVS;
5031
        } else if (!strcmp(buf, "floppy")) {
5032
            type = IF_FLOPPY;
5033
            max_devs = 0;
5034
        } else if (!strcmp(buf, "pflash")) {
5035
            type = IF_PFLASH;
5036
            max_devs = 0;
5037
        } else if (!strcmp(buf, "mtd")) {
5038
            type = IF_MTD;
5039
            max_devs = 0;
5040
        } else if (!strcmp(buf, "sd")) {
5041
            type = IF_SD;
5042
            max_devs = 0;
5043
        } else {
5044
            fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
5045
            return -1;
5046
        }
5047
    }
5048

    
5049
    if (get_param_value(buf, sizeof(buf), "index", str)) {
5050
        index = strtol(buf, NULL, 0);
5051
        if (index < 0) {
5052
            fprintf(stderr, "qemu: '%s' invalid index\n", str);
5053
            return -1;
5054
        }
5055
    }
5056

    
5057
    if (get_param_value(buf, sizeof(buf), "cyls", str)) {
5058
        cyls = strtol(buf, NULL, 0);
5059
    }
5060

    
5061
    if (get_param_value(buf, sizeof(buf), "heads", str)) {
5062
        heads = strtol(buf, NULL, 0);
5063
    }
5064

    
5065
    if (get_param_value(buf, sizeof(buf), "secs", str)) {
5066
        secs = strtol(buf, NULL, 0);
5067
    }
5068

    
5069
    if (cyls || heads || secs) {
5070
        if (cyls < 1 || cyls > 16383) {
5071
            fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
5072
            return -1;
5073
        }
5074
        if (heads < 1 || heads > 16) {
5075
            fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
5076
            return -1;
5077
        }
5078
        if (secs < 1 || secs > 63) {
5079
            fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
5080
            return -1;
5081
        }
5082
    }
5083

    
5084
    if (get_param_value(buf, sizeof(buf), "trans", str)) {
5085
        if (!cyls) {
5086
            fprintf(stderr,
5087
                    "qemu: '%s' trans must be used with cyls,heads and secs\n",
5088
                    str);
5089
            return -1;
5090
        }
5091
        if (!strcmp(buf, "none"))
5092
            translation = BIOS_ATA_TRANSLATION_NONE;
5093
        else if (!strcmp(buf, "lba"))
5094
            translation = BIOS_ATA_TRANSLATION_LBA;
5095
        else if (!strcmp(buf, "auto"))
5096
            translation = BIOS_ATA_TRANSLATION_AUTO;
5097
        else {
5098
            fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
5099
            return -1;
5100
        }
5101
    }
5102

    
5103
    if (get_param_value(buf, sizeof(buf), "media", str)) {
5104
        if (!strcmp(buf, "disk")) {
5105
            media = MEDIA_DISK;
5106
        } else if (!strcmp(buf, "cdrom")) {
5107
            if (cyls || secs || heads) {
5108
                fprintf(stderr,
5109
                        "qemu: '%s' invalid physical CHS format\n", str);
5110
                return -1;
5111
            }
5112
            media = MEDIA_CDROM;
5113
        } else {
5114
            fprintf(stderr, "qemu: '%s' invalid media\n", str);
5115
            return -1;
5116
        }
5117
    }
5118

    
5119
    if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
5120
        if (!strcmp(buf, "on"))
5121
            snapshot = 1;
5122
        else if (!strcmp(buf, "off"))
5123
            snapshot = 0;
5124
        else {
5125
            fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
5126
            return -1;
5127
        }
5128
    }
5129

    
5130
    if (get_param_value(buf, sizeof(buf), "cache", str)) {
5131
        if (!strcmp(buf, "off"))
5132
            cache = 0;
5133
        else if (!strcmp(buf, "on"))
5134
            cache = 1;
5135
        else {
5136
           fprintf(stderr, "qemu: invalid cache option\n");
5137
           return -1;
5138
        }
5139
    }
5140

    
5141
    if (arg->file == NULL)
5142
        get_param_value(file, sizeof(file), "file", str);
5143
    else
5144
        pstrcpy(file, sizeof(file), arg->file);
5145

    
5146
    /* compute bus and unit according index */
5147

    
5148
    if (index != -1) {
5149
        if (bus_id != 0 || unit_id != -1) {
5150
            fprintf(stderr,
5151
                    "qemu: '%s' index cannot be used with bus and unit\n", str);
5152
            return -1;
5153
        }
5154
        if (max_devs == 0)
5155
        {
5156
            unit_id = index;
5157
            bus_id = 0;
5158
        } else {
5159
            unit_id = index % max_devs;
5160
            bus_id = index / max_devs;
5161
        }
5162
    }
5163

    
5164
    /* if user doesn't specify a unit_id,
5165
     * try to find the first free
5166
     */
5167

    
5168
    if (unit_id == -1) {
5169
       unit_id = 0;
5170
       while (drive_get_index(type, bus_id, unit_id) != -1) {
5171
           unit_id++;
5172
           if (max_devs && unit_id >= max_devs) {
5173
               unit_id -= max_devs;
5174
               bus_id++;
5175
           }
5176
       }
5177
    }
5178

    
5179
    /* check unit id */
5180

    
5181
    if (max_devs && unit_id >= max_devs) {
5182
        fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
5183
                        str, unit_id, max_devs - 1);
5184
        return -1;
5185
    }
5186

    
5187
    /*
5188
     * ignore multiple definitions
5189
     */
5190

    
5191
    if (drive_get_index(type, bus_id, unit_id) != -1)
5192
        return 0;
5193

    
5194
    /* init */
5195

    
5196
    if (type == IF_IDE || type == IF_SCSI)
5197
        mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
5198
    if (max_devs)
5199
        snprintf(buf, sizeof(buf), "%s%i%s%i",
5200
                 devname, bus_id, mediastr, unit_id);
5201
    else
5202
        snprintf(buf, sizeof(buf), "%s%s%i",
5203
                 devname, mediastr, unit_id);
5204
    bdrv = bdrv_new(buf);
5205
    drives_table[nb_drives].bdrv = bdrv;
5206
    drives_table[nb_drives].type = type;
5207
    drives_table[nb_drives].bus = bus_id;
5208
    drives_table[nb_drives].unit = unit_id;
5209
    nb_drives++;
5210

    
5211
    switch(type) {
5212
    case IF_IDE:
5213
    case IF_SCSI:
5214
        switch(media) {
5215
        case MEDIA_DISK:
5216
            if (cyls != 0) {
5217
                bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
5218
                bdrv_set_translation_hint(bdrv, translation);
5219
            }
5220
            break;
5221
        case MEDIA_CDROM:
5222
            bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
5223
            break;
5224
        }
5225
        break;
5226
    case IF_SD:
5227
        /* FIXME: This isn't really a floppy, but it's a reasonable
5228
           approximation.  */
5229
    case IF_FLOPPY:
5230
        bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
5231
        break;
5232
    case IF_PFLASH:
5233
    case IF_MTD:
5234
        break;
5235
    }
5236
    if (!file[0])
5237
        return 0;
5238
    bdrv_flags = 0;
5239
    if (snapshot)
5240
        bdrv_flags |= BDRV_O_SNAPSHOT;
5241
    if (!cache)
5242
        bdrv_flags |= BDRV_O_DIRECT;
5243
    if (bdrv_open(bdrv, file, bdrv_flags) < 0 || qemu_key_check(bdrv, file)) {
5244
        fprintf(stderr, "qemu: could not open disk image %s\n",
5245
                        file);
5246
        return -1;
5247
    }
5248
    return 0;
5249
}
5250

    
5251
/***********************************************************/
5252
/* USB devices */
5253

    
5254
static USBPort *used_usb_ports;
5255
static USBPort *free_usb_ports;
5256

    
5257
/* ??? Maybe change this to register a hub to keep track of the topology.  */
5258
void qemu_register_usb_port(USBPort *port, void *opaque, int index,
5259
                            usb_attachfn attach)
5260
{
5261
    port->opaque = opaque;
5262
    port->index = index;
5263
    port->attach = attach;
5264
    port->next = free_usb_ports;
5265
    free_usb_ports = port;
5266
}
5267

    
5268
static int usb_device_add(const char *devname)
5269
{
5270
    const char *p;
5271
    USBDevice *dev;
5272
    USBPort *port;
5273

    
5274
    if (!free_usb_ports)
5275
        return -1;
5276

    
5277
    if (strstart(devname, "host:", &p)) {
5278
        dev = usb_host_device_open(p);
5279
    } else if (!strcmp(devname, "mouse")) {
5280
        dev = usb_mouse_init();
5281
    } else if (!strcmp(devname, "tablet")) {
5282
        dev = usb_tablet_init();
5283
    } else if (!strcmp(devname, "keyboard")) {
5284
        dev = usb_keyboard_init();
5285
    } else if (strstart(devname, "disk:", &p)) {
5286
        dev = usb_msd_init(p);
5287
    } else if (!strcmp(devname, "wacom-tablet")) {
5288
        dev = usb_wacom_init();
5289
    } else if (strstart(devname, "serial:", &p)) {
5290
        dev = usb_serial_init(p);
5291
#ifdef CONFIG_BRLAPI
5292
    } else if (!strcmp(devname, "braille")) {
5293
        dev = usb_baum_init();
5294
#endif
5295
    } else {
5296
        return -1;
5297
    }
5298
    if (!dev)
5299
        return -1;
5300

    
5301
    /* Find a USB port to add the device to.  */
5302
    port = free_usb_ports;
5303
    if (!port->next) {
5304
        USBDevice *hub;
5305

    
5306
        /* Create a new hub and chain it on.  */
5307
        free_usb_ports = NULL;
5308
        port->next = used_usb_ports;
5309
        used_usb_ports = port;
5310

    
5311
        hub = usb_hub_init(VM_USB_HUB_SIZE);
5312
        usb_attach(port, hub);
5313
        port = free_usb_ports;
5314
    }
5315

    
5316
    free_usb_ports = port->next;
5317
    port->next = used_usb_ports;
5318
    used_usb_ports = port;
5319
    usb_attach(port, dev);
5320
    return 0;
5321
}
5322

    
5323
static int usb_device_del(const char *devname)
5324
{
5325
    USBPort *port;
5326
    USBPort **lastp;
5327
    USBDevice *dev;
5328
    int bus_num, addr;
5329
    const char *p;
5330

    
5331
    if (!used_usb_ports)
5332
        return -1;
5333

    
5334
    p = strchr(devname, '.');
5335
    if (!p)
5336
        return -1;
5337
    bus_num = strtoul(devname, NULL, 0);
5338
    addr = strtoul(p + 1, NULL, 0);
5339
    if (bus_num != 0)
5340
        return -1;
5341

    
5342
    lastp = &used_usb_ports;
5343
    port = used_usb_ports;
5344
    while (port && port->dev->addr != addr) {
5345
        lastp = &port->next;
5346
        port = port->next;
5347
    }
5348

    
5349
    if (!port)
5350
        return -1;
5351

    
5352
    dev = port->dev;
5353
    *lastp = port->next;
5354
    usb_attach(port, NULL);
5355
    dev->handle_destroy(dev);
5356
    port->next = free_usb_ports;
5357
    free_usb_ports = port;
5358
    return 0;
5359
}
5360

    
5361
void do_usb_add(const char *devname)
5362
{
5363
    int ret;
5364
    ret = usb_device_add(devname);
5365
    if (ret < 0)
5366
        term_printf("Could not add USB device '%s'\n", devname);
5367
}
5368

    
5369
void do_usb_del(const char *devname)
5370
{
5371
    int ret;
5372
    ret = usb_device_del(devname);
5373
    if (ret < 0)
5374
        term_printf("Could not remove USB device '%s'\n", devname);
5375
}
5376

    
5377
void usb_info(void)
5378
{
5379
    USBDevice *dev;
5380
    USBPort *port;
5381
    const char *speed_str;
5382

    
5383
    if (!usb_enabled) {
5384
        term_printf("USB support not enabled\n");
5385
        return;
5386
    }
5387

    
5388
    for (port = used_usb_ports; port; port = port->next) {
5389
        dev = port->dev;
5390
        if (!dev)
5391
            continue;
5392
        switch(dev->speed) {
5393
        case USB_SPEED_LOW:
5394
            speed_str = "1.5";
5395
            break;
5396
        case USB_SPEED_FULL:
5397
            speed_str = "12";
5398
            break;
5399
        case USB_SPEED_HIGH:
5400
            speed_str = "480";
5401
            break;
5402
        default:
5403
            speed_str = "?";
5404
            break;
5405
        }
5406
        term_printf("  Device %d.%d, Speed %s Mb/s, Product %s\n",
5407
                    0, dev->addr, speed_str, dev->devname);
5408
    }
5409
}
5410

    
5411
/***********************************************************/
5412
/* PCMCIA/Cardbus */
5413

    
5414
static struct pcmcia_socket_entry_s {
5415
    struct pcmcia_socket_s *socket;
5416
    struct pcmcia_socket_entry_s *next;
5417
} *pcmcia_sockets = 0;
5418

    
5419
void pcmcia_socket_register(struct pcmcia_socket_s *socket)
5420
{
5421
    struct pcmcia_socket_entry_s *entry;
5422

    
5423
    entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
5424
    entry->socket = socket;
5425
    entry->next = pcmcia_sockets;
5426
    pcmcia_sockets = entry;
5427
}
5428

    
5429
void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
5430
{
5431
    struct pcmcia_socket_entry_s *entry, **ptr;
5432

    
5433
    ptr = &pcmcia_sockets;
5434
    for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
5435
        if (entry->socket == socket) {
5436
            *ptr = entry->next;
5437
            qemu_free(entry);
5438
        }
5439
}
5440

    
5441
void pcmcia_info(void)
5442
{
5443
    struct pcmcia_socket_entry_s *iter;
5444
    if (!pcmcia_sockets)
5445
        term_printf("No PCMCIA sockets\n");
5446

    
5447
    for (iter = pcmcia_sockets; iter; iter = iter->next)
5448
        term_printf("%s: %s\n", iter->socket->slot_string,
5449
                    iter->socket->attached ? iter->socket->card_string :
5450
                    "Empty");
5451
}
5452

    
5453
/***********************************************************/
5454
/* dumb display */
5455

    
5456
static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
5457
{
5458
}
5459

    
5460
static void dumb_resize(DisplayState *ds, int w, int h)
5461
{
5462
}
5463

    
5464
static void dumb_refresh(DisplayState *ds)
5465
{
5466
#if defined(CONFIG_SDL)
5467
    vga_hw_update();
5468
#endif
5469
}
5470

    
5471
static void dumb_display_init(DisplayState *ds)
5472
{
5473
    ds->data = NULL;
5474
    ds->linesize = 0;
5475
    ds->depth = 0;
5476
    ds->dpy_update = dumb_update;
5477
    ds->dpy_resize = dumb_resize;
5478
    ds->dpy_refresh = dumb_refresh;
5479
}
5480

    
5481
/***********************************************************/
5482
/* I/O handling */
5483

    
5484
#define MAX_IO_HANDLERS 64
5485

    
5486
typedef struct IOHandlerRecord {
5487
    int fd;
5488
    IOCanRWHandler *fd_read_poll;
5489
    IOHandler *fd_read;
5490
    IOHandler *fd_write;
5491
    int deleted;
5492
    void *opaque;
5493
    /* temporary data */
5494
    struct pollfd *ufd;
5495
    struct IOHandlerRecord *next;
5496
} IOHandlerRecord;
5497

    
5498
static IOHandlerRecord *first_io_handler;
5499

    
5500
/* XXX: fd_read_poll should be suppressed, but an API change is
5501
   necessary in the character devices to suppress fd_can_read(). */
5502
int qemu_set_fd_handler2(int fd,
5503
                         IOCanRWHandler *fd_read_poll,
5504
                         IOHandler *fd_read,
5505
                         IOHandler *fd_write,
5506
                         void *opaque)
5507
{
5508
    IOHandlerRecord **pioh, *ioh;
5509

    
5510
    if (!fd_read && !fd_write) {
5511
        pioh = &first_io_handler;
5512
        for(;;) {
5513
            ioh = *pioh;
5514
            if (ioh == NULL)
5515
                break;
5516
            if (ioh->fd == fd) {
5517
                ioh->deleted = 1;
5518
                break;
5519
            }
5520
            pioh = &ioh->next;
5521
        }
5522
    } else {
5523
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
5524
            if (ioh->fd == fd)
5525
                goto found;
5526
        }
5527
        ioh = qemu_mallocz(sizeof(IOHandlerRecord));
5528
        if (!ioh)
5529
            return -1;
5530
        ioh->next = first_io_handler;
5531
        first_io_handler = ioh;
5532
    found:
5533
        ioh->fd = fd;
5534
        ioh->fd_read_poll = fd_read_poll;
5535
        ioh->fd_read = fd_read;
5536
        ioh->fd_write = fd_write;
5537
        ioh->opaque = opaque;
5538
        ioh->deleted = 0;
5539
    }
5540
    return 0;
5541
}
5542

    
5543
int qemu_set_fd_handler(int fd,
5544
                        IOHandler *fd_read,
5545
                        IOHandler *fd_write,
5546
                        void *opaque)
5547
{
5548
    return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
5549
}
5550

    
5551
/***********************************************************/
5552
/* Polling handling */
5553

    
5554
typedef struct PollingEntry {
5555
    PollingFunc *func;
5556
    void *opaque;
5557
    struct PollingEntry *next;
5558
} PollingEntry;
5559

    
5560
static PollingEntry *first_polling_entry;
5561

    
5562
int qemu_add_polling_cb(PollingFunc *func, void *opaque)
5563
{
5564
    PollingEntry **ppe, *pe;
5565
    pe = qemu_mallocz(sizeof(PollingEntry));
5566
    if (!pe)
5567
        return -1;
5568
    pe->func = func;
5569
    pe->opaque = opaque;
5570
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
5571
    *ppe = pe;
5572
    return 0;
5573
}
5574

    
5575
void qemu_del_polling_cb(PollingFunc *func, void *opaque)
5576
{
5577
    PollingEntry **ppe, *pe;
5578
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
5579
        pe = *ppe;
5580
        if (pe->func == func && pe->opaque == opaque) {
5581
            *ppe = pe->next;
5582
            qemu_free(pe);
5583
            break;
5584
        }
5585
    }
5586
}
5587

    
5588
#ifdef _WIN32
5589
/***********************************************************/
5590
/* Wait objects support */
5591
typedef struct WaitObjects {
5592
    int num;
5593
    HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
5594
    WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
5595
    void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
5596
} WaitObjects;
5597

    
5598
static WaitObjects wait_objects = {0};
5599

    
5600
int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5601
{
5602
    WaitObjects *w = &wait_objects;
5603

