Statistics
| Branch: | Revision:

root / hw / lsi53c895a.c @ 81a322d4

History | View | Annotate | Download (62.6 kB)

1
/*
2
 * QEMU LSI53C895A SCSI Host Bus Adapter emulation
3
 *
4
 * Copyright (c) 2006 CodeSourcery.
5
 * Written by Paul Brook
6
 *
7
 * This code is licenced under the LGPL.
8
 */
9

    
10
/* ??? Need to check if the {read,write}[wl] routines work properly on
11
   big-endian targets.  */
12

    
13
#include <assert.h>                             \
14

    
15
#include "hw.h"
16
#include "pci.h"
17
#include "scsi-disk.h"
18
#include "block_int.h"
19

    
20
//#define DEBUG_LSI
21
//#define DEBUG_LSI_REG
22

    
23
#ifdef DEBUG_LSI
24
#define DPRINTF(fmt, ...) \
25
do { printf("lsi_scsi: " fmt , ## __VA_ARGS__); } while (0)
26
#define BADF(fmt, ...) \
27
do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__); exit(1);} while (0)
28
#else
29
#define DPRINTF(fmt, ...) do {} while(0)
30
#define BADF(fmt, ...) \
31
do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__);} while (0)
32
#endif
33

    
34
#define LSI_SCNTL0_TRG    0x01
35
#define LSI_SCNTL0_AAP    0x02
36
#define LSI_SCNTL0_EPC    0x08
37
#define LSI_SCNTL0_WATN   0x10
38
#define LSI_SCNTL0_START  0x20
39

    
40
#define LSI_SCNTL1_SST    0x01
41
#define LSI_SCNTL1_IARB   0x02
42
#define LSI_SCNTL1_AESP   0x04
43
#define LSI_SCNTL1_RST    0x08
44
#define LSI_SCNTL1_CON    0x10
45
#define LSI_SCNTL1_DHP    0x20
46
#define LSI_SCNTL1_ADB    0x40
47
#define LSI_SCNTL1_EXC    0x80
48

    
49
#define LSI_SCNTL2_WSR    0x01
50
#define LSI_SCNTL2_VUE0   0x02
51
#define LSI_SCNTL2_VUE1   0x04
52
#define LSI_SCNTL2_WSS    0x08
53
#define LSI_SCNTL2_SLPHBEN 0x10
54
#define LSI_SCNTL2_SLPMD  0x20
55
#define LSI_SCNTL2_CHM    0x40
56
#define LSI_SCNTL2_SDU    0x80
57

    
58
#define LSI_ISTAT0_DIP    0x01
59
#define LSI_ISTAT0_SIP    0x02
60
#define LSI_ISTAT0_INTF   0x04
61
#define LSI_ISTAT0_CON    0x08
62
#define LSI_ISTAT0_SEM    0x10
63
#define LSI_ISTAT0_SIGP   0x20
64
#define LSI_ISTAT0_SRST   0x40
65
#define LSI_ISTAT0_ABRT   0x80
66

    
67
#define LSI_ISTAT1_SI     0x01
68
#define LSI_ISTAT1_SRUN   0x02
69
#define LSI_ISTAT1_FLSH   0x04
70

    
71
#define LSI_SSTAT0_SDP0   0x01
72
#define LSI_SSTAT0_RST    0x02
73
#define LSI_SSTAT0_WOA    0x04
74
#define LSI_SSTAT0_LOA    0x08
75
#define LSI_SSTAT0_AIP    0x10
76
#define LSI_SSTAT0_OLF    0x20
77
#define LSI_SSTAT0_ORF    0x40
78
#define LSI_SSTAT0_ILF    0x80
79

    
80
#define LSI_SIST0_PAR     0x01
81
#define LSI_SIST0_RST     0x02
82
#define LSI_SIST0_UDC     0x04
83
#define LSI_SIST0_SGE     0x08
84
#define LSI_SIST0_RSL     0x10
85
#define LSI_SIST0_SEL     0x20
86
#define LSI_SIST0_CMP     0x40
87
#define LSI_SIST0_MA      0x80
88

    
89
#define LSI_SIST1_HTH     0x01
90
#define LSI_SIST1_GEN     0x02
91
#define LSI_SIST1_STO     0x04
92
#define LSI_SIST1_SBMC    0x10
93

    
94
#define LSI_SOCL_IO       0x01
95
#define LSI_SOCL_CD       0x02
96
#define LSI_SOCL_MSG      0x04
97
#define LSI_SOCL_ATN      0x08
98
#define LSI_SOCL_SEL      0x10
99
#define LSI_SOCL_BSY      0x20
100
#define LSI_SOCL_ACK      0x40
101
#define LSI_SOCL_REQ      0x80
102

    
103
#define LSI_DSTAT_IID     0x01
104
#define LSI_DSTAT_SIR     0x04
105
#define LSI_DSTAT_SSI     0x08
106
#define LSI_DSTAT_ABRT    0x10
107
#define LSI_DSTAT_BF      0x20
108
#define LSI_DSTAT_MDPE    0x40
109
#define LSI_DSTAT_DFE     0x80
110

    
111
#define LSI_DCNTL_COM     0x01
112
#define LSI_DCNTL_IRQD    0x02
113
#define LSI_DCNTL_STD     0x04
114
#define LSI_DCNTL_IRQM    0x08
115
#define LSI_DCNTL_SSM     0x10
116
#define LSI_DCNTL_PFEN    0x20
117
#define LSI_DCNTL_PFF     0x40
118
#define LSI_DCNTL_CLSE    0x80
119

    
120
#define LSI_DMODE_MAN     0x01
121
#define LSI_DMODE_BOF     0x02
122
#define LSI_DMODE_ERMP    0x04
123
#define LSI_DMODE_ERL     0x08
124
#define LSI_DMODE_DIOM    0x10
125
#define LSI_DMODE_SIOM    0x20
126

    
127
#define LSI_CTEST2_DACK   0x01
128
#define LSI_CTEST2_DREQ   0x02
129
#define LSI_CTEST2_TEOP   0x04
130
#define LSI_CTEST2_PCICIE 0x08
131
#define LSI_CTEST2_CM     0x10
132
#define LSI_CTEST2_CIO    0x20
133
#define LSI_CTEST2_SIGP   0x40
134
#define LSI_CTEST2_DDIR   0x80
135

    
136
#define LSI_CTEST5_BL2    0x04
137
#define LSI_CTEST5_DDIR   0x08
138
#define LSI_CTEST5_MASR   0x10
139
#define LSI_CTEST5_DFSN   0x20
140
#define LSI_CTEST5_BBCK   0x40
141
#define LSI_CTEST5_ADCK   0x80
142

    
143
#define LSI_CCNTL0_DILS   0x01
144
#define LSI_CCNTL0_DISFC  0x10
145
#define LSI_CCNTL0_ENNDJ  0x20
146
#define LSI_CCNTL0_PMJCTL 0x40
147
#define LSI_CCNTL0_ENPMJ  0x80
148

    
149
#define LSI_CCNTL1_EN64DBMV  0x01
150
#define LSI_CCNTL1_EN64TIBMV 0x02
151
#define LSI_CCNTL1_64TIMOD   0x04
152
#define LSI_CCNTL1_DDAC      0x08
153
#define LSI_CCNTL1_ZMOD      0x80
154

    
155
#define LSI_CCNTL1_40BIT (LSI_CCNTL1_EN64TIBMV|LSI_CCNTL1_64TIMOD)
156

    
157
#define PHASE_DO          0
158
#define PHASE_DI          1
159
#define PHASE_CMD         2
160
#define PHASE_ST          3
161
#define PHASE_MO          6
162
#define PHASE_MI          7
163
#define PHASE_MASK        7
164

    
165
/* Maximum length of MSG IN data.  */
166
#define LSI_MAX_MSGIN_LEN 8
167

    
168
/* Flag set if this is a tagged command.  */
169
#define LSI_TAG_VALID     (1 << 16)
170

    
171
typedef struct {
172
    uint32_t tag;
173
    uint32_t pending;
174
    int out;
175
} lsi_queue;
176

    
177
typedef struct {
178
    PCIDevice pci_dev;
179
    int mmio_io_addr;
180
    int ram_io_addr;
181
    uint32_t script_ram_base;
182

    
183
    int carry; /* ??? Should this be an a visible register somewhere?  */
184
    int sense;
185
    /* Action to take at the end of a MSG IN phase.
186
       0 = COMMAND, 1 = disconect, 2 = DATA OUT, 3 = DATA IN.  */
187
    int msg_action;
188
    int msg_len;
189
    uint8_t msg[LSI_MAX_MSGIN_LEN];
190
    /* 0 if SCRIPTS are running or stopped.
191
     * 1 if a Wait Reselect instruction has been issued.
192
     * 2 if processing DMA from lsi_execute_script.
193
     * 3 if a DMA operation is in progress.  */
194
    int waiting;
195
    SCSIDevice *scsi_dev[LSI_MAX_DEVS];
196
    SCSIDevice *current_dev;
197
    int current_lun;
198
    /* The tag is a combination of the device ID and the SCSI tag.  */
199
    uint32_t current_tag;
200
    uint32_t current_dma_len;
201
    int command_complete;
202
    uint8_t *dma_buf;
203
    lsi_queue *queue;
204
    int queue_len;
205
    int active_commands;
206

    
207
    uint32_t dsa;
208
    uint32_t temp;
209
    uint32_t dnad;
210
    uint32_t dbc;
211
    uint8_t istat0;
212
    uint8_t istat1;
213
    uint8_t dcmd;
214
    uint8_t dstat;
215
    uint8_t dien;
216
    uint8_t sist0;
217
    uint8_t sist1;
218
    uint8_t sien0;
219
    uint8_t sien1;
220
    uint8_t mbox0;
221
    uint8_t mbox1;
222
    uint8_t dfifo;
223
    uint8_t ctest2;
224
    uint8_t ctest3;
225
    uint8_t ctest4;
226
    uint8_t ctest5;
227
    uint8_t ccntl0;
228
    uint8_t ccntl1;
229
    uint32_t dsp;
230
    uint32_t dsps;
231
    uint8_t dmode;
232
    uint8_t dcntl;
233
    uint8_t scntl0;
234
    uint8_t scntl1;
235
    uint8_t scntl2;
236
    uint8_t scntl3;
237
    uint8_t sstat0;
238
    uint8_t sstat1;
239
    uint8_t scid;
240
    uint8_t sxfer;
241
    uint8_t socl;
242
    uint8_t sdid;
243
    uint8_t ssid;
244
    uint8_t sfbr;
245
    uint8_t stest1;
246
    uint8_t stest2;
247
    uint8_t stest3;
248
    uint8_t sidl;
249
    uint8_t stime0;
250
    uint8_t respid0;
251
    uint8_t respid1;
252
    uint32_t mmrs;
253
    uint32_t mmws;
254
    uint32_t sfs;
255
    uint32_t drs;
256
    uint32_t sbms;
257
    uint32_t dbms;
258
    uint32_t dnad64;
259
    uint32_t pmjad1;
260
    uint32_t pmjad2;
261
    uint32_t rbc;
262
    uint32_t ua;
263
    uint32_t ia;
264
    uint32_t sbc;
265
    uint32_t csbc;
266
    uint32_t scratch[18]; /* SCRATCHA-SCRATCHR */
267
    uint8_t sbr;
268

    
269
    /* Script ram is stored as 32-bit words in host byteorder.  */
270
    uint32_t script_ram[2048];
271
} LSIState;
272

