Statistics
| Branch: | Revision:

root / hw / eepro100.c @ 7f1e9d4e

History | View | Annotate | Download (62 kB)

1
/*
2
 * QEMU i8255x (PRO100) emulation
3
 *
4
 * Copyright (c) 2006-2007 Stefan Weil
5
 *
6
 * Portions of the code are copies from grub / etherboot eepro100.c
7
 * and linux e100.c.
8
 *
9
 * This program is free software; you can redistribute it and/or modify
10
 * it under the terms of the GNU General Public License as published by
11
 * the Free Software Foundation; either version 2 of the License, or
12
 * (at your option) any later version.
13
 *
14
 * This program is distributed in the hope that it will be useful,
15
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17
 * GNU General Public License for more details.
18
 *
19
 * You should have received a copy of the GNU General Public License
20
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
21
 *
22
 * Tested features (i82559):
23
 *      PXE boot (i386) no valid link
24
 *      Linux networking (i386) ok
25
 *
26
 * Untested:
27
 *      non-i386 platforms
28
 *      Windows networking
29
 *
30
 * References:
31
 *
32
 * Intel 8255x 10/100 Mbps Ethernet Controller Family
33
 * Open Source Software Developer Manual
34
 */
35

    
36
#if defined(TARGET_I386)
37
# warning "PXE boot still not working!"
38
#endif
39

    
40
#include <stddef.h>             /* offsetof */
41
#include <stdbool.h>
42
#include "hw.h"
43
#include "pci.h"
44
#include "net.h"
45
#include "eeprom93xx.h"
46

    
47
/* Common declarations for all PCI devices. */
48

    
49
#define PCI_CONFIG_8(offset, value) \
50
    (pci_conf[offset] = (value))
51
#define PCI_CONFIG_16(offset, value) \
52
    (*(uint16_t *)&pci_conf[offset] = cpu_to_le16(value))
53
#define PCI_CONFIG_32(offset, value) \
54
    (*(uint32_t *)&pci_conf[offset] = cpu_to_le32(value))
55

    
56
#define KiB 1024
57

    
58
/* Debug EEPRO100 card. */
59
//~ #define DEBUG_EEPRO100
60

    
61
#ifdef DEBUG_EEPRO100
62
#define logout(fmt, ...) fprintf(stderr, "EE100\t%-24s" fmt, __func__, ## __VA_ARGS__)
63
#else
64
#define logout(fmt, ...) ((void)0)
65
#endif
66

    
67
/* Set flags to 0 to disable debug output. */
68
#define INT     1       /* interrupt related actions */
69
#define MDI     1       /* mdi related actions */
70
#define OTHER   1
71
#define RXTX    1
72
#define EEPROM  1       /* eeprom related actions */
73

    
74
#define TRACE(flag, command) ((flag) ? (command) : (void)0)
75

    
76
#define missing(text) fprintf(stderr, "eepro100: feature is missing in this emulation: " text "\n")
77

    
78
#define MAX_ETH_FRAME_SIZE 1514
79

    
80
/* This driver supports several different devices which are declared here. */
81
#define i82550          0x82550
82
#define i82551          0x82551
83
#define i82557A         0x82557a
84
#define i82557B         0x82557b
85
#define i82557C         0x82557c
86
#define i82558A         0x82558a
87
#define i82558B         0x82558b
88
#define i82559A         0x82559a
89
#define i82559B         0x82559b
90
#define i82559C         0x82559c
91
#define i82559ER        0x82559e
92
#define i82562          0x82562
93

    
94
/* Use 64 word EEPROM. TODO: could be a runtime option. */
95
#define EEPROM_SIZE     64
96

    
97
#define PCI_MEM_SIZE            (4 * KiB)
98
#define PCI_IO_SIZE             64
99
#define PCI_FLASH_SIZE          (128 * KiB)
100

    
101
#define BIT(n) (1 << (n))
102
#define BITS(n, m) (((0xffffffffU << (31 - n)) >> (31 - n + m)) << m)
103

    
104
/* The SCB accepts the following controls for the Tx and Rx units: */
105
#define  CU_NOP         0x0000  /* No operation. */
106
#define  CU_START       0x0010  /* CU start. */
107
#define  CU_RESUME      0x0020  /* CU resume. */
108
#define  CU_STATSADDR   0x0040  /* Load dump counters address. */
109
#define  CU_SHOWSTATS   0x0050  /* Dump statistical counters. */
110
#define  CU_CMD_BASE    0x0060  /* Load CU base address. */
111
#define  CU_DUMPSTATS   0x0070  /* Dump and reset statistical counters. */
112
#define  CU_SRESUME     0x00a0  /* CU static resume. */
113

    
114
#define  RU_NOP         0x0000
115
#define  RX_START       0x0001
116
#define  RX_RESUME      0x0002
117
#define  RX_ABORT       0x0004
118
#define  RX_ADDR_LOAD   0x0006
119
#define  RX_RESUMENR    0x0007
120
#define INT_MASK        0x0100
121
#define DRVR_INT        0x0200  /* Driver generated interrupt. */
122

    
123
/* Offsets to the various registers.
124
   All accesses need not be longword aligned. */
125
enum speedo_offsets {
126
    SCBStatus = 0,
127
    SCBAck = 1,
128
    SCBCmd = 2,                 /* Rx/Command Unit command and status. */
129
    SCBIntmask = 3,
130
    SCBPointer = 4,             /* General purpose pointer. */
131
    SCBPort = 8,                /* Misc. commands and operands.  */
132
    SCBflash = 12, SCBeeprom = 14,      /* EEPROM and flash memory control. */
133
    SCBCtrlMDI = 16,            /* MDI interface control. */
134
    SCBEarlyRx = 20,            /* Early receive byte count. */
135
    SCBFlow = 24,
136
};
137

    
138
/* A speedo3 transmit buffer descriptor with two buffers... */
139
typedef struct {
140
    uint16_t status;
141
    uint16_t command;
142
    uint32_t link;              /* void * */
143
    uint32_t tx_desc_addr;      /* transmit buffer decsriptor array address. */
144
    uint16_t tcb_bytes;         /* transmit command block byte count (in lower 14 bits */
145
    uint8_t tx_threshold;       /* transmit threshold */
146
    uint8_t tbd_count;          /* TBD number */
147
    //~ /* This constitutes two "TBD" entries: hdr and data */
148
    //~ uint32_t tx_buf_addr0;  /* void *, header of frame to be transmitted.  */
149
    //~ int32_t  tx_buf_size0;  /* Length of Tx hdr. */
150
    //~ uint32_t tx_buf_addr1;  /* void *, data to be transmitted.  */
151
    //~ int32_t  tx_buf_size1;  /* Length of Tx data. */
152
} eepro100_tx_t;
153

    
154
/* Receive frame descriptor. */
155
typedef struct {
156
    int16_t status;
157
    uint16_t command;
158
    uint32_t link;              /* struct RxFD * */
159
    uint32_t rx_buf_addr;       /* void * */
160
    uint16_t count;
161
    uint16_t size;
162
    char packet[MAX_ETH_FRAME_SIZE + 4];
163
} eepro100_rx_t;
164

    
165
typedef struct {
166
    uint32_t tx_good_frames, tx_max_collisions, tx_late_collisions,
167
        tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
168
        tx_multiple_collisions, tx_total_collisions;
169
    uint32_t rx_good_frames, rx_crc_errors, rx_alignment_errors,
170
        rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
171
        rx_short_frame_errors;
172
    uint32_t fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
173
    uint16_t xmt_tco_frames, rcv_tco_frames;
174
    uint32_t complete;
175
} eepro100_stats_t;
176

    
177
typedef enum {
178
    cu_idle = 0,
179
    cu_suspended = 1,
180
    cu_active = 2,
181
    cu_lpq_active = 2,
182
    cu_hqp_active = 3
183
} cu_state_t;
184

    
185
typedef enum {
186
    ru_idle = 0,
187
    ru_suspended = 1,
188
    ru_no_resources = 2,
189
    ru_ready = 4
190
} ru_state_t;
191

    
192
typedef struct {
193
    PCIDevice dev;
194
#if 1
195
    uint8_t cmd;
196
    uint32_t start;
197
    uint32_t stop;
198
    uint8_t boundary;
199
    uint8_t tsr;
200
    uint8_t tpsr;
201
    uint16_t tcnt;
202
    uint16_t rcnt;
203
    uint32_t rsar;
204
    uint8_t rsr;
205
    uint8_t rxcr;
206
    uint8_t isr;
207
    uint8_t dcfg;
208
    uint8_t imr;
209
    uint8_t phys[6];            /* mac address */
210
    uint8_t curpag;
211
    uint8_t mult[8];            /* multicast mask array */
212
    int mmio_index;
213
    VLANClientState *vc;
214
#endif
215
    uint8_t scb_stat;           /* SCB stat/ack byte */
216
    uint8_t int_stat;           /* PCI interrupt status */
217
    uint32_t region[3];         /* PCI region addresses */
218
    uint8_t macaddr[6];
219
    uint32_t statcounter[19];
220
    uint16_t mdimem[32];
221
    eeprom_t *eeprom;
222
    uint32_t device;            /* device variant */
223
    uint32_t pointer;
224
    /* (cu_base + cu_offset) address the next command block in the command block list. */
225
    uint32_t cu_base;           /* CU base address */
226
    uint32_t cu_offset;         /* CU address offset */
227
    /* (ru_base + ru_offset) address the RFD in the Receive Frame Area. */
228
    uint32_t ru_base;           /* RU base address */
229
    uint32_t ru_offset;         /* RU address offset */
230
    uint32_t statsaddr;         /* pointer to eepro100_stats_t */
231
    eepro100_stats_t statistics;        /* statistical counters */
232
#if 0
233
    uint16_t status;
234
#endif
235

    
236
    /* Configuration bytes. */
237
    uint8_t configuration[22];
238

    
239
    /* Data in mem is always in the byte order of the controller (le). */
240
    uint8_t mem[PCI_MEM_SIZE];
241
} EEPRO100State;
242