    
5604
    if (w->num >= MAXIMUM_WAIT_OBJECTS)
5605
        return -1;
5606
    w->events[w->num] = handle;
5607
    w->func[w->num] = func;
5608
    w->opaque[w->num] = opaque;
5609
    w->num++;
5610
    return 0;
5611
}
5612

    
5613
void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5614
{
5615
    int i, found;
5616
    WaitObjects *w = &wait_objects;
5617

    
5618
    found = 0;
5619
    for (i = 0; i < w->num; i++) {
5620
        if (w->events[i] == handle)
5621
            found = 1;
5622
        if (found) {
5623
            w->events[i] = w->events[i + 1];
5624
            w->func[i] = w->func[i + 1];
5625
            w->opaque[i] = w->opaque[i + 1];
5626
        }
5627
    }
5628
    if (found)
5629
        w->num--;
5630
}
5631
#endif
5632

    
5633
/***********************************************************/
5634
/* savevm/loadvm support */
5635

    
5636
#define IO_BUF_SIZE 32768
5637

    
5638
struct QEMUFile {
5639
    FILE *outfile;
5640
    BlockDriverState *bs;
5641
    int is_file;
5642
    int is_writable;
5643
    int64_t base_offset;
5644
    int64_t buf_offset; /* start of buffer when writing, end of buffer
5645
                           when reading */
5646
    int buf_index;
5647
    int buf_size; /* 0 when writing */
5648
    uint8_t buf[IO_BUF_SIZE];
5649
};
5650

    
5651
QEMUFile *qemu_fopen(const char *filename, const char *mode)
5652
{
5653
    QEMUFile *f;
5654

    
5655
    f = qemu_mallocz(sizeof(QEMUFile));
5656
    if (!f)
5657
        return NULL;
5658
    if (!strcmp(mode, "wb")) {
5659
        f->is_writable = 1;
5660
    } else if (!strcmp(mode, "rb")) {
5661
        f->is_writable = 0;
5662
    } else {
5663
        goto fail;
5664
    }
5665
    f->outfile = fopen(filename, mode);
5666
    if (!f->outfile)
5667
        goto fail;
5668
    f->is_file = 1;
5669
    return f;
5670
 fail:
5671
    if (f->outfile)
5672
        fclose(f->outfile);
5673
    qemu_free(f);
5674
    return NULL;
5675
}
5676

    
5677
static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
5678
{
5679
    QEMUFile *f;
5680

    
5681
    f = qemu_mallocz(sizeof(QEMUFile));
5682
    if (!f)
5683
        return NULL;
5684
    f->is_file = 0;
5685
    f->bs = bs;
5686
    f->is_writable = is_writable;
5687
    f->base_offset = offset;
5688
    return f;
5689
}
5690

    
5691
void qemu_fflush(QEMUFile *f)
5692
{
5693
    if (!f->is_writable)
5694
        return;
5695
    if (f->buf_index > 0) {
5696
        if (f->is_file) {
5697
            fseek(f->outfile, f->buf_offset, SEEK_SET);
5698
            fwrite(f->buf, 1, f->buf_index, f->outfile);
5699
        } else {
5700
            bdrv_pwrite(f->bs, f->base_offset + f->buf_offset,
5701
                        f->buf, f->buf_index);
5702
        }
5703
        f->buf_offset += f->buf_index;
5704
        f->buf_index = 0;
5705
    }
5706
}
5707

    
5708
static void qemu_fill_buffer(QEMUFile *f)
5709
{
5710
    int len;
5711

    
5712
    if (f->is_writable)
5713
        return;
5714
    if (f->is_file) {
5715
        fseek(f->outfile, f->buf_offset, SEEK_SET);
5716
        len = fread(f->buf, 1, IO_BUF_SIZE, f->outfile);
5717
        if (len < 0)
5718
            len = 0;
5719
    } else {
5720
        len = bdrv_pread(f->bs, f->base_offset + f->buf_offset,
5721
                         f->buf, IO_BUF_SIZE);
5722
        if (len < 0)
5723
            len = 0;
5724
    }
5725
    f->buf_index = 0;
5726
    f->buf_size = len;
5727
    f->buf_offset += len;
5728
}
5729

    
5730
void qemu_fclose(QEMUFile *f)
5731
{
5732
    if (f->is_writable)
5733
        qemu_fflush(f);
5734
    if (f->is_file) {
5735
        fclose(f->outfile);
5736
    }
5737
    qemu_free(f);
5738
}
5739

    
5740
void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
5741
{
5742
    int l;
5743
    while (size > 0) {
5744
        l = IO_BUF_SIZE - f->buf_index;
5745
        if (l > size)
5746
            l = size;
5747
        memcpy(f->buf + f->buf_index, buf, l);
5748
        f->buf_index += l;
5749
        buf += l;
5750
        size -= l;
5751
        if (f->buf_index >= IO_BUF_SIZE)
5752
            qemu_fflush(f);
5753
    }
5754
}
5755

    
5756
void qemu_put_byte(QEMUFile *f, int v)
5757
{
5758
    f->buf[f->buf_index++] = v;
5759
    if (f->buf_index >= IO_BUF_SIZE)
5760
        qemu_fflush(f);
5761
}
5762

    
5763
int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
5764
{
5765
    int size, l;
5766

    
5767
    size = size1;
5768
    while (size > 0) {
5769
        l = f->buf_size - f->buf_index;
5770
        if (l == 0) {
5771
            qemu_fill_buffer(f);
5772
            l = f->buf_size - f->buf_index;
5773
            if (l == 0)
5774
                break;
5775
        }
5776
        if (l > size)
5777
            l = size;
5778
        memcpy(buf, f->buf + f->buf_index, l);
5779
        f->buf_index += l;
5780
        buf += l;
5781
        size -= l;
5782
    }
5783
    return size1 - size;
5784
}
5785

    
5786
int qemu_get_byte(QEMUFile *f)
5787
{
5788
    if (f->buf_index >= f->buf_size) {
5789
        qemu_fill_buffer(f);
5790
        if (f->buf_index >= f->buf_size)
5791
            return 0;
5792
    }
5793
    return f->buf[f->buf_index++];
5794
}
5795

    
5796
int64_t qemu_ftell(QEMUFile *f)
5797
{
5798
    return f->buf_offset - f->buf_size + f->buf_index;
5799
}
5800

    
5801
int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
5802
{
5803
    if (whence == SEEK_SET) {
5804
        /* nothing to do */
5805
    } else if (whence == SEEK_CUR) {
5806
        pos += qemu_ftell(f);
5807
    } else {
5808
        /* SEEK_END not supported */
5809
        return -1;
5810
    }
5811
    if (f->is_writable) {
5812
        qemu_fflush(f);
5813
        f->buf_offset = pos;
5814
    } else {
5815
        f->buf_offset = pos;
5816
        f->buf_index = 0;
5817
        f->buf_size = 0;
5818
    }
5819
    return pos;
5820
}
5821

    
5822
void qemu_put_be16(QEMUFile *f, unsigned int v)
5823
{
5824
    qemu_put_byte(f, v >> 8);
5825
    qemu_put_byte(f, v);
5826
}
5827

    
5828
void qemu_put_be32(QEMUFile *f, unsigned int v)
5829
{
5830
    qemu_put_byte(f, v >> 24);
5831
    qemu_put_byte(f, v >> 16);
5832
    qemu_put_byte(f, v >> 8);
5833
    qemu_put_byte(f, v);
5834
}
5835

    
5836
void qemu_put_be64(QEMUFile *f, uint64_t v)
5837
{
5838
    qemu_put_be32(f, v >> 32);
5839
    qemu_put_be32(f, v);
5840
}
5841

    
5842
unsigned int qemu_get_be16(QEMUFile *f)
5843
{
5844
    unsigned int v;
5845
    v = qemu_get_byte(f) << 8;
5846
    v |= qemu_get_byte(f);
5847
    return v;
5848
}
5849

    
5850
unsigned int qemu_get_be32(QEMUFile *f)
5851
{
5852
    unsigned int v;
5853
    v = qemu_get_byte(f) << 24;
5854
    v |= qemu_get_byte(f) << 16;
5855
    v |= qemu_get_byte(f) << 8;
5856
    v |= qemu_get_byte(f);
5857
    return v;
5858
}
5859

    
5860
uint64_t qemu_get_be64(QEMUFile *f)
5861
{
5862
    uint64_t v;
5863
    v = (uint64_t)qemu_get_be32(f) << 32;
5864
    v |= qemu_get_be32(f);
5865
    return v;
5866
}
5867

    
5868
typedef struct SaveStateEntry {
5869
    char idstr[256];
5870
    int instance_id;
5871
    int version_id;
5872
    SaveStateHandler *save_state;
5873
    LoadStateHandler *load_state;
5874
    void *opaque;
5875
    struct SaveStateEntry *next;
5876
} SaveStateEntry;
5877

    
5878
static SaveStateEntry *first_se;
5879

    
5880
int register_savevm(const char *idstr,
5881
                    int instance_id,
5882
                    int version_id,
5883
                    SaveStateHandler *save_state,
5884
                    LoadStateHandler *load_state,
5885
                    void *opaque)
5886
{
5887
    SaveStateEntry *se, **pse;
5888

    
5889
    se = qemu_malloc(sizeof(SaveStateEntry));
5890
    if (!se)
5891
        return -1;
5892
    pstrcpy(se->idstr, sizeof(se->idstr), idstr);
5893
    se->instance_id = instance_id;
5894
    se->version_id = version_id;
5895
    se->save_state = save_state;
5896
    se->load_state = load_state;
5897
    se->opaque = opaque;
5898
    se->next = NULL;
5899

    
5900
    /* add at the end of list */
5901
    pse = &first_se;
5902
    while (*pse != NULL)
5903
        pse = &(*pse)->next;
5904
    *pse = se;
5905
    return 0;
5906
}
5907

    
5908
#define QEMU_VM_FILE_MAGIC   0x5145564d
5909
#define QEMU_VM_FILE_VERSION 0x00000002
5910

    
5911
static int qemu_savevm_state(QEMUFile *f)
5912
{
5913
    SaveStateEntry *se;
5914
    int len, ret;
5915
    int64_t cur_pos, len_pos, total_len_pos;
5916

    
5917
    qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
5918
    qemu_put_be32(f, QEMU_VM_FILE_VERSION);
5919
    total_len_pos = qemu_ftell(f);
5920
    qemu_put_be64(f, 0); /* total size */
5921

    
5922
    for(se = first_se; se != NULL; se = se->next) {
5923
        /* ID string */
5924
        len = strlen(se->idstr);
5925
        qemu_put_byte(f, len);
5926
        qemu_put_buffer(f, (uint8_t *)se->idstr, len);
5927

    
5928
        qemu_put_be32(f, se->instance_id);
5929
        qemu_put_be32(f, se->version_id);
5930

    
5931
        /* record size: filled later */
5932
        len_pos = qemu_ftell(f);
5933
        qemu_put_be32(f, 0);
5934
        se->save_state(f, se->opaque);
5935

    
5936
        /* fill record size */
5937
        cur_pos = qemu_ftell(f);
5938
        len = cur_pos - len_pos - 4;
5939
        qemu_fseek(f, len_pos, SEEK_SET);
5940
        qemu_put_be32(f, len);
5941
        qemu_fseek(f, cur_pos, SEEK_SET);
5942
    }
5943
    cur_pos = qemu_ftell(f);
5944
    qemu_fseek(f, total_len_pos, SEEK_SET);
5945
    qemu_put_be64(f, cur_pos - total_len_pos - 8);
5946
    qemu_fseek(f, cur_pos, SEEK_SET);
5947

    
5948
    ret = 0;
5949
    return ret;
5950
}
5951

    
5952
static SaveStateEntry *find_se(const char *idstr, int instance_id)
5953
{
5954
    SaveStateEntry *se;
5955

    
5956
    for(se = first_se; se != NULL; se = se->next) {
5957
        if (!strcmp(se->idstr, idstr) &&
5958
            instance_id == se->instance_id)
5959
            return se;
5960
    }
5961
    return NULL;
5962
}
5963

    
5964
static int qemu_loadvm_state(QEMUFile *f)
5965
{
5966
    SaveStateEntry *se;
5967
    int len, ret, instance_id, record_len, version_id;
5968
    int64_t total_len, end_pos, cur_pos;
5969
    unsigned int v;
5970
    char idstr[256];
5971

    
5972
    v = qemu_get_be32(f);
5973
    if (v != QEMU_VM_FILE_MAGIC)
5974
        goto fail;
5975
    v = qemu_get_be32(f);
5976
    if (v != QEMU_VM_FILE_VERSION) {
5977
    fail:
5978
        ret = -1;
5979
        goto the_end;
5980
    }
5981
    total_len = qemu_get_be64(f);
5982
    end_pos = total_len + qemu_ftell(f);
5983
    for(;;) {
5984
        if (qemu_ftell(f) >= end_pos)
5985
            break;
5986
        len = qemu_get_byte(f);
5987
        qemu_get_buffer(f, (uint8_t *)idstr, len);
5988
        idstr[len] = '\0';
5989
        instance_id = qemu_get_be32(f);
5990
        version_id = qemu_get_be32(f);
5991
        record_len = qemu_get_be32(f);
5992
#if 0
5993
        printf("idstr=%s instance=0x%x version=%d len=%d\n",
5994
               idstr, instance_id, version_id, record_len);
5995
#endif
5996
        cur_pos = qemu_ftell(f);
5997
        se = find_se(idstr, instance_id);
5998
        if (!se) {
5999
            fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
6000
                    instance_id, idstr);
6001
        } else {
6002
            ret = se->load_state(f, se->opaque, version_id);
6003
            if (ret < 0) {
6004
                fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
6005
                        instance_id, idstr);
6006
            }
6007
        }
6008
        /* always seek to exact end of record */
6009
        qemu_fseek(f, cur_pos + record_len, SEEK_SET);
6010
    }
6011
    ret = 0;
6012
 the_end:
6013
    return ret;
6014
}
6015

    
6016
/* device can contain snapshots */
6017
static int bdrv_can_snapshot(BlockDriverState *bs)
6018
{
6019
    return (bs &&
6020
            !bdrv_is_removable(bs) &&
6021
            !bdrv_is_read_only(bs));
6022
}
6023

    
6024
/* device must be snapshots in order to have a reliable snapshot */
6025
static int bdrv_has_snapshot(BlockDriverState *bs)
6026
{
6027
    return (bs &&
6028
            !bdrv_is_removable(bs) &&
6029
            !bdrv_is_read_only(bs));
6030
}
6031

    
6032
static BlockDriverState *get_bs_snapshots(void)
6033
{
6034
    BlockDriverState *bs;
6035
    int i;
6036

    
6037
    if (bs_snapshots)
6038
        return bs_snapshots;
6039
    for(i = 0; i <= nb_drives; i++) {
6040
        bs = drives_table[i].bdrv;
6041
        if (bdrv_can_snapshot(bs))
6042
            goto ok;
6043
    }
6044
    return NULL;
6045
 ok:
6046
    bs_snapshots = bs;
6047
    return bs;
6048
}
6049

    
6050
static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
6051
                              const char *name)
6052
{
6053
    QEMUSnapshotInfo *sn_tab, *sn;
6054
    int nb_sns, i, ret;
6055

    
6056
    ret = -ENOENT;
6057
    nb_sns = bdrv_snapshot_list(bs, &sn_tab);
6058
    if (nb_sns < 0)
6059
        return ret;
6060
    for(i = 0; i < nb_sns; i++) {
6061
        sn = &sn_tab[i];
6062
        if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
6063
            *sn_info = *sn;
6064
            ret = 0;
6065
            break;
6066
        }
6067
    }
6068
    qemu_free(sn_tab);
6069
    return ret;
6070
}
6071

    
6072
void do_savevm(const char *name)
6073
{
6074
    BlockDriverState *bs, *bs1;
6075
    QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
6076
    int must_delete, ret, i;
6077
    BlockDriverInfo bdi1, *bdi = &bdi1;
6078
    QEMUFile *f;
6079
    int saved_vm_running;
6080
#ifdef _WIN32
6081
    struct _timeb tb;
6082
#else
6083
    struct timeval tv;
6084
#endif
6085

    
6086
    bs = get_bs_snapshots();
6087
    if (!bs) {
6088
        term_printf("No block device can accept snapshots\n");
6089
        return;
6090
    }
6091

    
6092
    /* ??? Should this occur after vm_stop?  */
6093
    qemu_aio_flush();
6094

    
6095
    saved_vm_running = vm_running;
6096
    vm_stop(0);
6097

    
6098
    must_delete = 0;
6099
    if (name) {
6100
        ret = bdrv_snapshot_find(bs, old_sn, name);
6101
        if (ret >= 0) {
6102
            must_delete = 1;
6103
        }
6104
    }
6105
    memset(sn, 0, sizeof(*sn));
6106
    if (must_delete) {
6107
        pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
6108
        pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
6109
    } else {
6110
        if (name)
6111
            pstrcpy(sn->name, sizeof(sn->name), name);
6112
    }
6113

    
6114
    /* fill auxiliary fields */
6115
#ifdef _WIN32
6116
    _ftime(&tb);
6117
    sn->date_sec = tb.time;
6118
    sn->date_nsec = tb.millitm * 1000000;
6119
#else
6120
    gettimeofday(&tv, NULL);
6121
    sn->date_sec = tv.tv_sec;
6122
    sn->date_nsec = tv.tv_usec * 1000;
6123
#endif
6124
    sn->vm_clock_nsec = qemu_get_clock(vm_clock);
6125

    
6126
    if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
6127
        term_printf("Device %s does not support VM state snapshots\n",
6128
                    bdrv_get_device_name(bs));
6129
        goto the_end;
6130
    }
6131

    
6132
    /* save the VM state */
6133
    f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
6134
    if (!f) {
6135
        term_printf("Could not open VM state file\n");
6136
        goto the_end;
6137
    }
6138
    ret = qemu_savevm_state(f);
6139
    sn->vm_state_size = qemu_ftell(f);
6140
    qemu_fclose(f);
6141
    if (ret < 0) {
6142
        term_printf("Error %d while writing VM\n", ret);
6143
        goto the_end;
6144
    }
6145

    
6146
    /* create the snapshots */
6147

    
6148
    for(i = 0; i < nb_drives; i++) {
6149
        bs1 = drives_table[i].bdrv;
6150
        if (bdrv_has_snapshot(bs1)) {
6151
            if (must_delete) {
6152
                ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
6153
                if (ret < 0) {
6154
                    term_printf("Error while deleting snapshot on '%s'\n",
6155
                                bdrv_get_device_name(bs1));
6156
                }
6157
            }
6158
            ret = bdrv_snapshot_create(bs1, sn);
6159
            if (ret < 0) {
6160
                term_printf("Error while creating snapshot on '%s'\n",
6161
                            bdrv_get_device_name(bs1));
6162
            }
6163
        }
6164
    }
6165