    
273
static void lsi_soft_reset(LSIState *s)
274
{
275
    DPRINTF("Reset\n");
276
    s->carry = 0;
277

    
278
    s->waiting = 0;
279
    s->dsa = 0;
280
    s->dnad = 0;
281
    s->dbc = 0;
282
    s->temp = 0;
283
    memset(s->scratch, 0, sizeof(s->scratch));
284
    s->istat0 = 0;
285
    s->istat1 = 0;
286
    s->dcmd = 0;
287
    s->dstat = 0;
288
    s->dien = 0;
289
    s->sist0 = 0;
290
    s->sist1 = 0;
291
    s->sien0 = 0;
292
    s->sien1 = 0;
293
    s->mbox0 = 0;
294
    s->mbox1 = 0;
295
    s->dfifo = 0;
296
    s->ctest2 = 0;
297
    s->ctest3 = 0;
298
    s->ctest4 = 0;
299
    s->ctest5 = 0;
300
    s->ccntl0 = 0;
301
    s->ccntl1 = 0;
302
    s->dsp = 0;
303
    s->dsps = 0;
304
    s->dmode = 0;
305
    s->dcntl = 0;
306
    s->scntl0 = 0xc0;
307
    s->scntl1 = 0;
308
    s->scntl2 = 0;
309
    s->scntl3 = 0;
310
    s->sstat0 = 0;
311
    s->sstat1 = 0;
312
    s->scid = 7;
313
    s->sxfer = 0;
314
    s->socl = 0;
315
    s->stest1 = 0;
316
    s->stest2 = 0;
317
    s->stest3 = 0;
318
    s->sidl = 0;
319
    s->stime0 = 0;
320
    s->respid0 = 0x80;
321
    s->respid1 = 0;
322
    s->mmrs = 0;
323
    s->mmws = 0;
324
    s->sfs = 0;
325
    s->drs = 0;
326
    s->sbms = 0;
327
    s->dbms = 0;
328
    s->dnad64 = 0;
329
    s->pmjad1 = 0;
330
    s->pmjad2 = 0;
331
    s->rbc = 0;
332
    s->ua = 0;
333
    s->ia = 0;
334
    s->sbc = 0;
335
    s->csbc = 0;
336
    s->sbr = 0;
337
}
338

    
339
static int lsi_dma_40bit(LSIState *s)
340
{
341
    if ((s->ccntl1 & LSI_CCNTL1_40BIT) == LSI_CCNTL1_40BIT)
342
        return 1;
343
    return 0;
344
}
345

    
346
static int lsi_dma_ti64bit(LSIState *s)
347
{
348
    if ((s->ccntl1 & LSI_CCNTL1_EN64TIBMV) == LSI_CCNTL1_EN64TIBMV)
349
        return 1;
350
    return 0;
351
}
352

    
353
static int lsi_dma_64bit(LSIState *s)
354
{
355
    if ((s->ccntl1 & LSI_CCNTL1_EN64DBMV) == LSI_CCNTL1_EN64DBMV)
356
        return 1;
357
    return 0;
358
}
359

    
360
static uint8_t lsi_reg_readb(LSIState *s, int offset);
361
static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val);
362
static void lsi_execute_script(LSIState *s);
363

    
364
static inline uint32_t read_dword(LSIState *s, uint32_t addr)
365
{
366
    uint32_t buf;
367

    
368
    /* Optimize reading from SCRIPTS RAM.  */
369
    if ((addr & 0xffffe000) == s->script_ram_base) {
370
        return s->script_ram[(addr & 0x1fff) >> 2];
371
    }
372
    cpu_physical_memory_read(addr, (uint8_t *)&buf, 4);
373
    return cpu_to_le32(buf);
374
}
375

    
376
static void lsi_stop_script(LSIState *s)
377
{
378
    s->istat1 &= ~LSI_ISTAT1_SRUN;
379
}
380

    
381
static void lsi_update_irq(LSIState *s)
382
{
383
    int level;
384
    static int last_level;
385

    
386
    /* It's unclear whether the DIP/SIP bits should be cleared when the
387
       Interrupt Status Registers are cleared or when istat0 is read.
388
       We currently do the formwer, which seems to work.  */
389
    level = 0;
390
    if (s->dstat) {
391
        if (s->dstat & s->dien)
392
            level = 1;
393
        s->istat0 |= LSI_ISTAT0_DIP;
394
    } else {
395
        s->istat0 &= ~LSI_ISTAT0_DIP;
396
    }
397

    
398
    if (s->sist0 || s->sist1) {
399
        if ((s->sist0 & s->sien0) || (s->sist1 & s->sien1))
400
            level = 1;
401
        s->istat0 |= LSI_ISTAT0_SIP;
402
    } else {
403
        s->istat0 &= ~LSI_ISTAT0_SIP;
404
    }
405
    if (s->istat0 & LSI_ISTAT0_INTF)
406
        level = 1;
407

    
408
    if (level != last_level) {
409
        DPRINTF("Update IRQ level %d dstat %02x sist %02x%02x\n",
410
                level, s->dstat, s->sist1, s->sist0);
411
        last_level = level;
412
    }
413
    qemu_set_irq(s->pci_dev.irq[0], level);
414
}
415

    
416
/* Stop SCRIPTS execution and raise a SCSI interrupt.  */
417
static void lsi_script_scsi_interrupt(LSIState *s, int stat0, int stat1)
418
{
419
    uint32_t mask0;
420
    uint32_t mask1;
421

    
422
    DPRINTF("SCSI Interrupt 0x%02x%02x prev 0x%02x%02x\n",
423
            stat1, stat0, s->sist1, s->sist0);
424
    s->sist0 |= stat0;
425
    s->sist1 |= stat1;
426
    /* Stop processor on fatal or unmasked interrupt.  As a special hack
427
       we don't stop processing when raising STO.  Instead continue
428
       execution and stop at the next insn that accesses the SCSI bus.  */
429
    mask0 = s->sien0 | ~(LSI_SIST0_CMP | LSI_SIST0_SEL | LSI_SIST0_RSL);
430
    mask1 = s->sien1 | ~(LSI_SIST1_GEN | LSI_SIST1_HTH);
431
    mask1 &= ~LSI_SIST1_STO;
432
    if (s->sist0 & mask0 || s->sist1 & mask1) {
433
        lsi_stop_script(s);
434
    }
435
    lsi_update_irq(s);
436
}
437

    
438
/* Stop SCRIPTS execution and raise a DMA interrupt.  */
439
static void lsi_script_dma_interrupt(LSIState *s, int stat)
440
{
441
    DPRINTF("DMA Interrupt 0x%x prev 0x%x\n", stat, s->dstat);
442
    s->dstat |= stat;
443
    lsi_update_irq(s);
444
    lsi_stop_script(s);
445
}
446

    
447
static inline void lsi_set_phase(LSIState *s, int phase)
448
{
449
    s->sstat1 = (s->sstat1 & ~PHASE_MASK) | phase;
450
}
451

    
452
static void lsi_bad_phase(LSIState *s, int out, int new_phase)
453
{
454
    /* Trigger a phase mismatch.  */
455
    if (s->ccntl0 & LSI_CCNTL0_ENPMJ) {
456
        if ((s->ccntl0 & LSI_CCNTL0_PMJCTL) || out) {
457
            s->dsp = s->pmjad1;
458
        } else {
459
            s->dsp = s->pmjad2;
460
        }
461
        DPRINTF("Data phase mismatch jump to %08x\n", s->dsp);
462
    } else {
463
        DPRINTF("Phase mismatch interrupt\n");
464
        lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
465
        lsi_stop_script(s);
466
    }
467
    lsi_set_phase(s, new_phase);
468
}
469

    
470

    
471
/* Resume SCRIPTS execution after a DMA operation.  */
472
static void lsi_resume_script(LSIState *s)
473
{
474
    if (s->waiting != 2) {
475
        s->waiting = 0;
476
        lsi_execute_script(s);
477
    } else {
478
        s->waiting = 0;
479
    }
480
}
481

    
482
/* Initiate a SCSI layer data transfer.  */
483
static void lsi_do_dma(LSIState *s, int out)
484
{
485
    uint32_t count;
486
    target_phys_addr_t addr;
487

    
488
    if (!s->current_dma_len) {
489
        /* Wait until data is available.  */
490
        DPRINTF("DMA no data available\n");
491
        return;
492
    }
493

    
494
    count = s->dbc;
495
    if (count > s->current_dma_len)
496
        count = s->current_dma_len;
497

    
498
    addr = s->dnad;
499
    /* both 40 and Table Indirect 64-bit DMAs store upper bits in dnad64 */
500
    if (lsi_dma_40bit(s) || lsi_dma_ti64bit(s))
501
        addr |= ((uint64_t)s->dnad64 << 32);
502
    else if (s->dbms)
503
        addr |= ((uint64_t)s->dbms << 32);
504
    else if (s->sbms)
505
        addr |= ((uint64_t)s->sbms << 32);
506

    
507
    DPRINTF("DMA addr=0x" TARGET_FMT_plx " len=%d\n", addr, count);
508
    s->csbc += count;
509
    s->dnad += count;
510
    s->dbc -= count;
511

    
512
    if (s->dma_buf == NULL) {
513
        s->dma_buf = s->current_dev->get_buf(s->current_dev,
514
                                             s->current_tag);
515
    }
516

    
517
    /* ??? Set SFBR to first data byte.  */
518
    if (out) {
519
        cpu_physical_memory_read(addr, s->dma_buf, count);
520
    } else {
521
        cpu_physical_memory_write(addr, s->dma_buf, count);
522
    }
523
    s->current_dma_len -= count;
524
    if (s->current_dma_len == 0) {
525
        s->dma_buf = NULL;
526
        if (out) {
527
            /* Write the data.  */
528
            s->current_dev->write_data(s->current_dev, s->current_tag);
529
        } else {
530
            /* Request any remaining data.  */
531
            s->current_dev->read_data(s->current_dev, s->current_tag);
532
        }
533
    } else {
534
        s->dma_buf += count;
535
        lsi_resume_script(s);
536
    }
537
}
538

    
539

    
540
/* Add a command to the queue.  */
541
static void lsi_queue_command(LSIState *s)
542
{
543
    lsi_queue *p;
544

    
545
    DPRINTF("Queueing tag=0x%x\n", s->current_tag);
546
    if (s->queue_len == s->active_commands) {
547
        s->queue_len++;
548
        s->queue = qemu_realloc(s->queue, s->queue_len * sizeof(lsi_queue));
549
    }
550
    p = &s->queue[s->active_commands++];
551
    p->tag = s->current_tag;
552
    p->pending = 0;
553
    p->out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
554
}
555

    
556
/* Queue a byte for a MSG IN phase.  */
557
static void lsi_add_msg_byte(LSIState *s, uint8_t data)
558
{
559
    if (s->msg_len >= LSI_MAX_MSGIN_LEN) {
560
        BADF("MSG IN data too long\n");
561
    } else {
562
        DPRINTF("MSG IN 0x%02x\n", data);
563
        s->msg[s->msg_len++] = data;
564
    }
565
}
566

    
567
/* Perform reselection to continue a command.  */
568
static void lsi_reselect(LSIState *s, uint32_t tag)
569
{
570
    lsi_queue *p;
571
    int n;
572
    int id;
573