    
243
/* Default values for MDI (PHY) registers */
244
static const uint16_t eepro100_mdi_default[] = {
245
    /* MDI Registers 0 - 6, 7 */
246
    0x3000, 0x780d, 0x02a8, 0x0154, 0x05e1, 0x0000, 0x0000, 0x0000,
247
    /* MDI Registers 8 - 15 */
248
    0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
249
    /* MDI Registers 16 - 31 */
250
    0x0003, 0x0000, 0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
251
    0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
252
};
253

    
254
/* Readonly mask for MDI (PHY) registers */
255
static const uint16_t eepro100_mdi_mask[] = {
256
    0x0000, 0xffff, 0xffff, 0xffff, 0xc01f, 0xffff, 0xffff, 0x0000,
257
    0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
258
    0x0fff, 0x0000, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
259
    0xffff, 0xffff, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
260
};
261

    
262
#define POLYNOMIAL 0x04c11db6
263

    
264
/* From FreeBSD */
265
/* XXX: optimize */
266
static int compute_mcast_idx(const uint8_t * ep)
267
{
268
    uint32_t crc;
269
    int carry, i, j;
270
    uint8_t b;
271

    
272
    crc = 0xffffffff;
273
    for (i = 0; i < 6; i++) {
274
        b = *ep++;
275
        for (j = 0; j < 8; j++) {
276
            carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
277
            crc <<= 1;
278
            b >>= 1;
279
            if (carry) {
280
                crc = ((crc ^ POLYNOMIAL) | carry);
281
            }
282
        }
283
    }
284
    return (crc >> 26);
285
}
286

    
287
#if defined(DEBUG_EEPRO100)
288
static const char *nic_dump(const uint8_t * buf, unsigned size)
289
{
290
    static char dump[3 * 16 + 1];
291
    char *p = &dump[0];
292
    if (size > 16) {
293
        size = 16;
294
    }
295
    while (size-- > 0) {
296
        p += sprintf(p, " %02x", *buf++);
297
    }
298
    return dump;
299
}
300
#endif                          /* DEBUG_EEPRO100 */
301

    
302
enum scb_stat_ack {
303
    stat_ack_not_ours = 0x00,
304
    stat_ack_sw_gen = 0x04,
305
    stat_ack_rnr = 0x10,
306
    stat_ack_cu_idle = 0x20,
307
    stat_ack_frame_rx = 0x40,
308
    stat_ack_cu_cmd_done = 0x80,
309
    stat_ack_not_present = 0xFF,
310
    stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
311
    stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
312
};
313

    
314
static void disable_interrupt(EEPRO100State * s)
315
{
316
    if (s->int_stat) {
317
        TRACE(INT, logout("interrupt disabled\n"));
318
        qemu_irq_lower(s->dev.irq[0]);
319
        s->int_stat = 0;
320
    }
321
}
322

    
323
static void enable_interrupt(EEPRO100State * s)
324
{
325
    if (!s->int_stat) {
326
        TRACE(INT, logout("interrupt enabled\n"));
327
        qemu_irq_raise(s->dev.irq[0]);
328
        s->int_stat = 1;
329
    }
330
}
331

    
332
static void eepro100_acknowledge(EEPRO100State * s)
333
{
334
    s->scb_stat &= ~s->mem[SCBAck];
335
    s->mem[SCBAck] = s->scb_stat;
336
    if (s->scb_stat == 0) {
337
        disable_interrupt(s);
338
    }
339
}
340

    
341
static void eepro100_interrupt(EEPRO100State * s, uint8_t stat)
342
{
343
    uint8_t mask = ~s->mem[SCBIntmask];
344
    s->mem[SCBAck] |= stat;
345
    stat = s->scb_stat = s->mem[SCBAck];
346
    stat &= (mask | 0x0f);
347
    //~ stat &= (~s->mem[SCBIntmask] | 0x0xf);
348
    if (stat && (mask & 0x01)) {
349
        /* SCB mask and SCB Bit M do not disable interrupt. */
350
        enable_interrupt(s);
351
    } else if (s->int_stat) {
352
        disable_interrupt(s);
353
    }
354
}
355

    
356
static void eepro100_cx_interrupt(EEPRO100State * s)
357
{
358
    /* CU completed action command. */
359
    /* Transmit not ok (82557 only, not in emulation). */
360
    eepro100_interrupt(s, 0x80);
361
}
362

    
363
static void eepro100_cna_interrupt(EEPRO100State * s)
364
{
365
    /* CU left the active state. */
366
    eepro100_interrupt(s, 0x20);
367
}
368

    
369
static void eepro100_fr_interrupt(EEPRO100State * s)
370
{
371
    /* RU received a complete frame. */
372
    eepro100_interrupt(s, 0x40);
373
}
374

    
375
#if 0
376
static void eepro100_rnr_interrupt(EEPRO100State * s)
377
{
378
    /* RU is not ready. */
379
    eepro100_interrupt(s, 0x10);
380
}
381
#endif
382

    
383
static void eepro100_mdi_interrupt(EEPRO100State * s)
384
{
385
    /* MDI completed read or write cycle. */
386
    eepro100_interrupt(s, 0x08);
387
}
388

    
389
static void eepro100_swi_interrupt(EEPRO100State * s)
390
{
391
    /* Software has requested an interrupt. */
392
    eepro100_interrupt(s, 0x04);
393
}
394

    
395
#if 0
396
static void eepro100_fcp_interrupt(EEPRO100State * s)
397
{
398
    /* Flow control pause interrupt (82558 and later). */
399
    eepro100_interrupt(s, 0x01);
400
}
401
#endif
402

    
403
static void pci_reset(EEPRO100State * s)
404
{
405
    uint32_t device = s->device;
406
    uint8_t *pci_conf = s->dev.config;
407

    
408
    TRACE(OTHER, logout("%p\n", s));
409

    
410
    /* PCI Vendor ID */
411
    pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
412
    /* PCI Device ID depends on device and is set below. */
413
    /* PCI Command */
414
    PCI_CONFIG_16(PCI_COMMAND, 0x0000);
415
    /* PCI Status */
416
    PCI_CONFIG_16(PCI_STATUS, 0x2800);
417
    /* PCI Revision ID */
418
    PCI_CONFIG_8(PCI_REVISION_ID, 0x08);
419
    /* PCI Class Code */
420
    PCI_CONFIG_8(0x09, 0x00);
421
    pci_config_set_class(pci_conf, PCI_CLASS_NETWORK_ETHERNET);
422
    /* PCI Cache Line Size */
423
    /* check cache line size!!! */
424
    //~ PCI_CONFIG_8(0x0c, 0x00);
425
    /* PCI Latency Timer */
426
    PCI_CONFIG_8(0x0d, 0x20);   // latency timer = 32 clocks
427
    /* PCI Header Type */
428
    /* BIST (built-in self test) */
429
#if defined(TARGET_I386)
430
// !!! workaround for buggy bios
431
//~ #define PCI_ADDRESS_SPACE_MEM_PREFETCH 0
432
#endif
433
#if 0
434
    /* PCI Base Address Registers */
435
    /* CSR Memory Mapped Base Address */
436
    PCI_CONFIG_32(PCI_BASE_ADDRESS_0,
437
                  PCI_ADDRESS_SPACE_MEM | PCI_ADDRESS_SPACE_MEM_PREFETCH);
438
    /* CSR I/O Mapped Base Address */
439
    PCI_CONFIG_32(PCI_BASE_ADDRESS_1, PCI_ADDRESS_SPACE_IO);
440
#if 0
441
    /* Flash Memory Mapped Base Address */
442
    PCI_CONFIG_32(PCI_BASE_ADDRESS_2, 0xfffe0000 | PCI_ADDRESS_SPACE_MEM);
443
#endif
444
#endif
445
    /* Expansion ROM Base Address (depends on boot disable!!!) */
446
    PCI_CONFIG_32(0x30, 0x00000000);
447
    /* Capability Pointer */
448
    PCI_CONFIG_8(0x34, 0xdc);
449
    /* Interrupt Line */
450
    /* Interrupt Pin */
451
    PCI_CONFIG_8(0x3d, 1);      // interrupt pin 0
452
    /* Minimum Grant */
453
    PCI_CONFIG_8(0x3e, 0x08);
454
    /* Maximum Latency */
455
    PCI_CONFIG_8(0x3f, 0x18);
456
    /* Power Management Capabilities / Next Item Pointer / Capability ID */
457
    PCI_CONFIG_32(0xdc, 0x7e210001);
458

    
459
    switch (device) {
460
    case i82551:
461
        pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82551IT);
462
        PCI_CONFIG_8(PCI_REVISION_ID, 0x0f);
463
        break;
464
    case i82557B:
465
        pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82557);
466
        PCI_CONFIG_8(PCI_REVISION_ID, 0x02);
467
        break;
468
    case i82557C:
469
        pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82557);
470
        PCI_CONFIG_8(PCI_REVISION_ID, 0x03);
471
        break;
472
    case i82558B:
473
        pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82557);
474
        PCI_CONFIG_16(PCI_STATUS, 0x2810);
475
        PCI_CONFIG_8(PCI_REVISION_ID, 0x05);
476
        break;
477
    case i82559C:
478
        pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82557);
479
        PCI_CONFIG_16(PCI_STATUS, 0x2810);
480
        //~ PCI_CONFIG_8(PCI_REVISION_ID, 0x08);
481
        break;
482
    case i82559ER:
483
        pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82551IT);
484
        PCI_CONFIG_16(PCI_STATUS, 0x2810);
485
        PCI_CONFIG_8(PCI_REVISION_ID, 0x09);
486
        break;
487
    //~ PCI_CONFIG_16(PCI_DEVICE_ID, 0x1029);
488
    //~ PCI_CONFIG_16(PCI_DEVICE_ID, 0x1030);       /* 82559 InBusiness 10/100 */
489
    default:
490
        logout("Device %X is undefined!\n", device);
491
    }
492

    
493
    if (device == i82557C || device == i82558B || device == i82559C) {
494
        logout("Get device id and revision from EEPROM!!!\n");
495
    }
496
}
497

    
498
static void nic_selective_reset(EEPRO100State * s)
499
{
500
    size_t i;
501
    uint16_t *eeprom_contents = eeprom93xx_data(s->eeprom);
502
    //~ eeprom93xx_reset(s->eeprom);
503
    memcpy(eeprom_contents, s->macaddr, 6);
504
    eeprom_contents[0xa] = 0x4000;
505
    uint16_t sum = 0;
506
    for (i = 0; i < EEPROM_SIZE - 1; i++) {
507
        sum += eeprom_contents[i];
508
    }
509
    eeprom_contents[EEPROM_SIZE - 1] = 0xbaba - sum;
510
    TRACE(EEPROM, logout("checksum=0x%04x\n", eeprom_contents[EEPROM_SIZE - 1]));
511