    
6166
 the_end:
6167
    if (saved_vm_running)
6168
        vm_start();
6169
}
6170

    
6171
void do_loadvm(const char *name)
6172
{
6173
    BlockDriverState *bs, *bs1;
6174
    BlockDriverInfo bdi1, *bdi = &bdi1;
6175
    QEMUFile *f;
6176
    int i, ret;
6177
    int saved_vm_running;
6178

    
6179
    bs = get_bs_snapshots();
6180
    if (!bs) {
6181
        term_printf("No block device supports snapshots\n");
6182
        return;
6183
    }
6184

    
6185
    /* Flush all IO requests so they don't interfere with the new state.  */
6186
    qemu_aio_flush();
6187

    
6188
    saved_vm_running = vm_running;
6189
    vm_stop(0);
6190

    
6191
    for(i = 0; i <= nb_drives; i++) {
6192
        bs1 = drives_table[i].bdrv;
6193
        if (bdrv_has_snapshot(bs1)) {
6194
            ret = bdrv_snapshot_goto(bs1, name);
6195
            if (ret < 0) {
6196
                if (bs != bs1)
6197
                    term_printf("Warning: ");
6198
                switch(ret) {
6199
                case -ENOTSUP:
6200
                    term_printf("Snapshots not supported on device '%s'\n",
6201
                                bdrv_get_device_name(bs1));
6202
                    break;
6203
                case -ENOENT:
6204
                    term_printf("Could not find snapshot '%s' on device '%s'\n",
6205
                                name, bdrv_get_device_name(bs1));
6206
                    break;
6207
                default:
6208
                    term_printf("Error %d while activating snapshot on '%s'\n",
6209
                                ret, bdrv_get_device_name(bs1));
6210
                    break;
6211
                }
6212
                /* fatal on snapshot block device */
6213
                if (bs == bs1)
6214
                    goto the_end;
6215
            }
6216
        }
6217
    }
6218

    
6219
    if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
6220
        term_printf("Device %s does not support VM state snapshots\n",
6221
                    bdrv_get_device_name(bs));
6222
        return;
6223
    }
6224

    
6225
    /* restore the VM state */
6226
    f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
6227
    if (!f) {
6228
        term_printf("Could not open VM state file\n");
6229
        goto the_end;
6230
    }
6231
    ret = qemu_loadvm_state(f);
6232
    qemu_fclose(f);
6233
    if (ret < 0) {
6234
        term_printf("Error %d while loading VM state\n", ret);
6235
    }
6236
 the_end:
6237
    if (saved_vm_running)
6238
        vm_start();
6239
}
6240

    
6241
void do_delvm(const char *name)
6242
{
6243
    BlockDriverState *bs, *bs1;
6244
    int i, ret;
6245

    
6246
    bs = get_bs_snapshots();
6247
    if (!bs) {
6248
        term_printf("No block device supports snapshots\n");
6249
        return;
6250
    }
6251

    
6252
    for(i = 0; i <= nb_drives; i++) {
6253
        bs1 = drives_table[i].bdrv;
6254
        if (bdrv_has_snapshot(bs1)) {
6255
            ret = bdrv_snapshot_delete(bs1, name);
6256
            if (ret < 0) {
6257
                if (ret == -ENOTSUP)
6258
                    term_printf("Snapshots not supported on device '%s'\n",
6259
                                bdrv_get_device_name(bs1));
6260
                else
6261
                    term_printf("Error %d while deleting snapshot on '%s'\n",
6262
                                ret, bdrv_get_device_name(bs1));
6263
            }
6264
        }
6265
    }
6266
}
6267

    
6268
void do_info_snapshots(void)
6269
{
6270
    BlockDriverState *bs, *bs1;
6271
    QEMUSnapshotInfo *sn_tab, *sn;
6272
    int nb_sns, i;
6273
    char buf[256];
6274

    
6275
    bs = get_bs_snapshots();
6276
    if (!bs) {
6277
        term_printf("No available block device supports snapshots\n");
6278
        return;
6279
    }
6280
    term_printf("Snapshot devices:");
6281
    for(i = 0; i <= nb_drives; i++) {
6282
        bs1 = drives_table[i].bdrv;
6283
        if (bdrv_has_snapshot(bs1)) {
6284
            if (bs == bs1)
6285
                term_printf(" %s", bdrv_get_device_name(bs1));
6286
        }
6287
    }
6288
    term_printf("\n");
6289

    
6290
    nb_sns = bdrv_snapshot_list(bs, &sn_tab);
6291
    if (nb_sns < 0) {
6292
        term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
6293
        return;
6294
    }
6295
    term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
6296
    term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
6297
    for(i = 0; i < nb_sns; i++) {
6298
        sn = &sn_tab[i];
6299
        term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
6300
    }
6301
    qemu_free(sn_tab);
6302
}
6303

    
6304
/***********************************************************/
6305
/* cpu save/restore */
6306

    
6307
#if defined(TARGET_I386)
6308

    
6309
static void cpu_put_seg(QEMUFile *f, SegmentCache *dt)
6310
{
6311
    qemu_put_be32(f, dt->selector);
6312
    qemu_put_betl(f, dt->base);
6313
    qemu_put_be32(f, dt->limit);
6314
    qemu_put_be32(f, dt->flags);
6315
}
6316

    
6317
static void cpu_get_seg(QEMUFile *f, SegmentCache *dt)
6318
{
6319
    dt->selector = qemu_get_be32(f);
6320
    dt->base = qemu_get_betl(f);
6321
    dt->limit = qemu_get_be32(f);
6322
    dt->flags = qemu_get_be32(f);
6323
}
6324

    
6325
void cpu_save(QEMUFile *f, void *opaque)
6326
{
6327
    CPUState *env = opaque;
6328
    uint16_t fptag, fpus, fpuc, fpregs_format;
6329
    uint32_t hflags;
6330
    int i;
6331

    
6332
    for(i = 0; i < CPU_NB_REGS; i++)
6333
        qemu_put_betls(f, &env->regs[i]);
6334
    qemu_put_betls(f, &env->eip);
6335
    qemu_put_betls(f, &env->eflags);
6336
    hflags = env->hflags; /* XXX: suppress most of the redundant hflags */
6337
    qemu_put_be32s(f, &hflags);
6338

    
6339
    /* FPU */
6340
    fpuc = env->fpuc;
6341
    fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
6342
    fptag = 0;
6343
    for(i = 0; i < 8; i++) {
6344
        fptag |= ((!env->fptags[i]) << i);
6345
    }
6346

    
6347
    qemu_put_be16s(f, &fpuc);
6348
    qemu_put_be16s(f, &fpus);
6349
    qemu_put_be16s(f, &fptag);
6350

    
6351
#ifdef USE_X86LDOUBLE
6352
    fpregs_format = 0;
6353
#else
6354
    fpregs_format = 1;
6355
#endif
6356
    qemu_put_be16s(f, &fpregs_format);
6357

    
6358
    for(i = 0; i < 8; i++) {
6359
#ifdef USE_X86LDOUBLE
6360
        {
6361
            uint64_t mant;
6362
            uint16_t exp;
6363
            /* we save the real CPU data (in case of MMX usage only 'mant'
6364
               contains the MMX register */
6365
            cpu_get_fp80(&mant, &exp, env->fpregs[i].d);
6366
            qemu_put_be64(f, mant);
6367
            qemu_put_be16(f, exp);
6368
        }
6369
#else
6370
        /* if we use doubles for float emulation, we save the doubles to
6371
           avoid losing information in case of MMX usage. It can give
6372
           problems if the image is restored on a CPU where long
6373
           doubles are used instead. */
6374
        qemu_put_be64(f, env->fpregs[i].mmx.MMX_Q(0));
6375
#endif
6376
    }
6377

    
6378
    for(i = 0; i < 6; i++)
6379
        cpu_put_seg(f, &env->segs[i]);
6380
    cpu_put_seg(f, &env->ldt);
6381
    cpu_put_seg(f, &env->tr);
6382
    cpu_put_seg(f, &env->gdt);
6383
    cpu_put_seg(f, &env->idt);
6384

    
6385
    qemu_put_be32s(f, &env->sysenter_cs);
6386
    qemu_put_be32s(f, &env->sysenter_esp);
6387
    qemu_put_be32s(f, &env->sysenter_eip);
6388

    
6389
    qemu_put_betls(f, &env->cr[0]);
6390
    qemu_put_betls(f, &env->cr[2]);
6391
    qemu_put_betls(f, &env->cr[3]);
6392
    qemu_put_betls(f, &env->cr[4]);
6393

    
6394
    for(i = 0; i < 8; i++)
6395
        qemu_put_betls(f, &env->dr[i]);
6396

    
6397
    /* MMU */
6398
    qemu_put_be32s(f, &env->a20_mask);
6399

    
6400
    /* XMM */
6401
    qemu_put_be32s(f, &env->mxcsr);
6402
    for(i = 0; i < CPU_NB_REGS; i++) {
6403
        qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(0));
6404
        qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(1));
6405
    }
6406

    
6407
#ifdef TARGET_X86_64
6408
    qemu_put_be64s(f, &env->efer);
6409
    qemu_put_be64s(f, &env->star);
6410
    qemu_put_be64s(f, &env->lstar);
6411
    qemu_put_be64s(f, &env->cstar);
6412
    qemu_put_be64s(f, &env->fmask);
6413
    qemu_put_be64s(f, &env->kernelgsbase);
6414
#endif
6415
    qemu_put_be32s(f, &env->smbase);
6416
}
6417

    
6418
#ifdef USE_X86LDOUBLE
6419
/* XXX: add that in a FPU generic layer */
6420
union x86_longdouble {
6421
    uint64_t mant;
6422
    uint16_t exp;
6423
};
6424

    
6425
#define MANTD1(fp)        (fp & ((1LL << 52) - 1))
6426
#define EXPBIAS1 1023
6427
#define EXPD1(fp)        ((fp >> 52) & 0x7FF)
6428
#define SIGND1(fp)        ((fp >> 32) & 0x80000000)
6429

    
6430
static void fp64_to_fp80(union x86_longdouble *p, uint64_t temp)
6431
{
6432
    int e;
6433
    /* mantissa */
6434
    p->mant = (MANTD1(temp) << 11) | (1LL << 63);
6435
    /* exponent + sign */
6436
    e = EXPD1(temp) - EXPBIAS1 + 16383;
6437
    e |= SIGND1(temp) >> 16;
6438
    p->exp = e;
6439
}
6440
#endif
6441

    
6442
int cpu_load(QEMUFile *f, void *opaque, int version_id)
6443
{
6444
    CPUState *env = opaque;
6445
    int i, guess_mmx;
6446
    uint32_t hflags;
6447
    uint16_t fpus, fpuc, fptag, fpregs_format;
6448

    
6449
    if (version_id != 3 && version_id != 4)
6450
        return -EINVAL;
6451
    for(i = 0; i < CPU_NB_REGS; i++)
6452
        qemu_get_betls(f, &env->regs[i]);
6453
    qemu_get_betls(f, &env->eip);
6454
    qemu_get_betls(f, &env->eflags);
6455
    qemu_get_be32s(f, &hflags);
6456

    
6457
    qemu_get_be16s(f, &fpuc);
6458
    qemu_get_be16s(f, &fpus);
6459
    qemu_get_be16s(f, &fptag);
6460
    qemu_get_be16s(f, &fpregs_format);
6461

    
6462
    /* NOTE: we cannot always restore the FPU state if the image come
6463
       from a host with a different 'USE_X86LDOUBLE' define. We guess
6464
       if we are in an MMX state to restore correctly in that case. */
6465
    guess_mmx = ((fptag == 0xff) && (fpus & 0x3800) == 0);
6466
    for(i = 0; i < 8; i++) {
6467
        uint64_t mant;
6468
        uint16_t exp;
6469

    
6470
        switch(fpregs_format) {
6471
        case 0:
6472
            mant = qemu_get_be64(f);
6473
            exp = qemu_get_be16(f);
6474
#ifdef USE_X86LDOUBLE
6475
            env->fpregs[i].d = cpu_set_fp80(mant, exp);
6476
#else
6477
            /* difficult case */
6478
            if (guess_mmx)
6479
                env->fpregs[i].mmx.MMX_Q(0) = mant;
6480
            else
6481
                env->fpregs[i].d = cpu_set_fp80(mant, exp);
6482
#endif
6483
            break;
6484
        case 1:
6485
            mant = qemu_get_be64(f);
6486
#ifdef USE_X86LDOUBLE
6487
            {
6488
                union x86_longdouble *p;
6489
                /* difficult case */
6490
                p = (void *)&env->fpregs[i];
6491
                if (guess_mmx) {
6492
                    p->mant = mant;
6493
                    p->exp = 0xffff;
6494
                } else {
6495
                    fp64_to_fp80(p, mant);
6496
                }
6497
            }
6498
#else
6499
            env->fpregs[i].mmx.MMX_Q(0) = mant;
6500
#endif
6501
            break;
6502
        default:
6503
            return -EINVAL;
6504
        }
6505
    }
6506

    
6507
    env->fpuc = fpuc;
6508
    /* XXX: restore FPU round state */
6509
    env->fpstt = (fpus >> 11) & 7;
6510
    env->fpus = fpus & ~0x3800;
6511
    fptag ^= 0xff;
6512
    for(i = 0; i < 8; i++) {
6513
        env->fptags[i] = (fptag >> i) & 1;
6514
    }
6515

    
6516
    for(i = 0; i < 6; i++)
6517
        cpu_get_seg(f, &env->segs[i]);
6518
    cpu_get_seg(f, &env->ldt);
6519
    cpu_get_seg(f, &env->tr);
6520
    cpu_get_seg(f, &env->gdt);
6521
    cpu_get_seg(f, &env->idt);
6522

    
6523
    qemu_get_be32s(f, &env->sysenter_cs);
6524
    qemu_get_be32s(f, &env->sysenter_esp);
6525
    qemu_get_be32s(f, &env->sysenter_eip);
6526

    
6527
    qemu_get_betls(f, &env->cr[0]);
6528
    qemu_get_betls(f, &env->cr[2]);
6529
    qemu_get_betls(f, &env->cr[3]);
6530
    qemu_get_betls(f, &env->cr[4]);
6531

    
6532
    for(i = 0; i < 8; i++)
6533
        qemu_get_betls(f, &env->dr[i]);
6534

    
6535
    /* MMU */
6536
    qemu_get_be32s(f, &env->a20_mask);
6537

    
6538
    qemu_get_be32s(f, &env->mxcsr);
6539
    for(i = 0; i < CPU_NB_REGS; i++) {
6540
        qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(0));
6541
        qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(1));
6542
    }
6543

    
6544
#ifdef TARGET_X86_64
6545
    qemu_get_be64s(f, &env->efer);
6546
    qemu_get_be64s(f, &env->star);
6547
    qemu_get_be64s(f, &env->lstar);
6548
    qemu_get_be64s(f, &env->cstar);
6549
    qemu_get_be64s(f, &env->fmask);
6550
    qemu_get_be64s(f, &env->kernelgsbase);
6551
#endif
6552
    if (version_id >= 4)
6553
        qemu_get_be32s(f, &env->smbase);
6554

    
6555
    /* XXX: compute hflags from scratch, except for CPL and IIF */
6556
    env->hflags = hflags;
6557
    tlb_flush(env, 1);
6558
    return 0;
6559
}
6560

    
6561
#elif defined(TARGET_PPC)
6562
void cpu_save(QEMUFile *f, void *opaque)
6563
{
6564
}
6565

    
6566
int cpu_load(QEMUFile *f, void *opaque, int version_id)
6567
{
6568
    return 0;
6569
}
6570

    
6571
#elif defined(TARGET_MIPS)
6572
void cpu_save(QEMUFile *f, void *opaque)
6573
{
6574
}
6575

    
6576
int cpu_load(QEMUFile *f, void *opaque, int version_id)
6577
{
6578
    return 0;
6579
}
6580

    
6581
#elif defined(TARGET_SPARC)
6582
void cpu_save(QEMUFile *f, void *opaque)
6583
{
6584
    CPUState *env = opaque;
6585
    int i;
6586
    uint32_t tmp;
6587

    
6588
    for(i = 0; i < 8; i++)
6589
        qemu_put_betls(f, &env->gregs[i]);
6590
    for(i = 0; i < NWINDOWS * 16; i++)
6591
        qemu_put_betls(f, &env->regbase[i]);
6592

    
6593
    /* FPU */
6594
    for(i = 0; i < TARGET_FPREGS; i++) {
6595
        union {
6596
            float32 f;
6597
            uint32_t i;
6598
        } u;
6599
        u.f = env->fpr[i];
6600
        qemu_put_be32(f, u.i);
6601
    }
6602

    
6603
    qemu_put_betls(f, &env->pc);
6604
    qemu_put_betls(f, &env->npc);
6605
    qemu_put_betls(f, &env->y);
6606
    tmp = GET_PSR(env);
6607
    qemu_put_be32(f, tmp);
6608
    qemu_put_betls(f, &env->fsr);
6609
    qemu_put_betls(f, &env->tbr);
6610
#ifndef TARGET_SPARC64
6611
    qemu_put_be32s(f, &env->wim);
6612
    /* MMU */
6613
    for(i = 0; i < 16; i++)
6614
        qemu_put_be32s(f, &env->mmuregs[i]);
6615
#endif
6616
}
6617

    
6618
int cpu_load(QEMUFile *f, void *opaque, int version_id)
6619
{
6620
    CPUState *env = opaque;
6621
    int i;
6622
    uint32_t tmp;
6623

    
6624
    for(i = 0; i < 8; i++)
6625
        qemu_get_betls(f, &env->gregs[i]);
6626
    for(i = 0; i < NWINDOWS * 16; i++)
6627
        qemu_get_betls(f, &env->regbase[i]);
6628

    
6629
    /* FPU */
6630
    for(i = 0; i < TARGET_FPREGS; i++) {
6631
        union {
6632
            float32 f;
6633
            uint32_t i;
6634
        } u;
6635
        u.i = qemu_get_be32(f);
6636
        env->fpr[i] = u.f;
6637
    }
6638

    
6639
    qemu_get_betls(f, &env->pc);
6640
    qemu_get_betls(f, &env->npc);
6641
    qemu_get_betls(f, &env->y);
6642
    tmp = qemu_get_be32(f);
6643
    env->cwp = 0; /* needed to ensure that the wrapping registers are
6644
                     correctly updated */
6645
    PUT_PSR(env, tmp);
6646
    qemu_get_betls(f, &env->fsr);
6647
    qemu_get_betls(f, &env->tbr);
6648
#ifndef TARGET_SPARC64
6649
    qemu_get_be32s(f, &env->wim);
6650
    /* MMU */
6651
    for(i = 0; i < 16; i++)
6652
        qemu_get_be32s(f, &env->mmuregs[i]);
6653
#endif
6654
    tlb_flush(env, 1);
6655
    return 0;
6656
}
6657