    
574
    p = NULL;
575
    for (n = 0; n < s->active_commands; n++) {
576
        p = &s->queue[n];
577
        if (p->tag == tag)
578
            break;
579
    }
580
    if (n == s->active_commands) {
581
        BADF("Reselected non-existant command tag=0x%x\n", tag);
582
        return;
583
    }
584
    id = (tag >> 8) & 0xf;
585
    s->ssid = id | 0x80;
586
    DPRINTF("Reselected target %d\n", id);
587
    s->current_dev = s->scsi_dev[id];
588
    s->current_tag = tag;
589
    s->scntl1 |= LSI_SCNTL1_CON;
590
    lsi_set_phase(s, PHASE_MI);
591
    s->msg_action = p->out ? 2 : 3;
592
    s->current_dma_len = p->pending;
593
    s->dma_buf = NULL;
594
    lsi_add_msg_byte(s, 0x80);
595
    if (s->current_tag & LSI_TAG_VALID) {
596
        lsi_add_msg_byte(s, 0x20);
597
        lsi_add_msg_byte(s, tag & 0xff);
598
    }
599

    
600
    s->active_commands--;
601
    if (n != s->active_commands) {
602
        s->queue[n] = s->queue[s->active_commands];
603
    }
604
}
605

    
606
/* Record that data is available for a queued command.  Returns zero if
607
   the device was reselected, nonzero if the IO is deferred.  */
608
static int lsi_queue_tag(LSIState *s, uint32_t tag, uint32_t arg)
609
{
610
    lsi_queue *p;
611
    int i;
612
    for (i = 0; i < s->active_commands; i++) {
613
        p = &s->queue[i];
614
        if (p->tag == tag) {
615
            if (p->pending) {
616
                BADF("Multiple IO pending for tag %d\n", tag);
617
            }
618
            p->pending = arg;
619
            if (s->waiting == 1) {
620
                /* Reselect device.  */
621
                lsi_reselect(s, tag);
622
                return 0;
623
            } else {
624
               DPRINTF("Queueing IO tag=0x%x\n", tag);
625
                p->pending = arg;
626
                return 1;
627
            }
628
        }
629
    }
630
    BADF("IO with unknown tag %d\n", tag);
631
    return 1;
632
}
633

    
634
/* Callback to indicate that the SCSI layer has completed a transfer.  */
635
static void lsi_command_complete(void *opaque, int reason, uint32_t tag,
636
                                 uint32_t arg)
637
{
638
    LSIState *s = (LSIState *)opaque;
639
    int out;
640

    
641
    out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
642
    if (reason == SCSI_REASON_DONE) {
643
        DPRINTF("Command complete sense=%d\n", (int)arg);
644
        s->sense = arg;
645
        s->command_complete = 2;
646
        if (s->waiting && s->dbc != 0) {
647
            /* Raise phase mismatch for short transfers.  */
648
            lsi_bad_phase(s, out, PHASE_ST);
649
        } else {
650
            lsi_set_phase(s, PHASE_ST);
651
        }
652
        lsi_resume_script(s);
653
        return;
654
    }
655

    
656
    if (s->waiting == 1 || tag != s->current_tag) {
657
        if (lsi_queue_tag(s, tag, arg))
658
            return;
659
    }
660
    DPRINTF("Data ready tag=0x%x len=%d\n", tag, arg);
661
    s->current_dma_len = arg;
662
    s->command_complete = 1;
663
    if (!s->waiting)
664
        return;
665
    if (s->waiting == 1 || s->dbc == 0) {
666
        lsi_resume_script(s);
667
    } else {
668
        lsi_do_dma(s, out);
669
    }
670
}
671

    
672
static void lsi_do_command(LSIState *s)
673
{
674
    uint8_t buf[16];
675
    int n;
676

    
677
    DPRINTF("Send command len=%d\n", s->dbc);
678
    if (s->dbc > 16)
679
        s->dbc = 16;
680
    cpu_physical_memory_read(s->dnad, buf, s->dbc);
681
    s->sfbr = buf[0];
682
    s->command_complete = 0;
683
    n = s->current_dev->send_command(s->current_dev, s->current_tag, buf,
684
                                     s->current_lun);
685
    if (n > 0) {
686
        lsi_set_phase(s, PHASE_DI);
687
        s->current_dev->read_data(s->current_dev, s->current_tag);
688
    } else if (n < 0) {
689
        lsi_set_phase(s, PHASE_DO);
690
        s->current_dev->write_data(s->current_dev, s->current_tag);
691
    }
692

    
693
    if (!s->command_complete) {
694
        if (n) {
695
            /* Command did not complete immediately so disconnect.  */
696
            lsi_add_msg_byte(s, 2); /* SAVE DATA POINTER */
697
            lsi_add_msg_byte(s, 4); /* DISCONNECT */
698
            /* wait data */
699
            lsi_set_phase(s, PHASE_MI);
700
            s->msg_action = 1;
701
            lsi_queue_command(s);
702
        } else {
703
            /* wait command complete */
704
            lsi_set_phase(s, PHASE_DI);
705
        }
706
    }
707
}
708

    
709
static void lsi_do_status(LSIState *s)
710
{
711
    uint8_t sense;
712
    DPRINTF("Get status len=%d sense=%d\n", s->dbc, s->sense);
713
    if (s->dbc != 1)
714
        BADF("Bad Status move\n");
715
    s->dbc = 1;
716
    sense = s->sense;
717
    s->sfbr = sense;
718
    cpu_physical_memory_write(s->dnad, &sense, 1);
719
    lsi_set_phase(s, PHASE_MI);
720
    s->msg_action = 1;
721
    lsi_add_msg_byte(s, 0); /* COMMAND COMPLETE */
722
}
723

    
724
static void lsi_disconnect(LSIState *s)
725
{
726
    s->scntl1 &= ~LSI_SCNTL1_CON;
727
    s->sstat1 &= ~PHASE_MASK;
728
}
729

    
730
static void lsi_do_msgin(LSIState *s)
731
{
732
    int len;
733
    DPRINTF("Message in len=%d/%d\n", s->dbc, s->msg_len);
734
    s->sfbr = s->msg[0];
735
    len = s->msg_len;
736
    if (len > s->dbc)
737
        len = s->dbc;
738
    cpu_physical_memory_write(s->dnad, s->msg, len);
739
    /* Linux drivers rely on the last byte being in the SIDL.  */
740
    s->sidl = s->msg[len - 1];
741
    s->msg_len -= len;
742
    if (s->msg_len) {
743
        memmove(s->msg, s->msg + len, s->msg_len);
744
    } else {
745
        /* ??? Check if ATN (not yet implemented) is asserted and maybe
746
           switch to PHASE_MO.  */
747
        switch (s->msg_action) {
748
        case 0:
749
            lsi_set_phase(s, PHASE_CMD);
750
            break;
751
        case 1:
752
            lsi_disconnect(s);
753
            break;
754
        case 2:
755
            lsi_set_phase(s, PHASE_DO);
756
            break;
757
        case 3:
758
            lsi_set_phase(s, PHASE_DI);
759
            break;
760
        default:
761
            abort();
762
        }
763
    }
764
}
765

    
766
/* Read the next byte during a MSGOUT phase.  */
767
static uint8_t lsi_get_msgbyte(LSIState *s)
768
{
769
    uint8_t data;
770
    cpu_physical_memory_read(s->dnad, &data, 1);
771
    s->dnad++;
772
    s->dbc--;
773
    return data;
774
}
775

    
776
static void lsi_do_msgout(LSIState *s)
777
{
778
    uint8_t msg;
779
    int len;
780

    
781
    DPRINTF("MSG out len=%d\n", s->dbc);
782
    while (s->dbc) {
783
        msg = lsi_get_msgbyte(s);
784
        s->sfbr = msg;
785

    
786
        switch (msg) {
787
        case 0x00:
788
            DPRINTF("MSG: Disconnect\n");
789
            lsi_disconnect(s);
790
            break;
791
        case 0x08:
792
            DPRINTF("MSG: No Operation\n");
793
            lsi_set_phase(s, PHASE_CMD);
794
            break;
795
        case 0x01:
796
            len = lsi_get_msgbyte(s);
797
            msg = lsi_get_msgbyte(s);
798
            DPRINTF("Extended message 0x%x (len %d)\n", msg, len);
799
            switch (msg) {
800
            case 1:
801
                DPRINTF("SDTR (ignored)\n");
802
                s->dbc -= 2;
803
                break;
804
            case 3:
805
                DPRINTF("WDTR (ignored)\n");
806
                s->dbc -= 1;
807
                break;
808
            default:
809
                goto bad;
810
            }
811
            break;
812
        case 0x20: /* SIMPLE queue */
813
            s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
814
            DPRINTF("SIMPLE queue tag=0x%x\n", s->current_tag & 0xff);
815
            break;
816
        case 0x21: /* HEAD of queue */
817
            BADF("HEAD queue not implemented\n");
818
            s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
819
            break;
820
        case 0x22: /* ORDERED queue */
821
            BADF("ORDERED queue not implemented\n");
822
            s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
823
            break;
824
        default:
825
            if ((msg & 0x80) == 0) {
826
                goto bad;
827
            }
828
            s->current_lun = msg & 7;
829
            DPRINTF("Select LUN %d\n", s->current_lun);
830
            lsi_set_phase(s, PHASE_CMD);
831
            break;
832
        }
833
    }
834
    return;
835
bad:
836
    BADF("Unimplemented message 0x%02x\n", msg);
837
    lsi_set_phase(s, PHASE_MI);
838
    lsi_add_msg_byte(s, 7); /* MESSAGE REJECT */
839
    s->msg_action = 0;
840
}
841

    
842
/* Sign extend a 24-bit value.  */
843
static inline int32_t sxt24(int32_t n)
844
{
845
    return (n << 8) >> 8;
846
}
847

    
848
#define LSI_BUF_SIZE 4096
849
static void lsi_memcpy(LSIState *s, uint32_t dest, uint32_t src, int count)
850
{
851
    int n;
852
    uint8_t buf[LSI_BUF_SIZE];
853

    
854
    DPRINTF("memcpy dest 0x%08x src 0x%08x count %d\n", dest, src, count);
855
    while (count) {
856
        n = (count > LSI_BUF_SIZE) ? LSI_BUF_SIZE : count;
857
        cpu_physical_memory_read(src, buf, n);
858
        cpu_physical_memory_write(dest, buf, n);
859
        src += n;
860
        dest += n;
861
        count -= n;
862
    }
863
}
864

    
865
static void lsi_wait_reselect(LSIState *s)
866
{
867
    int i;
868
    DPRINTF("Wait Reselect\n");
869
    if (s->current_dma_len)
870
        BADF("Reselect with pending DMA\n");
871
    for (i = 0; i < s->active_commands; i++) {
872
        if (s->queue[i].pending) {
873
            lsi_reselect(s, s->queue[i].tag);
874
            break;
875
        }
876
    }
877
    if (s->current_dma_len == 0) {
878
        s->waiting = 1;
879
    }
880
}
881

    
882
static void lsi_execute_script(LSIState *s)
883
{
884
    uint32_t insn;
885
    uint32_t addr, addr_high;
886
    int opcode;
887
    int insn_processed = 0;
888