    
512
    memset(s->mem, 0, sizeof(s->mem));
513
    uint32_t val = BIT(21);
514
    memcpy(&s->mem[SCBCtrlMDI], &val, sizeof(val));
515

    
516
    assert(sizeof(s->mdimem) == sizeof(eepro100_mdi_default));
517
    memcpy(&s->mdimem[0], &eepro100_mdi_default[0], sizeof(s->mdimem));
518
}
519

    
520
static void nic_reset(void *opaque)
521
{
522
    EEPRO100State *s = opaque;
523
    TRACE(OTHER, logout("%p\n", s));
524
    nic_selective_reset(s);
525
}
526

    
527
#if defined(DEBUG_EEPRO100)
528
static const char * const reg[PCI_IO_SIZE / 4] = {
529
    "Command/Status",
530
    "General Pointer",
531
    "Port",
532
    "EEPROM/Flash Control",
533
    "MDI Control",
534
    "Receive DMA Byte Count",
535
    "Flow control",
536
    "General Status/Control"
537
};
538

    
539
static char *regname(uint32_t addr)
540
{
541
    static char buf[16];
542
    if (addr < PCI_IO_SIZE) {
543
        const char *r = reg[addr / 4];
544
        if (r != 0) {
545
            snprintf(buf, sizeof(buf), "%s+%u", r, addr % 4);
546
        } else {
547
            snprintf(buf, sizeof(buf), "0x%02x", addr);
548
        }
549
    } else {
550
        snprintf(buf, sizeof(buf), "??? 0x%08x", addr);
551
    }
552
    return buf;
553
}
554
#endif                          /* DEBUG_EEPRO100 */
555

    
556
#if 0
557
static uint16_t eepro100_read_status(EEPRO100State * s)
558
{
559
    uint16_t val = s->status;
560
    TRACE(OTHER, logout("val=0x%04x\n", val));
561
    return val;
562
}
563

564
static void eepro100_write_status(EEPRO100State * s, uint16_t val)
565
{
566
    TRACE(OTHER, logout("val=0x%04x\n", val));
567
    s->status = val;
568
}
569
#endif
570

    
571
/*****************************************************************************
572
 *
573
 * Command emulation.
574
 *
575
 ****************************************************************************/
576

    
577
#if 0
578
static uint16_t eepro100_read_command(EEPRO100State * s)
579
{
580
    uint16_t val = 0xffff;
581
    //~ TRACE(OTHER, logout("val=0x%04x\n", val));
582
    return val;
583
}
584
#endif
585

    
586
static bool device_supports_eTxCB(EEPRO100State * s)
587
{
588
    return (s->device != i82557B && s->device != i82557C);
589
}
590

    
591
/* Commands that can be put in a command list entry. */
592
enum commands {
593
    CmdNOp = 0,
594
    CmdIASetup = 1,
595
    CmdConfigure = 2,
596
    CmdMulticastList = 3,
597
    CmdTx = 4,
598
    CmdTDR = 5,                 /* load microcode */
599
    CmdDump = 6,
600
    CmdDiagnose = 7,
601

    
602
    /* And some extra flags: */
603
    CmdSuspend = 0x4000,        /* Suspend after completion. */
604
    CmdIntr = 0x2000,           /* Interrupt after completion. */
605
    CmdTxFlex = 0x0008,         /* Use "Flexible mode" for CmdTx command. */
606
};
607

    
608
static cu_state_t get_cu_state(EEPRO100State * s)
609
{
610
    return ((s->mem[SCBStatus] >> 6) & 0x03);
611
}
612

    
613
static void set_cu_state(EEPRO100State * s, cu_state_t state)
614
{
615
    s->mem[SCBStatus] = (s->mem[SCBStatus] & 0x3f) + (state << 6);
616
}
617

    
618
static ru_state_t get_ru_state(EEPRO100State * s)
619
{
620
    return ((s->mem[SCBStatus] >> 2) & 0x0f);
621
}
622

    
623
static void set_ru_state(EEPRO100State * s, ru_state_t state)
624
{
625
    s->mem[SCBStatus] = (s->mem[SCBStatus] & 0xc3) + (state << 2);
626
}
627

    
628
static void dump_statistics(EEPRO100State * s)
629
{
630
    /* Dump statistical data. Most data is never changed by the emulation
631
     * and always 0, so we first just copy the whole block and then those
632
     * values which really matter.
633
     * Number of data should check configuration!!!
634
     */
635
    cpu_physical_memory_write(s->statsaddr, (uint8_t *) & s->statistics, 64);
636
    stl_phys(s->statsaddr + 0, s->statistics.tx_good_frames);
637
    stl_phys(s->statsaddr + 36, s->statistics.rx_good_frames);
638
    stl_phys(s->statsaddr + 48, s->statistics.rx_resource_errors);
639
    stl_phys(s->statsaddr + 60, s->statistics.rx_short_frame_errors);
640
    //~ stw_phys(s->statsaddr + 76, s->statistics.xmt_tco_frames);
641
    //~ stw_phys(s->statsaddr + 78, s->statistics.rcv_tco_frames);
642
    //~ missing("CU dump statistical counters");
643
}
644

    
645
static void eepro100_cu_command(EEPRO100State * s, uint8_t val)
646
{
647
    eepro100_tx_t tx;
648
    uint32_t cb_address;
649
    switch (val) {
650
    case CU_NOP:
651
        /* No operation. */
652
        break;
653
    case CU_START:
654
        if (get_cu_state(s) != cu_idle) {
655
            /* Intel documentation says that CU must be idle for the CU
656
             * start command. Intel driver for Linux also starts the CU
657
             * from suspended state. */
658
            logout("CU state is %u, should be %u\n", get_cu_state(s), cu_idle);
659
            //~ assert(!"wrong CU state");
660
        }
661
        set_cu_state(s, cu_active);
662
        s->cu_offset = s->pointer;
663
      next_command:
664
        cb_address = s->cu_base + s->cu_offset;
665
        cpu_physical_memory_read(cb_address, (uint8_t *) & tx, sizeof(tx));
666
        uint16_t status = le16_to_cpu(tx.status);
667
        uint16_t command = le16_to_cpu(tx.command);
668
        logout
669
            ("val=0x%02x (cu start), status=0x%04x, command=0x%04x, link=0x%08x\n",
670
             val, status, command, tx.link);
671
        bool bit_el = ((command & 0x8000) != 0);
672
        bool bit_s = ((command & 0x4000) != 0);
673
        bool bit_i = ((command & 0x2000) != 0);
674
        bool bit_nc = ((command & 0x0010) != 0);
675
        bool success = true;
676
        //~ bool bit_sf = ((command & 0x0008) != 0);
677
        uint16_t cmd = command & 0x0007;
678
        s->cu_offset = le32_to_cpu(tx.link);
679
        switch (cmd) {
680
        case CmdNOp:
681
            /* Do nothing. */
682
            break;
683
        case CmdIASetup:
684
            cpu_physical_memory_read(cb_address + 8, &s->macaddr[0], 6);
685
            TRACE(OTHER, logout("macaddr: %s\n", nic_dump(&s->macaddr[0], 6)));
686
            break;
687
        case CmdConfigure:
688
            cpu_physical_memory_read(cb_address + 8, &s->configuration[0],
689
                                     sizeof(s->configuration));
690
            TRACE(OTHER, logout("configuration: %s\n", nic_dump(&s->configuration[0], 16)));
691
            break;
692
        case CmdMulticastList:
693
            //~ missing("multicast list");
694
            break;
695
        case CmdTx:
696
            (void)0;
697
            uint32_t tbd_array = le32_to_cpu(tx.tx_desc_addr);
698
            uint16_t tcb_bytes = (le16_to_cpu(tx.tcb_bytes) & 0x3fff);
699
            TRACE(RXTX, logout
700
                ("transmit, TBD array address 0x%08x, TCB byte count 0x%04x, TBD count %u\n",
701
                 tbd_array, tcb_bytes, tx.tbd_count));
702