    
6658
#elif defined(TARGET_ARM)
6659

    
6660
void cpu_save(QEMUFile *f, void *opaque)
6661
{
6662
    int i;
6663
    CPUARMState *env = (CPUARMState *)opaque;
6664

    
6665
    for (i = 0; i < 16; i++) {
6666
        qemu_put_be32(f, env->regs[i]);
6667
    }
6668
    qemu_put_be32(f, cpsr_read(env));
6669
    qemu_put_be32(f, env->spsr);
6670
    for (i = 0; i < 6; i++) {
6671
        qemu_put_be32(f, env->banked_spsr[i]);
6672
        qemu_put_be32(f, env->banked_r13[i]);
6673
        qemu_put_be32(f, env->banked_r14[i]);
6674
    }
6675
    for (i = 0; i < 5; i++) {
6676
        qemu_put_be32(f, env->usr_regs[i]);
6677
        qemu_put_be32(f, env->fiq_regs[i]);
6678
    }
6679
    qemu_put_be32(f, env->cp15.c0_cpuid);
6680
    qemu_put_be32(f, env->cp15.c0_cachetype);
6681
    qemu_put_be32(f, env->cp15.c1_sys);
6682
    qemu_put_be32(f, env->cp15.c1_coproc);
6683
    qemu_put_be32(f, env->cp15.c1_xscaleauxcr);
6684
    qemu_put_be32(f, env->cp15.c2_base0);
6685
    qemu_put_be32(f, env->cp15.c2_base1);
6686
    qemu_put_be32(f, env->cp15.c2_mask);
6687
    qemu_put_be32(f, env->cp15.c2_data);
6688
    qemu_put_be32(f, env->cp15.c2_insn);
6689
    qemu_put_be32(f, env->cp15.c3);
6690
    qemu_put_be32(f, env->cp15.c5_insn);
6691
    qemu_put_be32(f, env->cp15.c5_data);
6692
    for (i = 0; i < 8; i++) {
6693
        qemu_put_be32(f, env->cp15.c6_region[i]);
6694
    }
6695
    qemu_put_be32(f, env->cp15.c6_insn);
6696
    qemu_put_be32(f, env->cp15.c6_data);
6697
    qemu_put_be32(f, env->cp15.c9_insn);
6698
    qemu_put_be32(f, env->cp15.c9_data);
6699
    qemu_put_be32(f, env->cp15.c13_fcse);
6700
    qemu_put_be32(f, env->cp15.c13_context);
6701
    qemu_put_be32(f, env->cp15.c13_tls1);
6702
    qemu_put_be32(f, env->cp15.c13_tls2);
6703
    qemu_put_be32(f, env->cp15.c13_tls3);
6704
    qemu_put_be32(f, env->cp15.c15_cpar);
6705

    
6706
    qemu_put_be32(f, env->features);
6707

    
6708
    if (arm_feature(env, ARM_FEATURE_VFP)) {
6709
        for (i = 0;  i < 16; i++) {
6710
            CPU_DoubleU u;
6711
            u.d = env->vfp.regs[i];
6712
            qemu_put_be32(f, u.l.upper);
6713
            qemu_put_be32(f, u.l.lower);
6714
        }
6715
        for (i = 0; i < 16; i++) {
6716
            qemu_put_be32(f, env->vfp.xregs[i]);
6717
        }
6718

    
6719
        /* TODO: Should use proper FPSCR access functions.  */
6720
        qemu_put_be32(f, env->vfp.vec_len);
6721
        qemu_put_be32(f, env->vfp.vec_stride);
6722

    
6723
        if (arm_feature(env, ARM_FEATURE_VFP3)) {
6724
            for (i = 16;  i < 32; i++) {
6725
                CPU_DoubleU u;
6726
                u.d = env->vfp.regs[i];
6727
                qemu_put_be32(f, u.l.upper);
6728
                qemu_put_be32(f, u.l.lower);
6729
            }
6730
        }
6731
    }
6732

    
6733
    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6734
        for (i = 0; i < 16; i++) {
6735
            qemu_put_be64(f, env->iwmmxt.regs[i]);
6736
        }
6737
        for (i = 0; i < 16; i++) {
6738
            qemu_put_be32(f, env->iwmmxt.cregs[i]);
6739
        }
6740
    }
6741

    
6742
    if (arm_feature(env, ARM_FEATURE_M)) {
6743
        qemu_put_be32(f, env->v7m.other_sp);
6744
        qemu_put_be32(f, env->v7m.vecbase);
6745
        qemu_put_be32(f, env->v7m.basepri);
6746
        qemu_put_be32(f, env->v7m.control);
6747
        qemu_put_be32(f, env->v7m.current_sp);
6748
        qemu_put_be32(f, env->v7m.exception);
6749
    }
6750
}
6751

    
6752
int cpu_load(QEMUFile *f, void *opaque, int version_id)
6753
{
6754
    CPUARMState *env = (CPUARMState *)opaque;
6755
    int i;
6756

    
6757
    if (version_id != ARM_CPU_SAVE_VERSION)
6758
        return -EINVAL;
6759

    
6760
    for (i = 0; i < 16; i++) {
6761
        env->regs[i] = qemu_get_be32(f);
6762
    }
6763
    cpsr_write(env, qemu_get_be32(f), 0xffffffff);
6764
    env->spsr = qemu_get_be32(f);
6765
    for (i = 0; i < 6; i++) {
6766
        env->banked_spsr[i] = qemu_get_be32(f);
6767
        env->banked_r13[i] = qemu_get_be32(f);
6768
        env->banked_r14[i] = qemu_get_be32(f);
6769
    }
6770
    for (i = 0; i < 5; i++) {
6771
        env->usr_regs[i] = qemu_get_be32(f);
6772
        env->fiq_regs[i] = qemu_get_be32(f);
6773
    }
6774
    env->cp15.c0_cpuid = qemu_get_be32(f);
6775
    env->cp15.c0_cachetype = qemu_get_be32(f);
6776
    env->cp15.c1_sys = qemu_get_be32(f);
6777
    env->cp15.c1_coproc = qemu_get_be32(f);
6778
    env->cp15.c1_xscaleauxcr = qemu_get_be32(f);
6779
    env->cp15.c2_base0 = qemu_get_be32(f);
6780
    env->cp15.c2_base1 = qemu_get_be32(f);
6781
    env->cp15.c2_mask = qemu_get_be32(f);
6782
    env->cp15.c2_data = qemu_get_be32(f);
6783
    env->cp15.c2_insn = qemu_get_be32(f);
6784
    env->cp15.c3 = qemu_get_be32(f);
6785
    env->cp15.c5_insn = qemu_get_be32(f);
6786
    env->cp15.c5_data = qemu_get_be32(f);
6787
    for (i = 0; i < 8; i++) {
6788
        env->cp15.c6_region[i] = qemu_get_be32(f);
6789
    }
6790
    env->cp15.c6_insn = qemu_get_be32(f);
6791
    env->cp15.c6_data = qemu_get_be32(f);
6792
    env->cp15.c9_insn = qemu_get_be32(f);
6793
    env->cp15.c9_data = qemu_get_be32(f);
6794
    env->cp15.c13_fcse = qemu_get_be32(f);
6795
    env->cp15.c13_context = qemu_get_be32(f);
6796
    env->cp15.c13_tls1 = qemu_get_be32(f);
6797
    env->cp15.c13_tls2 = qemu_get_be32(f);
6798
    env->cp15.c13_tls3 = qemu_get_be32(f);
6799
    env->cp15.c15_cpar = qemu_get_be32(f);
6800

    
6801
    env->features = qemu_get_be32(f);
6802

    
6803
    if (arm_feature(env, ARM_FEATURE_VFP)) {
6804
        for (i = 0;  i < 16; i++) {
6805
            CPU_DoubleU u;
6806
            u.l.upper = qemu_get_be32(f);
6807
            u.l.lower = qemu_get_be32(f);
6808
            env->vfp.regs[i] = u.d;
6809
        }
6810
        for (i = 0; i < 16; i++) {
6811
            env->vfp.xregs[i] = qemu_get_be32(f);
6812
        }
6813

    
6814
        /* TODO: Should use proper FPSCR access functions.  */
6815
        env->vfp.vec_len = qemu_get_be32(f);
6816
        env->vfp.vec_stride = qemu_get_be32(f);
6817

    
6818
        if (arm_feature(env, ARM_FEATURE_VFP3)) {
6819
            for (i = 0;  i < 16; i++) {
6820
                CPU_DoubleU u;
6821
                u.l.upper = qemu_get_be32(f);
6822
                u.l.lower = qemu_get_be32(f);
6823
                env->vfp.regs[i] = u.d;
6824
            }
6825
        }
6826
    }
6827

    
6828
    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6829
        for (i = 0; i < 16; i++) {
6830
            env->iwmmxt.regs[i] = qemu_get_be64(f);
6831
        }
6832
        for (i = 0; i < 16; i++) {
6833
            env->iwmmxt.cregs[i] = qemu_get_be32(f);
6834
        }
6835
    }
6836

    
6837
    if (arm_feature(env, ARM_FEATURE_M)) {
6838
        env->v7m.other_sp = qemu_get_be32(f);
6839
        env->v7m.vecbase = qemu_get_be32(f);
6840
        env->v7m.basepri = qemu_get_be32(f);
6841
        env->v7m.control = qemu_get_be32(f);
6842
        env->v7m.current_sp = qemu_get_be32(f);
6843
        env->v7m.exception = qemu_get_be32(f);
6844
    }
6845

    
6846
    return 0;
6847
}
6848

    
6849
#else
6850

    
6851
//#warning No CPU save/restore functions
6852

    
6853
#endif
6854

    
6855
/***********************************************************/
6856
/* ram save/restore */
6857

    
6858
static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
6859
{
6860
    int v;
6861

    
6862
    v = qemu_get_byte(f);
6863
    switch(v) {
6864
    case 0:
6865
        if (qemu_get_buffer(f, buf, len) != len)
6866
            return -EIO;
6867
        break;
6868
    case 1:
6869
        v = qemu_get_byte(f);
6870
        memset(buf, v, len);
6871
        break;
6872
    default:
6873
        return -EINVAL;
6874
    }
6875
    return 0;
6876
}
6877

    
6878
static int ram_load_v1(QEMUFile *f, void *opaque)
6879
{
6880
    int i, ret;
6881

    
6882
    if (qemu_get_be32(f) != phys_ram_size)
6883
        return -EINVAL;
6884
    for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
6885
        ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
6886
        if (ret)
6887
            return ret;
6888
    }
6889
    return 0;
6890
}
6891

    
6892
#define BDRV_HASH_BLOCK_SIZE 1024
6893
#define IOBUF_SIZE 4096
6894
#define RAM_CBLOCK_MAGIC 0xfabe
6895

    
6896
typedef struct RamCompressState {
6897
    z_stream zstream;
6898
    QEMUFile *f;
6899
    uint8_t buf[IOBUF_SIZE];
6900
} RamCompressState;
6901

    
6902
static int ram_compress_open(RamCompressState *s, QEMUFile *f)
6903
{
6904
    int ret;
6905
    memset(s, 0, sizeof(*s));
6906
    s->f = f;
6907
    ret = deflateInit2(&s->zstream, 1,
6908
                       Z_DEFLATED, 15,
6909
                       9, Z_DEFAULT_STRATEGY);
6910
    if (ret != Z_OK)
6911
        return -1;
6912
    s->zstream.avail_out = IOBUF_SIZE;
6913
    s->zstream.next_out = s->buf;
6914
    return 0;
6915
}
6916

    
6917
static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len)
6918
{
6919
    qemu_put_be16(s->f, RAM_CBLOCK_MAGIC);
6920
    qemu_put_be16(s->f, len);
6921
    qemu_put_buffer(s->f, buf, len);
6922
}
6923

    
6924
static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len)
6925
{
6926
    int ret;
6927

    
6928
    s->zstream.avail_in = len;
6929
    s->zstream.next_in = (uint8_t *)buf;
6930
    while (s->zstream.avail_in > 0) {
6931
        ret = deflate(&s->zstream, Z_NO_FLUSH);
6932
        if (ret != Z_OK)
6933
            return -1;
6934
        if (s->zstream.avail_out == 0) {
6935
            ram_put_cblock(s, s->buf, IOBUF_SIZE);
6936
            s->zstream.avail_out = IOBUF_SIZE;
6937
            s->zstream.next_out = s->buf;
6938
        }
6939
    }
6940
    return 0;
6941
}
6942

    
6943
static void ram_compress_close(RamCompressState *s)
6944
{
6945
    int len, ret;
6946

    
6947
    /* compress last bytes */
6948
    for(;;) {
6949
        ret = deflate(&s->zstream, Z_FINISH);
6950
        if (ret == Z_OK || ret == Z_STREAM_END) {
6951
            len = IOBUF_SIZE - s->zstream.avail_out;
6952
            if (len > 0) {
6953
                ram_put_cblock(s, s->buf, len);
6954
            }
6955
            s->zstream.avail_out = IOBUF_SIZE;
6956
            s->zstream.next_out = s->buf;
6957
            if (ret == Z_STREAM_END)
6958
                break;
6959
        } else {
6960
            goto fail;
6961
        }
6962
    }
6963
fail:
6964
    deflateEnd(&s->zstream);
6965
}
6966

    
6967
typedef struct RamDecompressState {
6968
    z_stream zstream;
6969
    QEMUFile *f;
6970
    uint8_t buf[IOBUF_SIZE];
6971
} RamDecompressState;
6972

    
6973
static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
6974
{
6975
    int ret;
6976
    memset(s, 0, sizeof(*s));
6977
    s->f = f;
6978
    ret = inflateInit(&s->zstream);
6979
    if (ret != Z_OK)
6980
        return -1;
6981
    return 0;
6982
}
6983

    
6984
static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
6985
{
6986
    int ret, clen;
6987

    
6988
    s->zstream.avail_out = len;
6989
    s->zstream.next_out = buf;
6990
    while (s->zstream.avail_out > 0) {
6991
        if (s->zstream.avail_in == 0) {
6992
            if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
6993
                return -1;
6994
            clen = qemu_get_be16(s->f);
6995
            if (clen > IOBUF_SIZE)
6996
                return -1;
6997
            qemu_get_buffer(s->f, s->buf, clen);
6998
            s->zstream.avail_in = clen;
6999
            s->zstream.next_in = s->buf;
7000
        }
7001
        ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
7002
        if (ret != Z_OK && ret != Z_STREAM_END) {
7003
            return -1;
7004
        }
7005
    }
7006
    return 0;
7007
}
7008

    
7009
static void ram_decompress_close(RamDecompressState *s)
7010
{
7011
    inflateEnd(&s->zstream);
7012
}
7013

    
7014
static void ram_save(QEMUFile *f, void *opaque)
7015
{
7016
    int i;
7017
    RamCompressState s1, *s = &s1;
7018
    uint8_t buf[10];
7019

    
7020
    qemu_put_be32(f, phys_ram_size);
7021
    if (ram_compress_open(s, f) < 0)
7022
        return;
7023
    for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
7024
#if 0
7025
        if (tight_savevm_enabled) {
7026
            int64_t sector_num;
7027
            int j;
7028

7029
            /* find if the memory block is available on a virtual
7030
               block device */
7031
            sector_num = -1;
7032
            for(j = 0; j < nb_drives; j++) {
7033
                sector_num = bdrv_hash_find(drives_table[j].bdrv,
7034
                                            phys_ram_base + i,
7035
                                            BDRV_HASH_BLOCK_SIZE);
7036
                if (sector_num >= 0)
7037
                    break;
7038
            }
7039
            if (j == nb_drives)
7040
                goto normal_compress;
7041
            buf[0] = 1;
7042
            buf[1] = j;
7043
            cpu_to_be64wu((uint64_t *)(buf + 2), sector_num);
7044
            ram_compress_buf(s, buf, 10);
7045
        } else
7046
#endif
7047
        {
7048
            //        normal_compress:
7049
            buf[0] = 0;
7050
            ram_compress_buf(s, buf, 1);
7051
            ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
7052
        }
7053
    }
7054
    ram_compress_close(s);
7055
}
7056

    
7057
static int ram_load(QEMUFile *f, void *opaque, int version_id)
7058
{
7059
    RamDecompressState s1, *s = &s1;
7060
    uint8_t buf[10];
7061
    int i;
7062

    
7063
    if (version_id == 1)
7064
        return ram_load_v1(f, opaque);
7065
    if (version_id != 2)
7066
        return -EINVAL;
7067
    if (qemu_get_be32(f) != phys_ram_size)
7068
        return -EINVAL;
7069
    if (ram_decompress_open(s, f) < 0)
7070
        return -EINVAL;
7071
    for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
7072
        if (ram_decompress_buf(s, buf, 1) < 0) {
7073
            fprintf(stderr, "Error while reading ram block header\n");
7074
            goto error;
7075
        }
7076
        if (buf[0] == 0) {
7077
            if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
7078
                fprintf(stderr, "Error while reading ram block address=0x%08x", i);
7079
                goto error;
7080
            }
7081
        } else
7082
#if 0
7083
        if (buf[0] == 1) {
7084
            int bs_index;
7085
            int64_t sector_num;
7086

7087
            ram_decompress_buf(s, buf + 1, 9);
7088
            bs_index = buf[1];
7089
            sector_num = be64_to_cpupu((const uint64_t *)(buf + 2));
7090
            if (bs_index >= nb_drives) {
7091
                fprintf(stderr, "Invalid block device index %d\n", bs_index);
7092
                goto error;
7093
            }
7094
            if (bdrv_read(drives_table[bs_index].bdrv, sector_num,
7095
                          phys_ram_base + i,
7096
                          BDRV_HASH_BLOCK_SIZE / 512) < 0) {
7097
                fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n",
7098
                        bs_index, sector_num);
7099
                goto error;
7100
            }
7101
        } else
7102
#endif
7103
        {
7104
        error:
7105
            printf("Error block header\n");
7106
            return -EINVAL;
7107
        }
7108
    }
7109
    ram_decompress_close(s);
7110
    return 0;
7111
}
7112

    
7113
/***********************************************************/
7114
/* bottom halves (can be seen as timers which expire ASAP) */
7115

    
7116
struct QEMUBH {
7117
    QEMUBHFunc *cb;
7118
    void *opaque;
7119
    int scheduled;
7120
    QEMUBH *next;
7121
};
7122

    
7123
static QEMUBH *first_bh = NULL;
7124

    
7125
QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
7126
{
7127
    QEMUBH *bh;
7128
    bh = qemu_mallocz(sizeof(QEMUBH));
7129
    if (!bh)
7130
        return NULL;
7131
    bh->cb = cb;
7132
    bh->opaque = opaque;
7133
    return bh;
7134
}
7135

