Statistics
| Branch: | Revision:

root / hw / onenand.c @ 8167ee88

History | View | Annotate | Download (19.2 kB)

1
/*
2
 * OneNAND flash memories emulation.
3
 *
4
 * Copyright (C) 2008 Nokia Corporation
5
 * Written by Andrzej Zaborowski <andrew@openedhand.com>
6
 *
7
 * This program is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU General Public License as
9
 * published by the Free Software Foundation; either version 2 or
10
 * (at your option) version 3 of the License.
11
 *
12
 * This program is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
 * GNU General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU General Public License along
18
 * with this program; if not, see <http://www.gnu.org/licenses/>.
19
 */
20

    
21
#include "qemu-common.h"
22
#include "flash.h"
23
#include "irq.h"
24
#include "sysemu.h"
25
#include "block.h"
26

    
27
/* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
28
#define PAGE_SHIFT        11
29

    
30
/* Fixed */
31
#define BLOCK_SHIFT        (PAGE_SHIFT + 6)
32

    
33
typedef struct {
34
    uint32_t id;
35
    int shift;
36
    target_phys_addr_t base;
37
    qemu_irq intr;
38
    qemu_irq rdy;
39
    BlockDriverState *bdrv;
40
    BlockDriverState *bdrv_cur;
41
    uint8_t *image;
42
    uint8_t *otp;
43
    uint8_t *current;
44
    ram_addr_t ram;
45
    uint8_t *boot[2];
46
    uint8_t *data[2][2];
47
    int iomemtype;
48
    int cycle;
49
    int otpmode;
50

    
51
    uint16_t addr[8];
52
    uint16_t unladdr[8];
53
    int bufaddr;
54
    int count;
55
    uint16_t command;
56
    uint16_t config[2];
57
    uint16_t status;
58
    uint16_t intstatus;
59
    uint16_t wpstatus;
60

    
61
    ECCState ecc;
62

    
63
    int density_mask;
64
    int secs;
65
    int secs_cur;
66
    int blocks;
67
    uint8_t *blockwp;
68
} OneNANDState;
69

    
70
enum {
71
    ONEN_BUF_BLOCK = 0,
72
    ONEN_BUF_BLOCK2 = 1,
73
    ONEN_BUF_DEST_BLOCK = 2,
74
    ONEN_BUF_DEST_PAGE = 3,
75
    ONEN_BUF_PAGE = 7,
76
};
77

    
78
enum {
79
    ONEN_ERR_CMD = 1 << 10,
80
    ONEN_ERR_ERASE = 1 << 11,
81
    ONEN_ERR_PROG = 1 << 12,
82
    ONEN_ERR_LOAD = 1 << 13,
83
};
84

    
85
enum {
86
    ONEN_INT_RESET = 1 << 4,
87
    ONEN_INT_ERASE = 1 << 5,
88
    ONEN_INT_PROG = 1 << 6,
89
    ONEN_INT_LOAD = 1 << 7,
90
    ONEN_INT = 1 << 15,
91
};
92

    
93
enum {
94
    ONEN_LOCK_LOCKTIGHTEN = 1 << 0,
95
    ONEN_LOCK_LOCKED = 1 << 1,
96
    ONEN_LOCK_UNLOCKED = 1 << 2,
97
};
98

    
99
void onenand_base_update(void *opaque, target_phys_addr_t new)
100
{
101
    OneNANDState *s = (OneNANDState *) opaque;
102

    
103
    s->base = new;
104

    
105
    /* XXX: We should use IO_MEM_ROMD but we broke it earlier...
106
     * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
107
     * write boot commands.  Also take note of the BWPS bit.  */
108
    cpu_register_physical_memory(s->base + (0x0000 << s->shift),
109
                    0x0200 << s->shift, s->iomemtype);
110
    cpu_register_physical_memory(s->base + (0x0200 << s->shift),
111
                    0xbe00 << s->shift,
112
                    (s->ram +(0x0200 << s->shift)) | IO_MEM_RAM);
113
    if (s->iomemtype)
114
        cpu_register_physical_memory_offset(s->base + (0xc000 << s->shift),
115
                    0x4000 << s->shift, s->iomemtype, (0xc000 << s->shift));
116
}
117

    
118
void onenand_base_unmap(void *opaque)
119
{
120
    OneNANDState *s = (OneNANDState *) opaque;
121

    
122
    cpu_register_physical_memory(s->base,
123
                    0x10000 << s->shift, IO_MEM_UNASSIGNED);
124
}
125

    
126
static void onenand_intr_update(OneNANDState *s)
127
{
128
    qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
129
}
130