    
889
    s->istat1 |= LSI_ISTAT1_SRUN;
890
again:
891
    insn_processed++;
892
    insn = read_dword(s, s->dsp);
893
    if (!insn) {
894
        /* If we receive an empty opcode increment the DSP by 4 bytes
895
           instead of 8 and execute the next opcode at that location */
896
        s->dsp += 4;
897
        goto again;
898
    }
899
    addr = read_dword(s, s->dsp + 4);
900
    addr_high = 0;
901
    DPRINTF("SCRIPTS dsp=%08x opcode %08x arg %08x\n", s->dsp, insn, addr);
902
    s->dsps = addr;
903
    s->dcmd = insn >> 24;
904
    s->dsp += 8;
905
    switch (insn >> 30) {
906
    case 0: /* Block move.  */
907
        if (s->sist1 & LSI_SIST1_STO) {
908
            DPRINTF("Delayed select timeout\n");
909
            lsi_stop_script(s);
910
            break;
911
        }
912
        s->dbc = insn & 0xffffff;
913
        s->rbc = s->dbc;
914
        /* ??? Set ESA.  */
915
        s->ia = s->dsp - 8;
916
        if (insn & (1 << 29)) {
917
            /* Indirect addressing.  */
918
            addr = read_dword(s, addr);
919
        } else if (insn & (1 << 28)) {
920
            uint32_t buf[2];
921
            int32_t offset;
922
            /* Table indirect addressing.  */
923

    
924
            /* 32-bit Table indirect */
925
            offset = sxt24(addr);
926
            cpu_physical_memory_read(s->dsa + offset, (uint8_t *)buf, 8);
927
            /* byte count is stored in bits 0:23 only */
928
            s->dbc = cpu_to_le32(buf[0]) & 0xffffff;
929
            s->rbc = s->dbc;
930
            addr = cpu_to_le32(buf[1]);
931

    
932
            /* 40-bit DMA, upper addr bits [39:32] stored in first DWORD of
933
             * table, bits [31:24] */
934
            if (lsi_dma_40bit(s))
935
                addr_high = cpu_to_le32(buf[0]) >> 24;
936
            else if (lsi_dma_ti64bit(s)) {
937
                int selector = (cpu_to_le32(buf[0]) >> 24) & 0x1f;
938
                switch (selector) {
939
                case 0 ... 0x0f:
940
                    /* offset index into scratch registers since
941
                     * TI64 mode can use registers C to R */
942
                    addr_high = s->scratch[2 + selector];
943
                    break;
944
                case 0x10:
945
                    addr_high = s->mmrs;
946
                    break;
947
                case 0x11:
948
                    addr_high = s->mmws;
949
                    break;
950
                case 0x12:
951
                    addr_high = s->sfs;
952
                    break;
953
                case 0x13:
954
                    addr_high = s->drs;
955
                    break;
956
                case 0x14:
957
                    addr_high = s->sbms;
958
                    break;
959
                case 0x15:
960
                    addr_high = s->dbms;
961
                    break;
962
                default:
963
                    BADF("Illegal selector specified (0x%x > 0x15)"
964
                         " for 64-bit DMA block move", selector);
965
                    break;
966
                }
967
            }
968
        } else if (lsi_dma_64bit(s)) {
969
            /* fetch a 3rd dword if 64-bit direct move is enabled and
970
               only if we're not doing table indirect or indirect addressing */
971
            s->dbms = read_dword(s, s->dsp);
972
            s->dsp += 4;
973
            s->ia = s->dsp - 12;
974
        }
975
        if ((s->sstat1 & PHASE_MASK) != ((insn >> 24) & 7)) {
976
            DPRINTF("Wrong phase got %d expected %d\n",
977
                    s->sstat1 & PHASE_MASK, (insn >> 24) & 7);
978
            lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
979
            break;
980
        }
981
        s->dnad = addr;
982
        s->dnad64 = addr_high;
983
        switch (s->sstat1 & 0x7) {
984
        case PHASE_DO:
985
            s->waiting = 2;
986
            lsi_do_dma(s, 1);
987
            if (s->waiting)
988
                s->waiting = 3;
989
            break;
990
        case PHASE_DI:
991
            s->waiting = 2;
992
            lsi_do_dma(s, 0);
993
            if (s->waiting)
994
                s->waiting = 3;
995
            break;
996
        case PHASE_CMD:
997
            lsi_do_command(s);
998
            break;
999
        case PHASE_ST:
1000
            lsi_do_status(s);
1001
            break;
1002
        case PHASE_MO:
1003
            lsi_do_msgout(s);
1004
            break;
1005
        case PHASE_MI:
1006
            lsi_do_msgin(s);
1007
            break;
1008
        default:
1009
            BADF("Unimplemented phase %d\n", s->sstat1 & PHASE_MASK);
1010
            exit(1);
1011
        }
1012
        s->dfifo = s->dbc & 0xff;
1013
        s->ctest5 = (s->ctest5 & 0xfc) | ((s->dbc >> 8) & 3);
1014
        s->sbc = s->dbc;
1015
        s->rbc -= s->dbc;
1016
        s->ua = addr + s->dbc;
1017
        break;
1018

    
1019
    case 1: /* IO or Read/Write instruction.  */
1020
        opcode = (insn >> 27) & 7;
1021
        if (opcode < 5) {
1022
            uint32_t id;
1023

    
1024
            if (insn & (1 << 25)) {
1025
                id = read_dword(s, s->dsa + sxt24(insn));
1026
            } else {
1027
                id = addr;
1028
            }
1029
            id = (id >> 16) & 0xf;
1030
            if (insn & (1 << 26)) {
1031
                addr = s->dsp + sxt24(addr);
1032
            }
1033
            s->dnad = addr;
1034
            switch (opcode) {
1035
            case 0: /* Select */
1036
                s->sdid = id;
1037
                if (s->current_dma_len && (s->ssid & 0xf) == id) {
1038
                    DPRINTF("Already reselected by target %d\n", id);
1039
                    break;
1040
                }
1041
                s->sstat0 |= LSI_SSTAT0_WOA;
1042
                s->scntl1 &= ~LSI_SCNTL1_IARB;
1043
                if (id >= LSI_MAX_DEVS || !s->scsi_dev[id]) {
1044
                    DPRINTF("Selected absent target %d\n", id);
1045
                    lsi_script_scsi_interrupt(s, 0, LSI_SIST1_STO);
1046
                    lsi_disconnect(s);
1047
                    break;
1048
                }
1049
                DPRINTF("Selected target %d%s\n",
1050
                        id, insn & (1 << 3) ? " ATN" : "");
1051
                /* ??? Linux drivers compain when this is set.  Maybe
1052
                   it only applies in low-level mode (unimplemented).
1053
                lsi_script_scsi_interrupt(s, LSI_SIST0_CMP, 0); */
1054
                s->current_dev = s->scsi_dev[id];
1055
                s->current_tag = id << 8;
1056
                s->scntl1 |= LSI_SCNTL1_CON;
1057
                if (insn & (1 << 3)) {
1058
                    s->socl |= LSI_SOCL_ATN;
1059
                }
1060
                lsi_set_phase(s, PHASE_MO);
1061
                break;
1062
            case 1: /* Disconnect */
1063
                DPRINTF("Wait Disconect\n");
1064
                s->scntl1 &= ~LSI_SCNTL1_CON;
1065
                break;
1066
            case 2: /* Wait Reselect */
1067
                lsi_wait_reselect(s);
1068
                break;
1069
            case 3: /* Set */
1070
                DPRINTF("Set%s%s%s%s\n",
1071
                        insn & (1 << 3) ? " ATN" : "",
1072
                        insn & (1 << 6) ? " ACK" : "",
1073
                        insn & (1 << 9) ? " TM" : "",
1074
                        insn & (1 << 10) ? " CC" : "");
1075
                if (insn & (1 << 3)) {
1076
                    s->socl |= LSI_SOCL_ATN;
1077
                    lsi_set_phase(s, PHASE_MO);
1078
                }
1079
                if (insn & (1 << 9)) {
1080
                    BADF("Target mode not implemented\n");
1081
                    exit(1);
1082
                }
1083
                if (insn & (1 << 10))
1084
                    s->carry = 1;
1085
                break;
1086
            case 4: /* Clear */
1087
                DPRINTF("Clear%s%s%s%s\n",
1088
                        insn & (1 << 3) ? " ATN" : "",
1089
                        insn & (1 << 6) ? " ACK" : "",
1090
                        insn & (1 << 9) ? " TM" : "",
1091
                        insn & (1 << 10) ? " CC" : "");
1092
                if (insn & (1 << 3)) {
1093
                    s->socl &= ~LSI_SOCL_ATN;
1094
                }
1095
                if (insn & (1 << 10))
1096
                    s->carry = 0;
1097
                break;
1098
            }
1099
        } else {
1100
            uint8_t op0;
1101
            uint8_t op1;
1102
            uint8_t data8;
1103
            int reg;
1104
            int operator;
1105
#ifdef DEBUG_LSI
1106
            static const char *opcode_names[3] =
1107
                {"Write", "Read", "Read-Modify-Write"};
1108
            static const char *operator_names[8] =
1109
                {"MOV", "SHL", "OR", "XOR", "AND", "SHR", "ADD", "ADC"};
1110
#endif
1111

    
1112
            reg = ((insn >> 16) & 0x7f) | (insn & 0x80);
1113
            data8 = (insn >> 8) & 0xff;
1114
            opcode = (insn >> 27) & 7;
1115
            operator = (insn >> 24) & 7;
1116
            DPRINTF("%s reg 0x%x %s data8=0x%02x sfbr=0x%02x%s\n",
1117
                    opcode_names[opcode - 5], reg,
1118
                    operator_names[operator], data8, s->sfbr,
1119
                    (insn & (1 << 23)) ? " SFBR" : "");
1120
            op0 = op1 = 0;
1121
            switch (opcode) {
1122
            case 5: /* From SFBR */
1123
                op0 = s->sfbr;
1124
                op1 = data8;
1125
                break;
1126
            case 6: /* To SFBR */
1127
                if (operator)
1128
                    op0 = lsi_reg_readb(s, reg);
1129
                op1 = data8;
1130
                break;
1131
            case 7: /* Read-modify-write */
1132
                if (operator)
1133
                    op0 = lsi_reg_readb(s, reg);
1134
                if (insn & (1 << 23)) {
1135
                    op1 = s->sfbr;
1136
                } else {
1137
                    op1 = data8;
1138
                }
1139
                break;
1140
            }
1141

    
1142
            switch (operator) {
1143
            case 0: /* move */
1144
                op0 = op1;
1145
                break;
1146
            case 1: /* Shift left */
1147
                op1 = op0 >> 7;
1148
                op0 = (op0 << 1) | s->carry;
1149
                s->carry = op1;
1150
                break;
1151
            case 2: /* OR */
1152
                op0 |= op1;
1153
                break;
1154
            case 3: /* XOR */
1155
                op0 ^= op1;
1156
                break;
1157
            case 4: /* AND */
1158
                op0 &= op1;
1159
                break;
1160
            case 5: /* SHR */
1161
                op1 = op0 & 1;
1162
                op0 = (op0 >> 1) | (s->carry << 7);
1163
                s->carry = op1;
1164
                break;
1165
            case 6: /* ADD */
1166
                op0 += op1;
1167
                s->carry = op0 < op1;
1168
                break;
1169
            case 7: /* ADC */
1170
                op0 += op1 + s->carry;
1171
                if (s->carry)
1172
                    s->carry = op0 <= op1;
1173
                else
1174
                    s->carry = op0 < op1;
1175
                break;
1176
            }
1177

    
1178
            switch (opcode) {
1179
            case 5: /* From SFBR */
1180
            case 7: /* Read-modify-write */
1181
                lsi_reg_writeb(s, reg, op0);
1182
                break;
1183
            case 6: /* To SFBR */
1184
                s->sfbr = op0;
1185
                break;
1186
            }
1187
        }
1188
        break;
1189