    
7136
int qemu_bh_poll(void)
7137
{
7138
    QEMUBH *bh, **pbh;
7139
    int ret;
7140

    
7141
    ret = 0;
7142
    for(;;) {
7143
        pbh = &first_bh;
7144
        bh = *pbh;
7145
        if (!bh)
7146
            break;
7147
        ret = 1;
7148
        *pbh = bh->next;
7149
        bh->scheduled = 0;
7150
        bh->cb(bh->opaque);
7151
    }
7152
    return ret;
7153
}
7154

    
7155
void qemu_bh_schedule(QEMUBH *bh)
7156
{
7157
    CPUState *env = cpu_single_env;
7158
    if (bh->scheduled)
7159
        return;
7160
    bh->scheduled = 1;
7161
    bh->next = first_bh;
7162
    first_bh = bh;
7163

    
7164
    /* stop the currently executing CPU to execute the BH ASAP */
7165
    if (env) {
7166
        cpu_interrupt(env, CPU_INTERRUPT_EXIT);
7167
    }
7168
}
7169

    
7170
void qemu_bh_cancel(QEMUBH *bh)
7171
{
7172
    QEMUBH **pbh;
7173
    if (bh->scheduled) {
7174
        pbh = &first_bh;
7175
        while (*pbh != bh)
7176
            pbh = &(*pbh)->next;
7177
        *pbh = bh->next;
7178
        bh->scheduled = 0;
7179
    }
7180
}
7181

    
7182
void qemu_bh_delete(QEMUBH *bh)
7183
{
7184
    qemu_bh_cancel(bh);
7185
    qemu_free(bh);
7186
}
7187

    
7188
/***********************************************************/
7189
/* machine registration */
7190

    
7191
QEMUMachine *first_machine = NULL;
7192

    
7193
int qemu_register_machine(QEMUMachine *m)
7194
{
7195
    QEMUMachine **pm;
7196
    pm = &first_machine;
7197
    while (*pm != NULL)
7198
        pm = &(*pm)->next;
7199
    m->next = NULL;
7200
    *pm = m;
7201
    return 0;
7202
}
7203

    
7204
static QEMUMachine *find_machine(const char *name)
7205
{
7206
    QEMUMachine *m;
7207

    
7208
    for(m = first_machine; m != NULL; m = m->next) {
7209
        if (!strcmp(m->name, name))
7210
            return m;
7211
    }
7212
    return NULL;
7213
}
7214

    
7215
/***********************************************************/
7216
/* main execution loop */
7217

    
7218
static void gui_update(void *opaque)
7219
{
7220
    DisplayState *ds = opaque;
7221
    ds->dpy_refresh(ds);
7222
    qemu_mod_timer(ds->gui_timer,
7223
        (ds->gui_timer_interval ?
7224
            ds->gui_timer_interval :
7225
            GUI_REFRESH_INTERVAL)
7226
        + qemu_get_clock(rt_clock));
7227
}
7228

    
7229
struct vm_change_state_entry {
7230
    VMChangeStateHandler *cb;
7231
    void *opaque;
7232
    LIST_ENTRY (vm_change_state_entry) entries;
7233
};
7234

    
7235
static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
7236

    
7237
VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
7238
                                                     void *opaque)
7239
{
7240
    VMChangeStateEntry *e;
7241

    
7242
    e = qemu_mallocz(sizeof (*e));
7243
    if (!e)
7244
        return NULL;
7245

    
7246
    e->cb = cb;
7247
    e->opaque = opaque;
7248
    LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
7249
    return e;
7250
}
7251

    
7252
void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
7253
{
7254
    LIST_REMOVE (e, entries);
7255
    qemu_free (e);
7256
}
7257

    
7258
static void vm_state_notify(int running)
7259
{
7260
    VMChangeStateEntry *e;
7261

    
7262
    for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
7263
        e->cb(e->opaque, running);
7264
    }
7265
}
7266

    
7267
/* XXX: support several handlers */
7268
static VMStopHandler *vm_stop_cb;
7269
static void *vm_stop_opaque;
7270

    
7271
int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
7272
{
7273
    vm_stop_cb = cb;
7274
    vm_stop_opaque = opaque;
7275
    return 0;
7276
}
7277

    
7278
void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
7279
{
7280
    vm_stop_cb = NULL;
7281
}
7282

    
7283
void vm_start(void)
7284
{
7285
    if (!vm_running) {
7286
        cpu_enable_ticks();
7287
        vm_running = 1;
7288
        vm_state_notify(1);
7289
        qemu_rearm_alarm_timer(alarm_timer);
7290
    }
7291
}
7292

    
7293
void vm_stop(int reason)
7294
{
7295
    if (vm_running) {
7296
        cpu_disable_ticks();
7297
        vm_running = 0;
7298
        if (reason != 0) {
7299
            if (vm_stop_cb) {
7300
                vm_stop_cb(vm_stop_opaque, reason);
7301
            }
7302
        }
7303
        vm_state_notify(0);
7304
    }
7305
}
7306

    
7307
/* reset/shutdown handler */
7308

    
7309
typedef struct QEMUResetEntry {
7310
    QEMUResetHandler *func;
7311
    void *opaque;
7312
    struct QEMUResetEntry *next;
7313
} QEMUResetEntry;
7314

    
7315
static QEMUResetEntry *first_reset_entry;
7316
static int reset_requested;
7317
static int shutdown_requested;
7318
static int powerdown_requested;
7319

    
7320
int qemu_shutdown_requested(void)
7321
{
7322
    int r = shutdown_requested;
7323
    shutdown_requested = 0;
7324
    return r;
7325
}
7326

    
7327
int qemu_reset_requested(void)
7328
{
7329
    int r = reset_requested;
7330
    reset_requested = 0;
7331
    return r;
7332
}
7333

    
7334
int qemu_powerdown_requested(void)
7335
{
7336
    int r = powerdown_requested;
7337
    powerdown_requested = 0;
7338
    return r;
7339
}
7340

    
7341
void qemu_register_reset(QEMUResetHandler *func, void *opaque)
7342
{
7343
    QEMUResetEntry **pre, *re;
7344

    
7345
    pre = &first_reset_entry;
7346
    while (*pre != NULL)
7347
        pre = &(*pre)->next;
7348
    re = qemu_mallocz(sizeof(QEMUResetEntry));
7349
    re->func = func;
7350
    re->opaque = opaque;
7351
    re->next = NULL;
7352
    *pre = re;
7353
}
7354

    
7355
void qemu_system_reset(void)
7356
{
7357
    QEMUResetEntry *re;
7358

    
7359
    /* reset all devices */
7360
    for(re = first_reset_entry; re != NULL; re = re->next) {
7361
        re->func(re->opaque);
7362
    }
7363
}
7364

    
7365
void qemu_system_reset_request(void)
7366
{
7367
    if (no_reboot) {
7368
        shutdown_requested = 1;
7369
    } else {
7370
        reset_requested = 1;
7371
    }
7372
    if (cpu_single_env)
7373
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7374
}
7375

    
7376
void qemu_system_shutdown_request(void)
7377
{
7378
    shutdown_requested = 1;
7379
    if (cpu_single_env)
7380
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7381
}
7382

    
7383
void qemu_system_powerdown_request(void)
7384
{
7385
    powerdown_requested = 1;
7386
    if (cpu_single_env)
7387
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7388
}
7389

    
7390
void main_loop_wait(int timeout)
7391
{
7392
    IOHandlerRecord *ioh;
7393
    fd_set rfds, wfds, xfds;
7394
    int ret, nfds;
7395
#ifdef _WIN32
7396
    int ret2, i;
7397
#endif
7398
    struct timeval tv;
7399
    PollingEntry *pe;
7400

    
7401

    
7402
    /* XXX: need to suppress polling by better using win32 events */
7403
    ret = 0;
7404
    for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
7405
        ret |= pe->func(pe->opaque);
7406
    }
7407
#ifdef _WIN32
7408
    if (ret == 0) {
7409
        int err;
7410
        WaitObjects *w = &wait_objects;
7411

    
7412
        ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
7413
        if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
7414
            if (w->func[ret - WAIT_OBJECT_0])
7415
                w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
7416

    
7417
            /* Check for additional signaled events */
7418
            for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
7419

    
7420
                /* Check if event is signaled */
7421
                ret2 = WaitForSingleObject(w->events[i], 0);
7422
                if(ret2 == WAIT_OBJECT_0) {
7423
                    if (w->func[i])
7424
                        w->func[i](w->opaque[i]);
7425
                } else if (ret2 == WAIT_TIMEOUT) {
7426
                } else {
7427
                    err = GetLastError();
7428
                    fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
7429
                }
7430
            }
7431
        } else if (ret == WAIT_TIMEOUT) {
7432
        } else {
7433
            err = GetLastError();
7434
            fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
7435
        }
7436
    }
7437
#endif
7438
    /* poll any events */
7439
    /* XXX: separate device handlers from system ones */
7440
    nfds = -1;
7441
    FD_ZERO(&rfds);
7442
    FD_ZERO(&wfds);
7443
    FD_ZERO(&xfds);
7444
    for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
7445
        if (ioh->deleted)
7446
            continue;
7447
        if (ioh->fd_read &&
7448
            (!ioh->fd_read_poll ||
7449
             ioh->fd_read_poll(ioh->opaque) != 0)) {
7450
            FD_SET(ioh->fd, &rfds);
7451
            if (ioh->fd > nfds)
7452
                nfds = ioh->fd;
7453
        }
7454
        if (ioh->fd_write) {
7455
            FD_SET(ioh->fd, &wfds);
7456
            if (ioh->fd > nfds)
7457
                nfds = ioh->fd;
7458
        }
7459
    }
7460

    
7461
    tv.tv_sec = 0;
7462
#ifdef _WIN32
7463
    tv.tv_usec = 0;
7464
#else
7465
    tv.tv_usec = timeout * 1000;
7466
#endif
7467
#if defined(CONFIG_SLIRP)
7468
    if (slirp_inited) {
7469
        slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
7470
    }
7471
#endif
7472
    ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
7473
    if (ret > 0) {
7474
        IOHandlerRecord **pioh;
7475

    
7476
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
7477
            if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
7478
                ioh->fd_read(ioh->opaque);
7479
            }
7480
            if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
7481
                ioh->fd_write(ioh->opaque);
7482
            }
7483
        }
7484

    
7485
        /* remove deleted IO handlers */
7486
        pioh = &first_io_handler;
7487
        while (*pioh) {
7488
            ioh = *pioh;
7489
            if (ioh->deleted) {
7490
                *pioh = ioh->next;
7491
                qemu_free(ioh);
7492
            } else
7493
                pioh = &ioh->next;
7494
        }
7495
    }
7496
#if defined(CONFIG_SLIRP)
7497
    if (slirp_inited) {
7498
        if (ret < 0) {
7499
            FD_ZERO(&rfds);
7500
            FD_ZERO(&wfds);
7501
            FD_ZERO(&xfds);
7502
        }
7503
        slirp_select_poll(&rfds, &wfds, &xfds);
7504
    }
7505
#endif
7506
    qemu_aio_poll();
7507

    
7508
    if (vm_running) {
7509
        qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
7510
                        qemu_get_clock(vm_clock));
7511
        /* run dma transfers, if any */
7512
        DMA_run();
7513
    }
7514

    
7515
    /* real time timers */
7516
    qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
7517
                    qemu_get_clock(rt_clock));
7518

    
7519
    if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
7520
        alarm_timer->flags &= ~(ALARM_FLAG_EXPIRED);
7521
        qemu_rearm_alarm_timer(alarm_timer);
7522
    }
7523

    
7524
    /* Check bottom-halves last in case any of the earlier events triggered
7525
       them.  */
7526
    qemu_bh_poll();
7527

    
7528
}
7529

    
7530
static int main_loop(void)
7531
{
7532
    int ret, timeout;
7533
#ifdef CONFIG_PROFILER
7534
    int64_t ti;
7535
#endif
7536
    CPUState *env;
7537

    
7538
    cur_cpu = first_cpu;
7539
    next_cpu = cur_cpu->next_cpu ?: first_cpu;
7540
    for(;;) {
7541
        if (vm_running) {
7542

    
7543
            for(;;) {
7544
                /* get next cpu */
7545
                env = next_cpu;
7546
#ifdef CONFIG_PROFILER
7547
                ti = profile_getclock();
7548
#endif
7549
                ret = cpu_exec(env);
7550
#ifdef CONFIG_PROFILER
7551
                qemu_time += profile_getclock() - ti;
7552
#endif
7553
                next_cpu = env->next_cpu ?: first_cpu;
7554
                if (event_pending && likely(ret != EXCP_DEBUG)) {
7555
                    ret = EXCP_INTERRUPT;
7556
                    event_pending = 0;
7557
                    break;
7558
                }
7559
                if (ret == EXCP_HLT) {
7560
                    /* Give the next CPU a chance to run.  */
7561
                    cur_cpu = env;
7562
                    continue;
7563
                }
7564
                if (ret != EXCP_HALTED)
7565
                    break;
7566
                /* all CPUs are halted ? */
7567
                if (env == cur_cpu)
7568
                    break;
7569
            }
7570
            cur_cpu = env;
7571

    
7572
            if (shutdown_requested) {
7573
                ret = EXCP_INTERRUPT;
7574
                if (no_shutdown) {
7575
                    vm_stop(0);
7576
                    no_shutdown = 0;
7577
                }
7578
                else
7579
                    break;
7580
            }
7581
            if (reset_requested) {
7582
                reset_requested = 0;
7583
                qemu_system_reset();
7584
                ret = EXCP_INTERRUPT;
7585
            }
7586
            if (powerdown_requested) {
7587
                powerdown_requested = 0;
7588
                qemu_system_powerdown();
7589
                ret = EXCP_INTERRUPT;
7590
            }
7591
            if (unlikely(ret == EXCP_DEBUG)) {
7592
                vm_stop(EXCP_DEBUG);
7593
            }
7594
            /* If all cpus are halted then wait until the next IRQ */
7595
            /* XXX: use timeout computed from timers */
7596
            if (ret == EXCP_HALTED)
7597
                timeout = 10;
7598
            else
7599
                timeout = 0;
7600
        } else {
7601
            timeout = 10;
7602
        }
7603
#ifdef CONFIG_PROFILER
7604
        ti = profile_getclock();
7605
#endif
7606
        main_loop_wait(timeout);
7607
#ifdef CONFIG_PROFILER
7608
        dev_time += profile_getclock() - ti;
7609
#endif
7610
    }
7611
    cpu_disable_ticks();
7612
    return ret;
7613
}
7614

    
7615
static void help(int exitcode)
7616
{
7617
    printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"
7618
           "usage: %s [options] [disk_image]\n"
7619
           "\n"
7620
           "'disk_image' is a raw hard image image for IDE hard disk 0\n"
7621
           "\n"
7622
           "Standard options:\n"
7623
           "-M machine      select emulated machine (-M ? for list)\n"
7624
           "-cpu cpu        select CPU (-cpu ? for list)\n"
7625
           "-fda/-fdb file  use 'file' as floppy disk 0/1 image\n"
7626
           "-hda/-hdb file  use 'file' as IDE hard disk 0/1 image\n"
7627
           "-hdc/-hdd file  use 'file' as IDE hard disk 2/3 image\n"
7628
           "-cdrom file     use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
7629
           "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][index=i]\n"
7630
           "       [,cyls=c,heads=h,secs=s[,trans=t]][snapshot=on|off]"
7631
           "       [,cache=on|off]\n"
7632
           "                use 'file' as a drive image\n"
7633
           "-mtdblock file  use 'file' as on-board Flash memory image\n"
7634
           "-sd file        use 'file' as SecureDigital card image\n"
7635
           "-pflash file    use 'file' as a parallel flash image\n"
7636
           "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
7637
           "-snapshot       write to temporary files instead of disk image files\n"
7638
#ifdef CONFIG_SDL
7639
           "-no-frame       open SDL window without a frame and window decorations\n"
7640
           "-alt-grab       use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
7641
           "-no-quit        disable SDL window close capability\n"
7642
#endif
7643
#ifdef TARGET_I386
7644
           "-no-fd-bootchk  disable boot signature checking for floppy disks\n"
7645
#endif
7646
           "-m megs         set virtual RAM size to megs MB [default=%d]\n"
7647
           "-smp n          set the number of CPUs to 'n' [default=1]\n"
7648
           "-nographic      disable graphical output and redirect serial I/Os to console\n"
7649
           "-portrait       rotate graphical output 90 deg left (only PXA LCD)\n"
7650
#ifndef _WIN32
7651
           "-k language     use keyboard layout (for example \"fr\" for French)\n"
7652
#endif
7653
#ifdef HAS_AUDIO
7654
           "-audio-help     print list of audio drivers and their options\n"
7655
           "-soundhw c1,... enable audio support\n"
7656
           "                and only specified sound cards (comma separated list)\n"
7657
           "                use -soundhw ? to get the list of supported cards\n"
7658
           "                use -soundhw all to enable all of them\n"
7659
#endif
7660
           "-localtime      set the real time clock to local time [default=utc]\n"
7661
           "-full-screen    start in full screen\n"
7662
#ifdef TARGET_I386
7663
           "-win2k-hack     use it when installing Windows 2000 to avoid a disk full bug\n"
7664
#endif
7665
           "-usb            enable the USB driver (will be the default soon)\n"
7666
           "-usbdevice name add the host or guest USB device 'name'\n"
7667
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
7668
           "-g WxH[xDEPTH]  Set the initial graphical resolution and depth\n"
7669
#endif
7670
           "-name string    set the name of the guest\n"
7671
           "\n"
7672
           "Network options:\n"
7673
           "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
7674
           "                create a new Network Interface Card and connect it to VLAN 'n'\n"
7675
#ifdef CONFIG_SLIRP
7676
           "-net user[,vlan=n][,hostname=host]\n"
7677
           "                connect the user mode network stack to VLAN 'n' and send\n"
7678
           "                hostname 'host' to DHCP clients\n"
7679
#endif
7680
#ifdef _WIN32
7681
           "-net tap[,vlan=n],ifname=name\n"
7682
           "                connect the host TAP network interface to VLAN 'n'\n"
7683
#else
7684
           "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
7685
           "                connect the host TAP network interface to VLAN 'n' and use the\n"
7686
           "                network scripts 'file' (default=%s)\n"
7687
           "                and 'dfile' (default=%s);\n"
7688
           "                use '[down]script=no' to disable script execution;\n"
7689
           "                use 'fd=h' to connect to an already opened TAP interface\n"
7690
#endif
7691
           "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
7692
           "                connect the vlan 'n' to another VLAN using a socket connection\n"
7693
           "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
7694
           "                connect the vlan 'n' to multicast maddr and port\n"
7695
           "-net none       use it alone to have zero network devices; if no -net option\n"
7696
           "                is provided, the default is '-net nic -net user'\n"
7697
           "\n"
7698
#ifdef CONFIG_SLIRP
7699
           "-tftp dir       allow tftp access to files in dir [-net user]\n"
7700
           "-bootp file     advertise file in BOOTP replies\n"
7701
#ifndef _WIN32
7702
           "-smb dir        allow SMB access to files in 'dir' [-net user]\n"
7703
#endif
7704
           "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
7705
           "                redirect TCP or UDP connections from host to guest [-net user]\n"
7706
#endif
7707
           "\n"
7708
           "Linux boot specific:\n"
7709
           "-kernel bzImage use 'bzImage' as kernel image\n"
7710
           "-append cmdline use 'cmdline' as kernel command line\n"
7711
           "-initrd file    use 'file' as initial ram disk\n"
7712
           "\n"
7713
           "Debug/Expert options:\n"
7714
           "-monitor dev    redirect the monitor to char device 'dev'\n"
7715
           "-serial dev     redirect the serial port to char device 'dev'\n"
7716
           "-parallel dev   redirect the parallel port to char device 'dev'\n"
7717
           "-pidfile file   Write PID to 'file'\n"
7718
           "-S              freeze CPU at startup (use 'c' to start execution)\n"
7719
           "-s              wait gdb connection to port\n"
7720
           "-p port         set gdb connection port [default=%s]\n"
7721
           "-d item1,...    output log to %s (use -d ? for a list of log items)\n"
7722
           "-hdachs c,h,s[,t]  force hard disk 0 physical geometry and the optional BIOS\n"
7723
           "                translation (t=none or lba) (usually qemu can guess them)\n"
7724
           "-L path         set the directory for the BIOS, VGA BIOS and keymaps\n"
7725
#ifdef USE_KQEMU
7726
           "-kernel-kqemu   enable KQEMU full virtualization (default is user mode only)\n"
7727
           "-no-kqemu       disable KQEMU kernel module usage\n"
7728
#endif
7729
#ifdef TARGET_I386
7730
           "-std-vga        simulate a standard VGA card with VESA Bochs Extensions\n"
7731
           "                (default is CL-GD5446 PCI VGA)\n"
7732
           "-no-acpi        disable ACPI\n"
7733
#endif
7734
#ifdef CONFIG_CURSES
7735
           "-curses         use a curses/ncurses interface instead of SDL\n"
7736
#endif
7737
           "-no-reboot      exit instead of rebooting\n"
7738
           "-no-shutdown    stop before shutdown\n"
7739
           "-loadvm file    start right away with a saved state (loadvm in monitor)\n"
7740
           "-vnc display    start a VNC server on display\n"
7741
#ifndef _WIN32
7742
           "-daemonize      daemonize QEMU after initializing\n"
7743
#endif
7744
           "-option-rom rom load a file, rom, into the option ROM space\n"
7745
#ifdef TARGET_SPARC
7746
           "-prom-env variable=value  set OpenBIOS nvram variables\n"
7747
#endif
7748
           "-clock          force the use of the given methods for timer alarm.\n"
7749
           "                To see what timers are available use -clock ?\n"
7750
           "-startdate      select initial date of the clock\n"
7751
           "\n"
7752
           "During emulation, the following keys are useful:\n"
7753
           "ctrl-alt-f      toggle full screen\n"
7754
           "ctrl-alt-n      switch to virtual console 'n'\n"
7755
           "ctrl-alt        toggle mouse and keyboard grab\n"
7756
           "\n"
7757
           "When using -nographic, press 'ctrl-a h' to get some help.\n"
7758
           ,
7759
           "qemu",
7760
           DEFAULT_RAM_SIZE,
7761
#ifndef _WIN32
7762
           DEFAULT_NETWORK_SCRIPT,
7763
           DEFAULT_NETWORK_DOWN_SCRIPT,
7764
#endif
7765
           DEFAULT_GDBSTUB_PORT,
7766
           "/tmp/qemu.log");
7767
    exit(exitcode);
7768
}
7769