    
703
            if (bit_nc) {
704
                missing("CmdTx: NC = 0");
705
                success = false;
706
                break;
707
            }
708
            //~ assert(!bit_sf);
709
            if (tcb_bytes > 2600) {
710
                logout("TCB byte count too large, using 2600\n");
711
                tcb_bytes = 2600;
712
            }
713
            /* Next assertion fails for local configuration. */
714
            //~ assert((tcb_bytes > 0) || (tbd_array != 0xffffffff));
715
            if (!((tcb_bytes > 0) || (tbd_array != 0xffffffff))) {
716
                logout
717
                    ("illegal values of TBD array address and TCB byte count!\n");
718
            }
719
            // sends larger than MAX_ETH_FRAME_SIZE are allowed, up to 2600 bytes
720
            uint8_t buf[2600];
721
            uint16_t size = 0;
722
            uint32_t tbd_address = cb_address + 0x10;
723
            assert(tcb_bytes <= sizeof(buf));
724
            while (size < tcb_bytes) {
725
                uint32_t tx_buffer_address = ldl_phys(tbd_address);
726
                uint16_t tx_buffer_size = lduw_phys(tbd_address + 4);
727
                //~ uint16_t tx_buffer_el = lduw_phys(tbd_address + 6);
728
                tbd_address += 8;
729
                TRACE(RXTX, logout
730
                    ("TBD (simplified mode): buffer address 0x%08x, size 0x%04x\n",
731
                     tx_buffer_address, tx_buffer_size));
732
                tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
733
                cpu_physical_memory_read(tx_buffer_address, &buf[size],
734
                                         tx_buffer_size);
735
                size += tx_buffer_size;
736
            }
737
            if (tbd_array == 0xffffffff) {
738
                /* Simplified mode. Was already handled by code above. */
739
            } else {
740
                /* Flexible mode. */
741
                uint8_t tbd_count = 0;
742
                if (device_supports_eTxCB(s) && !(s->configuration[6] & BIT(4))) {
743
                    /* Extended Flexible TCB. */
744
                    for (; tbd_count < 2; tbd_count++) {
745
                        uint32_t tx_buffer_address = ldl_phys(tbd_address);
746
                        uint16_t tx_buffer_size = lduw_phys(tbd_address + 4);
747
                        uint16_t tx_buffer_el = lduw_phys(tbd_address + 6);
748
                        tbd_address += 8;
749
                        TRACE(RXTX, logout
750
                            ("TBD (extended flexible mode): buffer address 0x%08x, size 0x%04x\n",
751
                             tx_buffer_address, tx_buffer_size));
752
                        tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
753
                        cpu_physical_memory_read(tx_buffer_address, &buf[size],
754
                                                 tx_buffer_size);
755
                        size += tx_buffer_size;
756
                        if (tx_buffer_el & 1) {
757
                            break;
758
                        }
759
                    }
760
                }
761
                tbd_address = tbd_array;
762
                for (; tbd_count < tx.tbd_count; tbd_count++) {
763
                    uint32_t tx_buffer_address = ldl_phys(tbd_address);
764
                    uint16_t tx_buffer_size = lduw_phys(tbd_address + 4);
765
                    uint16_t tx_buffer_el = lduw_phys(tbd_address + 6);
766
                    tbd_address += 8;
767
                    TRACE(RXTX, logout
768
                        ("TBD (flexible mode): buffer address 0x%08x, size 0x%04x\n",
769
                         tx_buffer_address, tx_buffer_size));
770
                    tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
771
                    cpu_physical_memory_read(tx_buffer_address, &buf[size],
772
                                             tx_buffer_size);
773
                    size += tx_buffer_size;
774
                    if (tx_buffer_el & 1) {
775
                        break;
776
                    }
777
                }
778
            }
779
            TRACE(RXTX, logout("%p sending frame, len=%d,%s\n", s, size, nic_dump(buf, size)));
780
            qemu_send_packet(s->vc, buf, size);
781
            s->statistics.tx_good_frames++;
782
            /* Transmit with bad status would raise an CX/TNO interrupt.
783
             * (82557 only). Emulation never has bad status. */
784
            //~ eepro100_cx_interrupt(s);
785
            break;
786
        case CmdTDR:
787
            TRACE(OTHER, logout("load microcode\n"));
788
            /* Starting with offset 8, the command contains
789
             * 64 dwords microcode which we just ignore here. */
790
            break;
791
        default:
792
            missing("undefined command");
793
            success = false;
794
            break;
795
        }
796
        /* Write new status. */
797
        stw_phys(cb_address, status | 0x8000 | (success ? 0x2000 : 0));
798
        if (bit_i) {
799
            /* CU completed action. */
800
            eepro100_cx_interrupt(s);
801
        }
802
        if (bit_el) {
803
            /* CU becomes idle. Terminate command loop. */
804
            set_cu_state(s, cu_idle);
805
            eepro100_cna_interrupt(s);
806
        } else if (bit_s) {
807
            /* CU becomes suspended. */
808
            set_cu_state(s, cu_suspended);
809
            eepro100_cna_interrupt(s);
810
        } else {
811
            /* More entries in list. */
812
            TRACE(OTHER, logout("CU list with at least one more entry\n"));
813
            goto next_command;
814
        }
815
        TRACE(OTHER, logout("CU list empty\n"));
816
        /* List is empty. Now CU is idle or suspended. */
817
        break;
818
    case CU_RESUME:
819
        if (get_cu_state(s) != cu_suspended) {
820
            logout("bad CU resume from CU state %u\n", get_cu_state(s));
821
            /* Workaround for bad Linux eepro100 driver which resumes
822
             * from idle state. */
823
            //~ missing("cu resume");
824
            set_cu_state(s, cu_suspended);
825
        }
826
        if (get_cu_state(s) == cu_suspended) {
827
            TRACE(OTHER, logout("CU resuming\n"));
828
            set_cu_state(s, cu_active);
829
            goto next_command;
830
        }
831
        break;
832
    case CU_STATSADDR:
833
        /* Load dump counters address. */
834
        s->statsaddr = s->pointer;
835
        TRACE(OTHER, logout("val=0x%02x (status address)\n", val));
836
        break;
837
    case CU_SHOWSTATS:
838
        /* Dump statistical counters. */
839
        TRACE(OTHER, logout("val=0x%02x (dump stats)\n", val));
840
        dump_statistics(s);
841
        break;
842
    case CU_CMD_BASE:
843
        /* Load CU base. */
844
        TRACE(OTHER, logout("val=0x%02x (CU base address)\n", val));
845
        s->cu_base = s->pointer;
846
        break;
847
    case CU_DUMPSTATS:
848
        /* Dump and reset statistical counters. */
849
        TRACE(OTHER, logout("val=0x%02x (dump stats and reset)\n", val));
850
        dump_statistics(s);
851
        memset(&s->statistics, 0, sizeof(s->statistics));
852
        break;
853
    case CU_SRESUME:
854
        /* CU static resume. */
855
        missing("CU static resume");
856
        break;
857
    default:
858
        missing("Undefined CU command");
859
    }
860
}
861

    
862
static void eepro100_ru_command(EEPRO100State * s, uint8_t val)
863
{
864
    switch (val) {
865
    case RU_NOP:
866
        /* No operation. */
867
        break;
868
    case RX_START:
869
        /* RU start. */
870
        if (get_ru_state(s) != ru_idle) {
871
            logout("RU state is %u, should be %u\n", get_ru_state(s), ru_idle);
872
            //~ assert(!"wrong RU state");
873
        }
874
        set_ru_state(s, ru_ready);
875
        s->ru_offset = s->pointer;
876
        TRACE(OTHER, logout("val=0x%02x (rx start)\n", val));
877
        break;
878
    case RX_RESUME:
879
        /* Restart RU. */
880
        if (get_ru_state(s) != ru_suspended) {
881
            logout("RU state is %u, should be %u\n", get_ru_state(s),
882
                   ru_suspended);
883
            //~ assert(!"wrong RU state");
884
        }
885
        set_ru_state(s, ru_ready);
886
        break;
887
    case RX_ADDR_LOAD:
888
        /* Load RU base. */
889
        TRACE(OTHER, logout("val=0x%02x (RU base address)\n", val));
890
        s->ru_base = s->pointer;
891
        break;
892
    default:
893
        logout("val=0x%02x (undefined RU command)\n", val);
894
        missing("Undefined SU command");
895
    }
896
}
897

    
898
static void eepro100_write_command(EEPRO100State * s, uint8_t val)
899
{
900
    eepro100_ru_command(s, val & 0x0f);
901
    eepro100_cu_command(s, val & 0xf0);
902
    if ((val) == 0) {
903
        TRACE(OTHER, logout("val=0x%02x\n", val));
904
    }
905
    /* Clear command byte after command was accepted. */
906
    s->mem[SCBCmd] = 0;
907
}
908

    
909
/*****************************************************************************
910
 *
911
 * EEPROM emulation.
912
 *
913
 ****************************************************************************/
914

    
915
#define EEPROM_CS       0x02
916
#define EEPROM_SK       0x01
917
#define EEPROM_DI       0x04
918
#define EEPROM_DO       0x08
919

    
920
static uint16_t eepro100_read_eeprom(EEPRO100State * s)
921
{
922
    uint16_t val;
923
    memcpy(&val, &s->mem[SCBeeprom], sizeof(val));
924
    if (eeprom93xx_read(s->eeprom)) {
925
        val |= EEPROM_DO;
926
    } else {
927
        val &= ~EEPROM_DO;
928
    }
929
    TRACE(EEPROM, logout("val=0x%04x\n", val));
930
    return val;
931
}
932

    
933
static void eepro100_write_eeprom(eeprom_t * eeprom, uint8_t val)
934
{
935
    TRACE(EEPROM, logout("val=0x%02x\n", val));
936

    
937
    /* mask unwriteable bits */
938
    //~ val = SET_MASKED(val, 0x31, eeprom->value);
939

    
940
    int eecs = ((val & EEPROM_CS) != 0);
941
    int eesk = ((val & EEPROM_SK) != 0);
942
    int eedi = ((val & EEPROM_DI) != 0);
943
    eeprom93xx_write(eeprom, eecs, eesk, eedi);
944
}
945

    
946
static void eepro100_write_pointer(EEPRO100State * s, uint32_t val)
947
{
948
    s->pointer = le32_to_cpu(val);
949
    TRACE(OTHER, logout("val=0x%08x\n", val));
950
}
951

    
952
/*****************************************************************************
953
 *
954
 * MDI emulation.
955
 *
956
 ****************************************************************************/
957

    
958
#if defined(DEBUG_EEPRO100)
959
static const char * const mdi_op_name[] = {
960
    "opcode 0",
961
    "write",
962
    "read",
963
    "opcode 3"
964
};
965

    
966
static const char * const mdi_reg_name[] = {
967
    "Control",
968
    "Status",
969
    "PHY Identification (Word 1)",
970
    "PHY Identification (Word 2)",
971
    "Auto-Negotiation Advertisement",
972
    "Auto-Negotiation Link Partner Ability",
973
    "Auto-Negotiation Expansion"
974
};
975

    
976
static const char *reg2name(uint8_t reg)
977
{
978
    static char buffer[10];
979
    const char *p = buffer;
980
    if (reg < ARRAY_SIZE(mdi_reg_name)) {
981
        p = mdi_reg_name[reg];
982
    } else {
983
        snprintf(buffer, sizeof(buffer), "reg=0x%02x", reg);
984
    }
985
    return p;
986
}
987
#endif                          /* DEBUG_EEPRO100 */
988

    
989
static uint32_t eepro100_read_mdi(EEPRO100State * s)
990
{
991
    uint32_t val;
992
    memcpy(&val, &s->mem[0x10], sizeof(val));
993

    
994
#ifdef DEBUG_EEPRO100
995
    uint8_t raiseint = (val & BIT(29)) >> 29;
996
    uint8_t opcode = (val & BITS(27, 26)) >> 26;
997
    uint8_t phy = (val & BITS(25, 21)) >> 21;
998
    uint8_t reg = (val & BITS(20, 16)) >> 16;
999
    uint16_t data = (val & BITS(15, 0));
1000
#endif
1001
    /* Emulation takes no time to finish MDI transaction. */
1002
    val |= BIT(28);
1003
    TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
1004
                      val, raiseint, mdi_op_name[opcode], phy,
1005
                      reg2name(reg), data));
1006
    return val;
1007
}
1008