    
131
/* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
132
static void onenand_reset(OneNANDState *s, int cold)
133
{
134
    memset(&s->addr, 0, sizeof(s->addr));
135
    s->command = 0;
136
    s->count = 1;
137
    s->bufaddr = 0;
138
    s->config[0] = 0x40c0;
139
    s->config[1] = 0x0000;
140
    onenand_intr_update(s);
141
    qemu_irq_raise(s->rdy);
142
    s->status = 0x0000;
143
    s->intstatus = cold ? 0x8080 : 0x8010;
144
    s->unladdr[0] = 0;
145
    s->unladdr[1] = 0;
146
    s->wpstatus = 0x0002;
147
    s->cycle = 0;
148
    s->otpmode = 0;
149
    s->bdrv_cur = s->bdrv;
150
    s->current = s->image;
151
    s->secs_cur = s->secs;
152

    
153
    if (cold) {
154
        /* Lock the whole flash */
155
        memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);
156

    
157
        if (s->bdrv && bdrv_read(s->bdrv, 0, s->boot[0], 8) < 0)
158
            hw_error("%s: Loading the BootRAM failed.\n", __FUNCTION__);
159
    }
160
}
161

    
162
static inline int onenand_load_main(OneNANDState *s, int sec, int secn,
163
                void *dest)
164
{
165
    if (s->bdrv_cur)
166
        return bdrv_read(s->bdrv_cur, sec, dest, secn) < 0;
167
    else if (sec + secn > s->secs_cur)
168
        return 1;
169

    
170
    memcpy(dest, s->current + (sec << 9), secn << 9);
171

    
172
    return 0;
173
}
174

    
175
static inline int onenand_prog_main(OneNANDState *s, int sec, int secn,
176
                void *src)
177
{
178
    if (s->bdrv_cur)
179
        return bdrv_write(s->bdrv_cur, sec, src, secn) < 0;
180
    else if (sec + secn > s->secs_cur)
181
        return 1;
182

    
183
    memcpy(s->current + (sec << 9), src, secn << 9);
184

    
185
    return 0;
186
}
187

    
188
static inline int onenand_load_spare(OneNANDState *s, int sec, int secn,
189
                void *dest)
190
{
191
    uint8_t buf[512];
192

    
193
    if (s->bdrv_cur) {
194
        if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0)
195
            return 1;
196
        memcpy(dest, buf + ((sec & 31) << 4), secn << 4);
197
    } else if (sec + secn > s->secs_cur)
198
        return 1;
199
    else
200
        memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4);
201
 
202
    return 0;
203
}
204

    
205
static inline int onenand_prog_spare(OneNANDState *s, int sec, int secn,
206
                void *src)
207
{
208
    uint8_t buf[512];
209

    
210
    if (s->bdrv_cur) {
211
        if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0)
212
            return 1;
213
        memcpy(buf + ((sec & 31) << 4), src, secn << 4);
214
        return bdrv_write(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0;
215
    } else if (sec + secn > s->secs_cur)
216
        return 1;
217

    
218
    memcpy(s->current + (s->secs_cur << 9) + (sec << 4), src, secn << 4);
219
 
220
    return 0;
221
}
222

    
223
static inline int onenand_erase(OneNANDState *s, int sec, int num)
224
{
225
    /* TODO: optimise */
226
    uint8_t buf[512];
227

    
228
    memset(buf, 0xff, sizeof(buf));
229
    for (; num > 0; num --, sec ++) {
230
        if (onenand_prog_main(s, sec, 1, buf))
231
            return 1;
232
        if (onenand_prog_spare(s, sec, 1, buf))
233
            return 1;
234
    }
235

    
236
    return 0;
237
}
238

    
239
static void onenand_command(OneNANDState *s, int cmd)
240
{
241
    int b;
242
    int sec;
243
    void *buf;
244
#define SETADDR(block, page)                        \
245
    sec = (s->addr[page] & 3) +                        \
246
            ((((s->addr[page] >> 2) & 0x3f) +        \
247
              (((s->addr[block] & 0xfff) |        \
248
                (s->addr[block] >> 15 ?                \
249
                 s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
250
#define SETBUF_M()                                \
251
    buf = (s->bufaddr & 8) ?                        \
252
            s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0];        \
253
    buf += (s->bufaddr & 3) << 9;
254
#define SETBUF_S()                                \
255
    buf = (s->bufaddr & 8) ?                        \
256
            s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1];        \
257
    buf += (s->bufaddr & 3) << 4;
258

    
259
    switch (cmd) {
260
    case 0x00:        /* Load single/multiple sector data unit into buffer */
261
        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
262