    
1190
    case 2: /* Transfer Control.  */
1191
        {
1192
            int cond;
1193
            int jmp;
1194

    
1195
            if ((insn & 0x002e0000) == 0) {
1196
                DPRINTF("NOP\n");
1197
                break;
1198
            }
1199
            if (s->sist1 & LSI_SIST1_STO) {
1200
                DPRINTF("Delayed select timeout\n");
1201
                lsi_stop_script(s);
1202
                break;
1203
            }
1204
            cond = jmp = (insn & (1 << 19)) != 0;
1205
            if (cond == jmp && (insn & (1 << 21))) {
1206
                DPRINTF("Compare carry %d\n", s->carry == jmp);
1207
                cond = s->carry != 0;
1208
            }
1209
            if (cond == jmp && (insn & (1 << 17))) {
1210
                DPRINTF("Compare phase %d %c= %d\n",
1211
                        (s->sstat1 & PHASE_MASK),
1212
                        jmp ? '=' : '!',
1213
                        ((insn >> 24) & 7));
1214
                cond = (s->sstat1 & PHASE_MASK) == ((insn >> 24) & 7);
1215
            }
1216
            if (cond == jmp && (insn & (1 << 18))) {
1217
                uint8_t mask;
1218

    
1219
                mask = (~insn >> 8) & 0xff;
1220
                DPRINTF("Compare data 0x%x & 0x%x %c= 0x%x\n",
1221
                        s->sfbr, mask, jmp ? '=' : '!', insn & mask);
1222
                cond = (s->sfbr & mask) == (insn & mask);
1223
            }
1224
            if (cond == jmp) {
1225
                if (insn & (1 << 23)) {
1226
                    /* Relative address.  */
1227
                    addr = s->dsp + sxt24(addr);
1228
                }
1229
                switch ((insn >> 27) & 7) {
1230
                case 0: /* Jump */
1231
                    DPRINTF("Jump to 0x%08x\n", addr);
1232
                    s->dsp = addr;
1233
                    break;
1234
                case 1: /* Call */
1235
                    DPRINTF("Call 0x%08x\n", addr);
1236
                    s->temp = s->dsp;
1237
                    s->dsp = addr;
1238
                    break;
1239
                case 2: /* Return */
1240
                    DPRINTF("Return to 0x%08x\n", s->temp);
1241
                    s->dsp = s->temp;
1242
                    break;
1243
                case 3: /* Interrupt */
1244
                    DPRINTF("Interrupt 0x%08x\n", s->dsps);
1245
                    if ((insn & (1 << 20)) != 0) {
1246
                        s->istat0 |= LSI_ISTAT0_INTF;
1247
                        lsi_update_irq(s);
1248
                    } else {
1249
                        lsi_script_dma_interrupt(s, LSI_DSTAT_SIR);
1250
                    }
1251
                    break;
1252
                default:
1253
                    DPRINTF("Illegal transfer control\n");
1254
                    lsi_script_dma_interrupt(s, LSI_DSTAT_IID);
1255
                    break;
1256
                }
1257
            } else {
1258
                DPRINTF("Control condition failed\n");
1259
            }
1260
        }
1261
        break;
1262

    
1263
    case 3:
1264
        if ((insn & (1 << 29)) == 0) {
1265
            /* Memory move.  */
1266
            uint32_t dest;
1267
            /* ??? The docs imply the destination address is loaded into
1268
               the TEMP register.  However the Linux drivers rely on
1269
               the value being presrved.  */
1270
            dest = read_dword(s, s->dsp);
1271
            s->dsp += 4;
1272
            lsi_memcpy(s, dest, addr, insn & 0xffffff);
1273
        } else {
1274
            uint8_t data[7];
1275
            int reg;
1276
            int n;
1277
            int i;
1278

    
1279
            if (insn & (1 << 28)) {
1280
                addr = s->dsa + sxt24(addr);
1281
            }
1282
            n = (insn & 7);
1283
            reg = (insn >> 16) & 0xff;
1284
            if (insn & (1 << 24)) {
1285
                cpu_physical_memory_read(addr, data, n);
1286
                DPRINTF("Load reg 0x%x size %d addr 0x%08x = %08x\n", reg, n,
1287
                        addr, *(int *)data);
1288
                for (i = 0; i < n; i++) {
1289
                    lsi_reg_writeb(s, reg + i, data[i]);
1290
                }
1291
            } else {
1292
                DPRINTF("Store reg 0x%x size %d addr 0x%08x\n", reg, n, addr);
1293
                for (i = 0; i < n; i++) {
1294
                    data[i] = lsi_reg_readb(s, reg + i);
1295
                }
1296
                cpu_physical_memory_write(addr, data, n);
1297
            }
1298
        }
1299
    }
1300
    if (insn_processed > 10000 && !s->waiting) {
1301
        /* Some windows drivers make the device spin waiting for a memory
1302
           location to change.  If we have been executed a lot of code then
1303
           assume this is the case and force an unexpected device disconnect.
1304
           This is apparently sufficient to beat the drivers into submission.
1305
         */
1306
        if (!(s->sien0 & LSI_SIST0_UDC))
1307
            fprintf(stderr, "inf. loop with UDC masked\n");
1308
        lsi_script_scsi_interrupt(s, LSI_SIST0_UDC, 0);
1309
        lsi_disconnect(s);
1310
    } else if (s->istat1 & LSI_ISTAT1_SRUN && !s->waiting) {
1311
        if (s->dcntl & LSI_DCNTL_SSM) {
1312
            lsi_script_dma_interrupt(s, LSI_DSTAT_SSI);
1313
        } else {
1314
            goto again;
1315
        }
1316
    }
1317
    DPRINTF("SCRIPTS execution stopped\n");
1318
}
1319

    
1320
static uint8_t lsi_reg_readb(LSIState *s, int offset)
1321
{
1322
    uint8_t tmp;
1323
#define CASE_GET_REG24(name, addr) \
1324
    case addr: return s->name & 0xff; \
1325
    case addr + 1: return (s->name >> 8) & 0xff; \
1326
    case addr + 2: return (s->name >> 16) & 0xff;
1327

    
1328
#define CASE_GET_REG32(name, addr) \
1329
    case addr: return s->name & 0xff; \
1330
    case addr + 1: return (s->name >> 8) & 0xff; \
1331
    case addr + 2: return (s->name >> 16) & 0xff; \
1332
    case addr + 3: return (s->name >> 24) & 0xff;
1333

    
1334
#ifdef DEBUG_LSI_REG
1335
    DPRINTF("Read reg %x\n", offset);
1336
#endif
1337
    switch (offset) {
1338
    case 0x00: /* SCNTL0 */
1339
        return s->scntl0;
1340
    case 0x01: /* SCNTL1 */
1341
        return s->scntl1;
1342
    case 0x02: /* SCNTL2 */
1343
        return s->scntl2;
1344
    case 0x03: /* SCNTL3 */
1345
        return s->scntl3;
1346
    case 0x04: /* SCID */
1347
        return s->scid;
1348
    case 0x05: /* SXFER */
1349
        return s->sxfer;
1350
    case 0x06: /* SDID */
1351
        return s->sdid;
1352
    case 0x07: /* GPREG0 */
1353
        return 0x7f;
1354
    case 0x08: /* Revision ID */
1355
        return 0x00;
1356
    case 0xa: /* SSID */
1357
        return s->ssid;
1358
    case 0xb: /* SBCL */
1359
        /* ??? This is not correct. However it's (hopefully) only
1360
           used for diagnostics, so should be ok.  */
1361
        return 0;
1362
    case 0xc: /* DSTAT */
1363
        tmp = s->dstat | 0x80;
1364
        if ((s->istat0 & LSI_ISTAT0_INTF) == 0)
1365
            s->dstat = 0;
1366
        lsi_update_irq(s);
1367
        return tmp;
1368
    case 0x0d: /* SSTAT0 */
1369
        return s->sstat0;
1370
    case 0x0e: /* SSTAT1 */
1371
        return s->sstat1;
1372
    case 0x0f: /* SSTAT2 */
1373
        return s->scntl1 & LSI_SCNTL1_CON ? 0 : 2;
1374
    CASE_GET_REG32(dsa, 0x10)
1375
    case 0x14: /* ISTAT0 */
1376
        return s->istat0;
1377
    case 0x15: /* ISTAT1 */
1378
        return s->istat1;
1379
    case 0x16: /* MBOX0 */
1380
        return s->mbox0;
1381
    case 0x17: /* MBOX1 */
1382
        return s->mbox1;
1383
    case 0x18: /* CTEST0 */
1384
        return 0xff;
1385
    case 0x19: /* CTEST1 */
1386
        return 0;
1387
    case 0x1a: /* CTEST2 */
1388
        tmp = s->ctest2 | LSI_CTEST2_DACK | LSI_CTEST2_CM;
1389
        if (s->istat0 & LSI_ISTAT0_SIGP) {
1390
            s->istat0 &= ~LSI_ISTAT0_SIGP;
1391
            tmp |= LSI_CTEST2_SIGP;
1392
        }
1393
        return tmp;
1394
    case 0x1b: /* CTEST3 */
1395
        return s->ctest3;
1396
    CASE_GET_REG32(temp, 0x1c)
1397
    case 0x20: /* DFIFO */
1398
        return 0;
1399
    case 0x21: /* CTEST4 */
1400
        return s->ctest4;
1401
    case 0x22: /* CTEST5 */
1402
        return s->ctest5;
1403
    case 0x23: /* CTEST6 */
1404
         return 0;
1405
    CASE_GET_REG24(dbc, 0x24)
1406
    case 0x27: /* DCMD */
1407
        return s->dcmd;
1408
    CASE_GET_REG32(dnad, 0x28)
1409
    CASE_GET_REG32(dsp, 0x2c)
1410
    CASE_GET_REG32(dsps, 0x30)
1411
    CASE_GET_REG32(scratch[0], 0x34)
1412
    case 0x38: /* DMODE */
1413
        return s->dmode;
1414
    case 0x39: /* DIEN */
1415
        return s->dien;
1416
    case 0x3a: /* SBR */
1417
        return s->sbr;
1418
    case 0x3b: /* DCNTL */
1419
        return s->dcntl;
1420
    case 0x40: /* SIEN0 */
1421
        return s->sien0;
1422
    case 0x41: /* SIEN1 */
1423
        return s->sien1;
1424
    case 0x42: /* SIST0 */
1425
        tmp = s->sist0;
1426
        s->sist0 = 0;
1427
        lsi_update_irq(s);
1428
        return tmp;
1429
    case 0x43: /* SIST1 */
1430
        tmp = s->sist1;
1431
        s->sist1 = 0;
1432
        lsi_update_irq(s);
1433
        return tmp;
1434
    case 0x46: /* MACNTL */
1435
        return 0x0f;
1436
    case 0x47: /* GPCNTL0 */
1437
        return 0x0f;
1438
    case 0x48: /* STIME0 */
1439
        return s->stime0;
1440
    case 0x4a: /* RESPID0 */
1441
        return s->respid0;
1442
    case 0x4b: /* RESPID1 */
1443
        return s->respid1;
1444
    case 0x4d: /* STEST1 */
1445
        return s->stest1;
1446
    case 0x4e: /* STEST2 */
1447
        return s->stest2;
1448
    case 0x4f: /* STEST3 */
1449
        return s->stest3;
1450
    case 0x50: /* SIDL */
1451
        /* This is needed by the linux drivers.  We currently only update it
1452
           during the MSG IN phase.  */
1453
        return s->sidl;
1454
    case 0x52: /* STEST4 */
1455
        return 0xe0;
1456
    case 0x56: /* CCNTL0 */
1457
        return s->ccntl0;
1458
    case 0x57: /* CCNTL1 */
1459
        return s->ccntl1;
1460
    case 0x58: /* SBDL */
1461
        /* Some drivers peek at the data bus during the MSG IN phase.  */
1462
        if ((s->sstat1 & PHASE_MASK) == PHASE_MI)
1463
            return s->msg[0];
1464
        return 0;
1465
    case 0x59: /* SBDL high */
1466
        return 0;
1467
    CASE_GET_REG32(mmrs, 0xa0)
1468
    CASE_GET_REG32(mmws, 0xa4)
1469
    CASE_GET_REG32(sfs, 0xa8)
1470
    CASE_GET_REG32(drs, 0xac)
1471
    CASE_GET_REG32(sbms, 0xb0)
1472
    CASE_GET_REG32(dbms, 0xb4)
1473
    CASE_GET_REG32(dnad64, 0xb8)
1474
    CASE_GET_REG32(pmjad1, 0xc0)
1475
    CASE_GET_REG32(pmjad2, 0xc4)
1476
    CASE_GET_REG32(rbc, 0xc8)
1477
    CASE_GET_REG32(ua, 0xcc)
1478
    CASE_GET_REG32(ia, 0xd4)
1479
    CASE_GET_REG32(sbc, 0xd8)
1480
    CASE_GET_REG32(csbc, 0xdc)
1481
    }
1482
    if (offset >= 0x5c && offset < 0xa0) {
1483
        int n;
1484
        int shift;
1485
        n = (offset - 0x58) >> 2;
1486
        shift = (offset & 3) * 8;
1487
        return (s->scratch[n] >> shift) & 0xff;
1488
    }
1489
    BADF("readb 0x%x\n", offset);
1490
    exit(1);
1491
#undef CASE_GET_REG24
1492
#undef CASE_GET_REG32
1493
}
1494