    
1009
static void eepro100_write_mdi(EEPRO100State * s, uint32_t val)
1010
{
1011
    uint8_t raiseint = (val & BIT(29)) >> 29;
1012
    uint8_t opcode = (val & BITS(27, 26)) >> 26;
1013
    uint8_t phy = (val & BITS(25, 21)) >> 21;
1014
    uint8_t reg = (val & BITS(20, 16)) >> 16;
1015
    uint16_t data = (val & BITS(15, 0));
1016
    TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
1017
          val, raiseint, mdi_op_name[opcode], phy, reg2name(reg), data));
1018
    if (phy != 1) {
1019
        /* Unsupported PHY address. */
1020
        //~ logout("phy must be 1 but is %u\n", phy);
1021
        data = 0;
1022
    } else if (opcode != 1 && opcode != 2) {
1023
        /* Unsupported opcode. */
1024
        logout("opcode must be 1 or 2 but is %u\n", opcode);
1025
        data = 0;
1026
    } else if (reg > 6) {
1027
        /* Unsupported register. */
1028
        logout("register must be 0...6 but is %u\n", reg);
1029
        data = 0;
1030
    } else {
1031
        TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
1032
                          val, raiseint, mdi_op_name[opcode], phy,
1033
                          reg2name(reg), data));
1034
        if (opcode == 1) {
1035
            /* MDI write */
1036
            switch (reg) {
1037
            case 0:            /* Control Register */
1038
                if (data & 0x8000) {
1039
                    /* Reset status and control registers to default. */
1040
                    s->mdimem[0] = eepro100_mdi_default[0];
1041
                    s->mdimem[1] = eepro100_mdi_default[1];
1042
                    data = s->mdimem[reg];
1043
                } else {
1044
                    /* Restart Auto Configuration = Normal Operation */
1045
                    data &= ~0x0200;
1046
                }
1047
                break;
1048
            case 1:            /* Status Register */
1049
                missing("not writable");
1050
                data = s->mdimem[reg];
1051
                break;
1052
            case 2:            /* PHY Identification Register (Word 1) */
1053
            case 3:            /* PHY Identification Register (Word 2) */
1054
                missing("not implemented");
1055
                break;
1056
            case 4:            /* Auto-Negotiation Advertisement Register */
1057
            case 5:            /* Auto-Negotiation Link Partner Ability Register */
1058
                break;
1059
            case 6:            /* Auto-Negotiation Expansion Register */
1060
            default:
1061
                missing("not implemented");
1062
            }
1063
            s->mdimem[reg] = data;
1064
        } else if (opcode == 2) {
1065
            /* MDI read */
1066
            switch (reg) {
1067
            case 0:            /* Control Register */
1068
                if (data & 0x8000) {
1069
                    /* Reset status and control registers to default. */
1070
                    s->mdimem[0] = eepro100_mdi_default[0];
1071
                    s->mdimem[1] = eepro100_mdi_default[1];
1072
                }
1073
                break;
1074
            case 1:            /* Status Register */
1075
                s->mdimem[reg] |= 0x0020;
1076
                break;
1077
            case 2:            /* PHY Identification Register (Word 1) */
1078
            case 3:            /* PHY Identification Register (Word 2) */
1079
            case 4:            /* Auto-Negotiation Advertisement Register */
1080
                break;
1081
            case 5:            /* Auto-Negotiation Link Partner Ability Register */
1082
                s->mdimem[reg] = 0x41fe;
1083
                break;
1084
            case 6:            /* Auto-Negotiation Expansion Register */
1085
                s->mdimem[reg] = 0x0001;
1086
                break;
1087
            }
1088
            data = s->mdimem[reg];
1089
        }
1090
        /* Emulation takes no time to finish MDI transaction.
1091
         * Set MDI bit in SCB status register. */
1092
        s->mem[SCBAck] |= 0x08;
1093
        val |= BIT(28);
1094
        if (raiseint) {
1095
            eepro100_mdi_interrupt(s);
1096
        }
1097
    }
1098
    val = (val & 0xffff0000) + data;
1099
    memcpy(&s->mem[0x10], &val, sizeof(val));
1100
}
1101

    
1102
/*****************************************************************************
1103
 *
1104
 * Port emulation.
1105
 *
1106
 ****************************************************************************/
1107

    
1108
#define PORT_SOFTWARE_RESET     0
1109
#define PORT_SELFTEST           1
1110
#define PORT_SELECTIVE_RESET    2
1111
#define PORT_DUMP               3
1112
#define PORT_SELECTION_MASK     3
1113

    
1114
typedef struct {
1115
    uint32_t st_sign;           /* Self Test Signature */
1116
    uint32_t st_result;         /* Self Test Results */
1117
} eepro100_selftest_t;
1118

    
1119
static uint32_t eepro100_read_port(EEPRO100State * s)
1120
{
1121
    return 0;
1122
}
1123

    
1124
static void eepro100_write_port(EEPRO100State * s, uint32_t val)
1125
{
1126
    val = le32_to_cpu(val);
1127
    uint32_t address = (val & ~PORT_SELECTION_MASK);
1128
    uint8_t selection = (val & PORT_SELECTION_MASK);
1129
    switch (selection) {
1130
    case PORT_SOFTWARE_RESET:
1131
        nic_reset(s);
1132
        break;
1133
    case PORT_SELFTEST:
1134
        TRACE(OTHER, logout("selftest address=0x%08x\n", address));
1135
        eepro100_selftest_t data;
1136
        cpu_physical_memory_read(address, (uint8_t *) & data, sizeof(data));
1137
        data.st_sign = 0xffffffff;
1138
        data.st_result = 0;
1139
        cpu_physical_memory_write(address, (uint8_t *) & data, sizeof(data));
1140
        break;
1141
    case PORT_SELECTIVE_RESET:
1142
        TRACE(OTHER, logout("selective reset, selftest address=0x%08x\n", address));
1143
        nic_selective_reset(s);
1144
        break;
1145
    default:
1146
        logout("val=0x%08x\n", val);
1147
        missing("unknown port selection");
1148
    }
1149
}
1150

    
1151
/*****************************************************************************
1152
 *
1153
 * General hardware emulation.
1154
 *
1155
 ****************************************************************************/
1156

    
1157
static uint8_t eepro100_read1(EEPRO100State * s, uint32_t addr)
1158
{
1159
    uint8_t val;
1160
    if (addr <= sizeof(s->mem) - sizeof(val)) {
1161
        memcpy(&val, &s->mem[addr], sizeof(val));
1162
    }
1163

    
1164
    switch (addr) {
1165
    case SCBStatus:
1166
        //~ val = eepro100_read_status(s);
1167
        TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1168
        break;
1169
    case SCBAck:
1170
        //~ val = eepro100_read_status(s);
1171
        TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1172
        break;
1173
    case SCBCmd:
1174
        TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1175
        //~ val = eepro100_read_command(s);
1176
        break;
1177
    case SCBIntmask:
1178
        TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1179
        break;
1180
    case SCBPort + 3:
1181
        TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1182
        break;
1183
    case SCBeeprom:
1184
        val = eepro100_read_eeprom(s);
1185
        break;
1186
    case 0x1b:                 /* PMDR (power management driver register) */
1187
        val = 0;
1188
        TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1189
        break;
1190
    case 0x1d:                 /* general status register */
1191
        /* 100 Mbps full duplex, valid link */
1192
        val = 0x07;
1193
        TRACE(OTHER, logout("addr=General Status val=%02x\n", val));
1194
        break;
1195
    default:
1196
        logout("addr=%s val=0x%02x\n", regname(addr), val);
1197
        missing("unknown byte read");
1198
    }
1199
    return val;
1200
}
1201

    
1202
static uint16_t eepro100_read2(EEPRO100State * s, uint32_t addr)
1203
{
1204
    uint16_t val;
1205
    if (addr <= sizeof(s->mem) - sizeof(val)) {
1206
        memcpy(&val, &s->mem[addr], sizeof(val));
1207
    }
1208

    
1209
    switch (addr) {
1210
    case SCBStatus:
1211
        //~ val = eepro100_read_status(s);
1212
        TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1213
        break;
1214
    case SCBeeprom:
1215
        val = eepro100_read_eeprom(s);
1216
        TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1217
        break;
1218
    default:
1219
        logout("addr=%s val=0x%04x\n", regname(addr), val);
1220
        missing("unknown word read");
1221
    }
1222
    return val;
1223
}
1224

    
1225
static uint32_t eepro100_read4(EEPRO100State * s, uint32_t addr)
1226
{
1227
    uint32_t val;
1228
    if (addr <= sizeof(s->mem) - sizeof(val)) {
1229
        memcpy(&val, &s->mem[addr], sizeof(val));
1230
    }
1231

    
1232
    switch (addr) {
1233
    case SCBStatus:
1234
        //~ val = eepro100_read_status(s);
1235
        TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1236
        break;
1237
    case SCBPointer:
1238
        //~ val = eepro100_read_pointer(s);
1239
        TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1240
        break;
1241
    case SCBPort:
1242
        val = eepro100_read_port(s);
1243
        TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1244
        break;
1245
    case SCBCtrlMDI:
1246
        val = eepro100_read_mdi(s);
1247
        break;
1248
    default:
1249
        logout("addr=%s val=0x%08x\n", regname(addr), val);
1250
        missing("unknown longword read");
1251
    }
1252
    return val;
1253
}
1254

    
1255
static void eepro100_write1(EEPRO100State * s, uint32_t addr, uint8_t val)
1256
{
1257
    if (addr <= sizeof(s->mem) - sizeof(val)) {
1258
        memcpy(&s->mem[addr], &val, sizeof(val));
1259
    }
1260