    
7770
#define HAS_ARG 0x0001
7771

    
7772
enum {
7773
    QEMU_OPTION_h,
7774

    
7775
    QEMU_OPTION_M,
7776
    QEMU_OPTION_cpu,
7777
    QEMU_OPTION_fda,
7778
    QEMU_OPTION_fdb,
7779
    QEMU_OPTION_hda,
7780
    QEMU_OPTION_hdb,
7781
    QEMU_OPTION_hdc,
7782
    QEMU_OPTION_hdd,
7783
    QEMU_OPTION_drive,
7784
    QEMU_OPTION_cdrom,
7785
    QEMU_OPTION_mtdblock,
7786
    QEMU_OPTION_sd,
7787
    QEMU_OPTION_pflash,
7788
    QEMU_OPTION_boot,
7789
    QEMU_OPTION_snapshot,
7790
#ifdef TARGET_I386
7791
    QEMU_OPTION_no_fd_bootchk,
7792
#endif
7793
    QEMU_OPTION_m,
7794
    QEMU_OPTION_nographic,
7795
    QEMU_OPTION_portrait,
7796
#ifdef HAS_AUDIO
7797
    QEMU_OPTION_audio_help,
7798
    QEMU_OPTION_soundhw,
7799
#endif
7800

    
7801
    QEMU_OPTION_net,
7802
    QEMU_OPTION_tftp,
7803
    QEMU_OPTION_bootp,
7804
    QEMU_OPTION_smb,
7805
    QEMU_OPTION_redir,
7806

    
7807
    QEMU_OPTION_kernel,
7808
    QEMU_OPTION_append,
7809
    QEMU_OPTION_initrd,
7810

    
7811
    QEMU_OPTION_S,
7812
    QEMU_OPTION_s,
7813
    QEMU_OPTION_p,
7814
    QEMU_OPTION_d,
7815
    QEMU_OPTION_hdachs,
7816
    QEMU_OPTION_L,
7817
    QEMU_OPTION_bios,
7818
    QEMU_OPTION_no_code_copy,
7819
    QEMU_OPTION_k,
7820
    QEMU_OPTION_localtime,
7821
    QEMU_OPTION_cirrusvga,
7822
    QEMU_OPTION_vmsvga,
7823
    QEMU_OPTION_g,
7824
    QEMU_OPTION_std_vga,
7825
    QEMU_OPTION_echr,
7826
    QEMU_OPTION_monitor,
7827
    QEMU_OPTION_serial,
7828
    QEMU_OPTION_parallel,
7829
    QEMU_OPTION_loadvm,
7830
    QEMU_OPTION_full_screen,
7831
    QEMU_OPTION_no_frame,
7832
    QEMU_OPTION_alt_grab,
7833
    QEMU_OPTION_no_quit,
7834
    QEMU_OPTION_pidfile,
7835
    QEMU_OPTION_no_kqemu,
7836
    QEMU_OPTION_kernel_kqemu,
7837
    QEMU_OPTION_win2k_hack,
7838
    QEMU_OPTION_usb,
7839
    QEMU_OPTION_usbdevice,
7840
    QEMU_OPTION_smp,
7841
    QEMU_OPTION_vnc,
7842
    QEMU_OPTION_no_acpi,
7843
    QEMU_OPTION_curses,
7844
    QEMU_OPTION_no_reboot,
7845
    QEMU_OPTION_no_shutdown,
7846
    QEMU_OPTION_show_cursor,
7847
    QEMU_OPTION_daemonize,
7848
    QEMU_OPTION_option_rom,
7849
    QEMU_OPTION_semihosting,
7850
    QEMU_OPTION_name,
7851
    QEMU_OPTION_prom_env,
7852
    QEMU_OPTION_old_param,
7853
    QEMU_OPTION_clock,
7854
    QEMU_OPTION_startdate,
7855
};
7856

    
7857
typedef struct QEMUOption {
7858
    const char *name;
7859
    int flags;
7860
    int index;
7861
} QEMUOption;
7862

    
7863
const QEMUOption qemu_options[] = {
7864
    { "h", 0, QEMU_OPTION_h },
7865
    { "help", 0, QEMU_OPTION_h },
7866

    
7867
    { "M", HAS_ARG, QEMU_OPTION_M },
7868
    { "cpu", HAS_ARG, QEMU_OPTION_cpu },
7869
    { "fda", HAS_ARG, QEMU_OPTION_fda },
7870
    { "fdb", HAS_ARG, QEMU_OPTION_fdb },
7871
    { "hda", HAS_ARG, QEMU_OPTION_hda },
7872
    { "hdb", HAS_ARG, QEMU_OPTION_hdb },
7873
    { "hdc", HAS_ARG, QEMU_OPTION_hdc },
7874
    { "hdd", HAS_ARG, QEMU_OPTION_hdd },
7875
    { "drive", HAS_ARG, QEMU_OPTION_drive },
7876
    { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
7877
    { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
7878
    { "sd", HAS_ARG, QEMU_OPTION_sd },
7879
    { "pflash", HAS_ARG, QEMU_OPTION_pflash },
7880
    { "boot", HAS_ARG, QEMU_OPTION_boot },
7881
    { "snapshot", 0, QEMU_OPTION_snapshot },
7882
#ifdef TARGET_I386
7883
    { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
7884
#endif
7885
    { "m", HAS_ARG, QEMU_OPTION_m },
7886
    { "nographic", 0, QEMU_OPTION_nographic },
7887
    { "portrait", 0, QEMU_OPTION_portrait },
7888
    { "k", HAS_ARG, QEMU_OPTION_k },
7889
#ifdef HAS_AUDIO
7890
    { "audio-help", 0, QEMU_OPTION_audio_help },
7891
    { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
7892
#endif
7893

    
7894
    { "net", HAS_ARG, QEMU_OPTION_net},
7895
#ifdef CONFIG_SLIRP
7896
    { "tftp", HAS_ARG, QEMU_OPTION_tftp },
7897
    { "bootp", HAS_ARG, QEMU_OPTION_bootp },
7898
#ifndef _WIN32
7899
    { "smb", HAS_ARG, QEMU_OPTION_smb },
7900
#endif
7901
    { "redir", HAS_ARG, QEMU_OPTION_redir },
7902
#endif
7903

    
7904
    { "kernel", HAS_ARG, QEMU_OPTION_kernel },
7905
    { "append", HAS_ARG, QEMU_OPTION_append },
7906
    { "initrd", HAS_ARG, QEMU_OPTION_initrd },
7907

    
7908
    { "S", 0, QEMU_OPTION_S },
7909
    { "s", 0, QEMU_OPTION_s },
7910
    { "p", HAS_ARG, QEMU_OPTION_p },
7911
    { "d", HAS_ARG, QEMU_OPTION_d },
7912
    { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
7913
    { "L", HAS_ARG, QEMU_OPTION_L },
7914
    { "bios", HAS_ARG, QEMU_OPTION_bios },
7915
    { "no-code-copy", 0, QEMU_OPTION_no_code_copy },
7916
#ifdef USE_KQEMU
7917
    { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
7918
    { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
7919
#endif
7920
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
7921
    { "g", 1, QEMU_OPTION_g },
7922
#endif
7923
    { "localtime", 0, QEMU_OPTION_localtime },
7924
    { "std-vga", 0, QEMU_OPTION_std_vga },
7925
    { "echr", HAS_ARG, QEMU_OPTION_echr },
7926
    { "monitor", HAS_ARG, QEMU_OPTION_monitor },
7927
    { "serial", HAS_ARG, QEMU_OPTION_serial },
7928
    { "parallel", HAS_ARG, QEMU_OPTION_parallel },
7929
    { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
7930
    { "full-screen", 0, QEMU_OPTION_full_screen },
7931
#ifdef CONFIG_SDL
7932
    { "no-frame", 0, QEMU_OPTION_no_frame },
7933
    { "alt-grab", 0, QEMU_OPTION_alt_grab },
7934
    { "no-quit", 0, QEMU_OPTION_no_quit },
7935
#endif
7936
    { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
7937
    { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
7938
    { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
7939
    { "smp", HAS_ARG, QEMU_OPTION_smp },
7940
    { "vnc", HAS_ARG, QEMU_OPTION_vnc },
7941
#ifdef CONFIG_CURSES
7942
    { "curses", 0, QEMU_OPTION_curses },
7943
#endif
7944

    
7945
    /* temporary options */
7946
    { "usb", 0, QEMU_OPTION_usb },
7947
    { "cirrusvga", 0, QEMU_OPTION_cirrusvga },
7948
    { "vmwarevga", 0, QEMU_OPTION_vmsvga },
7949
    { "no-acpi", 0, QEMU_OPTION_no_acpi },
7950
    { "no-reboot", 0, QEMU_OPTION_no_reboot },
7951
    { "no-shutdown", 0, QEMU_OPTION_no_shutdown },
7952
    { "show-cursor", 0, QEMU_OPTION_show_cursor },
7953
    { "daemonize", 0, QEMU_OPTION_daemonize },
7954
    { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
7955
#if defined(TARGET_ARM) || defined(TARGET_M68K)
7956
    { "semihosting", 0, QEMU_OPTION_semihosting },
7957
#endif
7958
    { "name", HAS_ARG, QEMU_OPTION_name },
7959
#if defined(TARGET_SPARC)
7960
    { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
7961
#endif
7962
#if defined(TARGET_ARM)
7963
    { "old-param", 0, QEMU_OPTION_old_param },
7964
#endif
7965
    { "clock", HAS_ARG, QEMU_OPTION_clock },
7966
    { "startdate", HAS_ARG, QEMU_OPTION_startdate },
7967
    { NULL },
7968
};
7969

    
7970
/* password input */
7971

    
7972
int qemu_key_check(BlockDriverState *bs, const char *name)
7973
{
7974
    char password[256];
7975
    int i;
7976

    
7977
    if (!bdrv_is_encrypted(bs))
7978
        return 0;
7979

    
7980
    term_printf("%s is encrypted.\n", name);
7981
    for(i = 0; i < 3; i++) {
7982
        monitor_readline("Password: ", 1, password, sizeof(password));
7983
        if (bdrv_set_key(bs, password) == 0)
7984
            return 0;
7985
        term_printf("invalid password\n");
7986
    }
7987
    return -EPERM;
7988
}
7989

    
7990
static BlockDriverState *get_bdrv(int index)
7991
{
7992
    if (index > nb_drives)
7993
        return NULL;
7994
    return drives_table[index].bdrv;
7995
}
7996

    
7997
static void read_passwords(void)
7998
{
7999
    BlockDriverState *bs;
8000
    int i;
8001

    
8002
    for(i = 0; i < 6; i++) {
8003
        bs = get_bdrv(i);
8004
        if (bs)
8005
            qemu_key_check(bs, bdrv_get_device_name(bs));
8006
    }
8007
}
8008

    
8009
/* XXX: currently we cannot use simultaneously different CPUs */
8010
static void register_machines(void)
8011
{
8012
#if defined(TARGET_I386)
8013
    qemu_register_machine(&pc_machine);
8014
    qemu_register_machine(&isapc_machine);
8015
#elif defined(TARGET_PPC)
8016
    qemu_register_machine(&heathrow_machine);
8017
    qemu_register_machine(&core99_machine);
8018
    qemu_register_machine(&prep_machine);
8019
    qemu_register_machine(&ref405ep_machine);
8020
    qemu_register_machine(&taihu_machine);
8021
#elif defined(TARGET_MIPS)
8022
    qemu_register_machine(&mips_machine);
8023
    qemu_register_machine(&mips_magnum_machine);
8024
    qemu_register_machine(&mips_malta_machine);
8025
    qemu_register_machine(&mips_pica61_machine);
8026
    qemu_register_machine(&mips_mipssim_machine);
8027
#elif defined(TARGET_SPARC)
8028
#ifdef TARGET_SPARC64
8029
    qemu_register_machine(&sun4u_machine);
8030
#else
8031
    qemu_register_machine(&ss5_machine);
8032
    qemu_register_machine(&ss10_machine);
8033
    qemu_register_machine(&ss600mp_machine);
8034
    qemu_register_machine(&ss20_machine);
8035
    qemu_register_machine(&ss2_machine);
8036
    qemu_register_machine(&voyager_machine);
8037
    qemu_register_machine(&ss_lx_machine);
8038
    qemu_register_machine(&ss4_machine);
8039
    qemu_register_machine(&scls_machine);
8040
    qemu_register_machine(&sbook_machine);
8041
    qemu_register_machine(&ss1000_machine);
8042
    qemu_register_machine(&ss2000_machine);
8043
#endif
8044
#elif defined(TARGET_ARM)
8045
    qemu_register_machine(&integratorcp_machine);
8046
    qemu_register_machine(&versatilepb_machine);
8047
    qemu_register_machine(&versatileab_machine);
8048
    qemu_register_machine(&realview_machine);
8049
    qemu_register_machine(&akitapda_machine);
8050
    qemu_register_machine(&spitzpda_machine);
8051
    qemu_register_machine(&borzoipda_machine);
8052
    qemu_register_machine(&terrierpda_machine);
8053
    qemu_register_machine(&palmte_machine);
8054
    qemu_register_machine(&n800_machine);
8055
    qemu_register_machine(&lm3s811evb_machine);
8056
    qemu_register_machine(&lm3s6965evb_machine);
8057
    qemu_register_machine(&connex_machine);
8058
    qemu_register_machine(&verdex_machine);
8059
    qemu_register_machine(&mainstone2_machine);
8060
#elif defined(TARGET_SH4)
8061
    qemu_register_machine(&shix_machine);
8062
    qemu_register_machine(&r2d_machine);
8063
#elif defined(TARGET_ALPHA)
8064
    /* XXX: TODO */
8065
#elif defined(TARGET_M68K)
8066
    qemu_register_machine(&mcf5208evb_machine);
8067
    qemu_register_machine(&an5206_machine);
8068
    qemu_register_machine(&dummy_m68k_machine);
8069
#elif defined(TARGET_CRIS)
8070
    qemu_register_machine(&bareetraxfs_machine);
8071
#else
8072
#error unsupported CPU
8073
#endif
8074
}
8075

    
8076
#ifdef HAS_AUDIO
8077
struct soundhw soundhw[] = {
8078
#ifdef HAS_AUDIO_CHOICE
8079
#if defined(TARGET_I386) || defined(TARGET_MIPS)
8080
    {
8081
        "pcspk",
8082
        "PC speaker",
8083
        0,
8084
        1,
8085
        { .init_isa = pcspk_audio_init }
8086
    },
8087
#endif
8088
    {
8089
        "sb16",
8090
        "Creative Sound Blaster 16",
8091
        0,
8092
        1,
8093
        { .init_isa = SB16_init }
8094
    },
8095