    
1495
static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val)
1496
{
1497
#define CASE_SET_REG24(name, addr) \
1498
    case addr    : s->name &= 0xffffff00; s->name |= val;       break; \
1499
    case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8;  break; \
1500
    case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break;
1501

    
1502
#define CASE_SET_REG32(name, addr) \
1503
    case addr    : s->name &= 0xffffff00; s->name |= val;       break; \
1504
    case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8;  break; \
1505
    case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break; \
1506
    case addr + 3: s->name &= 0x00ffffff; s->name |= val << 24; break;
1507

    
1508
#ifdef DEBUG_LSI_REG
1509
    DPRINTF("Write reg %x = %02x\n", offset, val);
1510
#endif
1511
    switch (offset) {
1512
    case 0x00: /* SCNTL0 */
1513
        s->scntl0 = val;
1514
        if (val & LSI_SCNTL0_START) {
1515
            BADF("Start sequence not implemented\n");
1516
        }
1517
        break;
1518
    case 0x01: /* SCNTL1 */
1519
        s->scntl1 = val & ~LSI_SCNTL1_SST;
1520
        if (val & LSI_SCNTL1_IARB) {
1521
            BADF("Immediate Arbritration not implemented\n");
1522
        }
1523
        if (val & LSI_SCNTL1_RST) {
1524
            s->sstat0 |= LSI_SSTAT0_RST;
1525
            lsi_script_scsi_interrupt(s, LSI_SIST0_RST, 0);
1526
        } else {
1527
            s->sstat0 &= ~LSI_SSTAT0_RST;
1528
        }
1529
        break;
1530
    case 0x02: /* SCNTL2 */
1531
        val &= ~(LSI_SCNTL2_WSR | LSI_SCNTL2_WSS);
1532
        s->scntl2 = val;
1533
        break;
1534
    case 0x03: /* SCNTL3 */
1535
        s->scntl3 = val;
1536
        break;
1537
    case 0x04: /* SCID */
1538
        s->scid = val;
1539
        break;
1540
    case 0x05: /* SXFER */
1541
        s->sxfer = val;
1542
        break;
1543
    case 0x06: /* SDID */
1544
        if ((val & 0xf) != (s->ssid & 0xf))
1545
            BADF("Destination ID does not match SSID\n");
1546
        s->sdid = val & 0xf;
1547
        break;
1548
    case 0x07: /* GPREG0 */
1549
        break;
1550
    case 0x08: /* SFBR */
1551
        /* The CPU is not allowed to write to this register.  However the
1552
           SCRIPTS register move instructions are.  */
1553
        s->sfbr = val;
1554
        break;
1555
    case 0x0a: case 0x0b: 
1556
        /* Openserver writes to these readonly registers on startup */
1557
        return;    
1558
    case 0x0c: case 0x0d: case 0x0e: case 0x0f:
1559
        /* Linux writes to these readonly registers on startup.  */
1560
        return;
1561
    CASE_SET_REG32(dsa, 0x10)
1562
    case 0x14: /* ISTAT0 */
1563
        s->istat0 = (s->istat0 & 0x0f) | (val & 0xf0);
1564
        if (val & LSI_ISTAT0_ABRT) {
1565
            lsi_script_dma_interrupt(s, LSI_DSTAT_ABRT);
1566
        }
1567
        if (val & LSI_ISTAT0_INTF) {
1568
            s->istat0 &= ~LSI_ISTAT0_INTF;
1569
            lsi_update_irq(s);
1570
        }
1571
        if (s->waiting == 1 && val & LSI_ISTAT0_SIGP) {
1572
            DPRINTF("Woken by SIGP\n");
1573
            s->waiting = 0;
1574
            s->dsp = s->dnad;
1575
            lsi_execute_script(s);
1576
        }
1577
        if (val & LSI_ISTAT0_SRST) {
1578
            lsi_soft_reset(s);
1579
        }
1580
        break;
1581
    case 0x16: /* MBOX0 */
1582
        s->mbox0 = val;
1583
        break;
1584
    case 0x17: /* MBOX1 */
1585
        s->mbox1 = val;
1586
        break;
1587
    case 0x1a: /* CTEST2 */
1588
        s->ctest2 = val & LSI_CTEST2_PCICIE;
1589
        break;
1590
    case 0x1b: /* CTEST3 */
1591
        s->ctest3 = val & 0x0f;
1592
        break;
1593
    CASE_SET_REG32(temp, 0x1c)
1594
    case 0x21: /* CTEST4 */
1595
        if (val & 7) {
1596
           BADF("Unimplemented CTEST4-FBL 0x%x\n", val);
1597
        }
1598
        s->ctest4 = val;
1599
        break;
1600
    case 0x22: /* CTEST5 */
1601
        if (val & (LSI_CTEST5_ADCK | LSI_CTEST5_BBCK)) {
1602
            BADF("CTEST5 DMA increment not implemented\n");
1603
        }
1604
        s->ctest5 = val;
1605
        break;
1606
    CASE_SET_REG24(dbc, 0x24)
1607
    CASE_SET_REG32(dnad, 0x28)
1608
    case 0x2c: /* DSP[0:7] */
1609
        s->dsp &= 0xffffff00;
1610
        s->dsp |= val;
1611
        break;
1612
    case 0x2d: /* DSP[8:15] */
1613
        s->dsp &= 0xffff00ff;
1614
        s->dsp |= val << 8;
1615
        break;
1616
    case 0x2e: /* DSP[16:23] */
1617
        s->dsp &= 0xff00ffff;
1618
        s->dsp |= val << 16;
1619
        break;
1620
    case 0x2f: /* DSP[24:31] */
1621
        s->dsp &= 0x00ffffff;
1622
        s->dsp |= val << 24;
1623
        if ((s->dmode & LSI_DMODE_MAN) == 0
1624
            && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1625
            lsi_execute_script(s);
1626
        break;
1627
    CASE_SET_REG32(dsps, 0x30)
1628
    CASE_SET_REG32(scratch[0], 0x34)
1629
    case 0x38: /* DMODE */
1630
        if (val & (LSI_DMODE_SIOM | LSI_DMODE_DIOM)) {
1631
            BADF("IO mappings not implemented\n");
1632
        }
1633
        s->dmode = val;
1634
        break;
1635
    case 0x39: /* DIEN */
1636
        s->dien = val;
1637
        lsi_update_irq(s);
1638
        break;
1639
    case 0x3a: /* SBR */
1640
        s->sbr = val;
1641
        break;
1642
    case 0x3b: /* DCNTL */
1643
        s->dcntl = val & ~(LSI_DCNTL_PFF | LSI_DCNTL_STD);
1644
        if ((val & LSI_DCNTL_STD) && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1645
            lsi_execute_script(s);
1646
        break;
1647
    case 0x40: /* SIEN0 */
1648
        s->sien0 = val;
1649
        lsi_update_irq(s);
1650
        break;
1651
    case 0x41: /* SIEN1 */
1652
        s->sien1 = val;
1653
        lsi_update_irq(s);
1654
        break;
1655
    case 0x47: /* GPCNTL0 */
1656
        break;
1657
    case 0x48: /* STIME0 */
1658
        s->stime0 = val;
1659
        break;
1660
    case 0x49: /* STIME1 */
1661
        if (val & 0xf) {
1662
            DPRINTF("General purpose timer not implemented\n");
1663
            /* ??? Raising the interrupt immediately seems to be sufficient
1664
               to keep the FreeBSD driver happy.  */
1665
            lsi_script_scsi_interrupt(s, 0, LSI_SIST1_GEN);
1666
        }
1667
        break;
1668
    case 0x4a: /* RESPID0 */
1669
        s->respid0 = val;
1670
        break;
1671
    case 0x4b: /* RESPID1 */
1672
        s->respid1 = val;
1673
        break;
1674
    case 0x4d: /* STEST1 */
1675
        s->stest1 = val;
1676
        break;
1677
    case 0x4e: /* STEST2 */
1678
        if (val & 1) {
1679
            BADF("Low level mode not implemented\n");
1680
        }
1681
        s->stest2 = val;
1682
        break;
1683
    case 0x4f: /* STEST3 */
1684
        if (val & 0x41) {
1685
            BADF("SCSI FIFO test mode not implemented\n");
1686
        }
1687
        s->stest3 = val;
1688
        break;
1689
    case 0x56: /* CCNTL0 */
1690
        s->ccntl0 = val;
1691
        break;
1692
    case 0x57: /* CCNTL1 */
1693
        s->ccntl1 = val;
1694
        break;
1695
    CASE_SET_REG32(mmrs, 0xa0)
1696
    CASE_SET_REG32(mmws, 0xa4)
1697
    CASE_SET_REG32(sfs, 0xa8)
1698
    CASE_SET_REG32(drs, 0xac)
1699
    CASE_SET_REG32(sbms, 0xb0)
1700
    CASE_SET_REG32(dbms, 0xb4)
1701
    CASE_SET_REG32(dnad64, 0xb8)
1702
    CASE_SET_REG32(pmjad1, 0xc0)
1703
    CASE_SET_REG32(pmjad2, 0xc4)
1704
    CASE_SET_REG32(rbc, 0xc8)
1705
    CASE_SET_REG32(ua, 0xcc)
1706
    CASE_SET_REG32(ia, 0xd4)
1707
    CASE_SET_REG32(sbc, 0xd8)
1708
    CASE_SET_REG32(csbc, 0xdc)
1709
    default:
1710
        if (offset >= 0x5c && offset < 0xa0) {
1711
            int n;
1712
            int shift;
1713
            n = (offset - 0x58) >> 2;
1714
            shift = (offset & 3) * 8;
1715
            s->scratch[n] &= ~(0xff << shift);
1716
            s->scratch[n] |= (val & 0xff) << shift;
1717
        } else {
1718
            BADF("Unhandled writeb 0x%x = 0x%x\n", offset, val);
1719
        }
1720
    }
1721
#undef CASE_SET_REG24
1722
#undef CASE_SET_REG32
1723
}
1724