    
1261
    TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1262

    
1263
    switch (addr) {
1264
    case SCBStatus:
1265
        //~ eepro100_write_status(s, val);
1266
        break;
1267
    case SCBAck:
1268
        eepro100_acknowledge(s);
1269
        break;
1270
    case SCBCmd:
1271
        eepro100_write_command(s, val);
1272
        break;
1273
    case SCBIntmask:
1274
        if (val & BIT(1)) {
1275
            eepro100_swi_interrupt(s);
1276
        }
1277
        eepro100_interrupt(s, 0);
1278
        break;
1279
    case SCBPort + 3:
1280
    case SCBFlow:       /* does not exist on 82557 */
1281
    case SCBFlow + 1:
1282
    case SCBFlow + 2:
1283
    case SCBFlow + 3:
1284
        TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1285
        break;
1286
    case SCBeeprom:
1287
        eepro100_write_eeprom(s->eeprom, val);
1288
        break;
1289
    default:
1290
        logout("addr=%s val=0x%02x\n", regname(addr), val);
1291
        missing("unknown byte write");
1292
    }
1293
}
1294

    
1295
static void eepro100_write2(EEPRO100State * s, uint32_t addr, uint16_t val)
1296
{
1297
    if (addr <= sizeof(s->mem) - sizeof(val)) {
1298
        memcpy(&s->mem[addr], &val, sizeof(val));
1299
    }
1300

    
1301
    TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1302

    
1303
    switch (addr) {
1304
    case SCBStatus:
1305
        //~ eepro100_write_status(s, val);
1306
        eepro100_acknowledge(s);
1307
        break;
1308
    case SCBCmd:
1309
        eepro100_write_command(s, val);
1310
        eepro100_write1(s, SCBIntmask, val >> 8);
1311
        break;
1312
    case SCBeeprom:
1313
        eepro100_write_eeprom(s->eeprom, val);
1314
        break;
1315
    default:
1316
        logout("addr=%s val=0x%04x\n", regname(addr), val);
1317
        missing("unknown word write");
1318
    }
1319
}
1320

    
1321
static void eepro100_write4(EEPRO100State * s, uint32_t addr, uint32_t val)
1322
{
1323
    if (addr <= sizeof(s->mem) - sizeof(val)) {
1324
        memcpy(&s->mem[addr], &val, sizeof(val));
1325
    }
1326

    
1327
    switch (addr) {
1328
    case SCBPointer:
1329
        eepro100_write_pointer(s, val);
1330
        break;
1331
    case SCBPort:
1332
        TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1333
        eepro100_write_port(s, val);
1334
        break;
1335
    case SCBCtrlMDI:
1336
        eepro100_write_mdi(s, val);
1337
        break;
1338
    default:
1339
        logout("addr=%s val=0x%08x\n", regname(addr), val);
1340
        missing("unknown longword write");
1341
    }
1342
}
1343

    
1344
/*****************************************************************************
1345
 *
1346
 * Port mapped I/O.
1347
 *
1348
 ****************************************************************************/
1349

    
1350
static uint32_t ioport_read1(void *opaque, uint32_t addr)
1351
{
1352
    EEPRO100State *s = opaque;
1353
    //~ logout("addr=%s\n", regname(addr));
1354
    return eepro100_read1(s, addr - s->region[1]);
1355
}
1356

    
1357
static uint32_t ioport_read2(void *opaque, uint32_t addr)
1358
{
1359
    EEPRO100State *s = opaque;
1360
    return eepro100_read2(s, addr - s->region[1]);
1361
}
1362

    
1363
static uint32_t ioport_read4(void *opaque, uint32_t addr)
1364
{
1365
    EEPRO100State *s = opaque;
1366
    return eepro100_read4(s, addr - s->region[1]);
1367
}
1368

    
1369
static void ioport_write1(void *opaque, uint32_t addr, uint32_t val)
1370
{
1371
    EEPRO100State *s = opaque;
1372
    //~ logout("addr=%s val=0x%02x\n", regname(addr), val);
1373
    eepro100_write1(s, addr - s->region[1], val);
1374
}
1375

    
1376
static void ioport_write2(void *opaque, uint32_t addr, uint32_t val)
1377
{
1378
    EEPRO100State *s = opaque;
1379
    eepro100_write2(s, addr - s->region[1], val);
1380
}
1381

    
1382
static void ioport_write4(void *opaque, uint32_t addr, uint32_t val)
1383
{
1384
    EEPRO100State *s = opaque;
1385
    eepro100_write4(s, addr - s->region[1], val);
1386
}
1387

    
1388
/***********************************************************/
1389
/* PCI EEPRO100 definitions */
1390

    
1391
static void pci_map(PCIDevice * pci_dev, int region_num,
1392
                    uint32_t addr, uint32_t size, int type)
1393
{
1394
    EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
1395

    
1396
    TRACE(OTHER, logout("region %d, addr=0x%08x, size=0x%08x, type=%d\n",
1397
          region_num, addr, size, type));
1398

    
1399
    assert(region_num == 1);
1400
    register_ioport_write(addr, size, 1, ioport_write1, s);
1401
    register_ioport_read(addr, size, 1, ioport_read1, s);
1402
    register_ioport_write(addr, size, 2, ioport_write2, s);
1403
    register_ioport_read(addr, size, 2, ioport_read2, s);
1404
    register_ioport_write(addr, size, 4, ioport_write4, s);
1405
    register_ioport_read(addr, size, 4, ioport_read4, s);
1406

    
1407
    s->region[region_num] = addr;
1408
}
1409

    
1410
/*****************************************************************************
1411
 *
1412
 * Memory mapped I/O.
1413
 *
1414
 ****************************************************************************/
1415

    
1416
static void pci_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1417
{
1418
    EEPRO100State *s = opaque;
1419
    //~ logout("addr=%s val=0x%02x\n", regname(addr), val);
1420
    eepro100_write1(s, addr, val);
1421
}
1422

    
1423
static void pci_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1424
{
1425
    EEPRO100State *s = opaque;
1426
    //~ logout("addr=%s val=0x%02x\n", regname(addr), val);
1427
    eepro100_write2(s, addr, val);
1428
}
1429

    
1430
static void pci_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1431
{
1432
    EEPRO100State *s = opaque;
1433
    //~ logout("addr=%s val=0x%02x\n", regname(addr), val);
1434
    eepro100_write4(s, addr, val);
1435
}
1436

    
1437
static uint32_t pci_mmio_readb(void *opaque, target_phys_addr_t addr)
1438
{
1439
    EEPRO100State *s = opaque;
1440
    //~ logout("addr=%s\n", regname(addr));
1441
    return eepro100_read1(s, addr);
1442
}
1443

    
1444
static uint32_t pci_mmio_readw(void *opaque, target_phys_addr_t addr)
1445
{
1446
    EEPRO100State *s = opaque;
1447
    //~ logout("addr=%s\n", regname(addr));
1448
    return eepro100_read2(s, addr);
1449
}
1450

    
1451
static uint32_t pci_mmio_readl(void *opaque, target_phys_addr_t addr)
1452
{
1453
    EEPRO100State *s = opaque;
1454
    //~ logout("addr=%s\n", regname(addr));
1455
    return eepro100_read4(s, addr);
1456
}
1457

    
1458
static CPUWriteMemoryFunc * const pci_mmio_write[] = {
1459
    pci_mmio_writeb,
1460
    pci_mmio_writew,
1461
    pci_mmio_writel
1462
};
1463

    
1464
static CPUReadMemoryFunc * const pci_mmio_read[] = {
1465
    pci_mmio_readb,
1466
    pci_mmio_readw,
1467
    pci_mmio_readl
1468
};
1469

    
1470
static void pci_mmio_map(PCIDevice * pci_dev, int region_num,
1471
                         uint32_t addr, uint32_t size, int type)
1472
{
1473
    EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
1474

    
1475
    TRACE(OTHER, logout("region %d, addr=0x%08x, size=0x%08x, type=%d\n",
1476
          region_num, addr, size, type));
1477

    
1478
    if (region_num == 0) {
1479
        /* Map control / status registers. */
1480
        cpu_register_physical_memory(addr, size, s->mmio_index);
1481
        s->region[region_num] = addr;
1482
    }
1483
}
1484

    
1485
static int nic_can_receive(VLANClientState *vc)
1486
{
1487
    EEPRO100State *s = vc->opaque;
1488
    TRACE(RXTX, logout("%p\n", s));
1489
    return get_ru_state(s) == ru_ready;
1490
    //~ return !eepro100_buffer_full(s);
1491
}
1492

    
1493
static ssize_t nic_receive(VLANClientState *vc, const uint8_t * buf, size_t size)
1494
{
1495
    /* TODO:
1496
     * - Magic packets should set bit 30 in power management driver register.
1497
     * - Interesting packets should set bit 29 in power management driver register.
1498
     */
1499
    EEPRO100State *s = vc->opaque;
1500
    uint16_t rfd_status = 0xa000;
1501
    static const uint8_t broadcast_macaddr[6] =
1502
        { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1503

    
1504
    /* TODO: check multiple IA bit. */
1505
    if (s->configuration[20] & BIT(6)) {
1506
        missing("Multiple IA bit");
1507
        return -1;
1508
    }
1509

    
1510
    if (s->configuration[8] & 0x80) {
1511
        /* CSMA is disabled. */
1512
        logout("%p received while CSMA is disabled\n", s);
1513
        return -1;
1514
    } else if (size < 64 && (s->configuration[7] & 1)) {
1515
        /* Short frame and configuration byte 7/0 (discard short receive) set:
1516
         * Short frame is discarded */
1517
        logout("%p received short frame (%zu byte)\n", s, size);
1518
        s->statistics.rx_short_frame_errors++;
1519
        //~ return -1;
1520
    } else if ((size > MAX_ETH_FRAME_SIZE + 4) && !(s->configuration[18] & 8)) {
1521
        /* Long frame and configuration byte 18/3 (long receive ok) not set:
1522
         * Long frames are discarded. */
1523
        logout("%p received long frame (%zu byte), ignored\n", s, size);
1524
        return -1;
1525
    } else if (memcmp(buf, s->macaddr, 6) == 0) {       // !!!
1526
        /* Frame matches individual address. */
1527
        /* TODO: check configuration byte 15/4 (ignore U/L). */
1528
        TRACE(RXTX, logout("%p received frame for me, len=%zu\n", s, size));
1529
    } else if (memcmp(buf, broadcast_macaddr, 6) == 0) {
1530
        /* Broadcast frame. */
1531
        TRACE(RXTX, logout("%p received broadcast, len=%zu\n", s, size));
1532
        rfd_status |= 0x0002;
1533
    } else if (buf[0] & 0x01) { // !!!
1534
        /* Multicast frame. */
1535
        TRACE(RXTX, logout("%p received multicast, len=%zu\n", s, size));
1536
        /* TODO: check multicast all bit. */
1537
        if (s->configuration[21] & BIT(3)) {
1538
            missing("Multicast All bit");
1539
        }
1540
        int mcast_idx = compute_mcast_idx(buf);
1541
        if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7)))) {
1542
            return size;
1543
        }
1544
        rfd_status |= 0x0002;
1545
    } else if (s->configuration[15] & 1) {
1546
        /* Promiscuous: receive all. */
1547
        TRACE(RXTX, logout("%p received frame in promiscuous mode, len=%zu\n", s, size));
1548
        rfd_status |= 0x0004;
1549
    } else {
1550
        TRACE(RXTX, logout("%p received frame, ignored, len=%zu,%s\n", s, size,
1551
              nic_dump(buf, size)));
1552
        return size;
1553
    }
1554