    
8096
#ifdef CONFIG_ADLIB
8097
    {
8098
        "adlib",
8099
#ifdef HAS_YMF262
8100
        "Yamaha YMF262 (OPL3)",
8101
#else
8102
        "Yamaha YM3812 (OPL2)",
8103
#endif
8104
        0,
8105
        1,
8106
        { .init_isa = Adlib_init }
8107
    },
8108
#endif
8109

    
8110
#ifdef CONFIG_GUS
8111
    {
8112
        "gus",
8113
        "Gravis Ultrasound GF1",
8114
        0,
8115
        1,
8116
        { .init_isa = GUS_init }
8117
    },
8118
#endif
8119

    
8120
#ifdef CONFIG_AC97
8121
    {
8122
        "ac97",
8123
        "Intel 82801AA AC97 Audio",
8124
        0,
8125
        0,
8126
        { .init_pci = ac97_init }
8127
    },
8128
#endif
8129

    
8130
    {
8131
        "es1370",
8132
        "ENSONIQ AudioPCI ES1370",
8133
        0,
8134
        0,
8135
        { .init_pci = es1370_init }
8136
    },
8137
#endif
8138

    
8139
    { NULL, NULL, 0, 0, { NULL } }
8140
};
8141

    
8142
static void select_soundhw (const char *optarg)
8143
{
8144
    struct soundhw *c;
8145

    
8146
    if (*optarg == '?') {
8147
    show_valid_cards:
8148

    
8149
        printf ("Valid sound card names (comma separated):\n");
8150
        for (c = soundhw; c->name; ++c) {
8151
            printf ("%-11s %s\n", c->name, c->descr);
8152
        }
8153
        printf ("\n-soundhw all will enable all of the above\n");
8154
        exit (*optarg != '?');
8155
    }
8156
    else {
8157
        size_t l;
8158
        const char *p;
8159
        char *e;
8160
        int bad_card = 0;
8161

    
8162
        if (!strcmp (optarg, "all")) {
8163
            for (c = soundhw; c->name; ++c) {
8164
                c->enabled = 1;
8165
            }
8166
            return;
8167
        }
8168

    
8169
        p = optarg;
8170
        while (*p) {
8171
            e = strchr (p, ',');
8172
            l = !e ? strlen (p) : (size_t) (e - p);
8173

    
8174
            for (c = soundhw; c->name; ++c) {
8175
                if (!strncmp (c->name, p, l)) {
8176
                    c->enabled = 1;
8177
                    break;
8178
                }
8179
            }
8180

    
8181
            if (!c->name) {
8182
                if (l > 80) {
8183
                    fprintf (stderr,
8184
                             "Unknown sound card name (too big to show)\n");
8185
                }
8186
                else {
8187
                    fprintf (stderr, "Unknown sound card name `%.*s'\n",
8188
                             (int) l, p);
8189
                }
8190
                bad_card = 1;
8191
            }
8192
            p += l + (e != NULL);
8193
        }
8194

    
8195
        if (bad_card)
8196
            goto show_valid_cards;
8197
    }
8198
}
8199
#endif
8200

    
8201
#ifdef _WIN32
8202
static BOOL WINAPI qemu_ctrl_handler(DWORD type)
8203
{
8204
    exit(STATUS_CONTROL_C_EXIT);
8205
    return TRUE;
8206
}
8207
#endif
8208

    
8209
#define MAX_NET_CLIENTS 32
8210

    
8211
int main(int argc, char **argv)
8212
{
8213
#ifdef CONFIG_GDBSTUB
8214
    int use_gdbstub;
8215
    const char *gdbstub_port;
8216
#endif
8217
    uint32_t boot_devices_bitmap = 0;
8218
    int i;
8219
    int snapshot, linux_boot, net_boot;
8220
    const char *initrd_filename;
8221
    const char *kernel_filename, *kernel_cmdline;
8222
    const char *boot_devices = "";
8223
    DisplayState *ds = &display_state;
8224
    int cyls, heads, secs, translation;
8225
    const char *net_clients[MAX_NET_CLIENTS];
8226
    int nb_net_clients;
8227
    int hda_index;
8228
    int optind;
8229
    const char *r, *optarg;
8230
    CharDriverState *monitor_hd;
8231
    const char *monitor_device;
8232
    const char *serial_devices[MAX_SERIAL_PORTS];
8233
    int serial_device_index;
8234
    const char *parallel_devices[MAX_PARALLEL_PORTS];
8235
    int parallel_device_index;
8236
    const char *loadvm = NULL;
8237
    QEMUMachine *machine;
8238
    const char *cpu_model;
8239
    const char *usb_devices[MAX_USB_CMDLINE];
8240
    int usb_devices_index;
8241
    int fds[2];
8242
    const char *pid_file = NULL;
8243
    VLANState *vlan;
8244

    
8245
    LIST_INIT (&vm_change_state_head);
8246
#ifndef _WIN32
8247
    {
8248
        struct sigaction act;
8249
        sigfillset(&act.sa_mask);
8250
        act.sa_flags = 0;
8251
        act.sa_handler = SIG_IGN;
8252
        sigaction(SIGPIPE, &act, NULL);
8253
    }
8254
#else
8255
    SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
8256
    /* Note: cpu_interrupt() is currently not SMP safe, so we force
8257
       QEMU to run on a single CPU */
8258
    {
8259
        HANDLE h;
8260
        DWORD mask, smask;
8261
        int i;
8262
        h = GetCurrentProcess();
8263
        if (GetProcessAffinityMask(h, &mask, &smask)) {
8264
            for(i = 0; i < 32; i++) {
8265
                if (mask & (1 << i))
8266
                    break;
8267
            }
8268
            if (i != 32) {
8269
                mask = 1 << i;
8270
                SetProcessAffinityMask(h, mask);
8271
            }
8272
        }
8273
    }
8274
#endif
8275

    
8276
    register_machines();
8277
    machine = first_machine;
8278
    cpu_model = NULL;
8279
    initrd_filename = NULL;
8280
    ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
8281
    vga_ram_size = VGA_RAM_SIZE;
8282
#ifdef CONFIG_GDBSTUB
8283
    use_gdbstub = 0;
8284
    gdbstub_port = DEFAULT_GDBSTUB_PORT;
8285
#endif
8286
    snapshot = 0;
8287
    nographic = 0;
8288
    curses = 0;
8289
    kernel_filename = NULL;
8290
    kernel_cmdline = "";
8291
    cyls = heads = secs = 0;
8292
    translation = BIOS_ATA_TRANSLATION_AUTO;
8293
    monitor_device = "vc";
8294

    
8295
    serial_devices[0] = "vc";
8296
    for(i = 1; i < MAX_SERIAL_PORTS; i++)
8297
        serial_devices[i] = NULL;
8298
    serial_device_index = 0;
8299

    
8300
    parallel_devices[0] = "vc";
8301
    for(i = 1; i < MAX_PARALLEL_PORTS; i++)
8302
        parallel_devices[i] = NULL;
8303
    parallel_device_index = 0;
8304

    
8305
    usb_devices_index = 0;
8306

    
8307
    nb_net_clients = 0;
8308
    nb_drives = 0;
8309
    nb_drives_opt = 0;
8310
    hda_index = -1;
8311

    
8312
    nb_nics = 0;
8313
    /* default mac address of the first network interface */
8314

    
8315
    optind = 1;
8316
    for(;;) {
8317
        if (optind >= argc)
8318
            break;
8319
        r = argv[optind];
8320
        if (r[0] != '-') {
8321
            hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
8322
        } else {
8323
            const QEMUOption *popt;
8324

    
8325
            optind++;
8326
            /* Treat --foo the same as -foo.  */
8327
            if (r[1] == '-')
8328
                r++;
8329
            popt = qemu_options;
8330
            for(;;) {
8331
                if (!popt->name) {
8332
                    fprintf(stderr, "%s: invalid option -- '%s'\n",
8333
                            argv[0], r);
8334
                    exit(1);
8335
                }
8336
                if (!strcmp(popt->name, r + 1))
8337
                    break;
8338
                popt++;
8339
            }
8340
            if (popt->flags & HAS_ARG) {
8341
                if (optind >= argc) {
8342
                    fprintf(stderr, "%s: option '%s' requires an argument\n",
8343
                            argv[0], r);
8344
                    exit(1);
8345
                }
8346
                optarg = argv[optind++];
8347
            } else {
8348
                optarg = NULL;
8349
            }
8350

    
8351
            switch(popt->index) {
8352
            case QEMU_OPTION_M:
8353
                machine = find_machine(optarg);
8354
                if (!machine) {
8355
                    QEMUMachine *m;
8356
                    printf("Supported machines are:\n");
8357
                    for(m = first_machine; m != NULL; m = m->next) {
8358
                        printf("%-10s %s%s\n",
8359
                               m->name, m->desc,
8360
                               m == first_machine ? " (default)" : "");
8361
                    }
8362
                    exit(*optarg != '?');
8363
                }
8364
                break;
8365
            case QEMU_OPTION_cpu:
8366
                /* hw initialization will check this */
8367
                if (*optarg == '?') {
8368
/* XXX: implement xxx_cpu_list for targets that still miss it */
8369
#if defined(cpu_list)
8370
                    cpu_list(stdout, &fprintf);
8371
#endif
8372
                    exit(0);
8373
                } else {
8374
                    cpu_model = optarg;
8375
                }
8376
                break;
8377
            case QEMU_OPTION_initrd:
8378
                initrd_filename = optarg;
8379
                break;
8380
            case QEMU_OPTION_hda:
8381
                if (cyls == 0)
8382
                    hda_index = drive_add(optarg, HD_ALIAS, 0);
8383
                else
8384
                    hda_index = drive_add(optarg, HD_ALIAS
8385
                             ",cyls=%d,heads=%d,secs=%d%s",
8386
                             0, cyls, heads, secs,
8387
                             translation == BIOS_ATA_TRANSLATION_LBA ?
8388
                                 ",trans=lba" :
8389
                             translation == BIOS_ATA_TRANSLATION_NONE ?
8390
                                 ",trans=none" : "");
8391
                 break;
8392
            case QEMU_OPTION_hdb:
8393
            case QEMU_OPTION_hdc:
8394
            case QEMU_OPTION_hdd:
8395
                drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
8396
                break;
8397
            case QEMU_OPTION_drive:
8398
                drive_add(NULL, "%s", optarg);
8399
                break;
8400
            case QEMU_OPTION_mtdblock:
8401
                drive_add(optarg, MTD_ALIAS);
8402
                break;
8403
            case QEMU_OPTION_sd:
8404
                drive_add(optarg, SD_ALIAS);
8405
                break;
8406
            case QEMU_OPTION_pflash:
8407
                drive_add(optarg, PFLASH_ALIAS);
8408
                break;
8409
            case QEMU_OPTION_snapshot:
8410
                snapshot = 1;
8411
                break;
8412
            case QEMU_OPTION_hdachs:
8413
                {
8414
                    const char *p;
8415
                    p = optarg;
8416
                    cyls = strtol(p, (char **)&p, 0);
8417
                    if (cyls < 1 || cyls > 16383)
8418
                        goto chs_fail;
8419
                    if (*p != ',')
8420
                        goto chs_fail;
8421
                    p++;
8422
                    heads = strtol(p, (char **)&p, 0);
8423
                    if (heads < 1 || heads > 16)
8424
                        goto chs_fail;
8425
                    if (*p != ',')
8426
                        goto chs_fail;
8427
                    p++;
8428
                    secs = strtol(p, (char **)&p, 0);
8429
                    if (secs < 1 || secs > 63)
8430
                        goto chs_fail;
8431
                    if (*p == ',') {
8432
                        p++;
8433
                        if (!strcmp(p, "none"))
8434
                            translation = BIOS_ATA_TRANSLATION_NONE;
8435
                        else if (!strcmp(p, "lba"))
8436
                            translation = BIOS_ATA_TRANSLATION_LBA;
8437
                        else if (!strcmp(p, "auto"))
8438
                            translation = BIOS_ATA_TRANSLATION_AUTO;
8439
                        else
8440
                            goto chs_fail;
8441
                    } else if (*p != '\0') {
8442
                    chs_fail:
8443
                        fprintf(stderr, "qemu: invalid physical CHS format\n");
8444
                        exit(1);
8445
                    }
8446
                    if (hda_index != -1)
8447
                        snprintf(drives_opt[hda_index].opt,
8448
                                 sizeof(drives_opt[hda_index].opt),
8449
                                 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
8450
                                 0, cyls, heads, secs,
8451
                                 translation == BIOS_ATA_TRANSLATION_LBA ?
8452
                                         ",trans=lba" :
8453
                                 translation == BIOS_ATA_TRANSLATION_NONE ?
8454
                                     ",trans=none" : "");
8455
                }
8456
                break;
8457
            case QEMU_OPTION_nographic:
8458
                serial_devices[0] = "stdio";
8459
                parallel_devices[0] = "null";
8460
                monitor_device = "stdio";
8461
                nographic = 1;
8462
                break;
8463
#ifdef CONFIG_CURSES
8464
            case QEMU_OPTION_curses:
8465
                curses = 1;
8466
                break;
8467
#endif
8468
            case QEMU_OPTION_portrait:
8469
                graphic_rotate = 1;
8470
                break;
8471
            case QEMU_OPTION_kernel:
8472
                kernel_filename = optarg;
8473
                break;
8474
            case QEMU_OPTION_append:
8475
                kernel_cmdline = optarg;
8476
                break;
8477
            case QEMU_OPTION_cdrom:
8478
                drive_add(optarg, CDROM_ALIAS);
8479
                break;
8480
            case QEMU_OPTION_boot:
8481
                boot_devices = optarg;
8482
                /* We just do some generic consistency checks */
8483
                {
8484
                    /* Could easily be extended to 64 devices if needed */
8485
                    const char *p;
8486
                    
8487
                    boot_devices_bitmap = 0;
8488
                    for (p = boot_devices; *p != '\0'; p++) {
8489
                        /* Allowed boot devices are:
8490
                         * a b     : floppy disk drives
8491
                         * c ... f : IDE disk drives
8492
                         * g ... m : machine implementation dependant drives
8493
                         * n ... p : network devices
8494
                         * It's up to each machine implementation to check
8495
                         * if the given boot devices match the actual hardware
8496
                         * implementation and firmware features.
8497
                         */
8498
                        if (*p < 'a' || *p > 'q') {
8499
                            fprintf(stderr, "Invalid boot device '%c'\n", *p);
8500
                            exit(1);
8501
                        }
8502
                        if (boot_devices_bitmap & (1 << (*p - 'a'))) {
8503
                            fprintf(stderr,
8504
                                    "Boot device '%c' was given twice\n",*p);
8505
                            exit(1);
8506
                        }
8507
                        boot_devices_bitmap |= 1 << (*p - 'a');
8508
                    }
8509
                }
8510
                break;
8511
            case QEMU_OPTION_fda:
8512
            case QEMU_OPTION_fdb:
8513
                drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
8514
                break;
8515
#ifdef TARGET_I386
8516
            case QEMU_OPTION_no_fd_bootchk:
8517
                fd_bootchk = 0;
8518
                break;
8519
#endif
8520
            case QEMU_OPTION_no_code_copy:
8521
                code_copy_enabled = 0;
8522
                break;
8523
            case QEMU_OPTION_net:
8524
                if (nb_net_clients >= MAX_NET_CLIENTS) {
8525
                    fprintf(stderr, "qemu: too many network clients\n");
8526
                    exit(1);
8527
                }
8528
                net_clients[nb_net_clients] = optarg;
8529
                nb_net_clients++;
8530
                break;
8531
#ifdef CONFIG_SLIRP
8532
            case QEMU_OPTION_tftp:
8533
                tftp_prefix = optarg;
8534
                break;
8535
            case QEMU_OPTION_bootp:
8536
                bootp_filename = optarg;
8537
                break;
8538
#ifndef _WIN32
8539
            case QEMU_OPTION_smb:
8540
                net_slirp_smb(optarg);
8541
                break;
8542
#endif
8543
            case QEMU_OPTION_redir:
8544
                net_slirp_redir(optarg);
8545
                break;
8546
#endif
8547
#ifdef HAS_AUDIO
8548
            case QEMU_OPTION_audio_help:
8549
                AUD_help ();
8550
                exit (0);
8551
                break;
8552
            case QEMU_OPTION_soundhw:
8553
                select_soundhw (optarg);
8554
                break;
8555
#endif
8556
            case QEMU_OPTION_h:
8557
                help(0);
8558
                break;
8559
            case QEMU_OPTION_m:
8560
                ram_size = atoi(optarg) * 1024 * 1024;
8561
                if (ram_size <= 0)
8562
                    help(1);
8563
                if (ram_size > PHYS_RAM_MAX_SIZE) {
8564
                    fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
8565
                            PHYS_RAM_MAX_SIZE / (1024 * 1024));
8566
                    exit(1);
8567
                }
8568
                break;
8569
            case QEMU_OPTION_d:
8570
                {
8571
                    int mask;
8572
                    CPULogItem *item;
8573

    
8574
                    mask = cpu_str_to_log_mask(optarg);
8575
                    if (!mask) {
8576
                        printf("Log items (comma separated):\n");
8577
                    for(item = cpu_log_items; item->mask != 0; item++) {
8578
                        printf("%-10s %s\n", item->name, item->help);
8579
                    }
8580
                    exit(1);
8581
                    }
8582
                    cpu_set_log(mask);
8583
                }
8584
                break;
8585
#ifdef CONFIG_GDBSTUB
8586
            case QEMU_OPTION_s:
8587
                use_gdbstub = 1;
8588
                break;
8589
            case QEMU_OPTION_p:
8590
                gdbstub_port = optarg;
8591
                break;
8592
#endif
8593
            case QEMU_OPTION_L:
8594
                bios_dir = optarg;
8595
                break;
8596
            case QEMU_OPTION_bios:
8597
                bios_name = optarg;
8598
                break;
8599
            case QEMU_OPTION_S:
8600
                autostart = 0;
8601
                break;
8602
            case QEMU_OPTION_k:
8603
                keyboard_layout = optarg;
8604
                break;
8605
            case QEMU_OPTION_localtime:
8606
                rtc_utc = 0;
8607
                break;
8608
            case QEMU_OPTION_cirrusvga:
8609
                cirrus_vga_enabled = 1;
8610
                vmsvga_enabled = 0;
8611
                break;
8612
            case QEMU_OPTION_vmsvga:
8613
                cirrus_vga_enabled = 0;
8614
                vmsvga_enabled = 1;
8615
                break;
8616
            case QEMU_OPTION_std_vga:
8617
                cirrus_vga_enabled = 0;
8618
                vmsvga_enabled = 0;
8619
                break;
8620
            case QEMU_OPTION_g:
8621
                {
8622
                    const char *p;
8623
                    int w, h, depth;
8624
                    p = optarg;
8625
                    w = strtol(p, (char **)&p, 10);
8626
                    if (w <= 0) {
8627
                    graphic_error:
8628
                        fprintf(stderr, "qemu: invalid resolution or depth\n");
8629
                        exit(1);
8630
                    }
8631
                    if (*p != 'x')
8632
                        goto graphic_error;
8633
                    p++;
8634
                    h = strtol(p, (char **)&p, 10);
8635
                    if (h <= 0)
8636
                        goto graphic_error;
8637
                    if (*p == 'x') {
8638
                        p++;
8639
                        depth = strtol(p, (char **)&p, 10);
8640
                        if (depth != 8 && depth != 15 && depth != 16 &&
8641
                            depth != 24 && depth != 32)
8642
                            goto graphic_error;
8643
                    } else if (*p == '\0') {
8644
                        depth = graphic_depth;
8645
                    } else {
8646
                        goto graphic_error;
8647
                    }
8648