    
263
        SETBUF_M()
264
        if (onenand_load_main(s, sec, s->count, buf))
265
            s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
266

    
267
#if 0
268
        SETBUF_S()
269
        if (onenand_load_spare(s, sec, s->count, buf))
270
            s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
271
#endif
272

    
273
        /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
274
         * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
275
         * then we need two split the read/write into two chunks.
276
         */
277
        s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
278
        break;
279
    case 0x13:        /* Load single/multiple spare sector into buffer */
280
        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
281

    
282
        SETBUF_S()
283
        if (onenand_load_spare(s, sec, s->count, buf))
284
            s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
285

    
286
        /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
287
         * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
288
         * then we need two split the read/write into two chunks.
289
         */
290
        s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
291
        break;
292
    case 0x80:        /* Program single/multiple sector data unit from buffer */
293
        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
294

    
295
        SETBUF_M()
296
        if (onenand_prog_main(s, sec, s->count, buf))
297
            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
298

    
299
#if 0
300
        SETBUF_S()
301
        if (onenand_prog_spare(s, sec, s->count, buf))
302
            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
303
#endif
304

    
305
        /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
306
         * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
307
         * then we need two split the read/write into two chunks.
308
         */
309
        s->intstatus |= ONEN_INT | ONEN_INT_PROG;
310
        break;
311
    case 0x1a:        /* Program single/multiple spare area sector from buffer */
312
        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
313

    
314
        SETBUF_S()
315
        if (onenand_prog_spare(s, sec, s->count, buf))
316
            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
317

    
318
        /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
319
         * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
320
         * then we need two split the read/write into two chunks.
321
         */
322
        s->intstatus |= ONEN_INT | ONEN_INT_PROG;
323
        break;
324
    case 0x1b:        /* Copy-back program */
325
        SETBUF_S()
326

    
327
        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
328
        if (onenand_load_main(s, sec, s->count, buf))
329
            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
330

    
331
        SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE)
332
        if (onenand_prog_main(s, sec, s->count, buf))
333
            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
334

    
335
        /* TODO: spare areas */
336

    
337
        s->intstatus |= ONEN_INT | ONEN_INT_PROG;
338
        break;
339

    
340
    case 0x23:        /* Unlock NAND array block(s) */
341
        s->intstatus |= ONEN_INT;
342

    
343
        /* XXX the previous (?) area should be locked automatically */
344
        for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
345
            if (b >= s->blocks) {
346
                s->status |= ONEN_ERR_CMD;
347
                break;
348
            }
349
            if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
350
                break;
351

    
352
            s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
353
        }
354
        break;
355
    case 0x27:        /* Unlock All NAND array blocks */
356
        s->intstatus |= ONEN_INT;
357

    
358
        for (b = 0; b < s->blocks; b ++) {
359
            if (b >= s->blocks) {
360
                s->status |= ONEN_ERR_CMD;
361
                break;
362
            }
363
            if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
364
                break;
365

    
366
            s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
367
        }
368
        break;
369

    
370
    case 0x2a:        /* Lock NAND array block(s) */
371
        s->intstatus |= ONEN_INT;
372

    
373
        for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
374
            if (b >= s->blocks) {
375
                s->status |= ONEN_ERR_CMD;
376
                break;
377
            }
378
            if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
379
                break;
380

    
381
            s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED;
382
        }
383
        break;
384
    case 0x2c:        /* Lock-tight NAND array block(s) */
385
        s->intstatus |= ONEN_INT;
386

    
387
        for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
388
            if (b >= s->blocks) {
389
                s->status |= ONEN_ERR_CMD;
390
                break;
391
            }
392
            if (s->blockwp[b] == ONEN_LOCK_UNLOCKED)
393
                continue;
394

    
395
            s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN;
396
        }
397
        break;
398

    
399
    case 0x71:        /* Erase-Verify-Read */
400
        s->intstatus |= ONEN_INT;
401
        break;
402
    case 0x95:        /* Multi-block erase */
403
        qemu_irq_pulse(s->intr);
404
        /* Fall through.  */
405
    case 0x94:        /* Block erase */
406
        sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) |
407
                        (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0))
408
                << (BLOCK_SHIFT - 9);
409
        if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9)))
410
            s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE;
411

    
412
        s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
413
        break;
414
    case 0xb0:        /* Erase suspend */
415
        break;
416
    case 0x30:        /* Erase resume */
417
        s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
418
        break;
419

    
420
    case 0xf0:        /* Reset NAND Flash core */
421
        onenand_reset(s, 0);
422
        break;
423
    case 0xf3:        /* Reset OneNAND */
424
        onenand_reset(s, 0);
425
        break;
426