    
1555
    if (get_ru_state(s) != ru_ready) {
1556
        /* No resources available. */
1557
        logout("no resources, state=%u\n", get_ru_state(s));
1558
        s->statistics.rx_resource_errors++;
1559
        //~ assert(!"no resources");
1560
        return -1;
1561
    }
1562
    //~ !!!
1563
//~ $3 = {status = 0x0, command = 0xc000, link = 0x2d220, rx_buf_addr = 0x207dc, count = 0x0, size = 0x5f8, packet = {0x0 <repeats 1518 times>}}
1564
    eepro100_rx_t rx;
1565
    cpu_physical_memory_read(s->ru_base + s->ru_offset, (uint8_t *) & rx,
1566
                             offsetof(eepro100_rx_t, packet));
1567
    uint16_t rfd_command = le16_to_cpu(rx.command);
1568
    uint16_t rfd_size = le16_to_cpu(rx.size);
1569

    
1570
    if (size > rfd_size) {
1571
        logout("Receive buffer (%" PRId16 " bytes) too small for data "
1572
            "(%zu bytes); data truncated\n", rfd_size, size);
1573
        size = rfd_size;
1574
    }
1575
    if (size < 64) {
1576
        rfd_status |= 0x0080;
1577
    }
1578
    TRACE(OTHER, logout("command 0x%04x, link 0x%08x, addr 0x%08x, size %u\n",
1579
          rfd_command, rx.link, rx.rx_buf_addr, rfd_size));
1580
    stw_phys(s->ru_base + s->ru_offset + offsetof(eepro100_rx_t, status),
1581
             rfd_status);
1582
    stw_phys(s->ru_base + s->ru_offset + offsetof(eepro100_rx_t, count), size);
1583
    /* Early receive interrupt not supported. */
1584
    //~ eepro100_er_interrupt(s);
1585
    /* Receive CRC Transfer not supported. */
1586
    if (s->configuration[18] & 4) {
1587
        missing("Receive CRC Transfer");
1588
        return -1;
1589
    }
1590
    /* TODO: check stripping enable bit. */
1591
    //~ assert(!(s->configuration[17] & 1));
1592
    cpu_physical_memory_write(s->ru_base + s->ru_offset +
1593
                              offsetof(eepro100_rx_t, packet), buf, size);
1594
    s->statistics.rx_good_frames++;
1595
    eepro100_fr_interrupt(s);
1596
    s->ru_offset = le32_to_cpu(rx.link);
1597
    if (rfd_command & 0x8000) {
1598
        /* EL bit is set, so this was the last frame. */
1599
        logout("receive: Running out of frames\n");
1600
        set_ru_state(s, ru_suspended);
1601
    }
1602
    if (rfd_command & 0x4000) {
1603
        /* S bit is set. */
1604
        set_ru_state(s, ru_suspended);
1605
    }
1606
    return size;
1607
}
1608

    
1609
static int nic_load(QEMUFile * f, void *opaque, int version_id)
1610
{
1611
    EEPRO100State *s = opaque;
1612
    int i;
1613
    int ret;
1614

    
1615
    if (version_id > 3)
1616
        return -EINVAL;
1617

    
1618
    if (version_id >= 3) {
1619
        ret = pci_device_load(&s->dev, f);
1620
        if (ret < 0)
1621
            return ret;
1622
    }
1623

    
1624
    if (version_id >= 2) {
1625
        qemu_get_8s(f, &s->rxcr);
1626
    } else {
1627
        s->rxcr = 0x0c;
1628
    }
1629

    
1630
    qemu_get_8s(f, &s->cmd);
1631
    qemu_get_be32s(f, &s->start);
1632
    qemu_get_be32s(f, &s->stop);
1633
    qemu_get_8s(f, &s->boundary);
1634
    qemu_get_8s(f, &s->tsr);
1635
    qemu_get_8s(f, &s->tpsr);
1636
    qemu_get_be16s(f, &s->tcnt);
1637
    qemu_get_be16s(f, &s->rcnt);
1638
    qemu_get_be32s(f, &s->rsar);
1639
    qemu_get_8s(f, &s->rsr);
1640
    qemu_get_8s(f, &s->isr);
1641
    qemu_get_8s(f, &s->dcfg);
1642
    qemu_get_8s(f, &s->imr);
1643
    qemu_get_buffer(f, s->phys, 6);
1644
    qemu_get_8s(f, &s->curpag);
1645
    qemu_get_buffer(f, s->mult, 8);
1646
    qemu_get_buffer(f, s->mem, sizeof(s->mem));
1647

    
1648
    /* Restore all members of struct between scv_stat and mem. */
1649
    qemu_get_8s(f, &s->scb_stat);
1650
    qemu_get_8s(f, &s->int_stat);
1651
    for (i = 0; i < 3; i++) {
1652
        qemu_get_be32s(f, &s->region[i]);
1653
    }
1654
    qemu_get_buffer(f, s->macaddr, 6);
1655
    for (i = 0; i < 19; i++) {
1656
        qemu_get_be32s(f, &s->statcounter[i]);
1657
    }
1658
    for (i = 0; i < 32; i++) {
1659
        qemu_get_be16s(f, &s->mdimem[i]);
1660
    }
1661
    /* The eeprom should be saved and restored by its own routines. */
1662
    qemu_get_be32s(f, &s->device);
1663
    qemu_get_be32s(f, &s->pointer);
1664
    qemu_get_be32s(f, &s->cu_base);
1665
    qemu_get_be32s(f, &s->cu_offset);
1666
    qemu_get_be32s(f, &s->ru_base);
1667
    qemu_get_be32s(f, &s->ru_offset);
1668
    qemu_get_be32s(f, &s->statsaddr);
1669
    /* Restore epro100_stats_t statistics. */
1670
    qemu_get_be32s(f, &s->statistics.tx_good_frames);
1671
    qemu_get_be32s(f, &s->statistics.tx_max_collisions);
1672
    qemu_get_be32s(f, &s->statistics.tx_late_collisions);
1673
    qemu_get_be32s(f, &s->statistics.tx_underruns);
1674
    qemu_get_be32s(f, &s->statistics.tx_lost_crs);
1675
    qemu_get_be32s(f, &s->statistics.tx_deferred);
1676
    qemu_get_be32s(f, &s->statistics.tx_single_collisions);
1677
    qemu_get_be32s(f, &s->statistics.tx_multiple_collisions);
1678
    qemu_get_be32s(f, &s->statistics.tx_total_collisions);
1679
    qemu_get_be32s(f, &s->statistics.rx_good_frames);
1680
    qemu_get_be32s(f, &s->statistics.rx_crc_errors);
1681
    qemu_get_be32s(f, &s->statistics.rx_alignment_errors);
1682
    qemu_get_be32s(f, &s->statistics.rx_resource_errors);
1683
    qemu_get_be32s(f, &s->statistics.rx_overrun_errors);
1684
    qemu_get_be32s(f, &s->statistics.rx_cdt_errors);
1685
    qemu_get_be32s(f, &s->statistics.rx_short_frame_errors);
1686
    qemu_get_be32s(f, &s->statistics.fc_xmt_pause);
1687
    qemu_get_be32s(f, &s->statistics.fc_rcv_pause);
1688
    qemu_get_be32s(f, &s->statistics.fc_rcv_unsupported);
1689
    qemu_get_be16s(f, &s->statistics.xmt_tco_frames);
1690
    qemu_get_be16s(f, &s->statistics.rcv_tco_frames);
1691
    qemu_get_be32s(f, &s->statistics.complete);
1692
#if 0
1693
    qemu_get_be16s(f, &s->status);
1694
#endif
1695

    
1696
    /* Configuration bytes. */
1697
    qemu_get_buffer(f, s->configuration, sizeof(s->configuration));
1698

    
1699
    return 0;
1700
}
1701

    
1702
static void nic_save(QEMUFile * f, void *opaque)
1703
{
1704
    EEPRO100State *s = opaque;
1705
    int i;
1706

    
1707
    pci_device_save(&s->dev, f);
1708

    
1709
    qemu_put_8s(f, &s->rxcr);
1710

    
1711
    qemu_put_8s(f, &s->cmd);
1712
    qemu_put_be32s(f, &s->start);
1713
    qemu_put_be32s(f, &s->stop);
1714
    qemu_put_8s(f, &s->boundary);
1715
    qemu_put_8s(f, &s->tsr);
1716
    qemu_put_8s(f, &s->tpsr);
1717
    qemu_put_be16s(f, &s->tcnt);
1718
    qemu_put_be16s(f, &s->rcnt);
1719
    qemu_put_be32s(f, &s->rsar);
1720
    qemu_put_8s(f, &s->rsr);
1721
    qemu_put_8s(f, &s->isr);
1722
    qemu_put_8s(f, &s->dcfg);
1723
    qemu_put_8s(f, &s->imr);
1724
    qemu_put_buffer(f, s->phys, 6);
1725
    qemu_put_8s(f, &s->curpag);
1726
    qemu_put_buffer(f, s->mult, 8);
1727
    qemu_put_buffer(f, s->mem, sizeof(s->mem));
1728