    
8649
                    graphic_width = w;
8650
                    graphic_height = h;
8651
                    graphic_depth = depth;
8652
                }
8653
                break;
8654
            case QEMU_OPTION_echr:
8655
                {
8656
                    char *r;
8657
                    term_escape_char = strtol(optarg, &r, 0);
8658
                    if (r == optarg)
8659
                        printf("Bad argument to echr\n");
8660
                    break;
8661
                }
8662
            case QEMU_OPTION_monitor:
8663
                monitor_device = optarg;
8664
                break;
8665
            case QEMU_OPTION_serial:
8666
                if (serial_device_index >= MAX_SERIAL_PORTS) {
8667
                    fprintf(stderr, "qemu: too many serial ports\n");
8668
                    exit(1);
8669
                }
8670
                serial_devices[serial_device_index] = optarg;
8671
                serial_device_index++;
8672
                break;
8673
            case QEMU_OPTION_parallel:
8674
                if (parallel_device_index >= MAX_PARALLEL_PORTS) {
8675
                    fprintf(stderr, "qemu: too many parallel ports\n");
8676
                    exit(1);
8677
                }
8678
                parallel_devices[parallel_device_index] = optarg;
8679
                parallel_device_index++;
8680
                break;
8681
            case QEMU_OPTION_loadvm:
8682
                loadvm = optarg;
8683
                break;
8684
            case QEMU_OPTION_full_screen:
8685
                full_screen = 1;
8686
                break;
8687
#ifdef CONFIG_SDL
8688
            case QEMU_OPTION_no_frame:
8689
                no_frame = 1;
8690
                break;
8691
            case QEMU_OPTION_alt_grab:
8692
                alt_grab = 1;
8693
                break;
8694
            case QEMU_OPTION_no_quit:
8695
                no_quit = 1;
8696
                break;
8697
#endif
8698
            case QEMU_OPTION_pidfile:
8699
                pid_file = optarg;
8700
                break;
8701
#ifdef TARGET_I386
8702
            case QEMU_OPTION_win2k_hack:
8703
                win2k_install_hack = 1;
8704
                break;
8705
#endif
8706
#ifdef USE_KQEMU
8707
            case QEMU_OPTION_no_kqemu:
8708
                kqemu_allowed = 0;
8709
                break;
8710
            case QEMU_OPTION_kernel_kqemu:
8711
                kqemu_allowed = 2;
8712
                break;
8713
#endif
8714
            case QEMU_OPTION_usb:
8715
                usb_enabled = 1;
8716
                break;
8717
            case QEMU_OPTION_usbdevice:
8718
                usb_enabled = 1;
8719
                if (usb_devices_index >= MAX_USB_CMDLINE) {
8720
                    fprintf(stderr, "Too many USB devices\n");
8721
                    exit(1);
8722
                }
8723
                usb_devices[usb_devices_index] = optarg;
8724
                usb_devices_index++;
8725
                break;
8726
            case QEMU_OPTION_smp:
8727
                smp_cpus = atoi(optarg);
8728
                if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
8729
                    fprintf(stderr, "Invalid number of CPUs\n");
8730
                    exit(1);
8731
                }
8732
                break;
8733
            case QEMU_OPTION_vnc:
8734
                vnc_display = optarg;
8735
                break;
8736
            case QEMU_OPTION_no_acpi:
8737
                acpi_enabled = 0;
8738
                break;
8739
            case QEMU_OPTION_no_reboot:
8740
                no_reboot = 1;
8741
                break;
8742
            case QEMU_OPTION_no_shutdown:
8743
                no_shutdown = 1;
8744
                break;
8745
            case QEMU_OPTION_show_cursor:
8746
                cursor_hide = 0;
8747
                break;
8748
            case QEMU_OPTION_daemonize:
8749
                daemonize = 1;
8750
                break;
8751
            case QEMU_OPTION_option_rom:
8752
                if (nb_option_roms >= MAX_OPTION_ROMS) {
8753
                    fprintf(stderr, "Too many option ROMs\n");
8754
                    exit(1);
8755
                }
8756
                option_rom[nb_option_roms] = optarg;
8757
                nb_option_roms++;
8758
                break;
8759
            case QEMU_OPTION_semihosting:
8760
                semihosting_enabled = 1;
8761
                break;
8762
            case QEMU_OPTION_name:
8763
                qemu_name = optarg;
8764
                break;
8765
#ifdef TARGET_SPARC
8766
            case QEMU_OPTION_prom_env:
8767
                if (nb_prom_envs >= MAX_PROM_ENVS) {
8768
                    fprintf(stderr, "Too many prom variables\n");
8769
                    exit(1);
8770
                }
8771
                prom_envs[nb_prom_envs] = optarg;
8772
                nb_prom_envs++;
8773
                break;
8774
#endif
8775
#ifdef TARGET_ARM
8776
            case QEMU_OPTION_old_param:
8777
                old_param = 1;
8778
                break;
8779
#endif
8780
            case QEMU_OPTION_clock:
8781
                configure_alarms(optarg);
8782
                break;
8783
            case QEMU_OPTION_startdate:
8784
                {
8785
                    struct tm tm;
8786
                    time_t rtc_start_date;
8787
                    if (!strcmp(optarg, "now")) {
8788
                        rtc_date_offset = -1;
8789
                    } else {
8790
                        if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
8791
                               &tm.tm_year,
8792
                               &tm.tm_mon,
8793
                               &tm.tm_mday,
8794
                               &tm.tm_hour,
8795
                               &tm.tm_min,
8796
                               &tm.tm_sec) == 6) {
8797
                            /* OK */
8798
                        } else if (sscanf(optarg, "%d-%d-%d",
8799
                                          &tm.tm_year,
8800
                                          &tm.tm_mon,
8801
                                          &tm.tm_mday) == 3) {
8802
                            tm.tm_hour = 0;
8803
                            tm.tm_min = 0;
8804
                            tm.tm_sec = 0;
8805
                        } else {
8806
                            goto date_fail;
8807
                        }
8808
                        tm.tm_year -= 1900;
8809
                        tm.tm_mon--;
8810
                        rtc_start_date = mktimegm(&tm);
8811
                        if (rtc_start_date == -1) {
8812
                        date_fail:
8813
                            fprintf(stderr, "Invalid date format. Valid format are:\n"
8814
                                    "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
8815
                            exit(1);
8816
                        }
8817
                        rtc_date_offset = time(NULL) - rtc_start_date;
8818
                    }
8819
                }
8820
                break;
8821
            }
8822
        }
8823
    }
8824

    
8825
#ifndef _WIN32
8826
    if (daemonize && !nographic && vnc_display == NULL) {
8827
        fprintf(stderr, "Can only daemonize if using -nographic or -vnc\n");
8828
        daemonize = 0;
8829
    }
8830

    
8831
    if (daemonize) {
8832
        pid_t pid;
8833

    
8834
        if (pipe(fds) == -1)
8835
            exit(1);
8836

    
8837
        pid = fork();
8838
        if (pid > 0) {
8839
            uint8_t status;
8840
            ssize_t len;
8841

    
8842
            close(fds[1]);
8843

    
8844
        again:
8845
            len = read(fds[0], &status, 1);
8846
            if (len == -1 && (errno == EINTR))
8847
                goto again;
8848

    
8849
            if (len != 1)
8850
                exit(1);
8851
            else if (status == 1) {
8852
                fprintf(stderr, "Could not acquire pidfile\n");
8853
                exit(1);
8854
            } else
8855
                exit(0);
8856
        } else if (pid < 0)
8857
            exit(1);
8858

    
8859
        setsid();
8860

    
8861
        pid = fork();
8862
        if (pid > 0)
8863
            exit(0);
8864
        else if (pid < 0)
8865
            exit(1);
8866

    
8867
        umask(027);
8868
        chdir("/");
8869

    
8870
        signal(SIGTSTP, SIG_IGN);
8871
        signal(SIGTTOU, SIG_IGN);
8872
        signal(SIGTTIN, SIG_IGN);
8873
    }
8874
#endif
8875

    
8876
    if (pid_file && qemu_create_pidfile(pid_file) != 0) {
8877
        if (daemonize) {
8878
            uint8_t status = 1;
8879
            write(fds[1], &status, 1);
8880
        } else
8881
            fprintf(stderr, "Could not acquire pid file\n");
8882
        exit(1);
8883
    }
8884

    
8885
#ifdef USE_KQEMU
8886
    if (smp_cpus > 1)
8887
        kqemu_allowed = 0;
8888
#endif
8889
    linux_boot = (kernel_filename != NULL);
8890
    net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
8891

    
8892
    /* XXX: this should not be: some embedded targets just have flash */
8893
    if (!linux_boot && net_boot == 0 &&
8894
        nb_drives_opt == 0)
8895
        help(1);
8896

    
8897
    /* boot to floppy or the default cd if no hard disk defined yet */
8898
    if (!boot_devices[0]) {
8899
        boot_devices = "cad";
8900
    }
8901
    setvbuf(stdout, NULL, _IOLBF, 0);
8902

    
8903
    init_timers();
8904
    init_timer_alarm();
8905
    qemu_aio_init();
8906

    
8907
#ifdef _WIN32
8908
    socket_init();
8909
#endif
8910

    
8911
    /* init network clients */
8912
    if (nb_net_clients == 0) {
8913
        /* if no clients, we use a default config */
8914
        net_clients[0] = "nic";
8915
        net_clients[1] = "user";
8916
        nb_net_clients = 2;
8917
    }
8918

    
8919
    for(i = 0;i < nb_net_clients; i++) {
8920
        if (net_client_init(net_clients[i]) < 0)
8921
            exit(1);
8922
    }
8923
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
8924
        if (vlan->nb_guest_devs == 0 && vlan->nb_host_devs == 0)
8925
            continue;
8926
        if (vlan->nb_guest_devs == 0) {
8927
            fprintf(stderr, "Invalid vlan (%d) with no nics\n", vlan->id);
8928
            exit(1);
8929
        }
8930
        if (vlan->nb_host_devs == 0)
8931
            fprintf(stderr,
8932
                    "Warning: vlan %d is not connected to host network\n",
8933
                    vlan->id);
8934
    }
8935

    
8936
#ifdef TARGET_I386
8937
    /* XXX: this should be moved in the PC machine instantiation code */
8938
    if (net_boot != 0) {
8939
        int netroms = 0;
8940
        for (i = 0; i < nb_nics && i < 4; i++) {
8941
            const char *model = nd_table[i].model;
8942
            char buf[1024];
8943
            if (net_boot & (1 << i)) {
8944
                if (model == NULL)
8945
                    model = "ne2k_pci";
8946
                snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
8947
                if (get_image_size(buf) > 0) {
8948
                    if (nb_option_roms >= MAX_OPTION_ROMS) {
8949
                        fprintf(stderr, "Too many option ROMs\n");
8950
                        exit(1);
8951
                    }
8952
                    option_rom[nb_option_roms] = strdup(buf);
8953
                    nb_option_roms++;
8954
                    netroms++;
8955
                }
8956
            }
8957
        }
8958
        if (netroms == 0) {
8959
            fprintf(stderr, "No valid PXE rom found for network device\n");
8960
            exit(1);
8961
        }
8962
    }
8963
#endif
8964

    
8965
    /* init the memory */
8966
    phys_ram_size = ram_size + vga_ram_size + MAX_BIOS_SIZE;
8967

    
8968
    phys_ram_base = qemu_vmalloc(phys_ram_size);
8969
    if (!phys_ram_base) {
8970
        fprintf(stderr, "Could not allocate physical memory\n");
8971
        exit(1);
8972
    }
8973

    
8974
    bdrv_init();
8975

    
8976
    /* we always create the cdrom drive, even if no disk is there */
8977

    
8978
    if (nb_drives_opt < MAX_DRIVES)
8979
        drive_add(NULL, CDROM_ALIAS);
8980

    
8981
    /* we always create at least one floppy */
8982

    
8983
    if (nb_drives_opt < MAX_DRIVES)
8984
        drive_add(NULL, FD_ALIAS, 0);
8985

    
8986
    /* we always create one sd slot, even if no card is in it */
8987

    
8988
    if (nb_drives_opt < MAX_DRIVES)
8989
        drive_add(NULL, SD_ALIAS);
8990

    
8991
    /* open the virtual block devices */
8992

    
8993
    for(i = 0; i < nb_drives_opt; i++)
8994
        if (drive_init(&drives_opt[i], snapshot, machine) == -1)
8995
            exit(1);
8996

    
8997
    register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
8998
    register_savevm("ram", 0, 2, ram_save, ram_load, NULL);
8999

    
9000
    init_ioports();
9001

    
9002
    /* terminal init */
9003
    memset(&display_state, 0, sizeof(display_state));
9004
    if (nographic) {
9005
        if (curses) {
9006
            fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
9007
            exit(1);
9008
        }
9009
        /* nearly nothing to do */
9010
        dumb_display_init(ds);
9011
    } else if (vnc_display != NULL) {
9012
        vnc_display_init(ds);
9013
        if (vnc_display_open(ds, vnc_display) < 0)
9014
            exit(1);
9015
    } else
9016
#if defined(CONFIG_CURSES)
9017
    if (curses) {
9018
        curses_display_init(ds, full_screen);
9019
    } else
9020
#endif
9021
    {
9022
#if defined(CONFIG_SDL)
9023
        sdl_display_init(ds, full_screen, no_frame);
9024
#elif defined(CONFIG_COCOA)
9025
        cocoa_display_init(ds, full_screen);
9026
#else
9027
        dumb_display_init(ds);
9028
#endif
9029
    }
9030

    
9031
    /* Maintain compatibility with multiple stdio monitors */
9032
    if (!strcmp(monitor_device,"stdio")) {
9033
        for (i = 0; i < MAX_SERIAL_PORTS; i++) {
9034
            const char *devname = serial_devices[i];
9035
            if (devname && !strcmp(devname,"mon:stdio")) {
9036
                monitor_device = NULL;
9037
                break;
9038
            } else if (devname && !strcmp(devname,"stdio")) {
9039
                monitor_device = NULL;
9040
                serial_devices[i] = "mon:stdio";
9041
                break;
9042
            }
9043
        }
9044
    }
9045
    if (monitor_device) {
9046
        monitor_hd = qemu_chr_open(monitor_device);
9047
        if (!monitor_hd) {
9048
            fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
9049
            exit(1);
9050
        }
9051
        monitor_init(monitor_hd, !nographic);
9052
    }
9053

    
9054
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
9055
        const char *devname = serial_devices[i];
9056
        if (devname && strcmp(devname, "none")) {
9057
            serial_hds[i] = qemu_chr_open(devname);
9058
            if (!serial_hds[i]) {
9059
                fprintf(stderr, "qemu: could not open serial device '%s'\n",
9060
                        devname);
9061
                exit(1);
9062
            }
9063
            if (strstart(devname, "vc", 0))
9064
                qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
9065
        }
9066
    }
9067

    
9068
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
9069
        const char *devname = parallel_devices[i];
9070
        if (devname && strcmp(devname, "none")) {
9071
            parallel_hds[i] = qemu_chr_open(devname);
9072
            if (!parallel_hds[i]) {
9073
                fprintf(stderr, "qemu: could not open parallel device '%s'\n",
9074
                        devname);
9075
                exit(1);
9076
            }
9077
            if (strstart(devname, "vc", 0))
9078
                qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
9079
        }
9080
    }
9081

    
9082
    machine->init(ram_size, vga_ram_size, boot_devices, ds,
9083
                  kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
9084

    
9085
    /* init USB devices */
9086
    if (usb_enabled) {
9087
        for(i = 0; i < usb_devices_index; i++) {
9088
            if (usb_device_add(usb_devices[i]) < 0) {
9089
                fprintf(stderr, "Warning: could not add USB device %s\n",
9090
                        usb_devices[i]);
9091
            }
9092
        }
9093
    }
9094

    
9095
    if (display_state.dpy_refresh) {
9096
        display_state.gui_timer = qemu_new_timer(rt_clock, gui_update, &display_state);
9097
        qemu_mod_timer(display_state.gui_timer, qemu_get_clock(rt_clock));
9098
    }
9099

    
9100
#ifdef CONFIG_GDBSTUB
9101
    if (use_gdbstub) {
9102
        /* XXX: use standard host:port notation and modify options
9103
           accordingly. */
9104
        if (gdbserver_start(gdbstub_port) < 0) {
9105
            fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
9106
                    gdbstub_port);
9107
            exit(1);
9108
        }
9109
    }
9110
#endif
9111

    
9112
    if (loadvm)
9113
        do_loadvm(loadvm);
9114

    
9115
    {
9116
        /* XXX: simplify init */
9117
        read_passwords();
9118
        if (autostart) {
9119
            vm_start();
9120
        }
9121
    }
9122

    
9123
    if (daemonize) {
9124
        uint8_t status = 0;
9125
        ssize_t len;
9126
        int fd;
9127

    
9128
    again1:
9129
        len = write(fds[1], &status, 1);
9130
        if (len == -1 && (errno == EINTR))
9131
            goto again1;
9132

    
9133
        if (len != 1)
9134
            exit(1);
9135

    
9136
        TFR(fd = open("/dev/null", O_RDWR));
9137
        if (fd == -1)
9138
            exit(1);
9139

    
9140
        dup2(fd, 0);
9141
        dup2(fd, 1);
9142
        dup2(fd, 2);
9143

    
9144
        close(fd);
9145
    }
9146

    
9147
    main_loop();
9148
    quit_timers();
9149

    
9150
#if !defined(_WIN32)
9151
    /* close network clients */
9152
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
9153
        VLANClientState *vc;
9154

    
9155
        for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
9156
            if (vc->fd_read == tap_receive) {
9157
                char ifname[64];
9158
                TAPState *s = vc->opaque;
9159

    
9160
                if (sscanf(vc->info_str, "tap: ifname=%63s ", ifname) == 1 &&
9161
                    s->down_script[0])
9162
                    launch_script(s->down_script, ifname, s->fd);
9163
            }
9164
        }
9165
    }
9166
#endif
9167
    return 0;
9168
}