    
427
    case 0x65:        /* OTP Access */
428
        s->intstatus |= ONEN_INT;
429
        s->bdrv_cur = 0;
430
        s->current = s->otp;
431
        s->secs_cur = 1 << (BLOCK_SHIFT - 9);
432
        s->addr[ONEN_BUF_BLOCK] = 0;
433
        s->otpmode = 1;
434
        break;
435

    
436
    default:
437
        s->status |= ONEN_ERR_CMD;
438
        s->intstatus |= ONEN_INT;
439
        fprintf(stderr, "%s: unknown OneNAND command %x\n",
440
                        __FUNCTION__, cmd);
441
    }
442

    
443
    onenand_intr_update(s);
444
}
445

    
446
static uint32_t onenand_read(void *opaque, target_phys_addr_t addr)
447
{
448
    OneNANDState *s = (OneNANDState *) opaque;
449
    int offset = addr >> s->shift;
450

    
451
    switch (offset) {
452
    case 0x0000 ... 0xc000:
453
        return lduw_le_p(s->boot[0] + addr);
454

    
455
    case 0xf000:        /* Manufacturer ID */
456
        return (s->id >> 16) & 0xff;
457
    case 0xf001:        /* Device ID */
458
        return (s->id >>  8) & 0xff;
459
    /* TODO: get the following values from a real chip!  */
460
    case 0xf002:        /* Version ID */
461
        return (s->id >>  0) & 0xff;
462
    case 0xf003:        /* Data Buffer size */
463
        return 1 << PAGE_SHIFT;
464
    case 0xf004:        /* Boot Buffer size */
465
        return 0x200;
466
    case 0xf005:        /* Amount of buffers */
467
        return 1 | (2 << 8);
468
    case 0xf006:        /* Technology */
469
        return 0;
470

    
471
    case 0xf100 ... 0xf107:        /* Start addresses */
472
        return s->addr[offset - 0xf100];
473

    
474
    case 0xf200:        /* Start buffer */
475
        return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10)));
476

    
477
    case 0xf220:        /* Command */
478
        return s->command;
479
    case 0xf221:        /* System Configuration 1 */
480
        return s->config[0] & 0xffe0;
481
    case 0xf222:        /* System Configuration 2 */
482
        return s->config[1];
483

    
484
    case 0xf240:        /* Controller Status */
485
        return s->status;
486
    case 0xf241:        /* Interrupt */
487
        return s->intstatus;
488
    case 0xf24c:        /* Unlock Start Block Address */
489
        return s->unladdr[0];
490
    case 0xf24d:        /* Unlock End Block Address */
491
        return s->unladdr[1];
492
    case 0xf24e:        /* Write Protection Status */
493
        return s->wpstatus;
494

    
495
    case 0xff00:        /* ECC Status */
496
        return 0x00;
497
    case 0xff01:        /* ECC Result of main area data */
498
    case 0xff02:        /* ECC Result of spare area data */
499
    case 0xff03:        /* ECC Result of main area data */
500
    case 0xff04:        /* ECC Result of spare area data */
501
        hw_error("%s: imeplement ECC\n", __FUNCTION__);
502
        return 0x0000;
503
    }
504

    
505
    fprintf(stderr, "%s: unknown OneNAND register %x\n",
506
                    __FUNCTION__, offset);
507
    return 0;
508
}
509

    
510
static void onenand_write(void *opaque, target_phys_addr_t addr,
511
                uint32_t value)
512
{
513
    OneNANDState *s = (OneNANDState *) opaque;
514
    int offset = addr >> s->shift;
515
    int sec;
516

    
517
    switch (offset) {
518
    case 0x0000 ... 0x01ff:
519
    case 0x8000 ... 0x800f:
520
        if (s->cycle) {
521
            s->cycle = 0;
522

    
523
            if (value == 0x0000) {
524
                SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
525
                onenand_load_main(s, sec,
526
                                1 << (PAGE_SHIFT - 9), s->data[0][0]);
527
                s->addr[ONEN_BUF_PAGE] += 4;
528
                s->addr[ONEN_BUF_PAGE] &= 0xff;
529
            }
530
            break;
531
        }
532

    
533
        switch (value) {
534
        case 0x00f0:        /* Reset OneNAND */
535
            onenand_reset(s, 0);
536
            break;
537

    
538
        case 0x00e0:        /* Load Data into Buffer */
539
            s->cycle = 1;
540
            break;
541