    
1729
    /* Save all members of struct between scv_stat and mem. */
1730
    qemu_put_8s(f, &s->scb_stat);
1731
    qemu_put_8s(f, &s->int_stat);
1732
    for (i = 0; i < 3; i++) {
1733
        qemu_put_be32s(f, &s->region[i]);
1734
    }
1735
    qemu_put_buffer(f, s->macaddr, 6);
1736
    for (i = 0; i < 19; i++) {
1737
        qemu_put_be32s(f, &s->statcounter[i]);
1738
    }
1739
    for (i = 0; i < 32; i++) {
1740
        qemu_put_be16s(f, &s->mdimem[i]);
1741
    }
1742
    /* The eeprom should be saved and restored by its own routines. */
1743
    qemu_put_be32s(f, &s->device);
1744
    qemu_put_be32s(f, &s->pointer);
1745
    qemu_put_be32s(f, &s->cu_base);
1746
    qemu_put_be32s(f, &s->cu_offset);
1747
    qemu_put_be32s(f, &s->ru_base);
1748
    qemu_put_be32s(f, &s->ru_offset);
1749
    qemu_put_be32s(f, &s->statsaddr);
1750
    /* Save epro100_stats_t statistics. */
1751
    qemu_put_be32s(f, &s->statistics.tx_good_frames);
1752
    qemu_put_be32s(f, &s->statistics.tx_max_collisions);
1753
    qemu_put_be32s(f, &s->statistics.tx_late_collisions);
1754
    qemu_put_be32s(f, &s->statistics.tx_underruns);
1755
    qemu_put_be32s(f, &s->statistics.tx_lost_crs);
1756
    qemu_put_be32s(f, &s->statistics.tx_deferred);
1757
    qemu_put_be32s(f, &s->statistics.tx_single_collisions);
1758
    qemu_put_be32s(f, &s->statistics.tx_multiple_collisions);
1759
    qemu_put_be32s(f, &s->statistics.tx_total_collisions);
1760
    qemu_put_be32s(f, &s->statistics.rx_good_frames);
1761
    qemu_put_be32s(f, &s->statistics.rx_crc_errors);
1762
    qemu_put_be32s(f, &s->statistics.rx_alignment_errors);
1763
    qemu_put_be32s(f, &s->statistics.rx_resource_errors);
1764
    qemu_put_be32s(f, &s->statistics.rx_overrun_errors);
1765
    qemu_put_be32s(f, &s->statistics.rx_cdt_errors);
1766
    qemu_put_be32s(f, &s->statistics.rx_short_frame_errors);
1767
    qemu_put_be32s(f, &s->statistics.fc_xmt_pause);
1768
    qemu_put_be32s(f, &s->statistics.fc_rcv_pause);
1769
    qemu_put_be32s(f, &s->statistics.fc_rcv_unsupported);
1770
    qemu_put_be16s(f, &s->statistics.xmt_tco_frames);
1771
    qemu_put_be16s(f, &s->statistics.rcv_tco_frames);
1772
    qemu_put_be32s(f, &s->statistics.complete);
1773
#if 0
1774
    qemu_put_be16s(f, &s->status);
1775
#endif
1776

    
1777
    /* Configuration bytes. */
1778
    qemu_put_buffer(f, s->configuration, sizeof(s->configuration));
1779
}
1780

    
1781
static void nic_cleanup(VLANClientState *vc)
1782
{
1783
    EEPRO100State *s = vc->opaque;
1784

    
1785
    unregister_savevm(vc->model, s);
1786

    
1787
    eeprom93xx_free(s->eeprom);
1788
}
1789

    
1790
static int pci_nic_uninit(PCIDevice *pci_dev)
1791
{
1792
    EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
1793

    
1794
    cpu_unregister_io_memory(s->mmio_index);
1795

    
1796
    return 0;
1797
}
1798

    
1799
static int nic_init(PCIDevice *pci_dev, uint32_t device)
1800
{
1801
    EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
1802

    
1803
    TRACE(OTHER, logout("\n"));
1804

    
1805
    s->device = device;
1806

    
1807
    pci_reset(s);
1808

    
1809
    /* Add 64 * 2 EEPROM. i82557 and i82558 support a 64 word EEPROM,
1810
     * i82559 and later support 64 or 256 word EEPROM. */
1811
    s->eeprom = eeprom93xx_new(EEPROM_SIZE);
1812

    
1813
    /* Handler for memory-mapped I/O */
1814
    s->mmio_index =
1815
        cpu_register_io_memory(pci_mmio_read, pci_mmio_write, s);
1816

    
1817
    pci_register_bar(&s->dev, 0, PCI_MEM_SIZE,
1818
                           PCI_ADDRESS_SPACE_MEM |
1819
                           PCI_ADDRESS_SPACE_MEM_PREFETCH, pci_mmio_map);
1820
    pci_register_bar(&s->dev, 1, PCI_IO_SIZE, PCI_ADDRESS_SPACE_IO,
1821
                           pci_map);
1822
    pci_register_bar(&s->dev, 2, PCI_FLASH_SIZE, PCI_ADDRESS_SPACE_MEM,
1823
                           pci_mmio_map);
1824

    
1825
    qdev_get_macaddr(&s->dev.qdev, s->macaddr);
1826
    logout("macaddr: %s\n", nic_dump(&s->macaddr[0], 6));
1827
    assert(s->region[1] == 0);
1828

    
1829
    nic_reset(s);
1830

    
1831
    s->vc = qdev_get_vlan_client(&s->dev.qdev,
1832
                                 nic_can_receive, nic_receive, NULL,
1833
                                 nic_cleanup, s);
1834

    
1835
    qemu_format_nic_info_str(s->vc, s->macaddr);
1836
    TRACE(OTHER, logout("%s\n", s->vc->info_str));
1837

    
1838
    qemu_register_reset(nic_reset, s);
1839

    
1840
    register_savevm(s->vc->model, -1, 3, nic_save, nic_load, s);
1841
    return 0;
1842
}
1843

    
1844
static int pci_i82550_init(PCIDevice *pci_dev)
1845
{
1846
    return nic_init(pci_dev, i82550);
1847
}
1848

    
1849
static int pci_i82551_init(PCIDevice *pci_dev)
1850
{
1851
    return nic_init(pci_dev, i82551);
1852
}
1853

    
1854
static int pci_i82557a_init(PCIDevice *pci_dev)
1855
{
1856
    return nic_init(pci_dev, i82557A);
1857
}
1858

    
1859
static int pci_i82557b_init(PCIDevice *pci_dev)
1860
{
1861
    return nic_init(pci_dev, i82557B);
1862
}
1863

    
1864
static int pci_i82557c_init(PCIDevice *pci_dev)
1865
{
1866
    return nic_init(pci_dev, i82557C);
1867
}
1868

    
1869
static int pci_i82558a_init(PCIDevice *pci_dev)
1870
{
1871
    return nic_init(pci_dev, i82558A);
1872
}
1873

    
1874
static int pci_i82558b_init(PCIDevice *pci_dev)
1875
{
1876
    return nic_init(pci_dev, i82558B);
1877
}
1878

    
1879
static int pci_i82559a_init(PCIDevice *pci_dev)
1880
{
1881
    return nic_init(pci_dev, i82559A);
1882
}
1883

    
1884
static int pci_i82559b_init(PCIDevice *pci_dev)
1885
{
1886
    return nic_init(pci_dev, i82559B);
1887
}
1888

    
1889
static int pci_i82559c_init(PCIDevice *pci_dev)
1890
{
1891
    return nic_init(pci_dev, i82559C);
1892
}
1893

    
1894
static int pci_i82559er_init(PCIDevice *pci_dev)
1895
{
1896
    return nic_init(pci_dev, i82559ER);
1897
}
1898

    
1899
static int pci_i82562_init(PCIDevice *pci_dev)
1900
{
1901
    return nic_init(pci_dev, i82562);
1902
}
1903

    
1904
static PCIDeviceInfo eepro100_info[] = {
1905
    {
1906
        .qdev.name = "i82550",
1907
        .qdev.size = sizeof(EEPRO100State),
1908
        .init      = pci_i82550_init,
1909
    },{
1910
        .qdev.name = "i82551",
1911
        .qdev.size = sizeof(EEPRO100State),
1912
        .init      = pci_i82551_init,
1913
        .exit      = pci_nic_uninit,
1914
    },{
1915
        .qdev.name = "i82557a",
1916
        .qdev.size = sizeof(EEPRO100State),
1917
        .init      = pci_i82557a_init,
1918
    },{
1919
        .qdev.name = "i82557b",
1920
        .qdev.size = sizeof(EEPRO100State),
1921
        .init      = pci_i82557b_init,
1922
        .exit      = pci_nic_uninit,
1923
    },{
1924
        .qdev.name = "i82557c",
1925
        .qdev.size = sizeof(EEPRO100State),
1926
        .init      = pci_i82557c_init,
1927
    },{
1928
        .qdev.name = "i82558a",
1929
        .qdev.size = sizeof(EEPRO100State),
1930
        .init      = pci_i82558a_init,
1931
    },{
1932
        .qdev.name = "i82558b",
1933
        .qdev.size = sizeof(EEPRO100State),
1934
        .init      = pci_i82558b_init,
1935
    },{
1936
        .qdev.name = "i82559a",
1937
        .qdev.size = sizeof(EEPRO100State),
1938
        .init      = pci_i82559a_init,
1939
    },{
1940
        .qdev.name = "i82559b",
1941
        .qdev.size = sizeof(EEPRO100State),
1942
        .init      = pci_i82559b_init,
1943
    },{
1944
        .qdev.name = "i82559c",
1945
        .qdev.size = sizeof(EEPRO100State),
1946
        .init      = pci_i82559c_init,
1947
    },{
1948
        .qdev.name = "i82559er",
1949
        .qdev.size = sizeof(EEPRO100State),
1950
        .init      = pci_i82559er_init,
1951
        .exit      = pci_nic_uninit,
1952
    },{
1953
        .qdev.name = "i82562",
1954
        .qdev.size = sizeof(EEPRO100State),
1955
        .init      = pci_i82562_init,
1956
    },{
1957
        /* end of list */
1958
    }
1959
};
1960

    
1961
static void eepro100_register_devices(void)
1962
{
1963
    pci_qdev_register_many(eepro100_info);
1964
}
1965

    
1966
device_init(eepro100_register_devices)