    
1725
static void lsi_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1726
{
1727
    LSIState *s = (LSIState *)opaque;
1728

    
1729
    lsi_reg_writeb(s, addr & 0xff, val);
1730
}
1731

    
1732
static void lsi_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1733
{
1734
    LSIState *s = (LSIState *)opaque;
1735

    
1736
    addr &= 0xff;
1737
    lsi_reg_writeb(s, addr, val & 0xff);
1738
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1739
}
1740

    
1741
static void lsi_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1742
{
1743
    LSIState *s = (LSIState *)opaque;
1744

    
1745
    addr &= 0xff;
1746
    lsi_reg_writeb(s, addr, val & 0xff);
1747
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1748
    lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1749
    lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1750
}
1751

    
1752
static uint32_t lsi_mmio_readb(void *opaque, target_phys_addr_t addr)
1753
{
1754
    LSIState *s = (LSIState *)opaque;
1755

    
1756
    return lsi_reg_readb(s, addr & 0xff);
1757
}
1758

    
1759
static uint32_t lsi_mmio_readw(void *opaque, target_phys_addr_t addr)
1760
{
1761
    LSIState *s = (LSIState *)opaque;
1762
    uint32_t val;
1763

    
1764
    addr &= 0xff;
1765
    val = lsi_reg_readb(s, addr);
1766
    val |= lsi_reg_readb(s, addr + 1) << 8;
1767
    return val;
1768
}
1769

    
1770
static uint32_t lsi_mmio_readl(void *opaque, target_phys_addr_t addr)
1771
{
1772
    LSIState *s = (LSIState *)opaque;
1773
    uint32_t val;
1774
    addr &= 0xff;
1775
    val = lsi_reg_readb(s, addr);
1776
    val |= lsi_reg_readb(s, addr + 1) << 8;
1777
    val |= lsi_reg_readb(s, addr + 2) << 16;
1778
    val |= lsi_reg_readb(s, addr + 3) << 24;
1779
    return val;
1780
}
1781

    
1782
static CPUReadMemoryFunc * const lsi_mmio_readfn[3] = {
1783
    lsi_mmio_readb,
1784
    lsi_mmio_readw,
1785
    lsi_mmio_readl,
1786
};
1787

    
1788
static CPUWriteMemoryFunc * const lsi_mmio_writefn[3] = {
1789
    lsi_mmio_writeb,
1790
    lsi_mmio_writew,
1791
    lsi_mmio_writel,
1792
};
1793

    
1794
static void lsi_ram_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1795
{
1796
    LSIState *s = (LSIState *)opaque;
1797
    uint32_t newval;
1798
    int shift;
1799

    
1800
    addr &= 0x1fff;
1801
    newval = s->script_ram[addr >> 2];
1802
    shift = (addr & 3) * 8;
1803
    newval &= ~(0xff << shift);
1804
    newval |= val << shift;
1805
    s->script_ram[addr >> 2] = newval;
1806
}
1807

    
1808
static void lsi_ram_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1809
{
1810
    LSIState *s = (LSIState *)opaque;
1811
    uint32_t newval;
1812

    
1813
    addr &= 0x1fff;
1814
    newval = s->script_ram[addr >> 2];
1815
    if (addr & 2) {
1816
        newval = (newval & 0xffff) | (val << 16);
1817
    } else {
1818
        newval = (newval & 0xffff0000) | val;
1819
    }
1820
    s->script_ram[addr >> 2] = newval;
1821
}
1822

    
1823

    
1824
static void lsi_ram_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1825
{
1826
    LSIState *s = (LSIState *)opaque;
1827

    
1828
    addr &= 0x1fff;
1829
    s->script_ram[addr >> 2] = val;
1830
}
1831

    
1832
static uint32_t lsi_ram_readb(void *opaque, target_phys_addr_t addr)
1833
{
1834
    LSIState *s = (LSIState *)opaque;
1835
    uint32_t val;
1836

    
1837
    addr &= 0x1fff;
1838
    val = s->script_ram[addr >> 2];
1839
    val >>= (addr & 3) * 8;
1840
    return val & 0xff;
1841
}
1842

    
1843
static uint32_t lsi_ram_readw(void *opaque, target_phys_addr_t addr)
1844
{
1845
    LSIState *s = (LSIState *)opaque;
1846
    uint32_t val;
1847

    
1848
    addr &= 0x1fff;
1849
    val = s->script_ram[addr >> 2];
1850
    if (addr & 2)
1851
        val >>= 16;
1852
    return le16_to_cpu(val);
1853
}
1854

    
1855
static uint32_t lsi_ram_readl(void *opaque, target_phys_addr_t addr)
1856
{
1857
    LSIState *s = (LSIState *)opaque;
1858

    
1859
    addr &= 0x1fff;
1860
    return le32_to_cpu(s->script_ram[addr >> 2]);
1861
}
1862

    
1863
static CPUReadMemoryFunc * const lsi_ram_readfn[3] = {
1864
    lsi_ram_readb,
1865
    lsi_ram_readw,
1866
    lsi_ram_readl,
1867
};
1868

    
1869
static CPUWriteMemoryFunc * const lsi_ram_writefn[3] = {
1870
    lsi_ram_writeb,
1871
    lsi_ram_writew,
1872
    lsi_ram_writel,
1873
};
1874

    
1875
static uint32_t lsi_io_readb(void *opaque, uint32_t addr)
1876
{
1877
    LSIState *s = (LSIState *)opaque;
1878
    return lsi_reg_readb(s, addr & 0xff);
1879
}
1880

    
1881
static uint32_t lsi_io_readw(void *opaque, uint32_t addr)
1882
{
1883
    LSIState *s = (LSIState *)opaque;
1884
    uint32_t val;
1885
    addr &= 0xff;
1886
    val = lsi_reg_readb(s, addr);
1887
    val |= lsi_reg_readb(s, addr + 1) << 8;
1888
    return val;
1889
}
1890

    
1891
static uint32_t lsi_io_readl(void *opaque, uint32_t addr)
1892
{
1893
    LSIState *s = (LSIState *)opaque;
1894
    uint32_t val;
1895
    addr &= 0xff;
1896
    val = lsi_reg_readb(s, addr);
1897
    val |= lsi_reg_readb(s, addr + 1) << 8;
1898
    val |= lsi_reg_readb(s, addr + 2) << 16;
1899
    val |= lsi_reg_readb(s, addr + 3) << 24;
1900
    return val;
1901
}
1902

    
1903
static void lsi_io_writeb(void *opaque, uint32_t addr, uint32_t val)
1904
{
1905
    LSIState *s = (LSIState *)opaque;
1906
    lsi_reg_writeb(s, addr & 0xff, val);
1907
}
1908

    
1909
static void lsi_io_writew(void *opaque, uint32_t addr, uint32_t val)
1910
{
1911
    LSIState *s = (LSIState *)opaque;
1912
    addr &= 0xff;
1913
    lsi_reg_writeb(s, addr, val & 0xff);
1914
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1915
}
1916

    
1917
static void lsi_io_writel(void *opaque, uint32_t addr, uint32_t val)
1918
{
1919
    LSIState *s = (LSIState *)opaque;
1920
    addr &= 0xff;
1921
    lsi_reg_writeb(s, addr, val & 0xff);
1922
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1923
    lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1924
    lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1925
}
1926

    
1927
static void lsi_io_mapfunc(PCIDevice *pci_dev, int region_num,
1928
                           uint32_t addr, uint32_t size, int type)
1929
{
1930
    LSIState *s = (LSIState *)pci_dev;
1931

    
1932
    DPRINTF("Mapping IO at %08x\n", addr);
1933

    
1934
    register_ioport_write(addr, 256, 1, lsi_io_writeb, s);
1935
    register_ioport_read(addr, 256, 1, lsi_io_readb, s);
1936
    register_ioport_write(addr, 256, 2, lsi_io_writew, s);
1937
    register_ioport_read(addr, 256, 2, lsi_io_readw, s);
1938
    register_ioport_write(addr, 256, 4, lsi_io_writel, s);
1939
    register_ioport_read(addr, 256, 4, lsi_io_readl, s);
1940
}
1941

    
1942
static void lsi_ram_mapfunc(PCIDevice *pci_dev, int region_num,
1943
                            uint32_t addr, uint32_t size, int type)
1944
{
1945
    LSIState *s = (LSIState *)pci_dev;
1946

    
1947
    DPRINTF("Mapping ram at %08x\n", addr);
1948
    s->script_ram_base = addr;
1949
    cpu_register_physical_memory(addr + 0, 0x2000, s->ram_io_addr);
1950
}
1951

    
1952
static void lsi_mmio_mapfunc(PCIDevice *pci_dev, int region_num,
1953
                             uint32_t addr, uint32_t size, int type)
1954
{
1955
    LSIState *s = (LSIState *)pci_dev;
1956

    
1957
    DPRINTF("Mapping registers at %08x\n", addr);
1958
    cpu_register_physical_memory(addr + 0, 0x400, s->mmio_io_addr);
1959
}
1960

    
1961
void lsi_scsi_attach(DeviceState *host, BlockDriverState *bd, int id)
1962
{
1963
    LSIState *s = (LSIState *)host;
1964

    
1965
    if (id < 0) {
1966
        for (id = 0; id < LSI_MAX_DEVS; id++) {
1967
            if (s->scsi_dev[id] == NULL)
1968
                break;
1969
        }
1970
    }
1971
    if (id >= LSI_MAX_DEVS) {
1972
        BADF("Bad Device ID %d\n", id);
1973
        return;
1974
    }
1975
    if (s->scsi_dev[id]) {
1976
        DPRINTF("Destroying device %d\n", id);
1977
        s->scsi_dev[id]->destroy(s->scsi_dev[id]);
1978
    }
1979
    DPRINTF("Attaching block device %d\n", id);
1980
    s->scsi_dev[id] = scsi_generic_init(bd, 1, lsi_command_complete, s);
1981
    if (s->scsi_dev[id] == NULL)
1982
        s->scsi_dev[id] = scsi_disk_init(bd, 1, lsi_command_complete, s);
1983
    bd->private = &s->pci_dev;
1984
}
1985

    
1986
static void lsi_scsi_save(QEMUFile *f, void *opaque)
1987
{
1988
    LSIState *s = opaque;
1989

    
1990
    assert(s->dma_buf == NULL);
1991
    assert(s->current_dma_len == 0);
1992
    assert(s->active_commands == 0);
1993

    
1994
    pci_device_save(&s->pci_dev, f);
1995

    
1996
    qemu_put_sbe32s(f, &s->carry);
1997
    qemu_put_sbe32s(f, &s->sense);
1998
    qemu_put_sbe32s(f, &s->msg_action);
1999
    qemu_put_sbe32s(f, &s->msg_len);
2000
    qemu_put_buffer(f, s->msg, sizeof (s->msg));
2001
    qemu_put_sbe32s(f, &s->waiting);
2002