    
542
        case 0x0090:        /* Read Identification Data */
543
            memset(s->boot[0], 0, 3 << s->shift);
544
            s->boot[0][0 << s->shift] = (s->id >> 16) & 0xff;
545
            s->boot[0][1 << s->shift] = (s->id >>  8) & 0xff;
546
            s->boot[0][2 << s->shift] = s->wpstatus & 0xff;
547
            break;
548

    
549
        default:
550
            fprintf(stderr, "%s: unknown OneNAND boot command %x\n",
551
                            __FUNCTION__, value);
552
        }
553
        break;
554

    
555
    case 0xf100 ... 0xf107:        /* Start addresses */
556
        s->addr[offset - 0xf100] = value;
557
        break;
558

    
559
    case 0xf200:        /* Start buffer */
560
        s->bufaddr = (value >> 8) & 0xf;
561
        if (PAGE_SHIFT == 11)
562
            s->count = (value & 3) ?: 4;
563
        else if (PAGE_SHIFT == 10)
564
            s->count = (value & 1) ?: 2;
565
        break;
566

    
567
    case 0xf220:        /* Command */
568
        if (s->intstatus & (1 << 15))
569
            break;
570
        s->command = value;
571
        onenand_command(s, s->command);
572
        break;
573
    case 0xf221:        /* System Configuration 1 */
574
        s->config[0] = value;
575
        onenand_intr_update(s);
576
        qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1);
577
        break;
578
    case 0xf222:        /* System Configuration 2 */
579
        s->config[1] = value;
580
        break;
581

    
582
    case 0xf241:        /* Interrupt */
583
        s->intstatus &= value;
584
        if ((1 << 15) & ~s->intstatus)
585
            s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE |
586
                            ONEN_ERR_PROG | ONEN_ERR_LOAD);
587
        onenand_intr_update(s);
588
        break;
589
    case 0xf24c:        /* Unlock Start Block Address */
590
        s->unladdr[0] = value & (s->blocks - 1);
591
        /* For some reason we have to set the end address to by default
592
         * be same as start because the software forgets to write anything
593
         * in there.  */
594
        s->unladdr[1] = value & (s->blocks - 1);
595
        break;
596
    case 0xf24d:        /* Unlock End Block Address */
597
        s->unladdr[1] = value & (s->blocks - 1);
598
        break;
599

    
600
    default:
601
        fprintf(stderr, "%s: unknown OneNAND register %x\n",
602
                        __FUNCTION__, offset);
603
    }
604
}
605

    
606
static CPUReadMemoryFunc *onenand_readfn[] = {
607
    onenand_read,        /* TODO */
608
    onenand_read,
609
    onenand_read,
610
};
611

    
612
static CPUWriteMemoryFunc *onenand_writefn[] = {
613
    onenand_write,        /* TODO */
614
    onenand_write,
615
    onenand_write,
616
};
617

    
618
void *onenand_init(uint32_t id, int regshift, qemu_irq irq)
619
{
620
    OneNANDState *s = (OneNANDState *) qemu_mallocz(sizeof(*s));
621
    int bdrv_index = drive_get_index(IF_MTD, 0, 0);
622
    uint32_t size = 1 << (24 + ((id >> 12) & 7));
623
    void *ram;
624

    
625
    s->shift = regshift;
626
    s->intr = irq;
627
    s->rdy = 0;
628
    s->id = id;
629
    s->blocks = size >> BLOCK_SHIFT;
630
    s->secs = size >> 9;
631
    s->blockwp = qemu_malloc(s->blocks);
632
    s->density_mask = (id & (1 << 11)) ? (1 << (6 + ((id >> 12) & 7))) : 0;
633
    s->iomemtype = cpu_register_io_memory(onenand_readfn,
634
                    onenand_writefn, s);
635
    if (bdrv_index == -1)
636
        s->image = memset(qemu_malloc(size + (size >> 5)),
637
                        0xff, size + (size >> 5));
638
    else
639
        s->bdrv = drives_table[bdrv_index].bdrv;
640
    s->otp = memset(qemu_malloc((64 + 2) << PAGE_SHIFT),
641
                    0xff, (64 + 2) << PAGE_SHIFT);
642
    s->ram = qemu_ram_alloc(0xc000 << s->shift);
643
    ram = qemu_get_ram_ptr(s->ram);
644
    s->boot[0] = ram + (0x0000 << s->shift);
645
    s->boot[1] = ram + (0x8000 << s->shift);
646
    s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift);
647
    s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift);
648
    s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
649
    s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);
650

    
651
    onenand_reset(s, 1);
652

    
653
    return s;
654
}
655

    
656
void *onenand_raw_otp(void *opaque)
657
{
658
    OneNANDState *s = (OneNANDState *) opaque;
659

    
660
    return s->otp;
661
}