    
2003
    qemu_put_be32s(f, &s->dsa);
2004
    qemu_put_be32s(f, &s->temp);
2005
    qemu_put_be32s(f, &s->dnad);
2006
    qemu_put_be32s(f, &s->dbc);
2007
    qemu_put_8s(f, &s->istat0);
2008
    qemu_put_8s(f, &s->istat1);
2009
    qemu_put_8s(f, &s->dcmd);
2010
    qemu_put_8s(f, &s->dstat);
2011
    qemu_put_8s(f, &s->dien);
2012
    qemu_put_8s(f, &s->sist0);
2013
    qemu_put_8s(f, &s->sist1);
2014
    qemu_put_8s(f, &s->sien0);
2015
    qemu_put_8s(f, &s->sien1);
2016
    qemu_put_8s(f, &s->mbox0);
2017
    qemu_put_8s(f, &s->mbox1);
2018
    qemu_put_8s(f, &s->dfifo);
2019
    qemu_put_8s(f, &s->ctest2);
2020
    qemu_put_8s(f, &s->ctest3);
2021
    qemu_put_8s(f, &s->ctest4);
2022
    qemu_put_8s(f, &s->ctest5);
2023
    qemu_put_8s(f, &s->ccntl0);
2024
    qemu_put_8s(f, &s->ccntl1);
2025
    qemu_put_be32s(f, &s->dsp);
2026
    qemu_put_be32s(f, &s->dsps);
2027
    qemu_put_8s(f, &s->dmode);
2028
    qemu_put_8s(f, &s->dcntl);
2029
    qemu_put_8s(f, &s->scntl0);
2030
    qemu_put_8s(f, &s->scntl1);
2031
    qemu_put_8s(f, &s->scntl2);
2032
    qemu_put_8s(f, &s->scntl3);
2033
    qemu_put_8s(f, &s->sstat0);
2034
    qemu_put_8s(f, &s->sstat1);
2035
    qemu_put_8s(f, &s->scid);
2036
    qemu_put_8s(f, &s->sxfer);
2037
    qemu_put_8s(f, &s->socl);
2038
    qemu_put_8s(f, &s->sdid);
2039
    qemu_put_8s(f, &s->ssid);
2040
    qemu_put_8s(f, &s->sfbr);
2041
    qemu_put_8s(f, &s->stest1);
2042
    qemu_put_8s(f, &s->stest2);
2043
    qemu_put_8s(f, &s->stest3);
2044
    qemu_put_8s(f, &s->sidl);
2045
    qemu_put_8s(f, &s->stime0);
2046
    qemu_put_8s(f, &s->respid0);
2047
    qemu_put_8s(f, &s->respid1);
2048
    qemu_put_be32s(f, &s->mmrs);
2049
    qemu_put_be32s(f, &s->mmws);
2050
    qemu_put_be32s(f, &s->sfs);
2051
    qemu_put_be32s(f, &s->drs);
2052
    qemu_put_be32s(f, &s->sbms);
2053
    qemu_put_be32s(f, &s->dbms);
2054
    qemu_put_be32s(f, &s->dnad64);
2055
    qemu_put_be32s(f, &s->pmjad1);
2056
    qemu_put_be32s(f, &s->pmjad2);
2057
    qemu_put_be32s(f, &s->rbc);
2058
    qemu_put_be32s(f, &s->ua);
2059
    qemu_put_be32s(f, &s->ia);
2060
    qemu_put_be32s(f, &s->sbc);
2061
    qemu_put_be32s(f, &s->csbc);
2062
    qemu_put_buffer(f, (uint8_t *)s->scratch, sizeof (s->scratch));
2063
    qemu_put_8s(f, &s->sbr);
2064

    
2065
    qemu_put_buffer(f, (uint8_t *)s->script_ram, sizeof (s->script_ram));
2066
}
2067

    
2068
static int lsi_scsi_load(QEMUFile *f, void *opaque, int version_id)
2069
{
2070
    LSIState *s = opaque;
2071
    int ret;
2072

    
2073
    if (version_id > 0) {
2074
        return -EINVAL;
2075
    }
2076

    
2077
    if ((ret = pci_device_load(&s->pci_dev, f)) < 0)
2078
        return ret;
2079

    
2080
    qemu_get_sbe32s(f, &s->carry);
2081
    qemu_get_sbe32s(f, &s->sense);
2082
    qemu_get_sbe32s(f, &s->msg_action);
2083
    qemu_get_sbe32s(f, &s->msg_len);
2084
    qemu_get_buffer(f, s->msg, sizeof (s->msg));
2085
    qemu_get_sbe32s(f, &s->waiting);
2086

    
2087
    qemu_get_be32s(f, &s->dsa);
2088
    qemu_get_be32s(f, &s->temp);
2089
    qemu_get_be32s(f, &s->dnad);
2090
    qemu_get_be32s(f, &s->dbc);
2091
    qemu_get_8s(f, &s->istat0);
2092
    qemu_get_8s(f, &s->istat1);
2093
    qemu_get_8s(f, &s->dcmd);
2094
    qemu_get_8s(f, &s->dstat);
2095
    qemu_get_8s(f, &s->dien);
2096
    qemu_get_8s(f, &s->sist0);
2097
    qemu_get_8s(f, &s->sist1);
2098
    qemu_get_8s(f, &s->sien0);
2099
    qemu_get_8s(f, &s->sien1);
2100
    qemu_get_8s(f, &s->mbox0);
2101
    qemu_get_8s(f, &s->mbox1);
2102
    qemu_get_8s(f, &s->dfifo);
2103
    qemu_get_8s(f, &s->ctest2);
2104
    qemu_get_8s(f, &s->ctest3);
2105
    qemu_get_8s(f, &s->ctest4);
2106
    qemu_get_8s(f, &s->ctest5);
2107
    qemu_get_8s(f, &s->ccntl0);
2108
    qemu_get_8s(f, &s->ccntl1);
2109
    qemu_get_be32s(f, &s->dsp);
2110
    qemu_get_be32s(f, &s->dsps);
2111
    qemu_get_8s(f, &s->dmode);
2112
    qemu_get_8s(f, &s->dcntl);
2113
    qemu_get_8s(f, &s->scntl0);
2114
    qemu_get_8s(f, &s->scntl1);
2115
    qemu_get_8s(f, &s->scntl2);
2116
    qemu_get_8s(f, &s->scntl3);
2117
    qemu_get_8s(f, &s->sstat0);
2118
    qemu_get_8s(f, &s->sstat1);
2119
    qemu_get_8s(f, &s->scid);
2120
    qemu_get_8s(f, &s->sxfer);
2121
    qemu_get_8s(f, &s->socl);
2122
    qemu_get_8s(f, &s->sdid);
2123
    qemu_get_8s(f, &s->ssid);
2124
    qemu_get_8s(f, &s->sfbr);
2125
    qemu_get_8s(f, &s->stest1);
2126
    qemu_get_8s(f, &s->stest2);
2127
    qemu_get_8s(f, &s->stest3);
2128
    qemu_get_8s(f, &s->sidl);
2129
    qemu_get_8s(f, &s->stime0);
2130
    qemu_get_8s(f, &s->respid0);
2131
    qemu_get_8s(f, &s->respid1);
2132
    qemu_get_be32s(f, &s->mmrs);
2133
    qemu_get_be32s(f, &s->mmws);
2134
    qemu_get_be32s(f, &s->sfs);
2135
    qemu_get_be32s(f, &s->drs);
2136
    qemu_get_be32s(f, &s->sbms);
2137
    qemu_get_be32s(f, &s->dbms);
2138
    qemu_get_be32s(f, &s->dnad64);
2139
    qemu_get_be32s(f, &s->pmjad1);
2140
    qemu_get_be32s(f, &s->pmjad2);
2141
    qemu_get_be32s(f, &s->rbc);
2142
    qemu_get_be32s(f, &s->ua);
2143
    qemu_get_be32s(f, &s->ia);
2144
    qemu_get_be32s(f, &s->sbc);
2145
    qemu_get_be32s(f, &s->csbc);
2146
    qemu_get_buffer(f, (uint8_t *)s->scratch, sizeof (s->scratch));
2147
    qemu_get_8s(f, &s->sbr);
2148

    
2149
    qemu_get_buffer(f, (uint8_t *)s->script_ram, sizeof (s->script_ram));
2150

    
2151
    return 0;
2152
}
2153

    
2154
static int lsi_scsi_uninit(PCIDevice *d)
2155
{
2156
    LSIState *s = (LSIState *) d;
2157

    
2158
    cpu_unregister_io_memory(s->mmio_io_addr);
2159
    cpu_unregister_io_memory(s->ram_io_addr);
2160

    
2161
    qemu_free(s->queue);
2162

    
2163
    return 0;
2164
}
2165

    
2166
static int lsi_scsi_init(PCIDevice *dev)
2167
{
2168
    LSIState *s = (LSIState *)dev;
2169
    uint8_t *pci_conf;
2170

    
2171
    pci_conf = s->pci_dev.config;
2172

    
2173
    /* PCI Vendor ID (word) */
2174
    pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_LSI_LOGIC);
2175
    /* PCI device ID (word) */
2176
    pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_LSI_53C895A);
2177
    /* PCI base class code */
2178
    pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_SCSI);
2179
    /* PCI subsystem ID */
2180
    pci_conf[0x2e] = 0x00;
2181
    pci_conf[0x2f] = 0x10;
2182
    /* PCI latency timer = 255 */
2183
    pci_conf[0x0d] = 0xff;
2184
    /* Interrupt pin 1 */
2185
    pci_conf[0x3d] = 0x01;
2186

    
2187
    s->mmio_io_addr = cpu_register_io_memory(lsi_mmio_readfn,
2188
                                             lsi_mmio_writefn, s);
2189
    s->ram_io_addr = cpu_register_io_memory(lsi_ram_readfn,
2190
                                            lsi_ram_writefn, s);
2191

    
2192
    pci_register_bar((struct PCIDevice *)s, 0, 256,
2193
                           PCI_ADDRESS_SPACE_IO, lsi_io_mapfunc);
2194
    pci_register_bar((struct PCIDevice *)s, 1, 0x400,
2195
                           PCI_ADDRESS_SPACE_MEM, lsi_mmio_mapfunc);
2196
    pci_register_bar((struct PCIDevice *)s, 2, 0x2000,
2197
                           PCI_ADDRESS_SPACE_MEM, lsi_ram_mapfunc);
2198
    s->queue = qemu_malloc(sizeof(lsi_queue));
2199
    s->queue_len = 1;
2200
    s->active_commands = 0;
2201
    s->pci_dev.unregister = lsi_scsi_uninit;
2202

    
2203
    lsi_soft_reset(s);
2204

    
2205
    scsi_bus_new(&dev->qdev, lsi_scsi_attach);
2206

    
2207
    register_savevm("lsiscsi", -1, 0, lsi_scsi_save, lsi_scsi_load, s);
2208
    return 0;
2209
}
2210

    
2211
static PCIDeviceInfo lsi_info = {
2212
    .qdev.name = "lsi53c895a",
2213
    .qdev.size = sizeof(LSIState),
2214
    .init      = lsi_scsi_init,
2215
};
2216

    
2217
static void lsi53c895a_register_devices(void)
2218
{
2219
    pci_qdev_register(&lsi_info);
2220
}
2221

    
2222
device_init(lsi53c895a_register_devices);